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ABSTRACT

In this paper we present an experiment enabling the occur-
rence of the error-related potential in high cognitive load con-
ditions. We study the single-trial classification of the error-
related potential and show that classification results can be
improved using specific spatial filters designed with the aid
of neurophysiological theories on the error-related potential.

Index Terms— BCI, single-trial classification, error-
related potential, spatial filtering

1. INTRODUCTION

The error-related potential (ErrP) is an event-related potential
(ERP) which is generated when a subject commits or observes
the commitment of an error. It was first reported in 1991 by
Falkenstein et al. [1] and has been since the subject of grow-
ing interest. This potential is time-locked to the observation
of the error and is mostly characterized by a negative deflec-
tion (Ne) [2], followed by a large positivity (Pe) [3]. There
exists different kind of ErrPs depending on the agent commit-
ing the error. In BCIs we generally observes the interaction
ErrP which occurs when a subject observe an external device
commiting an error and the feedback ErrP which is observed
when a suject commits an error but becomes aware of it only
after an external feedback. Lately several authors have be-
come interested in its integration in BCI systems as a control
loop. The integration of the ErrP in BCIs involves two main
operations: its single trial detection and the use of this infor-
mation to on-line modify the system. Since its signal to noise
ratio is very low, as any ERP, the ErrP can easily be seen by
summing up several trials but is much less detectable on a
single-trial basis. The single-trial detection of the ErrP is a
crucial point for its integration in BCIs, thus learning its char-
acteristics to design optimal filtering methods is a key point.
In this paper we first present an experiment we designed to
obtain ErrP data in high cognitive load conditions and study
the occurrence of ErrP. Then we propose to apply spatial fil-
tering methods to enhance ErrP signal to noise ratio in order
to improve its single-trial detection. We present three differ-
ent theories on ErrP origin and use them to design different
types of filter. These filters are then applied to our data be-

fore classification is performed. Filters are then compared in
terms of their classification accuracy and the reliability of the
corresponding theories is discussed.

2. DATA

2.1. Experiment

The experiment we designed involved a memory game where
performance feedback was given after the subject answered
questions. No specific reward was given and the experiment
was designed so as to induce a high cognitive load. Thus
the subject had to focus on other things than just the feed-
back. The experiment involved two sessions that lasted to-
gether approximately half an hour. Each session consisted of
six blocks of six trials, for a total of 6×6×2 = 72 trials. Stim-
uli were presented on a computer screen in front of the sub-
jects and consisted of digits displayed in square boxes. Nine
square boxes were arranged in circle on the screen. Each trial
started with the display of the score for 3000 ms followed
by a fixation cross, which was also displayed for 3000 ms.
Then the memorization sequence started, each memorization
consisted in a random sequence of two to nine digits appear-
ing sequentially in random positions, with each digit of the
sequence randomly assigned to a different box for each se-
quence. Subjects were instructed to retain positions of all
digits. At the end of the sequence the target digit (always
contained in the previous sequence) was displayed and sub-
jects had to click on the box where it had appeared. Once
the subject had answered, the interface waited for 1500 ms
in order to avoid any contamination of ErrP by beta rebound
motor phenomena linked to mouse clicking [4], [5]. Then,
if the answer was correct, the chosen box background color
turned into green (”correct” feedback), otherwise it turned
into red (”error” feedback). Subjects were then asked to re-
port if the feedback (error/correct) matched their expectation
by a mouse click (“yes”/ “no”). Following the answer a ran-
dom break of 1000 ms to 1500 ms preceded the beginning of
the new trial (see Figure 1).

In order to keep the subjects motivated throughout the
experience, the accumulated score was computed at the be-
ginning of each trial. When subjects localized correctly the
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Fig. 1: Time course of one trial

target digits their score increased, otherwise, it remained un-
changed. The number of digits in the sequence was fixed
within blocks (between two and nine) and updated, accord-
ing to performance, at the beginning of each block. The first
block started with four digits for all subjects. The number of
digits in the sequences adaptively increased or decreased of
one digit at each block, according to subjects performance.
The number of digits was adapted with an algorithm tuned
to allow about 20% of errors for all subjects, regardless the
working memory ability and adapting to fatigue as well as
other possible nuisance intervening during the experiment.
Between the two sessions the screen was shut down to al-
low a rest break of 2 - 3 minutes. The use of the adaptative
algorithm allowed us to tune the level of the experiment ac-
cording to each subject in order to have a similar cognitive
load for every subject.

2.2. Participants

25 healthy volunteer subjects participated, 14 males and 11
females. Subjects were informed of the procedure before the
experiment and filled an information form. All subjects were
BCI-naifs at the time of the experiment and none of them re-
ported neurological or psychiatric disorders in the past. Due
to the presence of artifacts, four subjects were excluded from
analysis. The age of participants ranged from 20 to 30 with
a mean (standard deviation) of 24 (2.5). The mean error rate
(standard deviation) was equal to 18 (4.6)% of the trials.

2.3. Acquisition and preprocessing

EEG recordings were made from 31 sensors using the ex-
tended 10/20 system. Both earlobes, digitally linked, were
used as electrical reference. The ground sensor was posi-
tioned on the forehead. The impedance of each sensor was
kept below 5kΩ. The EEG was band-pass filtered in the
range 0.1-70 Hz and digitized at 500 Hz using the Mitsar 202
DC EEG acquisition system. Data were bandpass-filtered
between 1-40 Hz using an order 4 Butterworth filter with
linear phase response. Eye blinks were extracted using ICA
(independent component analysis ([6])). One EOG source (or
more when necessary) was suppressed for each subject. It
was manually selected using both the temporal shape of the
source and its topography.

2.4. Observation of the ErrP

In Figure 2 we plot the event-related potential averaged over
subjects for correct trials and for error trials for one second
post-stimulus (observation of the error). In this figure we see
that for error trials the ERP is characterized by a sharp nega-
tivity followed by a small positivity which is consistent with
previous reports ([7]; [8]). For correct trials, a negativity is
also observed but with a much lower intensity.

  

Fig. 2: Mean potential averaged over 21 subjects at electrode
FCz.
Blue thick line corresponds to error trials and red dashed line
corresponds to correct trials

3. METHOD

3.1. Theories

As we said before, after an error trial one can observe the
occurrence of the error-related potential which is mostly
characterized by a sharp negativity (ERN). However, another
event-related potential also appears after correct trials called
the correct-related negativity (CRN) [9],[10],[11]. This po-
tential is also characterized by a negativity occurring at the
same time as the ERN (but less intense) and localized at the
same electrodes. There exists different theories concerning
the link between these two potentials and their neurophysio-
logical origins. Here we present three possible theories:

H1: The ERN and the CRN are two completely different
phenomena which occur only in one of the two con-
ditions (error or correct). This means that these two
potentials are generated by different sources and could
be separated by specific spatial filtering. These are two
uncorrelated activities.

H2: The ERN and the CRN are generated by the same
source which is simply modulated by the value of the
outcome. Thus, the differentiation of the ERN and the
CRN can only be done by observing the intensity of
this source. This theory is supported by many studies



which localized, using blind source separation tech-
niques or fMRI, the source responsible for the ERN
and the one for the CRN at the exact same location
[12],[11].

H3: The ERN is the sum of two phenomena, one which is
linked to the observation of a result or of a conflictual
response (and which is common to the CRN), another
one which is only linked to the occurrence of an er-
ror [13]. Thus we have ERN = CRN + another poten-
tial. This means that these two potentials share com-
mon neural circuits but that in addition to these, other
independent sources are activated only for error trials.

Using these different theories we can build different spa-
tial filters. Here we will develop three different spatial filters
corresponding to each of these theories. Theories will then
be tested and compared using the classification rate we obtain
using each filter.

3.2. Filtering methods

In order to optimize our classification results we have tried
to spatially filter our data so as to improve the SNR. Filter-
ing was done using xDAWN algorithm [14], [15]. In this
algorithm we consider that the signal is the sum of one tar-
get evoked potential plus other possible superimposed evoked
potentials (but non-target) and noise. Thus the signal can be
written as:

X = D1A1 + D2A2 + N (1)

where X: represents the signal, Di: is a Toeplitz matrix
whose first column entries are set to zero except for those
that correspond to the stimuli of type i. Ai: represents the re-
sponses synchronized with the stimuli of type i, N : represents
the noise. Evoked responses Ai are estimated as:(

A1

A2

)
= (DTD)−1DTX (2)

with D = [D1, D2]. The aim of xDAWN is then to find the
filter U which maximizes the signal to signal plus noise ratio
(SSNR):

U = argmax
Tr(UT

∑
1 U)

Tr(UT
∑

X U)
(3)

with
∑

1 = (D1A1)T (D1A1) and
∑

X = XTX .
Here D1 and D2 will be defined differently according to

the theories we use.

H1: ERN 6= CRN . We have two types of stimuli: ”errors”
and ”corrects”. D1 will be constructed using the stimuli
corresponding to erroneous responses and D2 will be
constructed using the stimuli of correct responses. A1

will be an estimation of the mean potential for error
trials (ERN) and A2 will be an estimation of the mean
potential for correct trials (CRN).

H2: ERN = CRN . We have only one type of stimuli
which corresponds to the reaction to an outcome of per-
formance. D1 will be constructed using the stimuli cor-
responding to correct and erroneous responses. There
will be no D2. A1 will be an estimation of the mean
potential for both error and correct trials.

H3: ERN = CRN + P1. We have two types of stimuli
”errors” and ”reaction to an outcome of performance”.
D1 will be constructed using the stimuli corresponding
to erroneous responses. D2 will be constructed using
the stimuli corresponding to correct and erroneous re-
sponses. A2 will be an estimation of the mean potential
for both error and correct trials. A1 will be an estima-
tion of the remaining mean potential after A2 has been
subtracted from error trials.

Moreover, here we want to classify both correct and error
trials, both might be considered as target trials. Thus for all
these theories two types of filters were designed, one to im-
prove the SSNR of D1A1 (F1) and one to improve the SSNR
of D2A2 (F2). This means that in equation (3) we will use∑

1 to design F1 and
∑

2 to design F2.

3.3. Preprocessing and classification

Data were first band-pass filtered between 1-10 Hz and then
spatially filtered using the previously described methods.
Data were then classified using Bayesian LDA classifier [16].
Since xDAWN algorithm returns filters classified in descend-
ing order of performance we used the first two components
as features for our classifier. In order to avoid over-learning
data were subsampled at 32 Hz. Most studies on ErrP single-
trial classification did not perform any spatial filtering but
simply selected FCz and Cz signals (based on prior physio-
logical knowledge)[17], [18]. Thus, classification was also
performed on raw data (from electrodes FCz and Cz) in order
to compare classification results obtained with and without
spatial filtering. Classification was performed on 21 sub-
jects. For each subject a leave-one method was used, which
means that spatial filters and classifier were learned on the
whole data except one and then tested on the remaining data.
Classification was performed using F1 filters, F2 filters and
both.

4. RESULTS

In figure 3 we plot the mean (and standard deviation) results
of classification over the 21 subjects for error trials and cor-
rect trials using the different methods. First we can see that
classification accuracy is higher for correct trials than for er-
ror trials, this is also mostly the case in other studies on the
ErrP single-trial classification [19],[20],[21]. Moreover we
get, for the reference method, an average classification accu-
racy of 67% for error trials and 70% for correct trials, which



  

(a) Error trials

  

(b) Correct trials

Fig. 3: Classification results averaged over the 21 subjects.
(a) For error trials. (b) For correct trials. Blacks bars cor-
respond to the standard deviation. The height columns cor-
respond to the different classification method used, the first
one corresponds to the reference (no spatial filtering), then
we have results for the first theory (H1) using filters for A1

(F1), A2 (F2) and both (F12), H2 corresponds to results for
the second theory (since there is only target signal we have
only one type of filter). The three last columns correspond to
results for theory 3 (H3) using filters for A1 (F1), A2 (F2)
and both (F12)

is a little bit lower than most results obtained in other studies
[22],[23],[24], but still very good in regard of the low num-
ber of trials available (72 trials with only 20% of errors). We
can see that for error trials all filters seem to perform equiv-
alently and provide results similar as those obtained with the
reference method, i.e. without spatial filtering. Thus it seems
that for detecting errors no spatial filtering is needed or at
least that xDAWN filtering method is not optimal, still it does
not deteriorate results. For the classification of correct trials
it is clear that method H1 and H3 are the most performant
ones. Moreover we can also see that the best classfication re-
sults are obtained using only the first filter (F1), i.e. when
using the ERN as the target potential. H3-F1 slightly outper-
forms H1-F1 with an average classification accuracy of 81%
for H3-F1 against 78% for H1-F1. Both methods clearly out-

perform the reference method (70% of accuracy). A one-way
ANOVA was performed on the classification results to assess
the relevance of the observed effect (F = 8.21, p ≤ 0.01).
Post-hoc multiple comparison tests showed that both H3-F1
and H1-F1 lead to significantly better results than the refer-
ence method. However no significant difference was found
between H3-F1 and H1-F1. On the contrary one can see that
H2 method gives the same kind of results (69% for H2) as the
reference method. In figure 4 we plot the results for each sub-
ject for correct end error trials for method H1-F1, H3-F1 and
reference. We can see that results for error trials are highly
different from one subject to another and that depending on
the subject each method can highly outperform the other ones.
For correct trials the reference method leads to better results
than H1-F1 for only 6 subjects out of 21 ones and than H3-F1
for only 3 subjects out of 21. Thus it seems that H3-F1 is a ro-
bust method. Moreover it has to be noted that when reference
method outperforms one of the two other methods the differ-
ence is always very low (with a maximum difference of 5%
only) while when H3-F1 or H1-F1 outperforms the reference
method the difference might go up to 24%. When comparing
H3-F1 and H1-F1 there does not seem to be any clear dif-
ference between both, indeed H1-F1 outperforms H3-F1 for
8 subjects while H3-F1 outperforms H1-F1 for nine subjects,
thus there does not seem to be a method that is more reliable
than the other.

In figure 5 we plot the topographic maps for four different
subjects corresponding to the first filter component obtained
using the different strategies. We can see that H3 gives more
focused and more stable topographic maps. H2 gives highly
variable maps which are not always consistent with the litter-
ature on ErrP localization. H1 gives better results than H2 but
maps are more spreaded and less stable than those obtained
with H3 except for the fourth subject. These observations are
consistent with the classification results.

5. DISCUSSION

In this paper we presented a high cognitive load experiment
which allowed the generation of ErrP. We obtained satisfying
classification results in regard of the very small number of
trials available (72 trials) with no particular spatial filtering.
In a second time we have proposed to develop spatial filters
in order to improve this classification accuracy. The xDAWN
method allows us to estimate spatial filters optimized for a
given target stimulus on which other undesired stimuli might
be superimposed. We developed three different spatial filters
based on three different existing theories on the nature of
the error-related potential and its link to the correct-related
potential. These three theories lead to different estimations
of the target stimulus and thus to different spatial filters.
First, results showed that classification accuracy could be
greatly improved using well defined spatial filters, at least
for correct trials. This is very encouraging for improving



  

(a) Error trials

  

(b) Correct trials

Fig. 4: Classification results for the 21 subjects.
(a) For error trials. (b) For correct trials. Black bars cor-
respond to the reference method and dark gray bars to the
H1-F1 method and light gray bars to the H3-F1 method

ErrP single-trial detection since more specific filters could be
constructed. Two methods clearly outperformed the reference
method (which used no spatial filters but only the selection
of relevant electrodes), improving classification results for
the ErrP up to 10%. One interesting point is that in neu-
rophysiological studies the most supported theory is the one
corresponding to H2 i.e. the one corresponding to the fact that
the ERN and the CRN reflect the same phenomenon while in
our study it is the one which lead to the poorer results. H3
and H1 lead to similar results with H3 slightly outperform-
ing H1, this can be explained by the fact that, in the case
where H3 would be the right theory, H1 might still give us a
slightly good estimate of A1. Indeed the difference between
potentials estimated in H1 and H3 is just that in H3 we first
subtract the average global potential (i.e. corresponding to
both correct and error trials) before estimating A1. This av-
erage global potential can be seen as noise. Thus, H1 will
simply lead to a noisy estimation of A1 but, if this noise is
not too high we will get similar results. This paper allowed us
to enlight two important points, first that ErrP classification
could be improved by spatial filtering and that neurophysio-
logical theories could be used to design these filters and that,
in return, these filters and their corresponding classification
accuracies could bring information on the relevance of these

  

(a) H1-F1

  

(b) H2-F1

  

(c) H3-F1

Fig. 5: Topographic maps for four different subjects using the
different theories.
(a) Filtering is done using H1, we plot the filter obtained for
the errors. (b) Filtering is done using H2. (c)Filtering is done
using H3, we plot the filter obtained for the errors.

theories. Further studies should be made in this sense by
using other neurophysiological knowledges to develop even
more optimized filters.
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