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Decidability of All Minimal Models (Revised Version -2012)

This unpublished note is an alternate, shorter (and hopefully more readable) proof of the decidability of all minimal models. The decidability follows a proof of the existence of a cellular term in each observational equivalence class of a minimal model.

The first proof I gave of the decidability of all minimal models [START_REF] Padovani | Decidability of All Minimal Models[END_REF] was far from being easy to understand. I was only an inexperienced student at the time, struggling to solve the problem of the decidability of Higher Order Matching. I was trying to generalise to order five my decidability result at order four ( [START_REF] Padovani | Filtrage d'Ordre Supérieur[END_REF], [START_REF] Padovani | Decidability of fourth-order matching[END_REF]) when I realized that every solution of an atomic matching problem (a problem whose right-members are constants of ground type) could be transformed into a cellular term (the so-called "transferring" terms in [START_REF] Padovani | Decidability of All Minimal Models[END_REF]), a term of very simplified structure. The decidability of atomic matching followed immediately from this key-result. A few months later, at the open-problem session of TLCA 1995, Ralph Loader pointed out that another immediate consequence of this decidability result was the existence of a computable selector for the observational equivalence classes of the minimal models of simply-typed lambda-calculus.

Because I was so immersed in the Matching Problem and wanted to prove the decidability of atomic matching at each order, it seemed very natural to prove the existence of cellular representatives by induction on the order of terms. Unfortunately this choice was probably the worst I could make, and resulted in a long, tedious and obfuscated proof. Two years later, using the same techniques, Ralph Loader proved the decidability of Unary PCF [START_REF] Loader | Unary PCF is decidable[END_REF]. Loader's proof was then drastically simplified by Manfred Schmidt-Schauß [START_REF] Schmidt-Schauss | Decidability of Behavioural Equivalence in Unary PCF[END_REF] who gave a clever, simple and beautiful algorithm to compute a selector for Unary PCFa fortiori for every minimal model. This is the point where I realized that something was probably wrong with my own proof : even if the decidability of all minimal models followed from the existence of cellular representatives at each order, the latter property was actually independant from the first, and clearly required a proof by induction on the length of terms.

This unpublished note -written a few years ago -presents a short and simple proof of the existence for each term of an observationally equivalent cellular term, followed by a proof of decidability of each minimal model. The proof considers only one ground type, but can be easily extended to finitely many ground types (if you feel it is really necessary, you can try to read [START_REF] Padovani | Decidability of All Minimal Models[END_REF], or even [START_REF] Padovani | Filtrage d'Ordre Supérieur[END_REF] if you can read French).

We consider the λ-calculus with a single ground type •, a typing à la Church, and finitely many constants of type •. All terms are assumed to be in η-long form. The notation λy 1 . . . y n .u is a shorthand for (λy 1 . . . (λy n u) . . .) and implies that u is of ground type.

Let t, t ′ be closed terms of the same type. We say that t and t ′ are observationally equivalent if and only if the following property holds:

• t, t ′ : • and t = β t ′ , or
• t, t ′ : A → B, and for every closed u : B, we have (t u) ≡ (t ′ u).

The following lemma is a well-known result:

Lemma 1 (Context Lemma) If u ≡ u ′ then for all t, (t u) ≡ (t ′ u).
The following property is false in a simply-typed λ-calculus dealing with higherorder constants, true if all constants are of ground type :

Proposition 1 (Stretching lemma) Let t = λy 1 . . . y n .M [u] be a closed term,
where M is a context with a hole of ground type. Then t is observationally equivalent to λy 1 . . . 

y n .M [M [u]]. Proof. Indeed, M [M [u]] = M [x][M [u]/x], and for all closed t, M [M [u]][t/y] = M [t/y][x][M [u][t/y]/x], with either • M [t/y][x] = β x and M [M [u]][t/y] = β x[[M [u][t/y]/x] = M [u][t/y], or, • M [t/y][x] = β a and M [M [u]][t/y] = β a[M [u][t/y]/x] = a

Cells and cellular terms

Definition 1 A cell is a context of the form Σ[ ] 1 . . . [ ] K = (y (C 1 [ ] 1 . . . [ ] K ) . . . (C p [ ] 1 . . . [ ] K ))
where all [ ] i are holes of ground type and each

C i [ ] 1 . . . [ ] K is a context with no free variables.
By definition each cell contains a unique (head) occurrence of a unique free variable.

Definition 2 A term t is cellular if and only if it is of the following form:

• λy 1 . . . y n .a where a is a constant, or,

• λy 1 . . . y n .Σ [w 1 ] 1 . . . [w k ] K where:
-Σ is a cell whose free variable is amongst y 1 , . . . , y n , -each λy 1 . . . y n .w j is a cellular term. where each λy 1 . . . λy n u i is a cellular term.

Clearly every cellular (resp. semi-cellular) term is a closed term. Note that in the definition of a semi-cellular term, u i is not necessarily of ground typee.g. if u i = λx 1 . . . x p .t, then t may contain cells with head variables amongst y 1 . . . , y n , x 1 , . . . , x p .

The introduction of cells will simplify our proofs below, but the following alternate definition of a cellular term will probably be easier to grasp. Let t = λy 1 . . . y n .u where no variable is simultaneously free and bound in t. The term t is cellular if it is closed, and if for every subterm w = (y i v 1 . . . v n ) of u, the free variables of w are amongst y 1 , . . . , y n . In other words, if some variable z = y 1 . . . y n is bound in t, then no y i is allowed to occur between λz and an occurrence of z. For instance, the indentity

λy 1 y 2 .y 1 (λz.y 2 z) : ((• → •) → •) → ((• → •) → •)
is not cellular, whereas λy 1 y 2 .y 1 (λd.y 2 (y 1 λz.z))

is a cellular term... observationally equivalent to the first. The following proposition is easily proven by induction on the length of t:

Proposition 2 Let Σ be a cell whose free variable is amongst y 1 , . . . , y n . If

λy 1 . . . y n .M [Σ[w 1 ] . . . [w K ]] is cellular, (resp. semi-cellular) then λy 1 . . . y n .M [w k ] is cellular (resp. semi-cellular).
Note that for all w 1 , . . . , w 

K , Σ[w 1 ] . . . [w K ] = Σ[x 1 ] . . . [x k ][w 1 /x 1 . . . w K /x K ]
λy 1 . . . y n .M [Σ[w 1 ] . . . [w k-1 ][N [Σ[v 1 ] . . . [v K ]][w k+1 ] . . . [w K ]]
is observationally equivalent to

λy 1 . . . y n .M [Σ[w 1 ] . . . [w k-1 ][N [v k ]][w k+1 ] . . . [w K ]]
(the names "stretching", "shrinking" were found by Thierry Joly around 1996).

Decidability of all minimal models

For any finite set of constants C, we write ≡ C the restriction of observational equivalence between closed terms whose constants belong to C.

Theorem 2 There exists a comptable function R such that for all types A, and for any finite set of constants of ground type C, R(A, C) is a finite list of terms containing a representative of each ≡ C -class.

Proof. Let A = A 1 . . . A n → •, where A i = B i 1 . . . B i pi → •. Let y 1 : A 1 , . . . , y n : A n . For each i ∈ [1 . . . n]
, let K i be any integer greater1 than the number of ≡ C -classes of type A i . For each j ∈ [1 . . . p i ], let W j i be a complete set of representatives for the pair (B i j , C ∪ {d i 1 . . . d i Ki }), where the d i k 's are fresh constants of type •. We let V i be the set of all terms of the form (y i w). where w ∈ Π pi j=1 W j i . We define R(A, C) as the least set of terms R satisfying: • λy.a ∈ R for all a ∈ C.

• if λy.w 1 , . . . , λy.w Ki ∈ R, and if v ∈ V i is not used in the construction of these terms, then

λy.v[w 1 /d i 1 ] . . . [w Ki /d i Ki ] ∈ R.
Clearly, R is a finite set of cellular terms. Let t be any closed term. We shall prove that there exists a term in R equivalent to t. By the preceding theorem, we can assume that t is cellular. We proceed by induction on the length of t.

Suppose

t = α λy 1 . . . y n .Σ[s 1 ] . . . [s L ]
where Σ is a cell of head variable y i . The number of holes appearing in the normal forms of all Σ[u i /y i ] where u i is a closed term, is bounded by K i . If [ ] l does not appear in these normal forms, then we can replace s l with an arbitrary constant, yielding a term of same class. As a consequence, we can assume that L ≤ K i . Then there exists in V i a term v Σ such that λy

i .Σ[d i 1 ] . . . [d i L ]
≡ λy i .v Σ By induction hypothesis there exists r 1 , . . . , r L such that λy.s 1 ≡ λy.r 1 ∈ R, . . . , λy.s L ≡ λy.r L ∈ R. Then:

t ≡ λy 1 . . . y n .v Σ [r 1 /d i 1 . . . r L /d i L ]
The conclusion follows from the fact that, as in proposition 3, we do not need to use v Σ in the construction of λy.r 1 , . . . λy.r L , that is to say, 

λy.v Σ [r 1 /d i 1 . . . r l-1 /d i l-1 , M [v Σ [r ′ 1 /d i 1 . . . r ′ L /d i L ]]/d i l ,

From

  now on, by C[ ] 1 . . . [ ] K we mean a multiple-hole context whose holes are amongst [ ] 1 , . . . , [ ] K .

  r l+1 /d i l+1 , . . . , r L /d i L ]is equivalent toλy.v Σ [r 1 /d i 1 . . . r l-1 /d i l-1 , r ′ l /d i l , r l+1 /d i l+1 , . . . , r L /d i L ]Remark. Call hereditary cellular every cellular t such that for each celly(C 1 [ ] 1 . . . [ ] K ) . . . (C n [ ] 1 . . . [ ] K ) in t, each λx 1 . . . λx K C j [x 1 ] . . . [x K] is hereditary cellular. Note that all terms returned by the algorithm are hereditary cellular. It it not too difficult to prove that all terms returned by a restriction of Schmidt-Schauß' algorithm to a minimal model (see[START_REF] Loader | An algorithm for the minimal model[END_REF] for Loader's presentation of Schmidt-Schauß' algorithm) are also hereditary cellular.

 

If |R(B i j , C)| = k j then we can take K i = |C| (k 1 ×...×kp i ) .

Existence of cellular representatives

Lemma 2 Every semi-cellular term t is observationally equivalent to a cellular term.

Proof. By induction on the length of t. Assume t = λy 1 . . . λy n .u is in normal form, with u = (y i u 1 . . . u p ). Let M be the minimal context such that

• each t k is a term of ground type, of the form (y . . . ) with y ∈ {y 1 . . . y n }.

For each k, t k is a subterm of some u j , and the closure of this latter term is cellular. Hence, there exists a cell Σ k and terms w k 1 . . . w k L k such that:

Now, for each (k, l) let

By proposition 2, for all (k, l), λy 1 . . . y n .N k l is semi-cellular. By induction hypothesis, there exists a term u k l whose closure is cellular and equivalent to the closure of N k l . We define u ′ as

Clearly, t Corollary 1 For all types A, there exists a term t : A → A such that for all terms w : A, the normal form of (t w) is a cellular term equivalent to w.

Proof. Define t as the cellular equivalent of the η-long form of λx x.