
EEVC
Brussels, Belgium, November 19-22, 2012

Energy Demand Prediction in a Charge Station: A
Comparison of Statistical Learning Approaches

Hélène Le Cadre1, Cédric Auliac2
1Mines ParisTech, Centre for Applied Mathematics, France, Email: helene.le_cadre@mines-paristech.fr

2CEA, LIST, 91191 Gif-sur-Yvette CEDEX, France, Email: cedric.auliac@cea.fr

Abstract

In this article, we compare the performances of 5 learning techniques: artificial neural networks, support
vector machines, ARIMA processes, regret based methods and a naive approach based on the periodic
repeatitions of the predictions. They have been tested over a real database which can be associated with
the energy demand generated by electric vehicles wishing to reload, in a specific charge station. Using
this generic database, our simulations highlight the fact that regret based methods clearly outperform the
other learning approaches. This class of methods is all the more interesting as it enables the introduc-
tion of game theory to model the interdependencies between the agents composing the ecosystem and
provides economic guidelines.

Keywords: Supervised Learning, Regret algorithms, Electric Vehicle Demand

1 Introduction
The management of Electric Vehicle (EV) charg-
ing infrastructure requires both to optimize the
location of the various charge stations compos-
ing the underlying network and to provide rel-
evant predictions to the EV drivers and to the
utilities managing the charge stations. We pro-
posed and tested an algorithm based on the cross-
entropy method in [4], to optimize the charg-
ing infrastructure, under competition between the
utilities. The solving of the non-cooperative ge-
ographic location game between the utilities re-
quired to make simplifying assumptions about
the EV drivers’ energy demand. To improve the
accuracy of the modelling assumptions regarding
the EV drivers’ energy demand, it is necessary to
develop efficient learning approaches. One ma-
jor problem is that it is impossible to measure
explicitly the real energy demand of the drivers.
Indeed, it is the consumption that the utilities like
Better Place, monitor in their charge stations. Of
course, there exists a non-trivial relation between
demand and consumption but it appears as im-
possible to infer analytically. In the context of
the european FP7 project Elvire, we modeled the
problem as a partial information game and pro-
vided predictions about the energy demand us-

ing regret based methods [1], [3]. Following this
direction, the goal of this article is to compare
the performances of 5 energy demand prediction
methods on a real data set.

The prediction system is based on data measure-
ments available online on the machine learning
repository PEMS-SF [2]. More precisely, we
have downloaded 15 months worth of daily data
from the California Department of Transporta-
tion website. The data describes the occupancy
rate, between 0 and 1, of different car lanes of
San Francisco bay area freeways. The measure-
ments cover the period from january 1, 2008 to
march 30, 2009 and are sampled every 10 min-
utes. We consider each day in the database as
a single time series of dimension 963 i.e., the
number of sensors which functioned consistently
throughout the studied period, and length 144.
We remove public holidays from the dataset, as
well as two days with anomalies (march 8, 2009
and march 9, 2009) where all the sensors were
muted between 2 and 3 a.m. This results in a
database of 440 time series. Associating a sensor
with a charge station, we have kept only the first
sensor historical data.

To be more generic, we will consider any data

EEVC European Electric Vehicle Congress 1

measurements to improve our predictions. The
data probes can measure for example:

• The time series of the number of EVs in the
charge stations of the utility managing the
charging infrastructure

• The time series of the road occupancy, un-
der the assumption that the road occupancy
is measured by a coefficient between 0 (no
vehicle) and 1 (maximal congestion)

• The time series of the energy demand in a
specific region

• The revenues of an energy producer, etc.

As mentioned above, the data measurements are
stored in a database server. They are all synchro-
nized and associated with a time instant. Then,
there exists at least two approaches to forecast
the energy refuelling demand:

Approach A: Either, estimate the real de-
mand from the aggregation of the different
measures given by all the sensors at past
time periods, and through a time series fore-
casting method, forecast the future values.

Approach B: Or, use directly a forecast-
ing method starting from the data measure-
ments. It is also called a partial feedback
forecasting method.

Under Approach A, we will use artificial neural
networks, support vector machines and ARIMA
models. Under Approach B, we will use the re-
gret based monitoring technique.

In Section 2, we will describe artificial neural
networks, support vector machines and ARIMA
models, while in Section 3 we will detail the prin-
ciples of the regret based methods. Finally, in
Section 4, we will provide an interpretations of
the results that we obtained using the PEMS-SF
database.

2 Approach A: Description of
the time series forecasting algo-
rithms

There are three major learning processes, each
corresponding to a particular abstract learning
task. These are supervised learning, unsuper-
vised learning and reinforcement learning.

In supervised learning, we are given a set of ex-
ample pairs (x, y) ∈ X × Y ⊂ R2 and the aim
is to find a function f : X → Y in the allowed
class of functions that matches the examples. In
other words, we wish to infer the mapping im-
plied by the data. The cost function is related to
the mismatch between our mapping and the data
and it implicitly contains prior knowledge about
the problem domain. A commonly used cost is

the mean-squared error. With this performance
measure, the forecaster will try to minimize the
average squared error between the network’s out-
put f(x), and the target value y, over all the ex-
ample pairs. Tasks that fall within the paradigm
of supervised learning are pattern recognition,
also known as classification, and regression, also
known as function approximation.

In unsupervised learning, some data x is given
and the cost function to be minimized can be any
function of the data x and the network’s output.
Tasks that fall within the paradigm of unsuper-
vised learning are in general, estimation prob-
lems. The applications include clustering, the es-
timation of statistical distributions, compression
and filtering.

In reinforcement learning, data x are usually not
given, but generated by an agent’s interactions
with the environment. The aim is to discover a
policy for selecting actions that minimizes some
measure of a long-term cost i.e., the expected cu-
mulative cost. The environment’s dynamics and
the long-term cost for each policy are usually
unknown, but can be estimated. Tasks that fall
within the paradigm of reinforcement learning
are control problems, games and other sequential
decision making tasks.

In this section, we will concentrate on the super-
vised learning paradigm, assuming that we have
some real historical data on the electric refuelling
demand to predict the future, even if in practice,
we will most probably not get data on the exact
value of the demand but on some indirect mea-
sures of it, like cars stopping at the station or the
quantity of battery exchanged in a day.

2.1 Artificial Neural Networks (ANNs)
Artifical Neural Networks (ANNs) are non linear
statistical data modeling tools. They are usually
used to model complex relationships between in-
puts and outputs, or, to find patterns in data. It
is inspired by the structure and/or functional as-
pects of biological networks.

The network pictured in Figure 1, has three lay-
ers. The first layer has input neurons, which send
data via synapses to the second layer of neurons,
and then via more synapses to the third layer
of the output neuron. More compex systems
will have more layers of neurons with some hav-
ing increased layers of input neurons and output
neurons. The synapses store parameters called
weights that manipulate the data in the computa-
tions. An ANN is typically defined by three types
of parameters:

• The interconnection pattern between the
different layers of neurons

• The learning process for updating the
weights of the interconnections

• The activation function that converts a neu-
ron’s weighted input to its output activation

EEVC European Electric Vehicle Congress 2

Figure 1: Example of a three layer neural network.

In our application for the energy demand fore-
cast, we have decided to stick to three layers of
neurons. The input layer encodes the time of the
measure. The output layer is a single neuron rep-
resenting the demand. However, the number of
hidden neurons is not fixed. We consider that all
input neurons send their information to all hidden
neurons and that all hidden neurons send their in-
formation to the output neuron. This structure is
sometimes called a feed-forward neural network.
We also add to each neuron a specific input which
is a white noise. It enables some probabilistic be-
havior.

The activation function is linear. It equals the
weighted sum sent by the input neurons of a
given neuron. The output has values in [0; 1].
To make less computation errors, we will need to
scale the inputs of the neural network to have val-
ues in [0; 1]. This scaling is needed in most neu-
ral network applications but may result in quite
large absolute errors if the considered domain for
the demand is large.

Referring to the supervised learning frame-
work described at the beginning of the sec-
tion, we will learn the following function:
demand = f(month, day, hour,minute) repre-
sented as a graph of neurons from n historical
data points and then predict the future demand
by applying this function on some future dates.

We fit a neural network with 5 hidden neurons on
the data of occupancy of a California road for 60
days with 144 measures per day. It gives us the
neural network pictured in Figure 2 where each
value on a synapse is the weight of the synapse
and the activation function is linear.

We can check the good fit of the ANN by show-
ing the output which was produced by the input
data of the second week of the learning data in
Figure 3 (a) and of the data points correspond-
ing to the week between day 67 and 74 in Fig-
ure 3 (b), and by comparing it with the true val-
ues. The black line represents the true measure-
ments while the red points are the estimated ones,
generated by the ANN.

Figure 2: The experimentally optimized three layer
ANN used in our study.

(a) (b)

Figure 3: Learning with ANN over a week.

2.2 Support Vector Regression (SVR)

A support vector machine (SVM) is a supervised
learning method that analyzes data and recog-
nizes patterns, used for classification and regres-
sion analysis. In that sense, it is very close to a
neural network and can even be interpreted as an
extension of a specific neural network named the
perceptron. However, there is no a priori on the
dependency structure between inputs and output
and on the activation functions forms in the case
of SVM contrary to neural networks. In addition,
during the learning phase, a SVM model tries to
separate output categories by a clear gap that is
as wide as possible and not just big enough to
classify the learning data correctly. As a result,
it is less sensitive to learning data isolated errors
(outliers) than a neural network.

The standard SVM is a non-probabilistic binary
linear classifier. It takes a set of input data and
predicts, for each given input, which of two pos-
sible classes forms the input by defining two par-
allel hyperplanes as far as possible from each
other, separating the learning data. In Figure 4,
we separate green points on one side of a first hy-
perplane from white points on the other side of a
second hyperplane. These two hyperplanes are
the most distant possible hyperplanes of the con-
sidered space separating the two types of points.
In 1992, Boser et al. suggested a way to cre-
ate nonlinear classifiers by applying the ker-
nel trick [5] to maximum-margin hyperplanes.
This allows the algorithm to fit the maximum-
margin hyperplane in a transformed feature
space. The transformation may be nonlinear and
the transformed space high dimensional. Thus,

EEVC European Electric Vehicle Congress 3

Figure 4: SVM as a binary classifier.

though the classifier is a hyperplane in the high-
dimensional feature space, it may be nonlinear
in the original input space. Some common ker-
nels include: polynomial, hyperbolic tangent and
Gaussian radial basis kernels. The separation line
between the two classes which is a hyperplane in
the feature space may be a very complex curve in
the original space as depicted in Figure 5.

Figure 5: Illustration of the kernel trick (source:
Wikipedia).

In our application, we will use the radial basis
kernel which means that the formula exp(−γ|u−
v|2) is used instead of the scalar product of u and
v. We will choose γ as the inverse of the number
of observations.

A version of SVM for regression was proposed
in 1996 by Vapnik et al. [6]. This method is
called support vector regression (SVR). It per-
forms linear regression in the high-dimension
feature space using ε insensitive loss and, at the
same time, tries to reduce model complexity by
minimizing the linear regression factor ω. This
can be described by introducing (non-negative)
slack variables ξi, ξ∗i , to measure the deviation
of training samples outside ε insensitive zone.
Thus, SVM regression is formulated as mini-
mization of the following functional:

min
1

2
‖ω‖2 + c

n∑
i=1

(ξi + ξ∗i)

yi − f(xi, ω) ≤ ε+ ξ∗i
f(xi, ω)− yi ≤ ε+ ξi
ξi, ξ

∗
i ≥ 0, ∀i = 1, ..., n

In our application, we will choose ε = 0.1 and
c = 1 for our computations and f(.) is the radial
basis kernel.

We run the support vector machine algorithm on
the PEMS-SF database. The algorithm gives us
more than 4000 support vectors which means that
the space of days of the week and hours of the
day is very fragmented in terms of road occu-
pancy.
We can check the good fit of the SVR model
by showing the output produced by the input
data of the second week of the learning data in
Figure 6 (a) and of the data points correspond-
ing to the week between day 67 and 74 in Fig-
ure 6 (b), and by comparing it with the true val-
ues. The black line represents the true measure-
ments while the red points are the estimated ones,
given by the SVR method.

(a) (b)
Figure 6: Learning based on SVR over a week.

2.3 ARIMA processes
An autoregressive integrated moving average
(ARIMA) model is a generalization of an autore-
gressive moving average (ARMA) model. They
are applied in some cases where data show evi-
dence of non-stationarity, where an initial differ-
encing step (corresponding to the integrated part
of the model) can be applied to remove the non-
stationarity.

The model is generally referred to as an
ARIMA(p, d, q) model where p, d, and q are
non-negative integers that refer to the order of the
autoregressive, integrated, and moving average
parts of the model respectively. ARIMA models
are used for observable non-stationary processes
xt that have some clearly identifiable trends:

• A constant trend i.e., zero average, is mod-
eled by d = 0

• A linear trand i.e., linear growth behavior, is
modeled by d = 1

• A quadratic trend i.e., quadratic growth be-
havior, is modeled by d = 2

Sometimes a seasonal effect is suspected in the
model. For example, if we consider a model
of daily road traffic volumes. Weekends clearly
exhibit different behavior from weekdays. In
such cases, it is often considered better to use a

EEVC European Electric Vehicle Congress 4

SARIMA (seasonal ARIMA) model than to in-
crease the order of the AR or MA parts of the
model.

The ARMA model consists of two parts, an au-
toregressive (AR) part and a moving average
(MA) part. The autoregressive part of the model
of order p is written:

xt = c̄+

p∑
i=1

ϕ̄ixt−i + εt

where the ϕ̄i, i = 1, ..., p are the parameters of
the model, c̄ is a constant and εt is a white noise.
The moving average part of the model of order q
is written:

xt = µ+ εt +

q∑
i=1

θiεt−i

where the θi, i = 1, ..., q are the parameters of
the model, µ is the expecation of xt. It is often
assumed to equal 0 and the εt, εt−1, ..., εt−q are
white noise error terms.

We can see from these definitions that a
(S)ARIMA model assumes that the time series
we are studying are mainly stationary or have a
constant trend in their evolution. If there is a shift
in car drivers behaviors, due for example to tax
increase or promotion or other external events,
it will not be taken into account. In addition,
to catch all the trends in the evolution, we need
quite a long period of observed data to detect the
autocorrelation. For example, if there is a sea-
sonal effect such as a big increase in transporta-
tion during summer holidays we should need
more than one year of data to detect it. This is
too long to ensure an optimal mining of the data.

The estimation of the ARIMA model corre-
sponding to some learning data is done through
the Box and Jenkins method [7]. The original
model uses an iterative three-stage modeling ap-
proach:

• Model identification and model selection:
making sure that the variables are station-
ary, identifying seasonality in the dependent
series (seasonally differencing it if neces-
sary), and using plots of the autocorrelation
and partial autocorrelation functions of the
dependent time series to decide which (if
any) autoregressive or moving average com-
ponent should be used in the model.

• Parameter estimation using computation al-
gorithms to arrive at coefficients which best
fit the selected ARIMA model. The most
common methods use maximum likelihood
estimation or non-linear least-squares esti-
mation.

• Model checking by testing whether the esti-
mated model conforms to the specifications
of a stationary univariate process. In partic-
ular, the residuals should be independent of

each other and constant in mean and vari-
ance over time. (Plotting the mean and vari-
ance of residuals over time and performing
a Ljung-Box test or plotting autocorrelation
and partial autocorrelation of the residuals
are helpful to identify misspecification.) If
the estimation is inadequate, we have to re-
turn to step one and attempt to build a better
model.

We follow the Box and Jenkins method [7] to de-
compose the PEMS-SF database. First, we run
an autocorrelation diagram. Its output is rep-
resented in Figure 7 (a). We see that there is
a strong seasonality of 144 time periods (which
corresponds to one day). We extract the seasonal
part of the historical data and we draw again an
autocorrelation diagram and a partial autocorre-
lation diagram which outputs are drawn in Fig-
ure 7 (b). We see that the remaining part of the

(a) (b)

Figure 7: Autocorrelation diagrams for the PEMS-SF
data.

historical data out of the seasonal part is an auto
regressive model of order 2. We estimate the
corresponding coefficients and we obtain a full
model of the road occupancy.

We can check the good fit of the ARIMA pro-
cess by showing the output produced by the in-
put data of the second week of the learning data
in Figure 8 (a) and of the data points correspond-
ing to the week between day 67 and 74 in Fig-
ure 8 (b), and by comparing it with the true val-
ues. The black line represents the true measure-
ments while the red points are the estimated ones,
given by the ARIMA process.

(a) (b)

Figure 8: Learning with an ARIMA process over a
week.

EEVC European Electric Vehicle Congress 5

3 Approach B: Description of
the regret based forecasting al-
gorithms

3.1 Time series forecasting

We can imagine from the previous section that
there is a lot of possible techniques to model and
predict the energy refuelling demand of electric
car vehicles; for example, we can think about all
the possible kernel functions when considering
support vector machines. But how can we se-
lect the best candidate model among all the pos-
sible? In many cases, it is a long process of it-
erative selection which last a few years until the
industry reaches a consensus on the best model.
It is even more difficult in our case as the refu-
elling technologies are not stabilized, the avail-
able measures to make the prediction are not so
clear, and the car drivers’ behavior is in defini-
tion. One possible solution is to use the regret
based techniques to select dynamically the best
forecasting technique. Indeed, the starting idea
of regret based techniques is to select the best
forecasting expert among a finite set by estimat-
ing the regret of not having followed that expert
at each time period.

The advantages of regret-based techniques are:

• It does not require any a priori on the data
that we are forecasting

• It is an online learning algorithm in the
sense that it can accept any fresh data mea-
sures at each time period to improve its ac-
curacy without needing to rerun the algo-
rithm on all the learning phase contrary to
ANNs, SVMs or ARIMA estimation meth-
ods

• The error that we make in our predictions
are bounded with a computable theoretical
expression and under certain circumstances
this bound is the best that we can obtain for
any forecaster

• They extend the SVM and ANN based tech-
niques

For the regret based forecasting, we take away
the seasonal part of the PEMS-SF dataset like
in the ARIMA process case. Having removed
the data seasonality, we use the Vovk-Azoury-
Warmuth forecaster to model the resulting data
[1]. Formally, let xt be a vector containing the
time index and the day index corresponding to
each time period t and yt be the value of the road
occupancy rate for each time period t, the Vovk-

Azoury-Warmuth forecaster pt is defined by:

pt = < wt, xt >

At = I +
t∑

s=1

xsx
T
s

wt = A−1t

t−1∑
s=1

ysxs

A specificity of the regret based algorithm is that
it can benefit from new data points after the learn-
ing step to improve its forecasts. Contrary to
ANN, SVR or ARIMA process for which the
learning process has to be repeated to take into
account recent data, the regret based techniques
is an online forecasting tool. To be more precise,
it is made of two phases:

• Exploration: the algorithm gathers data so
as to extract the most reliable information.
The forecaster explores all the possible pre-
diction values and keeps in memory its re-
gret performance.

• Exploitation: the algorithm exploits the in-
formation that it has already acquired and
optimizes its estimates by selecting the best
forecaster.

This two stage process explains why the regret
algorithm might need some time to learn over the
training set and why its learning capacity might
be observed only after a sufficiently large number
of iterations.

We can check the good fit of the regret based al-
gorithm by showing the output produced by the
input data of the second week of the learning
data in Figure 9 (a) and of the data points cor-
responding to the week between day 67 and 74
in Figure 9 (b), and by comparing it with the true
values. The black line represents the true mea-
surements while the red points are the estimated
ones, given by the regret based algorithm. We

(a) (b)

Figure 9: Learning with a regret based algorithm over
a week.

can notice that the algorithm takes benefit from
data points after the learning phase to improve
its forecasts contrary to neural networks, support
vector machines and ARIMA processes as it is
an online forecasting tool.
We compare the performance of the regret-based
technique to the support vector machine method

EEVC European Electric Vehicle Congress 6

Figure 10: Comparison of the cumulative regret of
regret based (black) and SVM (red) methods.

by plotting the cumulative regret obtained by
these two techniques in Figure 10. The cumu-
lative regret is the sum of the prediction errors
made from time period 1 to the considered time
period t and the good property of regret-based
technique is that they minimize this value in the
long run.

One possible extension of our work could be to
use the regret based technique to select dynami-
cally the best forecasting period between support
vector machines, ARIMA and ANNs.

4 Comparison of the prediction
method performances

To compare the performances of the various fore-
casting methods over the datasets, we use as cri-
terion, the expectation of the mean of the abso-
lute errors:

L̄ =

∑
t∈S

∑
y∈Y
|yt − y|pt(y)

|S|

where the set S can represent either the train-
ing or the test set, 0 < |S| < +∞ denotes
its cardinal and Y is the set containing all the
possible road occupancy values over the dataset.
At time period t, predictor pt is a density func-
tion over space Y for the regret based learning
method whereas it is a real belonging to Y in
case where ANN, ARIMA process or SVR are
used. As a result, in this latter case, the per-
formance criterion can be sligthly modified to

give: L̄ =

∑
t∈S
|yt − pt|

|S| . The methods are ranked
from 1 to 5 over both sets. Smaller is the rank,
smaller is the mean absolute error i.e., better is
the method.

In the last row of Table 1, we have tested a naive
learning approach based on the repetition of the

Learning method v.s. Dataset Training set Test set
ANN 5 5

ARIMA 1 3

SVR 3 2

Regret 4 1

Naive 1 4

Table 1: Ranking of the learning algorithms based on
the mean absolute errors.

road occupancy rates over two consecutive weeks
belonging to one learning set and then, to the
other. We observe that it is worth using elabo-
rate predictions tools over the considered dataset.
Indeed over the training set, the regret based ap-
proach, ARIMA process and SVR perform bet-
ter than the naive approach and over the test set,
solely, the ANN performs worse that the naive
approach. Over the test set i.e., to perform the
prediction task, the regret based algorithm gener-
ates the smallest value for the absolute loss fol-
lowed closely by the SVR.

In the last row of Table 1, we have tested a naive
learning approach based on the repetition of the
road occupancy rates over two consecutive weeks
belonging to one learning set and then, to the
other. We observe that it is worth using elabo-
rate predictions tools over the considered dataset.
Indeed over the training set, the regret based ap-
proach, ARIMA process and SVR perform bet-
ter than the naive approach and over the test set,
solely, the ANN performs worse than the naive
approach. Over the test set i.e., to perform the
prediction task, the regret based algorithm gener-
ates the smallest value for the absolute loss fol-
lowed closely by the SVR.

5 Conclusion
In this article, we compared the performances of
5 learning methods: artificial neural networks,
support vector machine methods, ARIMA pro-
cess and regret based algorithm, over the PEMS-
SF database which is a freely available machine
learning repository [2]. Over the test set i.e.,
to perform the prediction task, the regret based
algorithm generates the better performances in
terms of absolute loss minimization, followed
closely by the support vector machine method.
As a result, energy demand forecasters should fa-
vor one of these techniques.

One possible extension could be to use the regret
based technique to select dynamically the best
forecasting period between support vector ma-
chines, ARIMA and artificial neural networks.

It is worth mentioning that regret methods are
all the more interesting since they enable the
introduction of game theory to model interde-
pendences between the agents composing the

EEVC European Electric Vehicle Congress 7

ecosystem and might provide economic guide-
lines.

Acknowledgements
This work was supported by the European FP7
project Elvire and the Atomic Energy and Alter-
native Energies Commission (CEA).

References
[1] Cesa-Bianchi N., Lugosi G., Prediction,

Learning, And Games, Cambridge univer-
sity Press, 2006

[2] Frank, A., Asuncion, A., UCI
Machine Learning Repository,
[http://archive.ics.uci.edu/ml], university
of California Irvine, School of Information
and Computer Science, 2010

[3] Le Cadre, H., Potarusov, R., Auliac, C., En-
ergy Demand Prediction: A Partial Infor-
mation Game Approach, in proc. 1-st Euro-
pean Electric Vehicle Congress, 2011

[4] Le Cadre H., Infrastructure Topology
Optimization using the Cross-Entropy
Method, to appear in the Journal
of the Operational Research Society,
doi:10.1057/jors.2012.96

[5] Aizerman M., Braverman E., Rozonoer
L., Theoretical foundations of the poten-
tial function method in pattern recognition
learning, Automation and Remote Control,
vol.25, pp.821–837, 1964

[6] Drucker H., Burges C. J. C. Kaufman L.,
Smola A., Vapnik V., Support Vector Re-
gression Machines, Advances in Neural In-
formation Processing Systems, the MIT
Press, vol.9, pp.155–161, 1997

[7] Newbold P., The Principles of the Box-
Jenkins Approach, Operational Research
Quaterly, vol.26, pp.397–412, 1977

EEVC European Electric Vehicle Congress 8

	Introduction
	Approach A: Description of the time series forecasting algorithms
	Artificial Neural Networks (ANNs)
	Support Vector Regression (SVR)
	ARIMA processes

	Approach B: Description of the regret based forecasting algorithms
	Time series forecasting

	Comparison of the prediction method performances
	Conclusion

