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We study within the framework of density functional theory the behaviour of a two dimen-
sional fluid with a competing attraction at short distances and repulsion at longer distance in
addition to a hard-core. The soft part of the interaction is treated by a first-order thermody-
namic perturbation theory, which for a homogeneous bulk fluid predicts that thermodynamic
quantities reduce to that of the hard-disk reference system. Despite this seemingly simple
thermodynamic result, the behaviour of this fluid with competing interactions is rich and
intriguing. In this work we follow the insight and inspirations by Reatto and co-workers, who
performed computer simulation studies of the same system.

1. Introduction

A variety of interesting fluid behaviour can be observed in model systems that
interact via pair potentials with strong, hard-core repulsion at short distances and
a soft attraction [1]

V (r) =

{

∞ r < 2R
Vsoft(r) otherwise.

(1)

Here R is the radius of the hard-core interaction. In the case of simple liquids, where
the soft part of the interaction is a purely attractive potential, phase separation
into a low density gas and a high density liquid can be found at sufficiently low
temperatures. Simple fluids are, of course, well studied in theory and experiment.

Very different behaviour follows if the soft interaction is given by competing
attraction at short distances and a longer ranged repulsion of the form [2–7]

Vsoft(r) = −εaσ
2

R2
a

exp

(

− r

Ra

)

+
εrσ

2

R2
r

exp

(

− r

Rr

)

, (2)

with εa > 0 and εr > 0, and Ra < Rr. The hard-core diameter of the disk σ = 2R.
This potential was first introduced by Sear et al. [2, 3] to study the formation of
clusters, or micro-phase separation, of nanoparticles (quantum dots) trapped at a
water-air interface. That rich and interesting equilibrium behaviour should occur
was recognised and studied by Reatto and co-workers. The model given by Eq. (2)
in dimension d = 2 was studied by Imperio and Reatto [4–6]. A slightly modified
version of this model in d = 3, where the exponential functions were replaced by
Yukawa interactions, was studied Reatto and colleagues [8–10] and also inspired
studies by Archer et al. [11, 12] and by Li et al. [13].

Here we study, inspired by Reatto’s insights and findings, the two dimensional
system with pair interactions given by Eq. (2) within the framework of classical
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density functional theory (DFT). By doing so we hope to add a somewhat different
perspective to the results already reported on this intriguing system. In particular
we make use of the fact that within DFT it is possible to access the structure and
the thermodynamics of a system on equal footing.

The paper is organised as follows. In Section 2 we describe the theoretical frame-
work of this study. The main ideas of DFT are outlined for the particular applica-
tion. The system of disks with competing interactions is studied first in the absence
of any external field in Section 3. In Section 4 a single planar hard wall is added to
the system. One point of particular interest here is the fact that the wall contact
theorem imposes a constraint on the density profile. In Section 5 we add a second
parallel hard wall and study the disks in a simple confined geometry. We conclude
with a discussion of our results in Section 6.

2. Density Functional Theory

Within the framework of density functional theory for classical systems [14, 15]
there exists a functional of the average one-body density ρ(r) which upon minimi-
sation yields the grand canonical potential:

Ω[ρ] = F [ρ] +

∫

d2r ρ(r)(Vext(r) − µ), (3)

where F [ρ] is the intrinsic Helmholtz free energy functional, Vext(r) is the external
and µ the chemical potential.

The intrinsic Helmholtz free energy functional can be split into the exact ideal
gas part

Fid[ρ] = β−1

∫

d2r ρ(r)
(

lnλ2ρ(r) − 1
)

(4)

where this is written in dimension d = 2 and an excess (over the ideal gas) free
energy Fex[ρ]

F [ρ] = Fid[ρ] + Fex[ρ]. (5)

λ is the thermal wavelength. The excess free energy contains all the information
about the inter-particle interactions and for most systems of interest is only known
approximately. Once the functional of the excess free energy is constructed it can
be employed to study the system in an arbitrary external field described by Vext(r).
By minimising the functional of the grand potential, Eq. (3), one can obtain the
generally inhomogeneous equilibrium structure, ρ0(r), and the thermodynamics of
the system through the relation Ω = Ω[ρ0(r)], where Ω is the grand potential of
the system. In the following we will suppress the index 0, that indicates the fact
that an equilibrium structure is used.

Since the excess free energy functional for a system of disks interacting with
competing interactions is not known we follow a standard perturbation theory
approach in which we use a fluid of hard-disks (HD) as reference system [16, 17]
described by fundamental-measure theory (FMT) [18, 19] and a perturbation term
for the soft interaction:

Fex[ρ] = FHD
ex [ρ] +

1

2

∫

d2r ρ(r)

∫

d2r′ ρ(r′) Ṽsoft(|r − r′|). (6)
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In FMT the excess free energy of a hard-core system is written as [18, 19]

βFex[ρ] =

∫

d2r φ(nα), (7)

where the excess free energy density φ is a function of weighted densities nα. The
form of φ used here and the weight functions are given in Ref. [17].

A first order perturbation theory of the form (6) is known to underestimate the
correlation in the system. Therefore the soft interaction part in the pair potential
(2), Vsoft(r), is empirically changed to Ṽsoft(r) in Eq. (6), and is defined by

βṼsoft(r) =

{

−βVsoft(r = 2R) r < 2R
βVsoft(r) otherwise,

(8)

where the attraction is extended into the hard core, i.e. to r → 0. As usual, β =
1/(kBT ) with Boltzmann constant kB and absolute temperature T .

Following Imperio and Reatto [4, 5] the length scales Ra and Rr in the soft
interaction, Eq. (2), are set to Ra = 2R and Rr = 4R. In addition a relation
between the depth of the attraction εa and the strength of the repulsion εr is
established by imposing the condition that

∫

d2r Ṽsoft(r) = 0. (9)

This is slightly different from the condition imposed on the interaction potential
Vsoft(r) within simulations by Imperio and Reatto [4, 5] where

∫

d2r Vsoft(r) = 0
leads to εa = εr. Here, the condition (9) leads for the present choice of length scales
to

εr =
20

13
√

e
εa ≈ 0.933124 εa, (10)

where e is the Euler constant.
This concludes the description of the density functional. The first application of

the functional is to a bulk fluid, i.e. to a system without an external potential.

3. Bulk Fluid

Within first order thermodynamic perturbation theory, which corresponds to the
approximate treatment of the soft interaction within DFT given by Eq. (6), the
equation of state and the chemical potential of a homogeneous bulk fluid can be cal-
culated straightforwardly from the excess Helmholtz free energy density (in d = 2)
fex = Fex/A = Fex[ρ(r) = ρbulk]/A with the constant bulk density ρbulk. Note that
in the absence of an external potential, simple fluids exhibit in a homogeneous bulk
system, in the region of density and temperature away from crystallisation. This is
not necessarily true for a system with competing interaction. However, if we start
by considering sufficiently high temperatures and low densities, a homogeneous
bulk fluid can be assumed also for the present system.

It is easy to see from Eq. (6) that

fex(ρbulk) = fHD
ex (ρbulk) +

1

2
ρ2

bulk

∫

d2r Ṽsoft(r) = fHD
ex (ρbulk), (11)
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where we have employed condition (9) in the second step. Hence for a homogeneous
bulk fluid the excess free energy density of a system with competing interactions
reduces to that of the hard-disks reference system. As a consequence of (11) fixed
by (9) also the equation of state, p, and the chemical potential, µ, of a homogenous
system of disks with competing interactions reduces exactly to those of hard disks.
The equation of state underlying the FMT [16, 17] functional employed here is that
of scaled-particle theory (SPT) in two dimensions

βpHD = βpSPT =
ρ

(1 − η)2
, (12)

where the packing fraction η = ρbulkR
2π. This is known to account accurately

(compared to computer simulations) for the pressure of a hard-disk fluid. Thus the
grand potential Ω of a homogeneous bulk system is the same as that of hard-disk
reference fluid

Ω = −pA = −pHDA. (13)

(a)
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Figure 1. The pair distribution function g(r) at high (a) and at low (b) temperatures for a fluid with a
bulk packing fraction of η = 0.05. As the temperature is decreased, the value of βεa increases. Note that
between βεa = 6.2 and 6.3, i.e. when the temperature is reduced slightly, there seems to be a jump in g(r)
as a peak develops near r/R = 4.2. This apparent jump is shown both in (a) and (b). At low temperatures,
(b), the short-ranged structure in g(r) indicates the formation of clusters.

We begin with the study of the temperature dependence of the pair distribution
function g(r) of a fluid with competing interactions for a reservoir packing fraction
of η = ρbulkR

2π = 0.05. At such a low value of η, a fluid of hard disks shows very
little structure. However at such a low packing fraction in the present model fluid
might be interesting for the following reason. For the parameters chosen in this
work, the maximum of the soft potential occurs at a distance of roughly rmax ≈
5.822R. If the density is set so that there is in average one disk per area of a
circle with radius rmax then one obtains a density of ρmax = 1/(r2

maxπ) or an
equivalent packing fraction of ηmax = ρmaxR2π = 1/(5.822)2 ≈ 0.0295. In such
a dilute system the attractive wells of particles do not have to overlap and an
interesting competition between the long ranged repulsion and the attraction at
small separation, or a competition between energy and entropy, can be expected.

Within DFT the pair distribution function can be computed in two different
ways. In the first route, one generates the direct pair correlation function c(2)(r)
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Figure 2. The decay of the pair distribution function g(r) at various temperatures is highlighted by
plotting the modulus of g(r)−1 logarithmically. For reasons of clarity the different curves are shifted along
the y-axes. The asymptotic decay, r → ∞, reflects the length-scale of the repulsive tail of the interaction.
For values of βεa ≥ 6.3 (see Fig. 1 and text) the onset of cluster formation can be seen for short distances.

from two derivative of the the excess free energy functional [14, 15] which can be
inputted into the Ornstein-Zernike equation [1]. The second route, which is the
employed here, makes use of the test-particle limit, in which one fluid particle is
kept at a fixed position and is thereby turned into an external potential for the
rest of the fluid: Vext(r) = V (r) with V (r) given by (1). The density profile ρ(r)
of the fluid subjected to the (radial symmetric) external field of the test particle
is obtained by minimising the functional (3). The pair distribution function is this
density profile divided by the bulk density, i.e. g(r) = ρ(r)/ρbulk.

An example for the bulk pair distribution function obtained by the test particle
approach for various temperatures is shown in Fig. 1. For high temperatures, e.g.
βεa = 1.0 in Fig. 1(a) the resulting g(r) shows relatively little structure, and is
similar to its hard-disk counterpart, which can be obtained by taking the limit
T → ∞ or βεa → 0. As the temperature is reduced the pair distribution functions
displays more structure, resulting in a higher contact value of g(r = 2R) and a
rather large range of distances in which g(r) deviates significantly from unity.

As the temperature is further decreased the strength of βεa continues to increase
and as it reaches a value between βεa = 6.2 and 6.3 there seems to be a jump
in g(r) – see Fig. 1(a). In order to show the structure of the pair distribution
function at high and at low temperatures and to highlight the rapid change in the
pair distribution function, g(r) for the values βεa = 6.2 and 6.3 is shown both
in part (a) and (b) of Fig. 1. Note that a jump in g(r) would indicate a phase
transition. We have confirmed that for values of βεa between 6.2 and 6.3 the radial
distribution function changes rapidly, but continuously. At lower temperatures the
pair distribution function starts to show the onset of small clusters of a high density,
as indicated by regions close to contact in which g(r) is significantly larger than 1.

To highlight the decay of the pair distribution function, we plot in Fig. 2 the
modulus of g(r)−1 logarithmically for various temperatures. For reasons of clarity
the curves are shifted along the y-axes. Asymptotically there are oscillations in g(r),
which reflect the length-scale of the repulsive tail of the inter-particle interaction.
At smaller separations, the onset of cluster formation can be seen clearly for values
of βεa ≥ 6.3 – see also Fig. 1(b).

By constructions the thermodynamics of the current system in a homogeneous
bulk phase (within first-order thermodynamic perturbation theory) is the same as
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that of the hard-disk reference fluid, therefore a macroscopic phase separation into
a low density gas and a high density liquid is not possible. However, the formation
of clusters, i.e. a micro phase separation into islands of high density in a sea of a
low density fluid is possible – in fact the potential, Eq. (2) was introduced in order
to study cluster formation [2, 3]. The behaviour of g(r) shown in Fig. 1 is similar
to the results found by Imperio and Reatto [5] in simulation studies of the same
model system.

-15 -10 -5 0 5 10 15

z / R

0

0.05

0.1

0.15

0.2

ρ(
z)

 R
2

β εa = 11.0

β εa = 10.0

β εa = 9.0

β εa = 8.0

β εa = 7.5

Figure 3. At sufficiently low temperatures a bulk system (without any external field) can form periodic
lamellar structures in which high density films are separated by low density regions. The total grand
potential of the system in such an inhomogeneous configuration is lower than this of a homogeneous
bulk fluid. As the temperature decreases, and βεa increases, the density in the dense film increases and
oscillatory structures develop. For clarity the centre of each high density film is shifted to z = 0 and roughly
one period, which depends on temperature, is shown. Note that the lamellar structure corresponding to
βεa = 7.5 is slightly meta-stable as compared to a homogeneous bulk fluid, as can be seen from the grand
potential shown in Fig. 4.

The particular behaviour of g(r) for small values of r indicates that it should
be possible for the system to develop an inhomogeneous density distribution ρ(r)
even in the absence of an external potential. If the temperature is sufficiently low
then the depth of the attractive well is deep enough to allow the system to lower
its overall grand potential by the formation of an inhomogeneous structure. It is at
these low temperatures where the competition between the attractive and repulsive
part of the interaction results in a clear competition between energy and entropy
and the behaviour of the system is particularly rich.

As a proof of principle we consider in this work the low temperature formation of
lamellar films, i.e. periodic arrays of high density fluids, separated by low density
regions. We assume translational invariance in the x-direction and consider density
profiles that depend only on z. A set of typical structures for a reservoir packing
fraction of η = 0.05 is shown in Fig. 3. For reasons of clarity the centre of the high
density films for each temperature is shifted to z = 0.

With decreasing temperature the density in the film around z = 0 increases and
reaches such high values that oscillatory structures due to packing effects become
clearly visible. Note that in order to describe these packing effects properly within
DFT, the hard-core repulsion must be treated by weighted density approximation
such as fundamental measure theory [16–19], while the presence of lamellar struc-
tures can also be found within a local density approximation approach for the
hard-disk functional (for a slightly changed interaction potential) [12].

The width of the high density film and the length of a full period, i.e. the distance
between two neighbouring films, depends on the temperature. In order to find the
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β 
Ω

 R
2  / 

A -β pHD

Figure 4. The grand potential density βΩ/A of a bulk system at η = 0.05. The dotted line denotes the
grand potential density of a homogeneous bulk fluid at η = 0.05, for which βΩ/A = −βpHD, while the
full line denotes that of a periodic lamellar structure. The symbols correspond to the values of the grand
potential density of the density profiles shown in Fig. 3. Note that the grand potential density of the
lamellar structure for βεa = 7.5 is higher than that of a homogeneous bulk fluid at the same temperature,
indicating that the inhomogeneous structure is meta-stable at this state point. Stable lamellar films exist
for βεa & 7.67.

most stable lamellar structure, the density functional must be minimised w.r.t. the
size of the periodic box employed in this calculation. This is done in two steps. In
the first step we fix the size hz of the periodic box in z direction and minimise the
functional. This results in an inhomogeneous density profile ρ(z; hz), which depends
parametrically on hz. Also the grand potential density depends on the parameter
hz via βΩ(hz)/A = βΩ[ρ(z; hz)]/A. In the second step the grand potential density
is minimised w.r.t. hz. As a result of this second minimisation Fig. 3 shows roughly,
but not precisely, one period of the lamellar films; with decreasing temperature the
period of the structure decreases.

In Fig. 4 we show the grand potential density βΩ/A minimised w.r.t. hz and
corresponding to the density profiles ρ(z) shown in Fig. 3 (full line and symbols)
and compare it to that of a homogeneous bulk fluid, Eqs. (12) and (13), (dotted
line). As can be seen, the inhomogeneous lamellar structure for βεa = 7.5 is meta-
stable compared to a homogeneous bulk fluid, but for temperatures lower than
this, the grand potential density rapidly decreases, showing that the system can
reduce the total grand potential by the formation of inhomogeneous structures.
This is in line with the finding that the radial distribution function shown in Fig. 1
displays a tendency of the system for micro phase-separation (cluster formation)
at low temperatures. However, the temperatures at which g(r) displays a rapid
change (between βεa = 6.2 and 6.3) and that at which the bulk forms a stable
lamellar structure at βεa ≈ 7.67 are clearly different. This finding indicates that it
is easier for the system at this state point to form circular clusters than translational
invariant lamellar films.

If the constraint of translational invariance in one direction is lifted, a zoo of rich
inhomogeneous bulk structures can be found [12]. While we have confirmed this
for a few examples of this system a detailed study of these structures is beyond the
scope of the present study.
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4. A Single Hard Wall

If a homogeneous fluid is subjected to an external potential Vext(r), in general it
develops an inhomogeneous density distribution ρ(r) with the same symmetry as
the external potential. Here we study the influence of a single planar hard wall
on the structure of a fluid with competing interactions. Note that in the case of a
homogeneous bulk phase, far away from the wall, the density profile close to the
hard wall must satisfy the contact theorem which states that the contact density
ρ(z = 0+) = limǫ→0 ρ(z = ǫ) is proportional to the bulk pressure

ρ(z = 0+) = βp, (14)

which for the present model coincides with the pressure pHD of the hard-disk
reference fluid. The contact theorem is obeyed by profiles from the functional (6)
[17].

(a)
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Figure 5. The density profiles of a fluid with competing interactions at a planar hard wall for high (a) and
low (b) temperatures, respectively. The bulk density ρ(∞)R2 = 0.05/pi ≈= 0.0159. The contact density
(z = 0 in this plot) is fixed to be the bulk pressure, which coincides with the hard-disk pressure as long
as the bulk phase, far away from the wall, is a homogeneous fluid. Note that between βεa = 7.2 and 7.3 a
clear jump occurs in the density peak close to the wall. In order to highlight the magnitude of the jump,
the density profiles corresponding to βεa = 7.2 and 7.3 are shown both in (a) and (b). For βεa > 7.64 the
density profile away from the wall displays a lamellar structure.

In Fig. 5 we show the density profiles ρ(z) for a reservoir packing fraction of
η = 0.05 at various temperatures. For sufficiently high temperatures, i.e. for βεa <
2.0, one can observe a profile that resembles that of a dilute hard-disk fluid close
to a planar hard wall: at contact the satisfies (14) and away from the wall the
density decays in a damped oscillatory fashion towards the bulk density. Since the
reservoir packing fraction is rather small, the decay of the density profile at high
temperatures towards its bulk value takes place within the range of a few particle
radii. Note that for this value of the packing fraction the contact density is fixed
via (12) and (14) to be ρ(0+)R2 = ρbulkR

2/(1 − η)2 = η/(π (1 − η)2) = 0.017635.
We find the contact theorem to be satisfied by our DFT results, as can be seen by
the common density at z = 0 in Fig. 5(a) and (b), except for profile with βεa ≥ 8.0.

Already at a temperature corresponding to βεa = 2.0 the resulting density profile
differs significantly from that of hard disks as there is the onset of a density peak
near z = 5R forming, which on the scale of Fig. 5(a) is hardly noticeable. This
density peak becomes more pronounced as the temperature is reduced and as βεa

Page 8 of 12

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

August 9, 2011 8:36 Molecular Physics competing˙interactions

9

reaches a value between 7.2 and 7.3 a clear jump from a moderate peak height to
a large one can be observed. In order to highlight the amplitude of this jump, the
density profiles for βεa = 7.2 and 7.3 are shown in both parts of Fig. 5.

At first sight the density profiles for temperatures slightly below the temperature
of the jump seem to be that of the high density part of a lamellar structure – see
Fig. 3 – there is a clear and important difference. For temperatures above that
corresponding to βεa = 7.64 the density profiles still decay towards a homogeneous
bulk fluid. This in turn implies that above this temperature the contact theorem
must be satisfied. In other words, the contact density of all density profiles shown
in Fig. 5, except for those corresponding to βεa ≥ 8.0, is the same and is given by
Eq. (14).

Eventually the temperature is low enough for an inhomogeneous structure form-
ing away from the wall that does not decay any longer towards a homogeneous
fluid. In that case the wall theorem, Eq. (14), no longer applies and the density at
contact differs from βpHD.

2 4 6 8

β εa

-0.024

-0.022

-0.02

-0.018

-0.016

-0.014

-0.012

β 
Ω

 R
2  / 

A no layer

one layer

lamellar

Figure 6. The grand potential density βΩ/a of a fluid with η = 0.05 in contact with a single hard wall.
There are three branches. The full line corresponds to density profiles without a high density layer at
the wall. This brach intersect with the second branch (dotted line) at βεa ≈ 7.22. The second branch
corresponds to a fluid with one high density layer at the wall. The third branch (dashed lines) corresponds
to a lamellar structure in contact with the wall. The second and third branch of the grand potential density
intersect at βεa ≈ 7.64.

In order to understand the behaviour of the density profiles better, we show in
Fig. 6 the grand potential density of a fluid with η = 0.05 in contact with a planar
hard wall. We find three distinct branches of the grand potential density. The first
branch (full line in Fig. 6) corresponds to density profiles with no high density
layers close to the wall. At βεa ≈ 7.22 this first branch intersect with a second
branch of the grand potential density, which corresponds to density profiles with a
single high density layer (dotted line in Fig. 6). Although not visible on the scale
of Fig. 6, DFT predicts a sharp, first-order phase transition with a small range of
meta-stable states, between these two states. In a real system this transition would
be rounded and smooth due to thermal fluctuations. At βεa ≈ 7.64 the second
branch of the grand potential density intersects with the third branch (dashed line
in Fig. 6), which corresponds to a lamellar structure in contact with the wall. This
transition shows hysteresis effects with large regions of possible meta-stable states
and should be a true first-order phase transition.
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5. An Infinite Slit Pore

If a fluid is confined by a slit pore of two parallel and planar hard walls of infinite
lateral extension Lx → ∞, separated by a width L, then the contact theorem (14)
no longer applies. Only if the walls are infinitely separated, so that the system
actually consists of two independent walls, will the contact theorem be valid. For
practical purposes L → ∞ means a wall separation large compared to the bulk cor-
relation length. Here we fix L = 20R, which is large compared the bulk correlation
length of a hard-disk fluid at the reservoir packing fraction η = 0.05 considered
here, but is comparable to the length of one period of a lamellar structure, which
is roughly 30R as can be seen from Fig. 3. It follows that the contact density in
the slit at high temperatures should be close to βpHD.

In Fig. 7 we show the density profiles ρ(z) in a slit of with a width L = 20R
for a reservoir packing fraction of η = 0.05 for high (a) and low (b) temperatures,
respectively. At high temperatures, Fig. 7(a), we find as expected, a contact density
close to the hard-disk pressure multiplied by β. As the temperature decreases a
density peak develops in the middle of the slit and the contact density at decreases.
For βεa between 7.2 and 7.3 the density peak in the middle of the slit pore jumps
to a high value and the contact density to a rather low one. For clarity the density
profiles for βεa = 7.2 and 7.3 are shown in both in parts of Fig. 7.

As the temperature is further decreased the high density peak in the middle of
the slit increases and becomes similar, but not identical, to that of the lamellar
structure, shown in Fig. 3.

(a)
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β εa = 7.3

β εa = 7.2

β εa = 7.0

β εa = 6.0

β εa = 4.0

β εa = 2.0

(b)
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 R
2

β εa = 9.0

β εa = 8.5

β εa = 8.0

β εa = 7.5

β εa = 7.3

β εa = 7.2

Figure 7. Density profiles of a fluid with competing interactions inside a slit of two parallel hard walls at a
separation of L = 20R at high (a) and low (b) temperatures respectively. As the temperature decreases the
density of the fluid in the central part of the slit increases smoothly. Between βεa 7.3 and 7.4 the density
jumps. In order to highlight the magnitude of the jump, the density profiles corresponding to βεa = 7.3
and 7.4 are shown in (a) and (b). The width of the slit is somewhat smaller than the width of a single
period of the bulk lamellar structures (see Fig. 3).

The grand potential of the system confined in a slit pore divided by the length
Lx of the slit in the x-direction is shown in Fig. 8 and is numerically similar to
the grand potential density of a lamellar phase, shown in Fig. 4, if the result for
the slit is divided by the slit width L = 20R. There are two branches of the grand
potential, one for the low density and one for the high density phase. These two
branches intersect at βεa ≈ 7.24. Around the transition temperature meta-stable
structures can exist.

Note that the transition from a low density phase to a high density phase ap-
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pears to occur in the slit pore at a lower value of βεa, corresponding to a higher
temperature, than in the bulk. This shift in transition for a fluid with competing
interactions can be viewed as a transition analogous to capillary condensation in a
simple fluid.

In a true system the sharp transition depicted in Fig. 8 would be rounded and
smooth, as thermal fluctuation in this effective one-dimensional system would be
strong.

0 2 4 6 8

β εa

-1

-0.8

-0.6

-0.4

β 
Ω

 R
/L

x low density

high density

Figure 8. The grand potential βΩ divided by the length of the slit Lx. For high temperatures the average
density of the fluid inside the slit is low, while it is high at low temperatures. There are two branches of
the grand potential, which intersects at a transition temperature corresponding to βεa ≈ 7.24. Slightly
below the transition temperature a meta-stable low density state can be observed, and slightly above the
transition point a meta-stable high density state can be present.

As mentioned in Sec. 3, it is possible to find a variety of more complex structures
confined in a slit pore [6, 12]. While in principle it is possible to study these
structures with the present approach, it is beyond the scope of this study to do so.

6. Discussion

We have studied the fluid behaviour of a two dimensional system of particles with
competing interactions within the framework of DFT. The interaction potential,
Eqs. (1) and (2), was accounted for by a reference system of hard disks, treated
within FMT [16–19], together with a first order perturbation theory for the soft
interaction.

The model interaction, Eq. (2), was introduced by Sear et al. [2, 3] to study cluster
formation of nanoparticles (quantum dots) at a water-air interface. Reatto has
recognised the rich behaviour of systems with competing interactions and he and
co-workers have studied in detail the equilibrium properties of a two dimensional
system with the pair interaction given by Eqs. (1) and (2) [4–6] and by a slightly
different interaction [8–10] in three dimensions.

This study was inspired by the findings and insights of Reatto and co-workers
[4–6]. The results found here are in broad agreement with the results of the sim-
ulation studies by Imperio and Reatto. We believe that by using the framework
of DFT we have added a slightly different perspective on some of the equilibrium
properties of systems with competing interactions. DFT allows to study the struc-
ture (density profile) and the thermodynamics (grand potential) of a system on
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equal footing. Therefore DFT allows one directly to study the range of stability of
certain structures, as in Figs. 4 and 8.

Here we have reported results for one, rather low, value of the reservoir pack-
ing fraction η = 0.05. For higher values of η we find a similar behaviour in many
respects. Details change, however. For example, we find that some jumps in den-
sity profiles, reported here, become continuous transitions. The meta-stable states
found for η = 0.05 seem to disappear at higher values of η and the transition
from the low density branch of the grand potential to the high density one seems
to be smooth. This observation is consistent with results reported in Ref. [10] for
a three-dimensional system with slightly different competing interaction using a
order parameter theory.

DFT was found to be a powerful tool to study two dimensional systems with
competing interactions. The behaviour of this system is already rich and interest-
ing in very simple external potentials, such as at a single planar hard wall. The
behaviour becomes even richer, if a more complex external field is applied [4].
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