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ARTICLE

Random-phase approximation correlation methods for molecules
and solids

A. Heßelmanna∗ and A. Görlinga

aLehrstuhl für Theoretische Chemie, Universität Erlangen-Nürnberg, Egerlandstr. 3,
D-91058 Erlangen, Germany;

(February 2011)

Random-phase approximation (RPA) correlation methods based on Kohn-Sham density-
functional theory and Hartree-Fock are derived using the adiabatic-connection fluctuation
dissipation theorem. It is shown that the correlation energy within the adiabatic-connection
fluctuation dissipation theorem is exact in a Kohn-Sham framework while for Hartree-Fock
reference states this is not the case. This shows that Kohn-Sham reference states are probably
better suited to describe electron correlation for use in RPA methods than Hartree-Fock refer-
ence states. Both, Kohn-Sham and Hartree-Fock RPA methods are related to each other both
by comparing the underlying correlation functionals and numerically through the comparison
of total energies and reaction energies for a set of small organic molecules.

Keywords: random-phase approximation, density functional theory, time-dependent
density-functional theory, correlation energy, RPA

1. Introduction

In the early 1950’s Bohm and Pines published a series of seminal papers that stud-
ied the collective properties of the electron gas [1–3]. They described the density
fluctuations within the electron gas by separating a collective long-range (plasma)
oscillation and a short-range thermal or random motion of the individual electrons.
In their quantum mechanical treatment [3], the many-electron Hamiltonian was
expressed through a Fourier transformation by a series of momentum transfers be-
tween the electrons and it was found that terms with a random phase, corresponding
to different momentum transfers, have a zero mean value and can be neglected if
the electrons interact rather weakly via screened Coulomb forces. Thus, within this
random-phase approximation (RPA), the electrons are assumed to respond only to
the total electric potential, which is the sum of an external potential and a screening
potential produced by the electron clouds surrounding the electrons, as has been
shown later on by Nozieres and Pines [4]. A relation between the RPA and the
perturbed self-consistent field theory describing the interaction of a many-electron
system with an electromagnetic field was then established by Ehrenreich and Cohen
[5].

Using the plasmon model that describes the many-body system in terms of collec-
tive excitations, Sawada et al. derived an expression for the (exchange-)correlation
energy that arises from the plasma oscillations which is given by the zero-point
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energy of the oscillations and the value this energy approaches as the coupling
between the oscillators is switched off [6]:

Exc =
1

2

∑
i

[
ωi − ω0

i

]
(1)

While this result differed from the corresponding expression of Bohm and Pines,
since in their work the zero point energy alone appears explicitly [3], Sawada et
al. showed that both approaches are identical in the high density limit. Thus the
correlation energy within the random-phase approximation can also be connected
with the zero-point energy of a set of harmonic oscillators which have the same os-
cillation frequencies as the electrons. This model is also closely related to a Drude
model firstly introduced by London [7, 8] describing the dispersion interaction be-
tween atoms. In the Drude model the electron interactions are described by coupled
harmonic oscillators such that, in a quantum mechanical picture, a zero-point en-
ergy exists describing a lowering of the energy due to correlations. Gell-Mann and
Brueckner [9] have shown that the RPA correlation energy of an electron gas in the
high density limit is represented by the sum of all Feynman diagrams with a ring
structure and therefore the RPA also is sometimes refered to as ring approximation
in many-particle physics.

Originally, electron exchange effects were neglected in early works using the
RPA. This RPA method neglecting exchange effects shall be designated direct RPA
(dRPA) here. However, it has been found later on, e.g., in the work of Brener and
Fry, [10, 11] that an extension of the RPA dielectric function [12] using exchange
interactions leads to improvements for the description of the properties of the elec-
tron gas. McLachlan and Ball derived an expression for the correlation energy of
the electron gas within the framework of time-dependent Hartree-Fock (TDHF)
theory [13, 14] that, however, differed from the original expression from Sawada
et al. [6] by a factor of one half. While the TDHF approach itself has been used
extensively for the description of excited states and dynamic response properties
[15–20], the TDHF RPA variant from McLachlan and Ball has rarely been used
for describing correlated molecular ground states in contrast to the original RPA
method excluding exchange interactions. On the one hand, the reason for this may
stem from the fact that the TDHF method often is affected by triplet instabilities
due to an incompatibility of the wave function ansatz and the excitation operators
[14, 21–25]. On the other hand, it turned out that alternative correlation methods
like many-body perturbation theory or coupled-cluster theory are more accurate
for the description of the correlation energy of molecules.

The RPA approach for determining the correlation energy of a many-body sys-
tem can be derived from a very general theorem, termed adiabatic-connection
fluctuation-dissipation theorem (AC-FDT) [26–29] which apparently first was first
discovered by Pauli (see remarks in Refs. [4, 26]). The fluctuation-dissipation the-
orem was originally derived by Callen and Welton [30] and is used to study the
properties of non-equilibrium thermodynamic systems. It relates the internal ran-
dom motions of the particles in a many-body system to the response to small ex-
ternally applied perturbations since both, the fluctuation forces and the dissipative
forces (that is the density-density response) have their origin in the interactions be-
tween the particles. The AC-FDT theorem within the framework of the Kohn-Sham
(KS) formalism of density-functional theory (DFT) [28, 29] provides an exact ex-
pression for the exchange- and correlation-energy, while an approximate expression
for the exchange- and correlation-energy is provided on the basis of the Hartree-
Fock (HF) method. The AC-FDT requires as input the response function of the
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electronic system. The latter has to be approximated. If this response function is
determined via TDHF then TDHF RPA methods are obtained. If the response
function is determined within time-dependent density-functional theory (TDDFT)
then KS based RPA correlation energies result.

While RPA methods based on HF have rarely been used in molecular applications
since their invention (see also a recent work by Klopper et al. which suggests that
RPA variants including Hartree-Fock exchange seem to be less suitable to describe
electron ground-state correlation than direct RPA methods [31]), see above, in
recent years Kohn-Sham based RPA methods have gained an increase in popularity
[32–55]. Apart from presenting efficient computational implementations of direct
RPA methods for solids and molecules [39, 40, 45], it was shown that direct RPA
methods using KS orbitals yield quite accurate results for atomisation energies and
even describe to some extent static correlation effects in molecules [33]. This finding
is somewhat surprising in view of the fact that direct RPA methods violate the
Pauli exclusion principle since they treat on an unequal footing so called exclusion-
principle violating diagrams, i.e., diagrams of equal magnitude and opposite sign
that cancel each other in a complete perturbation series expansion. Because of this it
has been argued [56] that direct RPA methods may fail especially for small systems
and small basis sets while they should produce better results for extended systems,
e.g., the electron gas. Indeed the direct RPA exhibits the shortcoming of yielding a
nonzero correlation energy in one-electron systems while it has been demonstrated
recently that direct RPA calculations of a set of 24 solids yield excellent lattice
constants and good relative energies [46, 57].

In spite of recent developments that make RPA methods more efficient for molec-
ular systems, they are still computationally more demanding than standard Kohn-
Sham DFT methods. This stems from the fact that within the RPA one has to accu-
rately model the interelectronic cusp, a problem that is common in all orbital based
correlation methods. Usually this requires large basis sets with high angluar mo-
mentum functions. A potential remedy of this problem are range-separated methods
[42, 43, 49, 50, 58–63] in which the short-range electron correlation is treated via
conventional DFT methods and the long-range correlation via orbital based meth-
ods. While such methods originally treated the long-range part or the correlation
with configuration-interaction [58] or second-order Møller-Plesset [59] methods, it
was found in a number of recent studies that range-separated methods including
long-range RPA (including or excluding exchange) perform well for a number of
molecular properties [42, 43, 49, 50, 62, 63].

The TDDFT methods used in KS based RPA approaches to calculate the re-
sponse function require approximations for the exchange-correlation potential and
kernel (more precisely, for the exchange potential and kernel, while KS methods
that include electron correlation effects in the potential and kernel go beyond the
random-phase approximation, see, e.g., Ref. [64]). The exchange-correlation ker-
nel is the frequency-dependent functional derivative of the KS exchange-correlation
potential with respect to the electron density. The quality of the approximations
for the exchange-correlation potential and kernel determines the accuracy of the
KS based RPA approaches. Initially conventional exchange-correlation density-
functionals within the local density or generalized gradient approximation were
employed in RPA methods [64] and the frequency-dependence of the kernel is ne-
glected, an approximation called adiabatic approximation. Recently methods were
introduced [52, 53, 55, 65] that neglect the correlation contribution to the potential
and kernel but use the exact exchange potential and the exact frequency-dependent
exchange kernel [66–68]. Such methods were named exact exchange (EXX) RPA
methods. Hellgren et al. [65] have used this approach to study the correlation ener-
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gies for some atoms using a cubic spline representation for the radial basis sets and
found a very good agreement with accurate configuration interaction results. In Ref.
[52] Hellgren et al. also investigate a self-consistent exact-exchange RPA method
in which the EXX potential is accompanied by a correlation potential derived from
an (approximate) functional derivative of the RPA correlation functional. While
this led to only small changes for atomic correlation energies compared to the non-
iterative approach, clear improvements were obtained for the exchange-correlation
potentials and thus single-particle spectrum in the KS calculations.

In Ref. [53] we presented the first exact Kohn-Sham exchange RPA method that
could be generally applied to molecular systems using an exchange kernel which
was derived from a reformulation of the TDDFT response equations omitting the
numerically problematic inverses of the noninteracting response functions [69–71].
This new method, termed as EXX-RPA (note that the acronym RPA(EXX) was
used in Ref. [53]), has been shown to yield accurate correlation energies and chemical
reaction energies if compared to coupled-cluster singles doubles with perturbative
triples reference results. In Ref. [55] we have furthermore shown that this EXX-
RPA correlation functional also correctly describes the bond dissociation of the
hydrogen molecule in the asymptotic limit in contrast to the corresponding HF
based adiabatic-connection RPA method. Therefore RPA methods based on the
exact KS exchange kernel offer new correlation methods that surpass the accuracy
of common density functionals.

While the RPA method including electron exchange effects was originally only
defined using Hartree-Fock reference states, in this work it will be shown that the
corresponding RPA method on the basis of exact KS exchange (EXX), the EXX-
RPA method, directly relates to the adiabatic-connection fluctuation dissipation
theorem of the KS formalism. The ansatz to determine the KS correlation energy
via the adiabatic-connection fluctuation-dissipation theorem, which leads to meth-
ods commonly denoted KS based RPA methods, is an exact one, approximations
then are made if the exchange-correlation potential and kernel required within this
ansatz are chosen. In the EXX-RPA case the approximation of neglecting corre-
lation in potential and kernel is made as only approximation. In HF based RPA
methods, on the other hand, the ansatz itself is an approximation, see section 3.1.
Moreover, HF based RPA approaches that invoke a coupling constant integration
lack a straightforward formal justification for performing this integration because
an adiabatic connection between the reference wave function, the HF determinant,
and the exact wave function, can not be straightforwardly constructed in a simple
way in this case. A further general differences between KS and HF based RPA meth-
ods, that shall be elucidated within this work, is the fact that within KS based RPA
methods due to their root in the adiabatic-connection fluctuation-dissipation theo-
rem only singulet-singulet excitations need to be considered whereas RPA methods
on the basis of HF often require to also consider singulet-triplet exciations.

This work is organized as follows. In section 2 KS RPA methods, i.e., methods
that calculate the KS correlation energy via the adiabatic-connection fluctuation-
dissipation theorem will be introduced. In subsection 2.1 of section 2 we consider the
integration of response functions along imaginary frequencies leading to the basic
fluctuation-dissipation theorem. In subsection 2.2 the adiabatic connection and the
coupling strength integration of the KS formalism are presented and in subsection
2.3 the coupling strength integration and the fluctuation-dissipation theorem are
combined to the adiabatic-connection fluctuation-dissipation theorem. Finally in
the last subsection of section 2 the EXX-RPA method is introduced. In section 3
we will then review ’standard’ RPA methods that include exchange interactions
and that are based on the HF reference determinant. In the first subsection of
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section 3 the general relation between reponse functions and correlation energies is
discussed and in this way the formal basis of HF based RPA methods is analysed.
In the second subsection of section 3 various variants of HF based RPA methods
are introduced and related to perturbation theory. In section 4 relations between
HF based RPA methods and the EXX-RPA method are discussed and approaches
combining elements from both types of methods are considered. An analysis of
results from the various RPA methods for total energies and chemical reaction
energies is given in sections 5 and 6, respectively. Section 7 summarises the results.

2. RPA correlation energy in density-functional theory

2.1. Integration of response functions along imaginary frequencies

The causal response function χ that yields the response of the electron density of
an electronic system in its ground state with wave function Ψ0 on a frequency-
dependent perturbation is given by

χ(r, r′, ν) =
∑
n̸=0

[
⟨Ψ0|ρ̂(r)|Ψn⟩ ⟨Ψn|ρ̂(r′)|Ψ0⟩

E0 − En + ν

+
⟨Ψn|ρ̂(r)|Ψ0⟩ ⟨Ψ0|ρ̂(r′)|Ψn⟩

E0 − En − ν

]
. (2)

The variable ν = ω + iη shall combine the real-valued frequency ω of the pertur-
bation and the imaginary convergence factor iη. In practical applications the limit
η → 0 of a vanishing convergence factor is considered. The summation in Eq. (2)
runs over all excited states Ψn. The density operator ρ̂(r) is given by

ρ̂(r) =
N∑
i=1

δ(ri − r) (3)

with N denoting the number of electrons and δ designating the delta function. For
real-valued Hamiltonian operators the eigenfunctions Ψn can be chosen real-valued.
In this case Eq. (2) for the response function turns into

χ(r, r′, ν) = −2
∑
n̸=0

En − E0

(En − E0)2 − ν2
⟨Ψ0|ρ̂(r)|Ψn⟩ ⟨Ψn|ρ̂(r′)|Ψ0⟩ . (4)

Next we consider an integration of the response function with respect to the variable
ν along the imaginary axis by integrating along an integration variable ω and setting
ν = iω. With the integral

∫
dω a/a2 + ω2 = arctan (ω/a) implying

∫ ∞

0
dω

ω

ω2 + a2
=

π

2
for a > 0 (5)
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follows

−1

2π

∫ ∞

0
dω χ(r, r′, iω) =

1

2

∑
n̸=0

⟨Ψ0|ρ̂(r)|Ψn⟩ ⟨Ψn|ρ̂(r′)|Ψ0⟩

=
1

2

∑
n

⟨Ψ0|ρ̂(r)|Ψn⟩ ⟨Ψn|ρ̂(r′)|Ψ0⟩

− 1

2
⟨Ψ0|ρ̂(r)|Ψ0⟩ ⟨Ψ0|ρ̂(r′)|Ψ0⟩

=
1

2
⟨Ψ0|ρ̂(r)ρ̂(r′)|Ψ0⟩ − 1

2
ρ(r)ρ(r′)

= ρ2(r, r
′) − 1

2
ρ(r)ρ(r′)

+
1

2

∫
dr1dr2...drN ds1ds2...dsN Ψ0(r1r2...rN )

×

[
N∑
i=1

δ(ri − r) δ(ri − r′)

]
Ψ0(r1r2...rN ) . (6)

In Eq. (6), by ds1ds2...dsN the integration over spin variables shall be denoted,
ρ2(r, r

′) designates the pair density, the diagonal of the second order spinless density
matrix defined according to

ρ2(r, r
′) =

1

2

∫
dr1dr2...drN ds1ds2...dsN Ψ0(r1r2...rN )

×

 N∑
i=1

N∑
j=1

j ̸=i

δ(ri − r) δ(rj − r′)

Ψ0(r1r2...rN ) . (7)

In the step from the second to the third equality of Eq. (6) it is exploited that∑
n |Ψn⟩⟨Ψn| represents the identity operator.
Next we multiply Eq. (6) by a function g(r, r′) which, at this point, shall be

arbitrary and later will be set equal to 1/|r − r′|. Furthermore we integrate over
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the variables r and r′

−1

2π

∫ ∞

0
dω

∫
dr dr′ g(r, r′) χ(r, r′, iω)

=

∫
dr dr′ g(r, r′)

[
ρ2(r, r

′) − 1

2
ρ(r)ρ(r′)

]
+

∫
dr dr′

1

2

∫
dr1dr2...drN ds1ds2...dsN Ψ0(r1r2...rN )

× g(r, r′)

[
N∑
i=1

δ(ri − r) δ(ri − r′)

]
Ψ0(r1r2...rN )

=

∫
dr dr′ g(r, r′)

[
ρ2(r, r

′) − 1

2
ρ(r)ρ(r′)

]
+

∫
dr dr′

1

2

∫
dr1dr2...drN ds1ds2...dsN Ψ0(r1r2...rN )

× g(r, r′)

[
N∑
i=1

δ(ri − r) δ(r′ − r)

]
Ψ0(r1r2...rN )

=

∫
dr dr′ g(r, r′)

[
ρ2(r, r

′) − 1

2
ρ(r)ρ(r′)

]
+

1

2

∫
dr dr′ g(r, r′) ρ(r) δ(r− r′) . (8)

In the step form the first to the second equality in Eq. (8) we used the relation

∫
dr dr′ dri g(r, r

′)f(ri) δ(ri − r) δ(ri − r′) =

∫
dr dri g(r, ri)f(ri) δ(ri − r)

=

∫
dri g(ri, ri)f(ri)

=

∫
dr g(r, r)f(r)

=

∫
dr dri g(r, r)f(ri) δ(ri − r)

=

∫
dr dr′ dri g(r, r

′)f(ri) δ(ri − r) δ(r′ − r)

(9)

which holds true for arbitrary functions f(ri) and thus also for f(ri) =
Ψ0(r1r2...ri...rN )Ψ0(r1r2...ri...rN ).

For g(r, r) = 1/|r − r′| the first integral on the right hand side of equation (8)
yields

∫
dr dr′

1

|r− r′|

[
ρ2(r, r

′) − 1

2
ρ(r)ρ(r′)

]
= Vee − U , (10)

Page 7 of 45

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

July 28, 2011 11:17 Molecular Physics rpa_review7

8 Taylor & Francis and I.T. Consultant

i.e., the sum of the electron-electron interaction energy

Vee =

∫
dr dr′

ρ2(r, r
′)

|r− r′|
= ⟨Ψ0|V̂ee|Ψ0⟩ (11)

with the operator of the electron-electron interaction given by

V̂ee =

N∑
i=1

N∑
j=1

j ̸=i

1

|ri − rj |
(12)

minus the Coulomb energy

U =
1

2

∫
dr dr′

ρ(r) ρ(r′)

|r− r′|
. (13)

The second integral on the right hand side of equation (8) diverges for g(r, r) =
1/|r− r′|. Later on we will consider differences of expressions of the form given on
the right hand side of Eq. (8). In these differences the divergent contributions will
cancel each other and therefore will not lead to problems.

2.2. Coupling strength integration

An adiabatic connection [28, 72, 73] between the Kohn-Sham model system, a sys-
tem of hypothetical noninteracting electrons, and the corresponding real electronic
system is defined with the help of the Schrödinger equation[

T̂ + α V̂ee + v̂(α)
]
Ψ0(α) = E0(α) Ψ0(α) (14)

that contains a coupling constant α with 0 ≤ α ≤ 1 scaling the electron-electron
interaction operator V̂ee defined in Eq. (12) and a coupling-constant-dependent
potential

v̂(α) =
N∑
i

v(α, ri) . (15)

The operator of the kinetic energy in Eq. (14) is given by

T̂ = −
N∑
i

1

2
∇2

i (16)

The potential v(α, ri) is defined up to an additive constant by the requirement that
the ground state wave functions Ψ0(α) for all values of the coupling constant α
yield the same electron density ρ(r), i.e.,

⟨Ψ0(α) | ρ̂(r) |Ψ0(α)⟩ = ρ(r) . (17)

The Hohenberg-Kohn theorem guarantees that up to an additive constant the po-
tential v(α, ri) is uniquely defined by this density condition. For vanishing coupling
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constants the potential v(α, ri) equals the effective KS potential vs(r), i.e.,

v(α = 0, r) = vs(r) (18)

and for a coupling constant α = 1 the potential v(α, ri) equals the external potential

v(α = 1, r) = vext(r) (19)

of the considered real electron system, usually the electrostatic potential of the
nuclei.

The eigenfunctions Ψn(α) of the adiabatic connection Schrödinger equation (14),
for a vanishing coupling constant α = 0, are the ground and excited KS wave
functions Φn,

Ψn(α = 0) = Φn , (20)

and, for coupling constant α = 1, equal the eigenstates Ψn of the real electron
system

Ψn(α = 1) = Ψn . (21)

Note that the Hohenberg-Kohn theorem guarantess only the uniqueness of the
coupling-constant-dependent potentials v(α, r) but not their existence. For the
fully interacting case, i.e., α = 1, the potential v(α = 1, r) = vext(r) is given
by the considered real electronic system. For other values of the coupling con-
stant α the existence of v(α, r) has to be assumed, an assumption that is called
v-representability assumption and that underlies the KS formalism and thus most
applications of DFT. The KS formalism only requires that with a given external
potential v(α = 1, r) = vext(r) also the KS potential v(α = 0, r) = vs(r) exists,
for an adiabatic connection as it is defined here potentials v(α, r) for all values
0 ≤ α ≤ 1 need to exist.

The ground state wave function Φ0 of the KS system defines the noninteracting
kinetic energy

Ts = ⟨Φ0|T̂ |Φ0⟩ (22)

by its expectation value with the kinetic energy operator and the KS exchange
energy

Ex = ⟨Φ0|V̂ee|Φ0⟩ − U (23)

by its expectation value with the electron-electron interation operator minus the
Coulomb energy U of Eq. (13). Both the noninteracting kinetic energy as well as the
exchange energy only depend on the KS wave function Φ0 and thus are independent
of the coupling constant α. That is Ts, Ex, and U are given by the starting point
of the adiabatic connection at α = 0. The definition of the KS exchange energy,
i.e., the exchange energy in DFT, thus differs from the definition of the exchange
energy as it is common in wave function based methods. In the latter case the
exchange energy is defined as the electron-electron interaction energy of the HF
determinant minus the Coulomb energy U . For nondegenerate ground states the
KS wave function Φ0 like the HF wave function is a single Slater determinant. The
exchange energy then in both cases is given by the well-kown expression for the
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exchange energy of a Slater determinant in terms of the orbitals building the Slater
determinant. However, the orbitals entering the expression in the one case are KS
orbitals and in the other are HF orbitals and therefore the values of the KS and
HF exchange energies are different. In practice the differences are small because KS
and HF determinants turn out to be surprisingly similar [70, 74–76].

A coupling-constant-dependent correlation energy Ec(α) shall be defined accord-
ing to

Ec(α) = ⟨Ψ0(α)|T̂ + α V̂ee|Ψ0(α)⟩ − ⟨Φ0|T̂ + α V̂ee|Φ0⟩ . (24)

The correlation energy Ec = Ec(α = 1) for α = 1 is the KS or DFT correlation
energy which differs in its definition and its value from the correlation energy as
it is commonly defined in wave function based methods. Because, by construction,
the wave functions Ψ0(α) and Φ0 that enter the definition of the correlation energy
Ec(α) yield the same electron density we can turn Eq. (24) into

Ec(α) = ⟨Ψ0(α)|T̂ + α V̂ee + v̂(α)|Ψ0(α)⟩ − ⟨Φ0|T̂ + α V̂ee + v̂(α)|Φ0⟩ . (25)

For α = 1 Eq. (25) yields the KS or DFT correlation energy as the difference of
the expectation values of the electronic Hamiltonian operator with the full ground
state wave function Ψ0 = Ψ0(α = 1), i.e. the full ground state energy, minus
the expectation values of the electronic Hamiltonian operator with the KS wave
function Φ0 = Ψ0(α = 0). The HF based correlation energy, on the other hand, is
the difference of the expectation values of the electronic Hamiltonian operator with
the full ground state wave function and the HF determinant.

The correlation energy Ec(α) of Eq. (24) is the sum

Ec(α) = Tc(α) + αVc(α) (26)

of a kinetic contribution,

Tc(α) = ⟨Ψ0(α)|T̂ |Ψ0(α)⟩ − ⟨Φ0|T̂ |Φ0⟩ . (27)

and an electron-electron interaction contribution

Vc(α) = ⟨Ψ0(α)|V̂ee|Ψ0(α)⟩ − ⟨Φ0|V̂ee|Φ0⟩ . (28)

multiplied by the coupling constant α.
The derivative of the correlation energy Ec(α) with respect to the coupling con-

stant is given by Vc(α) because taking the derivative of Eq. (25) yields

dEc(α)

dα
= ⟨Ψ0(α)|V̂ee +

dv̂(α)

dα
|Ψ0(α)⟩ − ⟨Φ0|V̂ee +

dv̂(α)

dα
|Φ0⟩

= ⟨Ψ0(α)|V̂ee|Ψ0(α)⟩ +

∫
dr

dv(α, r)

dα
ρ(r)

−⟨Φ0|V̂ee|Φ0⟩ −
∫
dr

dv(α, r)

dα
ρ(r)

= ⟨Ψ0(α)|V̂ee|Ψ0(α)⟩ − ⟨Φ0|V̂ee|Φ0⟩

= Vc(α) . (29)
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For the first line of Eq. (29) the Hellmann-Feynman theorem was invoked, for the
second line it was exploited that Ψ0(α) as well as Φ0 yield the electron density ρ.

From Eq. (29) follows immediately the coupling strengths integration for the DFT
correlation energy Ec = Ec(α = 1),

Ec = Ec(α = 1)

= Ec(α = 1)− Ec(α = 0)

=

∫ 1

0
dα

dEc(α)

dα

=

∫ 1

0
dα Vc(α) , (30)

if we exploit that definition (24) of the correlation energy Ec(α) implies
Ec(α = 0) = 0.

2.3. Adiabatic-connection fluctuation-dissipation theorem

By combining the coupling strength integration, Eq. (30), with the integration of
causal response functions along complex frequencies, Eq. (8), we obtain the adia-
batic connection fluctuation dissipation theorem for the DFT correlation energy Ec

[28, 29, 35, 64, 77]. In Eq. (8) the integration of the response function χ(r, r′, iω)
of the real electron system is considered. A generalization to a coupling-strength-
dependent response function χ(α, r, r′, iω) is straightforward by replacing the wave
functions Ψn in Eqs. (2) - (11) by the wave functions Ψn(α) and by introducing the
coupling-strength dependent pair density ρ2(α, r, r

′), the diagonal of a coupling-
strength-dependent second order spinless density matrix obtained by a generaliza-
tion of definition (7). The coupling strength integration for Ec then can be expressed
as

Ec =

∫ 1

0
dα Vc(α)

=

∫ 1

0
dα ⟨Ψ0(α)|V̂ee|Ψ0(α)⟩ − ⟨Φ0|V̂ee|Φ0⟩

=

∫ 1

0
dα

∫
dr dr′

ρ2(α, r, r
′)

|r− r′|
− ρ2(α = 0, r, r′)

|r− r′|

=

∫ 1

0
dα

∫
dr dr′

[
ρ2(α, r, r

′)

|r− r′|
− 1

2

ρ(r)ρ(r′)

|r− r′|

+
ρ2(α = 0, r, r′)

|r− r′|
− 1

2

ρ(r)ρ(r′)

|r− r′|

]
. (31)

Only one density ρ that is independent of α occurs in Eq. (31) because the wave
functions Ψ0(α) independently of α yield the same electron density ρ If we now
insert twice Eq. (8) with g(r, r′) = 1/|r − r′| and use that the last integral in
Eq. (8) is cancelled because it occurs twice with different signs then we obtain
the adiabatic-connection fluctuation-dissipation theorem for the DFT correlation
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energy Ec

Ec =
−1

2π

∫ 1

0
dα

∫
drdr′

1

|r− r′|

∫ ∞

0
dω

[
χα(r, r

′, iω) − χ0(r, r
′, iω)

]
. (32)

2.4. RPA correlation energy within Kohn-Sham framework

In order to calculate the Kohn-Sham correlation energy with the adiabatic-
connection fluctuation-dissipation theorem the response functions χα and χ0 are
required. The KS response function χ0 is known in terms of the occupied and
unoccupied KS orbitals φi and φa, respectively, and their eigenvalues εi and εa,

χ0(r, r
′, iω) =

occ.∑
i

unocc.∑
a

−4εia
ε2ia + ω2

φi(r)φa(r)φa(r
′)φi(r

′) . (33)

In Eq.(33) εia = εa − εi and thus by definition is a positive quantity. Throughout
this Section we consider non-sin-polarized systems. By φi and φa therefore spatial
orbitals are denoted while the spin degree of freedom is taken into account by
appropriate prefactors. Throughout this work indices i and j denote occupied, a
and b unoccupied, and p, q, r, and s arbitray orbitals. Summations over the indices
run over the occupied, the unoccupied, or all orbitals, respectively.

The integration over the frequency and the spatial variables is straightforward
and leads to

−1

2π

∫
drdr′

1

|r− r′|

∫ ∞

0
dω χ0(r, r

′, iω) =
∑
ia

⟨ia|ai⟩ = Tr[C] (34)

with ⟨ia|ai⟩ denoting a two-electron integral in physicist’s notation and C desig-
nating a matrix defined by the matrix elements Cia,jb = ⟨ib|aj⟩. The dimension
of the matrix C equals the number of occupied times unoccupied KS orbitals, its
columns and rows are labeled by the superindices jb and ia.

The coupling-strength-dependent response function χα is obtained by time-
dependent DFT (TDDFT) in the linear response regime. The basic equation of
time-dependent or more precisely frequency-dependent KS response theory is [78–
83]. [

ε2 + ε1/2Kuxc(α, ω) ε
1/2

]
zn(α, ω) = Ω2

n(α, ω) zn(α, ω) . (35)

In Eq. (35) ε designates a diagonal matrix with elements εia,jb = δia,jb εia =
δia,jb (εa − εi). The kernel matrix Kuxc(α, ω) is defined by its matrix elements∫
drdr′φi(r)φa(r) fuxc(α, ω, r, r

′)φa(r
′)φi(r

′). The kernel fuxc is the frequency- and
coupling-strength-dependent functional derivative of the sum of the Hartree and
KS exchange-correlation potential.

Eq. (35) is an equation that is nonlinear in the frequency ω. For a given frequency
ω the number of eigenvalues Ωn(α, ω)

2 equals the product of occupied times un-
occupied orbitals. However, only if a square root Ωn(α, ω) equals the frequency
ω then this Ωn(α, ω) equals an exitation energy. In most TDDFT methods the
frequency-dependence of the kernel is neglected, i.e., the adiabatic approximation
is employed. In this case the frequency-dependenc of the kernel and the eigenvectors
zn vanishes, Eq. (35) becomes linear, and the square roots Ωn of the eigenvalues
equal the excitation energies. In this work, however, we construct the response
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function χα within an exact-exchange TDDFT (TDEXX) framework, that is we
neglect the correlation contribution to the kernel fuxc but we treat the exchange
contribution exactly including its frequency dependence. The exact exchange kernel
is given by a quite complicated integral expression [66–68] which is not well suited
for numerical implementations. It is, however, possible to derive an equation for the
frequency-dependent response of the effective KS potential and not, as usually in
TDDFT, of the electron density [69]. The corresponding eigenvalue equation for the
excitation energies is better suited for an exact treatment of exchange. At first, the
eigenvalue equation is again nonlinear in the frequency ω but it can be rearranged
into the linear generalized eigenvalue equation [71], the TDEXX equation[

ε2+ α ε1/2 [A+B+∆]ε1/2
]
zn(α) =

Ω2
n(α)

[
1− α ε−1/2[A−B+∆]ε−1/2

]
zn(α) . (36)

The matrices A, B, ∆ with a dimension equal to the number of occupied times
unoccupied KS orbitals contain the matrix elements Aia,jb = 2⟨ij|ab⟩ − ⟨ia|jb⟩,
Bia,jb = 2⟨ij|ab⟩ − ⟨ij|ba⟩, ∆ia,jb = δij ⟨φa|v̂NL

x − v̂x|φb⟩ − δab ⟨φi|v̂NL
x − v̂x|φj⟩.

The indices ia and jb, again, are superindices labeling the rows and columns of
the matrices. The operator v̂NL

x is a nonlocal exchange operator of the form of the
HF exchange operator but is constructed from KS orbitals while v̂x is the operator
corresponding to the local multiplicative KS exchange potential. Because the exact
exchange kernel as well as the Hartree kernel are linear in the coupling strength
α, the coupling strength occurs as linear prefactor in the equation. The price for
having arranged Eq. (36) in a form that does no longer contain terms depending
on ω is that Eq. (36) in contrast to Eq. (35) is a generalized eigenvalue equation.

With the eigenvectors zn(α) and the square roots Ωn(α) of Eq. (36) the response
function χα can be expressed as [71]

χα(iω, r, r
′) =

∑
n

1

Ωn(α)

∑
ia

∑
jb

φi(r)φa(r)

[
ε1/2zn(α)

−4Ωn(α)

Ωn(α)2 + ω2
zn(α)

Tε1/2
]
ia,jb

× φb(r
′)φj(r

′) (37)

Integration over the frequency and the spatial variables yields

−1

2π

∫
drdr′

1

|r− r′|

∫ ∞

0
dω χα(r, r

′, iω) =
∑
n

zTn (α)ε
1/2Cε1/2zn(α)

/
Ωn(α)

(38)

Finally subtracting Eqs. (34) and (38) and integration over the coupling constant
α yields the EXX-RPA correlation energy

Ec =

∫ 1

0
dα Vc(α) (39)

with

Vc(α) =

[∑
n

zTn (α)ε
1/2Cε1/2zn(α)

/
Ωn(α)

]
− Tr[C] (40)
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A calculation of the EXX-RPA correlation energy in a straightforward manner
requires to solve the TDEXX equation (36) for a number of values of the coupling
strength α, to construct the integrand Vc(α) and to carry out the coupling strength
integration (24) numerically. Typically six or seven integration points in a Gauss-
Legendre integration are sufficient to carry out the coupling strength integration
with an accuracy of about 10−5 Hartree.

3. RPA correlation energy based on Hartree-Fock

3.1. Response functions and correlation energies in RPA based on
Hartree-Fock

Following Oddershede [84] the total electronic ground-state energy can be written
as

E0 =
∑
pq

[
hpq +

1

4

∑
r

⟨pr||qr⟩+ 1

4

∑
rs

⟨pr||qs⟩ ⟨Ψ0|a†ras|Ψ0⟩

]
⟨Ψ0|a†paq|Ψ0⟩

− 1

4π

∑
pqrs

⟨pr||qs⟩
∫ ∞

0
dω χpq,rs(iω) (41)

where the summations over p, q, r and s run over all, i.e., occupied and un-
occupied spin orbitals. This means in this Section, in contrast to the previous
one, we consider orbitals including their spin degree of freedom and summa-
tions run over spin orbitals, i.e., indices p, q etc. shall include possible spin in-
dices. By ⟨pq||rs⟩ an antisymmetrised two-electron integral in physicist’s nota-
tion is denoted, âs and âq designate annihilation, and â†r and â†p creation op-
erators. The sum

∑
rs⟨Ψ0|a†ras|Ψ0⟩ determines the first order density matrix

ρ(r, r′) according to ρ(r, r′) =
∑

rs ϕ†
r(r)ϕs(r

′) ⟨Ψ0|â†râs|Ψ0⟩ (likewise the sum∑
pq⟨Ψ0|a†paq|Ψ0⟩). The response matrix elements χpq,rs(ν) define the response func-

tion
∑

pqrs ϕ
†
p(r2)ϕq(r

′
2)χpq,rs(ν)ϕ

†
r(r1)ϕs(r

′
1) that yields the response of the first

order density matrix on a perturbation given by a general one-electron operator.
That is in constrast to the response function (2) of the previous Section the pertur-
bation can be a nonlocal operator and the response of the first order density matrix
not just of the electron density is considered. By ϕp ϕq, ϕr, and ϕs spin orbitals are
denoted.

The response matrix elements χpq,rs(iω) are given by

χpq,rs(iω) =
∑
n̸=0

[
⟨Ψ0|â†pâq|Ψn⟩ ⟨Ψn|â†râs|Ψ0⟩

E0 − En + iω
+

⟨Ψn|â†pâq|Ψ0⟩ ⟨Ψ0|â†râs|Ψn⟩
E0 − En − iω

]
.(42)

In order to extract the correlation energy from Eq. (41) one may now add and
subtract the contribution − 1

4π

∑
pqrs⟨pr||sq⟩

∫∞
0 dω χ0

pq,rs(iω) from Eq. (41) where
χ0
pq,rs(iω) refers to a general single-particle (e.g. Kohn-Sham or Hartree-Fock) re-

sponse function that is obtained from Eq. (42) by replacing the exact eigenfunctions
Ψ0 and Ψn by determinantal wave functions Φ0 and Φn. In this case the expectation
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values and the summation over n are readily carried out in Eq. (42) to obtain

χ0
pq,rs(iω) =

1

iω − εia
for p = s = i and q = r = a

=
1

−iω − εia
for p = s = a and q = r = i

= 0 else , (43)

as usual with i denoting occupied and a denoting unoccupied orbitals. Note that
by i in front of the frequency ω the imaginary unit not the index i is denoted. By
εia = εa − εi again differences of single-particle eigenvalues are denoted. With this
Eq. (41) then transforms into

E0 =
∑
pq

[
hpq +

1

4

∑
r

⟨pr||qr⟩+ 1

4

∑
rs

⟨pr||qs⟩ ⟨Ψ0|a†ras|Ψ0⟩

]
⟨Ψ0|a†paq|Ψ0⟩

−1

4

∑
ia

⟨ia||ia⟩ − 1

4π

∑
pqrs

⟨pr||qs⟩
∫ ∞

0
dω

[
χpq,rs(iω)− χ0

pq,rs(iω)
]

(44)

where it has been used that, using Eq. (43), the frequency integration over χ0
pq,rs(iω)

yields −2πδijδab and leads to − 1
4π

∑
pqrs⟨pr||qs⟩

∫∞
0 dω χ0

pq,rs(iω) = 1
4

∑
ia⟨ia||ia⟩.

with i, j denoting occupied and a, b unoccupied orbitals
If one now makes the approximation that the exact one-particle density matrices

are identical to the density matrices of the determinantal wave function, here a
KS or HF wave function, i.e. ⟨Ψ0|a†paq|Ψ0⟩ ≈ ⟨Φ0|a†paq|Φ0⟩ = δpqδqi, then Eq. (44)
simplifies to

E0 ≈
∑
i

hii+
1

2

∑
ij

⟨ij||ij⟩− 1

4π

∑
pqrs

⟨pr||qs⟩
∫ ∞

0
dω

[
χpq,rs(iω)− χ0

pq,rs(iω)
]

(45)

For the case that Φ0 is the Hartree-Fock determinant the first two-terms on the
right hand-side of Eq. (45) correspond just to the Hartree-Fock ground-state energy
and the remainder

Ec ≈ − 1

4π

∑
pqrs

⟨pr||qs⟩
∫ ∞

0
dω

[
χpq,rs(iω)− χHF

pq,rs(iω)
]
. (46)

with χHF
pq,rs(iω) denoting the Hartree-Fock response function, i.e., Eq. (43) in terms

of Hartree-Fock orbital energies, is an approximation to the correlation energy.
It is instructive to evaluate the frequency integration in Eq. (46). With Eq. (42)

and the integral
∫∞
0 dω ω/(a2 + ω2) = π/2 we obtain for the frequency integral
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over χpq,rs(iω):

−1

4π

∑
pqrs

⟨pr||qs⟩
∫ ∞

0
dω χpq,rs(iω)

=
−1

4π

∑
pqrs

⟨pr||qs⟩
∫ ∞

0
dω

∑
n̸=0

[
⟨Ψ0|â†pâq|Ψn⟩ ⟨Ψn|â†râs|Ψ0⟩

E0 − En + iω

+
⟨Ψn|â†pâq|Ψ0⟩ ⟨Ψ0|â†râs|Ψn⟩

E0 −En − iω

]

=
−1

4π

∑
pqrs

⟨pr||qs⟩
∫ ∞

0
dω

∑
n̸=0

[
⟨Ψ0|â†pâq|Ψn⟩ ⟨Ψn|â†râs|Ψ0⟩

E0 − En + iω

+
⟨Ψ0|â†pâq|Ψn⟩ ⟨Ψn|â†râs|Ψ0⟩

E0 −En − iω

]

=
1

2π

∑
pqrs

⟨pr||qs⟩
∫ ∞

0
dω

∑
n̸=0

En − E0

(En − E0)2 + ω2
⟨Ψ0|â†pâq|Ψn⟩ ⟨Ψn|â†râs|Ψ0⟩

=
1

4

∑
pqrs

⟨pr||qs⟩
∑
n̸=0

⟨Ψ0|â†pâq|Ψn⟩ ⟨Ψn|â†râs|Ψ0⟩

=
1

4

∑
pqrs

⟨pr||qs⟩ ⟨Ψ0|â†pâqâ†râs|Ψ0⟩

−1

4

∑
pqrs

⟨pr||qs⟩ ⟨Ψ0|â†pâq|Ψ0⟩ ⟨Ψ0|â†râs|Ψ0⟩

=
1

4

∑
pqrs

⟨rp||qs⟩ ⟨Ψ0|â†pâ†râqâs|Ψ0⟩ +
1

4

∑
pqs

⟨pq||qs⟩ ⟨Ψ0|â†pâs|Ψ0⟩

−1

4

∑
pqrs

⟨pr||qs⟩ ⟨Ψ0|â†pâq|Ψ0⟩ ⟨Ψ0|â†râs|Ψ0⟩

= Vee − 1

4

∫
drdr′

[
ρ(r)ρ(r′)

|r− r′|
− ρ(r′, r)ρ(r, r′)

|r− r′|

]

+
1

4

∫
drdr′

δ(r− r′)ρ(r)

|r− r′|
− 1

4

∫
drdr′

∑
q

ϕ†
q(r′)ϕq(r

′)ρ(r)

|r− r′|
.

(47)

In Eq. (47) it was used that the summation indices can be renamed (r to p, p to
r, s to q, q to s) and ⟨rp||sq⟩ = ⟨pr||qs⟩, that âqâ

†
r = δqr − â†râq, that ⟨rp||qs⟩ =

−⟨pr||qs⟩, that 1
4

∑
pqrs ⟨rp||qs⟩ ⟨Ψ0|â†pâ†râqâs|Ψ0⟩ equals the electron-electron in-

teraction energy Vee of an electronic system, that
∑

rs ϕ†
r(r)ϕs(r

′) ⟨Ψ0|â†râs|Ψ0⟩
equals the first order density matrix ρ(r, r′), and that

∑
q ϕq(r)ϕ

†
q(r′) is a repre-

sentation of the delta function δ(r−r′). The last two terms in Eq. (47) are singular
and thus, strictly speaking, illdefined.

The frequency integration of the terms in Eq. (46) that contain HF response
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matrix elements χHF
pq,rs(iω) together with Eq. (43) yields

−1

4π

∑
pqrs

⟨pr||qs⟩
∫ ∞

0
dω χHF

pq,rs(iω) =
1

4

∑
ia

⟨ia||ai⟩

=
1

4

∑
ij

⟨ji||ji⟩ +
1

4

∑
iq

⟨iq||qi⟩

= V HF
ee − 1

4

∫
drdr′

[
ρHF(r)ρHF(r′)

|r− r′|
− ρHF(r′, r)ρHF(r, r′)

|r− r′|

]

+
1

4

∫
drdr′

δ(r− r′)ρHF(r)

|r− r′|
− 1

4

∫
drdr′

∑
q

ϕ†
q(r′)ϕq(r

′)ρHF(r)

|r− r′|
.

(48)

Here V HF
ee denotes the electron-electron interaction energy of the HF determinant

and ρHF(r, r′) and ρHF(r) are the HF first order density matrix and the HF electron
density, respectively. Subtraction of Eq. (48) from Eq. (47) yields:

Ec ≈ − 1

4π

∑
pqrs

⟨pr||qs⟩
∫ ∞

0
dω

[
χpq,rs(iω)− χHF

pq,rs(iω)
]

= Vee − V HF
ee − 1

4

∫
drdr′

[
ρ(r)ρ(r′)

|r− r′|
− ρHF(r)ρHF(r′)

|r− r′|

]
+
1

4

∫
drdr′

[
ρ(r′, r)ρ(r, r′)

|r− r′|
− ρHF(r′, r)ρHF(r, r′)

|r− r′|

]
+
1

4

∫
drdr′

δ(r− r′)ρ(r)

|r− r′|
− 1

4

∫
drdr′

δ(r− r′)ρHF(r)

|r− r′|

−1

4

∫
drdr′

∑
q

ϕ†
q(r′)ϕq(r

′)ρ(r)

|r− r′|
+

1

4

∫
drdr′

∑
q

ϕ†
q(r′)ϕq(r

′)ρHF(r)

|r− r′|
.

(49)

The right hand side of Eq. (49) contains the electron-electron interaction contribu-
tion to the correlation energy, i.e., the difference Vee − V HF

ee , plus various difference
terms containing the exact and the HF first order density matrix and electron
density. In order to associate the right hand side of Eq. (49) with the correlation
energy as it is done within the RPA, Eq. (46), the approximation that the HF first
order density matrix equals the exact first order density matrix has to be made
as has been used above. With this approximation, which implies the equality of
the HF and the exact electron density, all the difference terms on the right hand
side of Eq. (49) cancel. Moreover, under this approximation there would be no ki-
netic contribution to the correlation energy and no contribution from the electron
nuclei interaction and therefore there would remain only the electron-electron in-
teraction contribution Vee − V HF

ee to the correlation energy. This indicates that the
approximation that the HF and the exact first order density matrices are equal is
a quite severe one that could introduce errors of a magnitude comparable to the
electron-nuclei interaction contribution and the kinetic contribution to the correla-
tion energy. Here a marked difference to the RPA correlation energy within the KS
formalism given by the adiabatic-connection dissipation-fluctuation theorem (32)
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shows up. The adiabatic-connection dissipation-fluctuation theorem (32) is exact, it
yields the exact correlation energy as defined in the KS formalism. Approximations
are introduced with the approximate density-functionals, the exchange-correlation
potential and kernel when applying the adiabatic-connection dissipation-fluctuation
theorem. In HF based RPA, with Eq. (46), right from the start approximations are
introduced. It should be noted, however, that the form of the correlation energy
of Eq. (49) might be even more inaccurate if KS orbitals and the corresponding
KS response function are used instead of HF orbitals and the HF reponse function
because the KS one-particle density matrix is neither identical to the exact density
matrix nor can it be expected to be a good approximation to it, even if the exact
exchange-correlation potential would have been employed, see Ref. [85], p.47 ff.

If in Eq. (49) the antisymmetrized two-electron integral ⟨pr||qs⟩ is replaced by
the simple nonantisymmetrized integral ⟨pr|qs⟩ and the prefactor 1/4π is replaced
by 1/2π then carrying out the frequency integrations in the same way as before
leads to

Ec ≈ − 1

2π

∑
pqrs

⟨pr|qs⟩
∫ ∞

0
dω

[
χpq,rs(iω)− χHF

pq,rs(iω)
]

= Vee − V HF
ee − 1

2

∫
drdr′

[
ρ(r)ρ(r′)

|r− r′|
− ρHF(r)ρHF(r′)

|r− r′|

]
+
1

2

∫
drdr′

δ(r− r′)ρ(r)

|r− r′|
− 1

2

∫
drdr′

δ(r− r′)ρHF(r)

|r− r′|
.

(50)

With the assumption that the HF and the exact electron densities are equal the
difference terms in Eq. (50) that contain the exact and the HF density vanish and
the electron-electron interation contribution Vee − V HF

ee to the correlation energy
remains. The assumption of an equality of the HF and the exact electron densities is
weaker than the assumption of the equality of the corresponding first order density
matrices. That is, Eq. (50) compared to Eq. (49) requires a weaker approximation
to yield a meaningful quantity, Vee − V HF

ee namely. If the stronger assumption of
an equality of the HF and the exact first order density matrices is made then, as
before, Vee − V HF

ee can be associated with the complete correlation energy. Eq. (50)
therefore is an alternative to Eq. (49).

Alternative to the use of Kohn-Sham orbitals or Hartree-Fock orbitals Eq. (41)
could also be written in terms of natural orbitals or Brueckner orbitals. For natural
orbitals the transformation from Eq. (44) to Eq. (45) holds true exactly, provided
the summations run over all orbitals with nonzero occupation numbers and Eq.
(43) is generalized accordingly. Brueckner orbitals, on the other hand, differ from
natural orbitals in third order of perturbation theory [86]. Since it has been found
that the Brueckner reference determinant of a Brueckner coupled-cluster doubles
(BCCD) wave function better approximates the electron density of the unrelaxed
full BCCD wave function [87, 88] it can be expected that the correlation energy
expressions in Eqns. (46) and (50) are better approximated in terms of Brueckner
instead of Hartree-Fock orbitals.

3.2. Overview of RPA methods including exchange interactions

In a diagrammatical perturbation expansion of the direct RPA (dRPA) correlation
energy it can be seen that only certain types of diagrams occur, namely those
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that have a ring form [9, 56, 89]. Because of this the direct RPA is sometimes also
termed ring approximation or direct ring coupled-cluster doubles method (drCCD).
Moreover, it has been shown that the dispersion interaction energy on the coupled-
cluster doubles level is identical to the dispersion energy described by RPA response
propagators of the monomers, see Ref. [90].

A simple Hartree calculation suffers from the neglect of electron exchange ef-
fects that leads to erroneous self-interactions [56]. This shortcoming is rectified
by taking into account the exchange contributions in the Hartree-Fock method.
Similarly, dRPA suffers from the neglect of exchange, now in higher orders in the
electron-electron interaction. As a result, dRPA methods usually strongly overes-
timate electron correlation due to self-correlation errors. Most striking is the fact,
that dRPA yields non-zero correlation energies in one-electron systems [37].

Because of this, self-correlation in dRPA has to be corrected by including electron
exchange effects. There is, however, by no means a unique way to do this. Quite some
RPA methods including exchange effects were developed over the years [13, 14, 41,
84, 91–93]. As the standard RPA or ’normal RPA’ (NRPA) [92, 93] one may define
the variant in which all ring-diagrams in dRPA are supplemented by additional
ring-diagrams with the interaction lines replaced by antisymmetrised interaction
lines. Such an RPA method sometimes is also refered to as ring coupled-cluster
doubles (rCCD) approach [94].

The starting point of the various HF based RPA variants is the time-dependent
HF equation [19, 93, 95–97]

(
ε+A B
−B −ε−A

)(
X Y
Y X

)
=

(
X Y
Y X

)(
Ω 0
0 −Ω

)
(51)

whose solutions and eigenvalues are used to construct an approximation to the re-
sponse matrix elements χpq,rs(iω) required in the basic equation (46). The matrices
ε, A, B, X, Y, and Ω have the dimension of the number of products of occupied
and unoccupied spin orbitals. The matrix elements are defined anlogously as in the
KS case, however, with respect to HF spin orbitals instead of KS spatial orbitals,
i.e., εia,jb = δijδab(εi − εa), Aia,jb = ⟨ij|ab⟩ − ⟨ia|jb⟩, and Bia,jb = ⟨ij|ab⟩ − ⟨ij|ba⟩.
Again orbitals and subsequently all occuring matrices are assumed to be real-valued.
In a non-spin-polarized electron system the time dependent HF equation (51) can
be decoupled in equations for singlet-singlet and singlet-triplet excitations with
matrices ε, A, B, X and Y that have the dimension of the number products of
occupied and unoccupied spatial orbitals only, i.e., a dimension that is a factor of
four smaller than in the general spin-polarized case. Note that Eq. (51) has pairs
of solutions with eigenvalues Ωn and −Ωn . The eigenvalues Ωn are the excitation
energies within the RPA.

The eigenvectors given by the matrices X and Y fulfill the normalisation condi-
tion [19]

(
XT YT

YT XT

)(
1 0
0 −1

)(
X Y
Y X

)
=

(
1 0
0 −1

)
(52)

Once Eq. (51) has been solved, the RPA response matrix χRPA(ν) can be expressed
in the spectral form

χRPA(ν) =

(
X Y
Y X

)(
(ν1−Ω)−1 0

0 (−ν1−Ω)−1

)(
XT YT

YT XT

)
. (53)

Page 19 of 45

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

July 28, 2011 11:17 Molecular Physics rpa_review7

20 Taylor & Francis and I.T. Consultant

The elements of χRPA(ν) with ν = iω enter as approximation of the exact response
matrix elements χpq,rs(iω) Eq. (46) for the RPA correlation energy, leading to

ERPA
c =

−1

4π

∑
pqrs

∫ ∞

0
dω Tr

[
WRPA

[
χRPA(iω)− χHF(iω)

] ]

with the HF response matrix χHF(ν) containing elements given in Eq. (43) and
with the interaction matrix WRPA defined as

WRPA =

(
A B
B A

)
. (54)

Alternatively the RPA response function can be obtained from the Dyson-like equa-
tion

χRPA(ν) = χHF(ν) + χHF(ν)WRPAχRPA(ν) . (55)

Repeated insertion of Eq. (55) into itself leads to a series expansion of χRPA(ν). If
this expansion is used to evaluate the RPA correlation energy ERPA

c , also the latter
is obtained in a series expansion. Comparing this expansion of ERPA

c with many-
body perturbation theory shows that the expansion of Eq. (55) produces wrong
prefactors in front of all terms. It has been shown that this can be remedied through
the introduction of an interaction strength parameter α in Eq. (46) [6, 98, 99] which
then in the RPA approach is written as:

ERPA
c = − 1

4π

∑
pqrs

⟨pr||qs⟩
∫ 1

0
dα

∫ ∞

0
dω

[
χRPA
pq,rs(iω, α)− χHF

pq,rs(iω)
]

=
1

2
Tr(WRPAP) (56)

where P = −(1/2π)
∫ 1
0 dα

∫∞
0 dω

[
χRPA(iω, α) − χHF(iω)

]
denotes the correlation

part of the pair density. The matrix χRPA(iω, α) is obtained by scaling the matrices
A and B in Eq. (51) or the matrix W in Eq. (55) by the coupling constant α. Since
W is proportional to the electronic interaction, the RPA response function can then
be expanded in a power series of α via the Dyson Eq. (55). A very crucial point is
now, that in the standard RPA method the interaction strength integration is not
performed exactly. Instead one assumes that the leading order term χ0W

RPA(α)χ0

of the Dyson type Eq. (55) that is linear in α is dominating the perturbation
expansion and sets: ∫ 1

0
dα χRPA(ν, α) ≈ 1

2
χRPA(ν, α = 1) (57)

which corresponds to a coupling strength average. With this the correlation energy
gets

ERPA
c ≈ − 1

8π

∑
pqrs

⟨pr||qs⟩
∫ ∞

0
dω

[
χRPA
pq,rs(iω, α = 1)− χHF

pq,rs(iω)
]

(58)

and the insertion of the spectral representation of the response function (Eq. (53))
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yields after integration over ω

ERPA
c =

1

8
Tr

{(
A B
B A

)
◦
[(

XXT XYT

YXT YYT

)
−

(
1 0
0 1

)]}
=

1

4

[
Tr(BYXT ) + Tr(AYYT )

]
(59)

where the operator ◦ here defines an elementwise matrix multiplication and the
normalisation condition Eq. (52) has been employed. The second term in Eq. (59)
is small compared to the first term since it is of second order in the small eigenvector
components Y. Thus

ERPA
c

∼=
1

4
Tr(BYXT ) (60)

Using the normalisation condition XTX − YTY = 1 (see Eq. (52)) it is easy to
show that YXTX = Y +YYTY and thus [18, 100]

YXT = YX−1 +YYTYX−1 = (1+YYT )YX−1 ≈ YX−1 (61)

where again it has been made use of the fact that YYT ≪ 1. With Eq. (61) the
RPA correlation energy in Eq. (60) then can be written as

ERPA
c

∼=
1

4
Tr(BYX−1) (62)

This is the RPA correlation energy expression which is identical to the ring-
approximation in coupled-cluster doubles theory (rCCD) as recently was shown
by Scuseria [94]. The amplitudes defined as T = YX−1 can alternatively to the
solution of Eq. (51) be obtained from the solution of the Riccati equation [101]

B+Tε+ εT+TA+AT+TBT = 0 (63)

and it can be shown that the RPA correlation energy defined in Eq. (62) can be
calculated in terms of a sum over the differences of the RPA and SCI (singles con-
figuration interaction) respectively (TDA) Tamm-Dancoff approximation excitation
energies:

ERPA
c =

1

4

∑
n

ΩRPA
n − 1

4
Tr(ε+A) =

1

4

∑
n

[
ΩRPA
n − ΩTDA

n

]
(64)

where it was used that the trace of a matrix does not change under cyclic per-
mutations. Eq. (64) is the plasmon formula expression which has been obtained
by McLachlan and Ball [13, 14] who assumed that the RPA excitations should be
treated as a set of harmonic oscillators and that Eq. (64) is the zero-point energy
of these oscillators. Eqs. (62) and (64) are given in the spin-orbital basis. In the
spatial orbital basis the expressions transform into [84, 93]
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ERPA
c =

1

4

[
Tr(1B1T) + 3Tr(3B3T)

]
=

1

4

∑
i

1∑
S=0

(2S + 1)
[
ωRPA
i (S)− ωTDA

i (S)
]

(65)

where S = 0, 1 refer to singlet and triplet excitation energies, respectively
(Eq. (51) yields nocc × nvirt singlet excitations and 3 × nocc × nvirt triplet exci-
tations which appear in sets with three-fold degeneracy). The matrices 1B and
3B correspond to antisymmetrised integrals for the singlet and triplet case with
1Bia,jb = ⟨ij|ab⟩ − ⟨ij|ba⟩ and 3Bia,jb = −⟨ij|ba⟩ with i, j, . . . refering to occupied
and a,b, . . . to unoccupied spatial orbitals.

It should now be noted that the expression in Eqs. (64) and (65) for the RPA
correlation energy is not the only possibility to describe electron correlation on the
RPA level. First of all, as explained above, Eq. (62) is only an approximation to Eq.
(59). In order to distinguish between the different approaches that will be described
below, we will term the approximation according to Eq. (62) rCCD-RPA or ’normal
RPA one’ (NRPA1) as suggested by Szabo and Ostlund [93] (to distinguish it from
self-consistent RPA schemes described below). The factor of 1/2 from the coupling
strength average (Eq. (57)) in Eq. (64) makes the NRPA1 correlation energy exact
to second order of perturbation theory. Another proposal for obtaining an energy
expression that is exact to second order has been given by Fukuda [91] who omits
the coupling strength integration and subtracts the correlation energy at second
order from the corresponding homogeneous electron gas correlation energy. His
expression is thus given by

ENRPA2
c = 2ENRPA1

c − E(2)
c (66)

with E
(2)
c being identical to the second-order Møller-Plesset (MP2) correlation en-

ergy if a Hartree-Fock reference determinant is used. We call this approach NRPA2.
The motivation for the third variant is related to an inconsistency in the RPA two-

particle density matrix in the Hartree-Fock orbital basis set. It should hold that
the singlet amplitudes 1Y1XT must be equal to the negative triplet amplitudes
−3Y3XT (see, e.g., table I in Ref. [84]). This requirement stems from the condition
that the wave function is an eigenfunction of the square of the spin operator with
eigenvalue zero. As a matter of fact, this condition is not fulfilled if the Hartree-
Fock determinant is used to build the RPA response function [14, 16, 84]. The
dilemma within the TDHF method is, that the linear combinations of single-excited
states are produced in two ways: (1) by exciting from the HF ground-state or (2)
by de-exciting from a doubly excited state of the true ground-state [21]. Since,
however, the HF wave function approximates the ground-state wave function in
TDHF, the de-excitation violates the Pauli exclusion principle and thus there exists
an incompatibility between the wave function and the excitation operator in TDHF.
Indeed, the HF ground state is often triplet unstable or yields very poor triplet
excitation energies as compared to its singlet excitations [21–25]. In order to remedy
this deficiency higher order RPA (HRPA) methods have been propsed in which the
RPA ground state is the sum of the Hartree-Fock ground state and doubly excited
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states [16, 84, 92, 102–108]:

ΨRPA
0 =

[
1 +

∑
ia,jb

T ab
ij a

†
aia

†
bj

]
ΦHF
0 (67)

The HRPA correlation coefficients T ab
ij are then determined by iteration. In the first

cycle the generalised RPA eigenvalue equation(
ε+A B
−B −ε−A

)(
X Y
Y X

)
=

(
S 0
0 −S

)(
X Y
Y X

)(
Ω 0
0 Ω

)
(68)

is solved using the approximation ΨRPA
0 ≈ ΦHF

0 with (ε+A)ia,jb = ⟨Ψa
i |Ĥ−E0|Ψb

j⟩,
Bia,jb = ⟨Ψab

ij |Ĥ − E0|Ψ0⟩ and Sia,jb = ⟨Ψa
i |Ψb

j⟩ where Ĥ denotes the electronic
Hamiltonian, E0 is the Hartree-Fock ground-state energy and Ψa

i and Ψab
ij de-

note singly and doubly excited wave functions, respectively. Note that for the case
ΨRPA

0 ≈ ΦHF
0 Eq. (68) reduces to Eq. (51) and the NRPA1 correlation energy re-

sults as first estimate. Then the correlation coefficients are used to construct the
RPA wave function in Eq. (67) which in turn is used to construct the Hessian ma-
trix in Eq. (68) to obtain new amplitudes and so forth. It should be noted that
depending on which type of amplitudes are iterated different HRPA schemes will
arise. While Shibuya and McKoy iterate on the T = YX−1 [102–104] Oddershede
and Jørgensen [16, 18, 24, 84] use the amplitudes T = YXT which, as described
above, differ from T = YX−1 in third order of Y. Other related methods are
the self-consistent polarisation propagator approximation (SPPA) [16, 105] and the
second-order polarisation propagator approximation (SOPPA) [84, 108] which it-
erate on the two-particle density matrix until a self-consistency is achieved. All
these approaches lead to considerable improvements over TDHF (RPA in the HF
basis) for the description of triplet excited states [84]. For example in SOPPA the
spin-symmetry conditions of the two-particle density matrix are fulfilled [84]. Also,
if the matrices A in Eq. (68) are augmented with two-particle two-hole corrections
[109–111] such higher order RPA methods will become exact in third-order of per-
turbation theory which is not true for any normal random-phase approximation
approach, see below and Ref. [112].

Here we will not discuss the higher RPA approaches further, but we may assume
that the condition 1Y1XT = −3Y3XT = holds true and rewrite Eq. (62) solely in
terms of the singlet amplitudes to obtain

ENRPA3
c =

1

2
Tr

([
1B−3 B

]
1Y1X−1

)
(69)

This expression, which we term here as NRPA3 correlation energy, has been given
by Szabo and Ostlund [93] and also by Oddershede [84]. As in the case of the
NRPA1 and NRPA2 approches (Eqs. (65) and (66)) it is exact to second-order of
perturbation theory but has the advantage that it can not be affected by triplet
instabilities, since the triplet amplitudes do not enter Eq. (69). However, it has
been shown by Szabo and Ostlund [93] that neither of the three approaches have
the desirable property that they describe the long-range interaction energy between
two molecules on the coupled Hartree-Fock level. In fact they contain erroneous
terms that behave as R−7 with the distance R of the monomers and thus can not
be expected to yield accurate intermolecular interaction energies [93]. As shown
by Szabo and Ostlund [93, 113], an RPA method which has the correct long-range
behaviour, i.e., which describes dispersion interactions on the coupled HF level is
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given by the following expression for the correlation energy:

ENRPA4
c =

1

2
Tr

(
1B

[
1Y1X−1 + 3Y3X−1

])
(70)

There also exist RPA approaches which do not explicitly account for electron ex-
change in the construction of the response function but add exchange effects to the
direct RPA such that exactness in second order is fulfilled. Note that the dRPA
approach corresponds to the approximation A ≈ C and B ≈ C in the RPA eigen-
value equation Eq. (51) with Cia,jb = ⟨ij|ab⟩. The first variant is the RPA+SOX
method where the exchange contribution in second order given by [38]

E
(2)
c,exchange = −1

2

∑
ia,jb

⟨ij|ab⟩⟨ij|ba⟩
εi + εj − εa − εb

(71)

is added to the dRPA correlation energy:

ERPA+SOX
c = EdRPA

c + E
(2)
c,exchange (72)

A variant to this method uses the corresponding second-order Epstein-Nesbet cor-
relation correction to the RPA and is termed RPA+RSOX [38], motivated by the
fact that in RPA+SOX the self-correlation is overcorrected since the Coulomb con-
tribution in SOX is unscreened compared to the dRPA. In another approach by
Kresse et al. [41] the dRPA amplitudes TdRPA are contracted with antisymmetrised
two-electron integrals:

ERPA−SOSEX
c =

1

2
Tr(BTdRPA) (73)

This method is termed RPA with second-order screened exchange and has the
big advantage that it can efficiently be implemented in plane-wave basis function
programs for solids [41].

None of the RPA methods described in this section so far carries out a coupling
strength integration like the methods for the correlation energy derived from the
AC-FDT formula, see sections 2.4 and 3.1. While it has been shown in section 3.1
that the AC-FDT is not rigorously defined for Hartree-Fock reference determinants,
it nonetheless has the advantage that, as the NRPA4 method, it describes the long-
range correlation energy between two molecules on the coupled Hartree-Fock level.
It has been argued above that Eq. (46) can be written as

Ec = − 1

2π

∑
pqrs

⟨pr|qs⟩
∫ ∞

0

[
χpq,rs(iω)− χHF

pq,rs(iω)
]
dω

=
1

2
Tr(ŴP) (74)

by using the inherent antisymmetry property of the two-particle density ma-
trix. The term Ŵ in Eq. (74) here defines the interaction matrix containing only
nonantisymmetrised integrals. Since now again, within the RPA this equation yields
wrong prefactors in the perturbation expansion tems, we introduce an additional
integration over the coupling strength to obtain the correlation energy within the
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adiabatic-connection fluctuation-dissipation theorem

EAC−FDT
c = − 1

2π

∑
pqrs

⟨pr|qs⟩
∫ 1

0
dα

∫ ∞

0

[
χpq,rs(iω, α)− χHF

pq,rs(iω)
]
dω (75)

which corresponds to Eq. (50) and defines the correlation energy in terms of the
coupled and uncoupled response functions χ and χHF. If here χ is approximated
as χ ≈ χRPA one obtains the adiabatic connection RPA method (AC-RPA) which
can be written as [53, 114]

EAC−RPA
c =

1

2

∫ 1

0
dαTr

[
C[(Xα+Yα)(Xα+Yα)

T −1]
]
=

1

2

∫ 1

0
dαTr

[
CPα

]
(76)

where the matrix C is defined by the two-electron integral matrix elements Cia,jb =
⟨ij|ab⟩. The coefficients Xα and Yα at coupling strength α are obtained from the
solution of the eigensystem Eq. (51) if the matrices A and B are scaled by α. Note
that only the singlet excitation vectors need to be computed for calculating the
AC-RPA correlation energy of Eq. (76). In order to compare this expression with
the NRPA methods we can make use of the identity (X + Y)(X + Y)T − 1 =
2YX−1 + 2YYT (1+YX−1) and find, again since YYT is small, that

EAC−RPA
c ≈

∫ 1

0
dα Tr

[
CYαX

−1
α

]
(77)

(Basically the same transformation has been used in the derivation of Eq. (60)).
The coupling-strength average of this expression is given by

EAC−RPA
c ≈ 1

2
Tr

[
CYX−1

]
(78)

A comparison with expression (60) for the correlation energy shows that ex-
pression (78) differs from the former by the contribution −1

4Tr
[
CYX−1

]
−

1
4Tr

[
KYX−1

]
with the matrix K defined as Kia,jb = ⟨ij|ba⟩. In case of the di-

rect adiabatic-connection RPA (AC-dRPA) in which X and Y are the eigenvector
components of the dRPA eigenvalue equation it has recently been shown by Jansen
et al. [114] that the expressions in Eq. (76) and Eq. (78) are exactly identical, that
is, the coupling-strength average of the AC-dRPA correlation energy applied to
Eq. (77) containing an approximate response function is surprisingly identical to
the full coupling-strength integrated expression in Eq. (76). This holds true even
though the coupling-strength integrated pair density is not in general identical to
the amplitudes, i.e.∫ 1

0
dα(χα − χ0) =

∫ 1

0
dα

{
XαX

T
α XαY

T
α

YαX
T
α YαY

T
α

}
− 1 ̸= YX−1 (79)

Since all RPA methods of this section that include exchange effects differ in third
order of perturbation theory, it is instructive to derive explicit expressions for the
correlation energy up to third order in terms of molecular integrals and orbital
energies. For this we first expand the response function up to second order in the
intermolecular interaction using Eq. (55):
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χ(1+2)
α (iω) = χ0(iω) + αχ0(iω)Wχ0(iω) + α2χ0(iω)Wχ0(iω)Wχ0(iω) (80)

where it is employed that the interaction operator W linearly depends on the
interaction strength α. The RPA correlation pair density can then generally be
written as

P(1+2) =

∫ 1

0
dα

1

2π

∫ ∞

0
dω(χ(2)

α (iω)− χ0(iω))

=

∫ 1

0
dα

1

2π

∫ ∞

0
dω

(
αχ0(iω)Wχ0(iω)

+α2χ0(iω)Wχ0(iω)Wχ0(iω)
)

(81)

Now note that, as discussed above, in the NRPA approaches the coupling strength
integration in Eq. (81) is not performed, but the average of Eq. (57) is taken.
Because of this the NRPA and AC-RPA methods will obtain different prefactors in
second order in W:

P(1+2),NRPA =
1

4π

∫ ∞

0
dωχ0(iω)Wχ0(iω)

+
1

4π

∫ ∞

0
dωχ0(iω)Wχ0(iω)Wχ0(iω) (82)

T(1+2),AC−RPA =
1

4π

∫ ∞

0
dωχ0(iω)Wχ0(iω)

+
1

6π

∫ ∞

0
dωχ0(iω)Wχ0(iω)Wχ0(iω) (83)

The full response function (at α = 1) is given by (compare Eqs. (51) and (53)):

χα=1(iω) =

{(
ε− iω 0

0 ε+ iω

)
+

(
A B
B A

)}−1

=
[
χ−1
0 +W

]−1
= χ0 − χ0Wχ0 + χ0Wχ0Wχ0 + . . . (84)

The corresponding response function for coupling strengths α can be obtained
with Eq. (84) by scaling the interaction matrix W with a factor of α. From Eq.
(84) the uncoupled response function χ0 and the interaction operator W in Eqs.
(82) and (83) can be identified as:

χ0(iω) =

(
(ε− iω)−1 0

0 (ε+ iω)−1

)
=

( ε+iω
ε2+ω2 0

0 ε−iω
ε2+ω2

)
=

(
λ− 0
0 λ+

)
(85)

W =

(
A B
B A

)
(86)
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where we use the short-hand notation λ− = (ε − iω)−1 and λ+ = (ε + iω)−1.
Thus the correlated first-order RPA pair density is given by

P(1) =
1

4π

∫ ∞

0
dωχ0(iω)Wχ0(iω) =

1

4π
Re

∫ ∞

0
dω

{
λ−Aλ− λ−Bλ+

λ+Bλ− λ+Aλ+

}
(87)

where it has been used that the imaginary terms of the response matrix can-
cel in each order of perturbation theory and thus only the real parts of the four
submatrices in Eq. (87) need to be considered. Integration over ω yields:

P(1) =
1

4

{
0 B
B 0

}
(88)

where the definition M ia,jb = Mia,jb

εia+εjb
for a matrix M has been used. With this

result the second-order energy is given by (see Eqs. (56) and (59))

E(2),NRPA
c =

1

4
Tr(WP(1)) =

1

8
Tr

{(
A B
B A

)
◦
(
0 B
B 0

)}
1

4
Tr

[
BB

]
=

1

4

∑
ia,jb

⟨ij||ab⟩⟨ab||ij⟩
εia + εjb

(89)

where εia = εi− εa. The second order energy expression in Eq. (89) can readiliy be
identified as the exact second order energy if a Hartree-Fock basis is used.

Correspondingly the second-order energy of the AC-RPA method is given by

E(2),AC−RPA
c =

1

2
Tr(ŴP(1)) =

1

4
Tr

{(
C C
C C

)
◦
(
0 B
B 0

)}
1

2
Tr

[
CB

]
=

1

4

∑
ia,jb

⟨ij||ab⟩⟨ab||ij⟩
εia + εjb

(90)

and thus, too, is exact to second order of perturbation theory.
For the (unscaled, i.e. without a prefactor due to the coupling strength integra-

tion) second-order pair density one gets

P(2) =
1

2π

∫ ∞

0
dωχ0(iω)Wχ0(iω)Wχ0(iω)

=
1

2π
Re

∫ ∞

0
dω ×{

λ−Aλ−Aλ− + λ−Bλ+Bλ− λ−Aλ−Bλ+ + λ−Bλ+Aλ+

λ+Bλ−Aλ− + λ+Aλ+Bλ− λ+Bλ−Bλ+ + λ+Aλ+Aλ+

}

=
1

2

{
B̃B ÃB+ B̃A

ÃB+ B̃A B̃B

}
(91)

where in the last expression the contraction M̃N ia,jb = Mia,kcNkc,jb

(εia+εjb)(εia+εkc)
for two
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matrices M and N has been used.
Now note that one can perform either a coupling-strength integration over each

term in Eq. (91) which yields a prefactor of 1
3 or, as is done in NRPA, one uses

a coupling strength average using a prefactor of 1
2 (see above) but disregards the

diagonal blocks in P(2) since they correspond to the small component part YYT of
the two-matrix (the XXT can be eliminated by using the normalisation relation).
This may be done because, while the diagonal terms in each order may not be small,
their sum to infinite order can expected to be small compared to the nondiagonal
part of the total pair density. Interestingly it turns out that both options yield the
same third-order (NRPA1 or rCCD) energy (see also [84, 114]):

E(3),NRPA1
c =

1

2
Tr(WP(2)) =

1

2
Tr

[
BAB

]
=

1

2

∑
ia,jb,kc

⟨ij||ab⟩⟨kb||cj⟩⟨ac||ik⟩
(εia + εjb)(εia + εkc)

(92)

In the AC-RPA method the pair density in Eq. (91) is integrated over the
coupling-strength yielding a prefactor of 1

3 (see Eq. (83)) and the result for the
third order energy is (see also [114]):

E(3),AC−RPA
c =

1

2
Tr(ŴP(2))

=
1

3
Tr

[
BAC+ABC+BBC

]
=

1

3

∑
ia,jb,kc

(
⟨ij||ab⟩⟨jc||bk⟩⟨ki|ca⟩
(εia + εjb)(εia + εkc)

+
⟨ib||aj⟩⟨jk||bc⟩⟨ki|ca⟩
(εia + εjb)(εia + εkc)

+

+
⟨ij||ab⟩⟨jk||bc⟩⟨kc|ia⟩
(εia + εjb)(εia + εkc)

)
(93)

A corresponding perturbation analysis can be made for the other RPA approaches
discussed above. The result is comprised in table 2 which shows for various RPA
correlation methods the prefactors of the perturbation theory terms up to third
order as given in table 1.

4. Combining elements of HF and KS based RPA

Here we relate the EXX-RPA method of Section 2 [53, 55] to the AC-RPA method
of Section 3, Eqs. (75) and (76), (termed as HF-RPA in Ref. [53]). To this end
the coupling constant-dependent singlet-singlet TDHF eigenvalue equation of the
AC-RPA method is written in the reduced generalised eigenvalue equation form

(εHF + αAHF + αBHF)un = Ω2
n(εHF + αAHF − αBHF)

−1un (94)[
ε2HF + αε

1/2
HF (AHF +BHF)ε

1/2
HF

]
zn = Ω2

n

[
1+ αε

−1/2
HF (AHF −BHF)ε

−1/2
HF

]−1
zn

(95)
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with U = X + Y and Z = ε
1/2
HFU or considering columns of the matrices U, X,

Y, an Z, see Eq. (51), un = xn + yn and zn = ε
1/2
HFun. In this Section like in

Section 2 non-spin-polarized electron systems are considered. The elements of the
matrices εHF, AHF, and BHF are defined as in the TDEXX equation (36), however,
with respect to HF not EXX spatial orbitals and their eigenvalues. Because in
this Section matrix elements defined with respect to HF or EXX orbitals occur
we designate matrices with elements defined with respect to HF orbitals with a
subscript ’HF’.

Eq. (94) can be expressed in EXX orbitals and eigenvalues if the approximation
is made that the EXX orbitals and HF orbitals can be transformed into each other
through an occupied-occupied virtual-virtual unitary transformation, see Refs. [70,
76, 115] for details. This approximation is equivalent to the approximation that the
EXX and the HF determinant equal each other which is known to be a very good
approximation [76]. As a result of the transformation of the orbitals the matrices
AHF and BHF turn into the corresponding matrices A and B with respect to KS
orbitals and the matrix εHF turns into ε + ∆ with ∆ defined as in the TDEXX
equation (36) [69, 71]. From the transformed Eq. (94) a transformed Eq. (95) results
that has the form

[
ε2 + ε1/2[∆+ α(A+B)]ε1/2

]
zn = Ω2

n

[
1+ ε−1/2[∆+ α(A−B)]ε−1/2

]−1
zn

(96)

Eq. (96) would be exactly equivalent to Eq. (94) and Eq. (95) if occupied and
virtual EXX and HF orbitals could be exactly transformed into each other by an
occupied-occupied and a virtual-virtual unitary transformation, respectively. For
two-electron systems this is indeed exactly true, for other electronic systems this
is an approximation, which, however, as mentioned above, is very good and, as
shown in Section 5, has only negligible effects. We therefore can consider Eq. (96)
as alternative basis of the AC-RPA approach that enables a calculation of the
AC-RPA correlation energy with EXX orbitals and eigenvalues and therefore lends
itself to a straightforward comparison with the EXX-RPA correlation energy. The
crucial difference of Eq. (96) and the TDEXX equation (36) is that the matrix
∆ in Eq. (96) is not scaled by the coupling constant because it arises there from
the transformation from HF to EXX orbitals while it is scaled with the coupling
constant α in the TDEXX equation because it emerges from the exchange kernel
in this case. A second difference between Eq. (96) and Eq. (36) are the matrices on
the right hand side of the equations. In Ref. [71] it was shown that the differences
in the matrices on the right hand side of the equations have little effect. The reason
why the EXX-RPA method yields distinctively superior results as the AC-RPA
approach [55] could be attributed to the different scaling of the matrix ∆ with the
coupling constant α [55].

We now consider a hybrid approach between the EXX-RPA and the AC-RPA
method. To that end the matrix ∆ in Eq. (96) is scaled by the coupling constant
α like in the TDEXX equation (36) or conversely the form of the right hand side
of the TDEXX equation (36) is changed into the form of Eq. (96) with the matrix
∆ scaled by α. This results in
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[
ε2 + αε1/2(∆+A+B)ε1/2

]
zn = Ω2

[
1+ αε−1/2(∆+A−B)ε−1/2

]−1
zn

(97)

In order to interpret the hybrid approach of Eq. (97) the matrix 1+αε−1/2(∆+
A−B)ε−1/2 on the right hand side of Eq. (96) is expanded in a series with respect
to αε−1/2(∆+A−B)ε−1/2

[
1+ αε−1/2(∆+A−B)ε−1/2

]−1

≈ 1− αε−1/2(∆+A−B)ε−1/2

+α2ε−1/2(∆+A−B)ε−1(∆+A−B)ε−1/2 − . . . (98)

If the expansion (98) is inserted into Eq. (97) and second and higher order terms
are neglected then the TDEXX equation (36) results. That means the hybrid ap-
proach based on Eq. (97) differs from the EXX-RPA method only by the second
and higher order contributions of the expansion (98). Inserting the expansion (98)
in Eq. (97) and rearrangement suggests the eigenvalue equation

[
ε2 + ε1/2

[
α(∆+A+B) − αω2(∆+A−B)

+α2ω2(∆+A−B)ε−1(∆+A−B) + . . .
]
ε1/2

]
zn(α, ω)

= Ω2
n(α, ω) zn(α, ω) . (99)

Eq. (99) is a an eigenvalue equation that is nonlinear in ω. If the frequencies
ω equal the square root Ωn of an eigenvalue then this Ωn is also an eigenvalue
of Eq. (97) that can be interpreted as excitation energy. In this sense Eq. (99)
is equivalent to Eq. (97) the basis of the considered hybrid method. Eq. (99) has
exactly the form the basic equation (35) of TDDFT. The contributions [α(∆+A+
B) − αω2(∆ + A − B) that are linear in α represent the Hartree and the exact
frequency-dependent exchange kernel. The terms of higher order in α have to be
interpreted as frequency-dependent contributions of the correlation kernel because
only the correlation kernel contains contributions of quadratic and higher order in
α. Because terms up to infinite order in α are contained in Eq. (99) and thus taken
into account in the EXX- and AC-RPA hybrid method based on Eq. (99) we call
this method EXX-RPA[∞] here.

The correlation energy both of the EXX-RPA and the EXX-RPA[∞] method can
be written in the general form

EEXX−RPA
c =

1

2

∫ 1

0
dαTr

[
C(UαU

T
α − 1)

]
=

1

2

∫ 1

0
dαTr

[
CPα

]
(100)

with Uα containing in its columns the eigenvectors uα
n = (ωα

n)
−1/2ε1/2zαn for a

given coupling strength α, compare Eqns. (76) and (39) where the eigenvectors zαn
in case of EXX-RPA are obtained from Eq. (36) and in case of EXX-RPA[∞] from
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Eq. (97) or (99), respectively. It has been shown in Ref. [53] that the EXX-RPA
correlation energy according to Eq. (100) reproduces the correct second-order en-
ergy of perturbation theory along the adiabatic connection [116, 117] apart from
the missing singles term due to the assumption that the EXX and Hartree-Fock
orbitals are obtained by an occupied-occupied virtual-virtual unitary transforma-
tion only. While this can be shown to hold true also for the EXX-RPA[∞] method,
the corresponding third-order correlation energies differ in both cases. More pre-
cisely, it can be shown that the third-order expansion of the EXX-RPA correlation
energy can not be cast into the particle-hole terms of the form of those given in
Eq. (93) or table 1. On the other hand, for the EXX-RPA[∞] approach one obtains
the same third-order correlation energy terms as for the AC-RPA method (writ-
ten in terms of EXX orbitals and eigenvalues, however), accompanied by the four
additional contributions (2blx), (2blx), (2glx) and (2hlx) steming from ∆ matrix
elements, see table 1. As will be demonstrated in section 5, the additional terms in
EXX-RPA and EXX-RPA[∞] approaches will yield significant contributions to the
total correlation energy. Thus exchange RPA methods using a Kohn-Sham refer-
ence determinant should account for these non-standard contributions in practical
calculations. Note, however, that this is not true for the SOSEX variant, since, by
definition, here no exchange contributions are accounted for in the calculation of
the response function, see section 3.2.

It has been shown [55] that the EXX-RPA correlation energies are distinctively
different from those from the AC-RPA method. The reason for this is that, while
the coupling-strength integrand CPα in both cases is similar for α → 0 (where
CPα → 0) and α → 1, for coupling strengths between 0 and 1 the partitioning into
an interacting and noninteracting response function leads to significant differences
in both cases, especially in cases where the static correlation is dominating [55].

The analogue to the NRPA1 (rCCD) method using Kohn-Sham exchange will
yield the same expression for the correlation energy

EEXX−NRPA1
c =

1

4
Tr(BYX−1) (101)

but the eigenvector components X and Y are obtained from the supermatrix form
of the TDHF eigenvalue equation written in terms of EXX orbitals and eigenvalues:

(
ε+∆+A B

−B −ε−∆−A

)(
X
Y

)
= ω

(
X
Y

)
(102)

It has recently been shown by Jansen et al. [114] that the NRPA1 correlation
energy is identical to following expression (see also section 3.2):

ENRPA1
c =

1

4

∫ 1

0
dαTr

[
BPα

]
+Tr

[
(A−B)(XαX

T
α +YαY

T
α − 1

]
(103)

Since in the local exchange case the relation

∆+A−B ≈ 0 (104)

holds true, which implies the closeness between the adiabatic and non-adiabatic

Page 31 of 45

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

July 28, 2011 11:17 Molecular Physics rpa_review7

32 Taylor & Francis and I.T. Consultant

form of the eigenvalue Eq. (99), the EXX-RPA1 correlation energy from Eq. (101)
then can also be approximated as

EEXX−NRPA1
c ≈ 1

4

∫ 1

0
dαTr

[
BPα

]
(105)

which directly links the NRPA1 (rCCD) correlation energy to an adiabatic con-
nection formula that differs, however, from Eq. (100) due to the occurrence of anti-
symmetrised integrals in Eq. (105). Performing the same transformation as between
Eq. (46) and Eq. (74) one arrives at the expression

EEXX−NRPA3
c ≈ 1

2

∫ 1

0
dαTr

[
CPα

]
(106)

which is identical to the EXX-RPA correlation energy expression in Eq. (100)
and which is termed EXX-NRPA3 as it is found that it gives practically the same
correlation energy as the NRPA3 approach (Eq. (69)) in terms of local Kohn-Sham
exchange

EEXX−NRPA3
c =

1

2
Tr

([
1B−3 B

]
1Y1X−1

)
=

1

2
Tr

(
C 1Y1X−1

)
(107)

A reason for the similarity between Eqs. (100) and (107) can be deduced using
the perturbation theory analysis from the last section. Considering the second-order
response propagator of Eq. (91) and using ∆+A ≈ B (note that ∆+A = B for
two-electron systems) which follows from Eq. (104), then all terms in Eq. (91) are
approximately identical (substitute A by ∆ + A in the equation). In case of the
adiabatic connection method the number of terms contributing to P(2) is 6 (since
two of the diagonal contributions are zero after frequency integration) while in case
of EXX-NRPA3 one only accounts for the nondiagonal terms in Eq. (91), that is 4.
Since in EXX-RPA the prefactor in third order is 1

3 and in case of EXX-NRPA3 it
is 1

2 both methods have the same number of terms in that order and thus it holds
true that the third-order contribution to the response propagator is approximately
identical for EXX-RPA and EXX-NRPA3 (in case of two-electron systems it is
exactly equal to each other).

Since the EXX-NRAP3 correlation energy of Eq. (106) should be identical to the
NRPA3 correlation energy of Eq. (69) if the Hartree-Fock and EXX determinants
can be transformed into each other through occupied-occupied unitary transforma-
tions, we can derive the following energy relationship:

ENRPA3
c ≈ EEXX−NRPA3

c ≈ EEXX−RPA
c (108)

Correspondingly, the AC-RPA correlation energy of Eq. (76) expressed in terms
of the solutions of the TDHF Eq. (94) and the AC-RPA correlation energy of Eq.
(76) evaluated with the solution vectors of Eq. (96), a TDHF equation expressed in
terms of EXX orbitals, are similar to each other due to the similarity of the EXX
and Hartree-Fock determinants. The latter approximation, i.e., the evaluation of
the AC-RPA correlation energy expression (76) with vectors xn + yn = zn and ex-
citation energies Ωn obtained from the TDHF equation expressed in EXX orbitals,
Eq. (96), shall be denoted AC-RPA(EXX). Differences between AC-RPA and AC-
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RPA(EXX) correlation energies are caused exclusively by the small differences of
EXX and HF determinants. This will be further discussed considering numerical
results in the sections 5 and 6.

5. Total energies from RPA correlation functionals

Total energies have been calculated for a range of small molecules shown in fig-
ure 1 using the aug-cc-pVTZ basis set of Dunning et al. [118]. The geometries
for the molecules were optimised at the MP2 level using the aug-cc-pVTZ basis
set and are taken from Ref. [119]. The exact-exchange Kohn-Sham (EXX) calcu-
lations were done in two steps: firstly the local exchange potential was calculated
using the uncontracted triple-zeta auxiliary and orbital basis sets from Ref. [75]. In
the second step these exchange potentials were used in a subsequent Kohn-Sham
calculation with the smaller contracted aug-cc-pVTZ basis set in which only the
Coulomb potential was optimised self-consistently. Direct RPA calculations were
also performed using orbitals and eigenvalues from the Perdew-Burke-Ernzerhof
(PBE) exchange-correlation functional [120]. Note that in this case the exchange
energy was calculated using the exact exchange energy functional in terms of PBE
orbitals. Core electrons were correlated in the calculations. All calculations were
done using the developers version of the Molpro quantum chemistry program [121].

A comparsion of total energies for RPA methods based on Hartree-Fock with
total energies from other correlation methods can be found elsewhere [112]. Here
we will focus mainly on the RPA methods based on Kohn-Sham reference determi-
nants. Figure 1 displays the energy differences of several RPA methods to CCSD(T)
reference values. Note that the methods EXX-RPA and EXX-RPA[∞] are excluded
in the diagram, since they yield energy differences that are indistinguishable from
the EXX-NRPA3 values on the scale of figure 1, see below. It can be seen that
with exception of EXX-NRPA3 and EXX-SOSEX all other methods overestimate
the CCSD(T) correlation energy. (Note that the correlation energy for Kohn-Sham
based RPA approaches includes also a small contribution due to the differences of
the EXX/PBE and Hartree-Fock determinants.) For PBE-dRPA and EXX-dRPA
one can observe the strongest deviations to the CCSD(T) values, which is due to
the large self-correlation errors in both methods. One can see that the EXX-dRPA
and PBE-dRPA results are very similar to each other and thus it can be stated that
the dRPA funtional is relatively insensitive with respect to the choice of the KS
reference determinant. Note that in case of PBE-dRPA the exchange energy is cal-
culated in the same way as in EXX based methods, that is, by evaluating the exact
exchange energy expression with PBE orbitals. While the dRPA self-correlation
error is corrected to some extend by all other RPA methods including exchange
effects (beyond first order) displayed in figure 1, the EXX-NRPA1, EXX-NRPA2
and EXX-NRPA4 methods still strongly underestimate the CCSD(T) energies,i.e.,
strongly overestimate the magnitude of the correlation energy. An analysis of the
third-order contribution of the correlation energy shows that this is due to the
strong negative third-oder correlation terms (2b) and (2h) that more than quench
the positive direct term (2a), see tables 2 and 1 (see also Ref. [112]). In case of
EXX-SOSEX these third-order terms are absent, see table 2, but the only third-
order exchange term (2e) in the SOSEX method is generally much smaller than
the (2a) term, so that the CCSD(T) energies are underestimated by EXX-SOSEX
for the molecules shown in figure 1. The best agreement of the considered RPA
methods with the CCSD(T) energies is obtained with the EXX-NRPA3 method
and thus also with the EXX-RPA and EXX-RPA[∞] methods that yield almost
identical results, as already mentioned above. The third-order analysis from table
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2 shows that the NRPA3 method contains the (2b) term but misses the (2h) con-
tribution and therefore its third-order correlation contribution is generally much
smaller than with the EXX-NRPA1, EXX-NRPA2 and EXX-NRPA4 methods.

In figure 2 the differences of the total energies of the methods EXX-NRPA3,
EXX-RPA, EXX-RPA[∞], AC-RPA, and AC-RPA(EXX) to the NRPA3 energies
are shown for the range of molecules. As already anticipated in section 4, the total
energies of the EXX-NRPA3, EXX-RPA, EXX-RPA[∞], and NRPA3 methods do
not differ by more than 1−4 millihartree on average. Interestingly the diagram
in figure 2 shows, that the EXX-RPA[∞] energies are even closer to the NRPA3
energies than the EXX-NRPA3 energies although the methods are not directly
related to each other by unitary orbital transformations. The largest deviations
to the NRPA3 energies is found for EXX-RPA. Figure 2 also contains the energy
differences for the AC-RPA and AC-RPA(EXX) methods to NRPA3. Going from
the AC-RPA over the AC-RPA(EXX) and the EXX-RPA[∞] to the EXX-RPA
method the importance of various changes between the methods can be considered
step by step. Differences between the AC-RPA and the AC-RPA(EXX) method are
small and due to the only small differences between EXX and HF determinants,
differences between the AC-RPA(EXX) and the EXX-RPA[∞] correlation energies
are more substantial and are due to the fact whether or not the matrix ∆ in Eq. (96)
and Eq. (97) are scaled with the coupling constant or not. This scaling obviously
has an important influence. Finally the difference between the EXX-RPA[∞] and
the EXX-RPA correlation energies is small again. This difference is due to the
difference between the right hand sides of Eq. (97) and the TDEXX equation (36)
which are only of second order in ε−1/2[A − B + ∆]ε−1/2. In the next section it
will be investigated whether these energy differences affect energy differences for a
set of chemical reactions.

Figure 3 displays the correlation energies for Hartree-Fock based and EXX-based
RPA methods for the molecules CH4 (top) and HCOOH (bottom) together with
the corresponding sum of the second- and third-order contributions in each case. It
can be observed that the NRPA1, NRPA3 and NRPA4 correlation energies are very
close to the corresponding EXX-NRPA1, EXX-NRPA3 and EXX-NRPA4 correla-
tion energies. This, again, can be explained by the closeness of the RPA amplitudes
due to the similarity between the time-dependent Hartree-Fock and time-dependent
EXX equations. In contrast to this, the NRPA2 and EXX-NRPA2 correlation en-
ergies differ strongly from each other, because the second-order correlation energy
contained in the energy expression for EXX-NRPA2 (see Eq. (66)) differs strongly
if evaluated with EXX or Hartree-Fock orbitals due to the different orbital energies
in both cases. The differences of the orbital eigenvalue spectrum are also the rea-
son why one can observe huge differences of the correlation energies for the dRPA
and SOSEX methods in the diagrams in figure 3. Since the single particle transi-
tion energies in EXX are generally lower than in Hartree-Fock theory due to the
self-interaction correction for the virtual states, the EXX-dRPA and EXX-SOSEX
correlation energies are considerably larger in magnitude than the corresponding
dRPA and SOSEX correlation energies, respectively. In case of adiabatic connection
RPA methods a significant difference between the AC-RPA and EXX-RPA[∞] can
be seen in figure 3 which is due to the differences between the TDHF and TDEXX
response functions at coupling strengths between 0 and 1, compare with Ref. [55]
where the dsifferences between AC-RPA and EXX-RPA is discussed. A compar-
ison of the total correlation energies with the corresponding sum of the second-
and third-order correlation terms shows that in case of the Hartree-Fock based
RPA methods the higher order correlation contributions, given by the difference
Ec − E

(2)
c − E

(3)
c , are, with exception of the NRPA2 values, rather small, while in
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case of the EXX based methods larger higher order correlation contributions can
be observed. Thus the perturbation expansion of the RPA correlation energy is not
that well converged in low orders if calculated with KS orbitals.

6. Reaction energies from RPA correlation functionals

The total energies for the set of molecules shown in figure 1 were used to calculate
the reaction energies for a set of 16 chemical reactions listed in the first column in
table 3.

Table 3 shows a comparison between the NRPA3, EXX-NRPA3, EXX-RPA and
EXX-RPA[∞] methods as well as for the AC-RPA and AC-RPA(EXX) methods
for the set of chemical reactions. The last colum in table 3 contains the CCSD(T)
reference data from Ref. [53]. It can be seen that in spite of slight deviations in
the total energies between the different RPA methods, see table 2, their reaction
energies for the given chemical reactions are basically identical among the NRPA3,
EXX-NRPA3, EXX-RPA and EXX-RPA[∞] methods on the one hand and among
AC-RPA and AC-RPA(EXX) on the other hand. The root-mean squared (rms)
errors and mean-absolute (mae) errors to the CCSD(T) reaction energies all differ
by no more than 0.3 millihartree, see last two lines in table 3. Therefore one can
conclude that one can practically expect the same accuracy from the NRPA3, EXX-
NRPA3, EXX-RPA and EXX-RPA[∞] methods and correspondingly for AC-RPA
and AC-RPA(EXX) in quantum chemistry applications.

In figure 4 the rms errors (top diagram) and relative percentual deviations (bot-
tom diagram) of various Kohn-Sham orbital based RPA methods to the CCSD(T)
reference reaction energies are shown. Along with the errors for the RPA methods,
the diagrams in figure 4 also contain the corresponding error bars for Hartree-Fock,
MP2 (second-order Møller-Plesset) and CCSD for comparison. Note that the errors
for some RPA methods (EXX-NRPA1, EXX-NRPA2 and EXX-NRPA4) are not
shown due to their strong differences to the CCSD(T) values which are even worse
than Hartree-Fock errors. For the RPA methods shown in figure 4 one can ob-
serve rms errors that are consistently smaller than with MP2, but all methods have
larger average errors than CCSD. Interestingly, the PBE-dRPA, EXX-dRPA and
EXX-SOSEX methods yield, for the chemical reactions considered, about the same
accuracy as the EXX-RPA method in spite of strongly differing total energies, see
section 5: for EXX-dRPA the rms error is only about 0.2 kcal/mol larger than with
EXX-RPA and the percentual deviation, which more emphasises reactions with
small reaction energies, is even about 1% smaller compared to EXX-RPA. The SO-
SEX approach, which corrects the dRPA correlation method in second (and higher)
order, does not lead to an improvement of the dRPA values for the set of chemical
reactions.

7. Summary

Starting from a relation between the two-particle density matrix and the response
function of the many-body system, expressions for the correlation energy of elec-
tronic systems have been given in terms of the interacting and noninteracting re-
sponse functions. This relation, called fluctuation-dissipation theorem, represents
a general way to obtain correlated ground-state properties of an interacting many-
body system and solely depends on approximations of the response function. By
combining this ansatz with a coupling-constant integration along the adiabatic con-
nection the adiabatic-connection fluctuation-dissipation theorem is obtained which
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provides an exact expression for the correlation energy as defined in the Kohn-Sham
formalism of density-functional theory.

A first approximation to the interacting response function is obtained by taking
Coulomb interactions between the particles into account. This approximation is
termed as direct random-phase approximation (dRPA) and has most often been
used for the description of solid states in the past. It turns out that, at least if a
Hartree-Fock (HF) reference state is used, total dRPA correlation energies are not
very accurate due to a large self-correlation error. An advantage of RPA based on
a Kohn-Sham (KS) reference determinant is that errors may be somewhat reduced
since a KS description of the reference state can mimic the effect of missing singly
excited determinants in RPA methods.

In order to correct the self-correlation error of dRPA, exchange interactions have
to be accounted for in second and higher orders, that is, the electron interaction
operator has to be complemented by an additional exchange kernel. It has been
shown that several RPA methods can be derived that include exchange interactions.
While all of them yield, in a perturbation series expansion, the correct second-order
expression known from many-body perturbation theory, they differ in third-order of
perturbation theory. An analysis of the different RPA methods based both, on HF
and exact Kohn-Sham exchange (EXX) determinants reveals that the differences
of the correlation energies in third order lead also to strong differences in the total
correlation energies of these methods. A comparison with coupled-cluster singles
doubles with perturbative triples (CCSD(T)) energies shows, that with exception
of the (in this work termed) NRPA3 and adiabatic connection RPA method the
other RPA variants considered in this work yield large errors for the correlation
energies for a set of small molecules. It has been shown that for RPA based on the
EXX determinant, the corresponding EXX-NRPA3 and EXX-RPA (the adiabatic
connection RPA method in an EXX KS formalism) are closely related to each
other and yield similar total energies. Since the (HF based) NRPA3 and the EXX-
NRPA3 method too give similar results due to the closeness between the HF and
EXX determinants, also a relation between the HF based NRPA3 method and the
EXX based EXX-RPA method can be derived.

The accuracy of the different RPA methods considered in this work has also been
tested for the description of reaction energies for a set of 16 chemical reactions for
some small organic molecules. By comparing the results with accurate CCSD(T)
reference values, it was found that the methods that have the smallest errors for
the total energies, namely NRPA3 and EXX-RPA, also give the best agreement for
reaction energies. The, historically, older RPA methods termed as NRPA1 (identical
to the ring coupled-cluster doubles method), NRPA2 and NRPA4 here, yield large
errors also for the description of reaction energies. In contrast to this, the KS
orbital based dRPA and SOSEX approach produce reaction energies that are not
much worse than reaction energies energies from NRPA3 or EXX-RPA methods and
even slightly better than with second-order Møller-Plesset perturbation theory. This
result may be interesting from a practical point of view, since dRPA and SOSEX
methods can be implemented in a more efficient way than NRPA3 and EXX-RPA
methods.

Generally it can be concluded that the use of Kohn-Sham orbitals in RPA meth-
ods instead of Hartree-Fock orbitals offers new possibilities to make RPA methods
both, more accurate and also more efficient for the description of correlated molec-
ular ground states. The first point may be true, since the Kohn-Sham orbitals can
be expected to be closer to variationally optimised orbitals within RPA methods,
since it has been shown that, depending on the underlying exchange-correlation po-
tentials, KS orbitals are closer to Brueckner orbitals from a coupled-cluster doubles

Page 36 of 45

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

July 28, 2011 11:17 Molecular Physics rpa_review7

Molecular Physics 37

wave function than HF ones [88]. The second argument regarding the efficiency to
date holds true especially for solids for which direct RPA methods have been imple-
mented with a low computational cost [40]. In case of RPA methods for molecules
the development of efficient computer programs is a field of active research and a
number of different methods were already presented in recent years [39, 45].
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Table 1. Second- and third-order correlation energy terms. The definition Mia,jb =
Mia,jb
εia+εjb

for a matrix M

has been used. The matrix elements are defined as Cia,jb = ⟨ij|ab⟩, Jia,jb = ⟨ia|jb⟩, Kia,jb = P̂abCia,jb (the
permutation operator P̂ab exchanges indices a and b), ∆ia,jb = δab⟨i|vNL

x − vx|j⟩ − δij⟨a|vNL
x − vx|b⟩ (vNL

x :
nonlocal exchange potential, vx: local exchange potential) and εia = εa − εi. In the terms (2i)-(2l) the matrix
elements are defined according to Ecd

ab = ⟨ad|cb⟩ and Skl
ij = ⟨ij|kl⟩. The terms (1a) and (1b) correspond to the

direct and exchange part of the second-order correlation energy, terms (2a)-(2h) are particle-hole terms and terms
(2i)-(2l) are particle-particle−hole-hole terms. Note that only particle-hole terms are contained in conventional
RPA correlation methods, see table 2. The additional terms (2blx), (2dlx), (2glx) and (2hlx) originate from local
exchange and occur only in RPA methods based on EXX. Note that the terms (2d) and (2g) as well as (2e) and
(2f) are identical if real-valued orbitals are used.

term spin-orbital expression

(1a)
1

2
Tr

[
CC

]
(1b)

1

2
Tr

[
CK

]
(2a) Tr

[
CCC

]
(2b) −Tr

[
CJC

]
(2c) Tr

[
KCK

]
(2d) Tr

[
KJC

]
(2e) −Tr

[
KCC

]
(2f) −Tr

[
CCK

]
(2g) Tr

[
CJK

]
(2h) −Tr

[
KJK

]
(2blx) −Tr

[
C∆C

]
(2dlx) Tr

[
C∆K

]
(2glx) Tr

[
K∆C

]
(2hlx) −Tr

[
K∆K

]
(2i)

1

2

∑
ij,abcd

Cia,jdE
cb
adCic,jb

(2j)
1

2

∑
ijkl,ab

Cia,lbS
jk
il Cja,kb

(2k) −1

2

∑
ijkl,ab

Cia,lbS
jk
il Kja,kb

(2l) −1

2

∑
ij,abcd

Cia,jdE
cb
adKic,jb
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Table 2. Comparison of the third order expansions of various RPA correlation methods. The diagram labels
correspond to the ones given in table 1. The column values correspond to the respective prefactor for each
perturbation diagram.

diagram exact a dRPA SOSEX NRPA1 NRPA2 NRPA3 NRPA4 AC-RPA b

(1a) 1 1 1 1 1 1 1 1

(1b) 1 0 1 1 1 1 1 1

(2a) 1 1 1 1
2 1 1 1 1

(2b)c 1 0 0 1
2 1 1 1 2

3

(2c) 1 0 0 1
2 1 0 1 1

3

(2d)c 1 0 0 1
2 1 1 1 1

3

(2e) 1 0 1 1
2 1 1 1 2

3

(2f) 1 0 0 1
2 1 0 1 2

3

(2g)c 1 0 0 1
2 1 0 0 1

3

(2h)c 1 0 0 1
2 1 0 0 0

(2i) 1 0 0 0 0 0 0 0

(2j) 1 0 0 0 0 0 0 0

(2k) 1 0 0 0 0 0 0 0

(2l) 1 0 0 0 0 0 0 0

a Note that higher order RPA approaches using the wave function ansatz from Eq. (67) are exact through
third order.
b The EXX-RPA[∞] method contains the same perturbation diagrams as AC-RPA in the Hartree-Fock
basis, but differs from it due to a different separation of the response function into an uncoupled and
correlation part of the response function, see text. This leads to additional diagrams for the third-order
contributions (2b), (2d), (2g) and (2h) which are given in table 1.
c These contributions are accompanied by additional terms in case of RPA with exact local exchange, see
table 1.
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Figure 1. Energy differences to CCSD(T) reference energies for various Kohn-Sham orbital based RPA
methods.
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Figure 2. Energy differences to NRPA3 energies(Eq. (69)) for the methods EXX-NRPA3 (Eq. (107)),
EXX-RPA, EXX-RPA[∞] (Eq. (100)), AC-RPA (Eq. (76)) and AC-RPA(EXX).
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Figure 3. Correlation energies for various RPA methods of the CH4 (top diagram) and HCOOH molecule
(bottom diagram). The first and third bars show the sum of the second- and third-order energy for the
HF-based and EXX-based RPA methods and the second and fourth bars show the total correlation energies
for the HF-based and EXX-based RPA methods, respectively.
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Figure 4. Root mean squared errors (rms) and relative percentual deviations for Hartree-Fock and various
correlation methods to CCSD(T) reaction energies shown in table 3.
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