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. The TBM reduces the problem of simulating a eld in two dimensions by combining independent processes simulated on oriented bands. In the AFBF context, the simulation elds are constructed by solving an integral equation arising from the application of the TBM to non-stationary anisotropic elds. This garantees the convergence of simulations as their precision is increased. The construction is followed by a theoretical study of the convergence rate. Another key feature of this work is the simulation of band processes. Using self-similarity properties, processes are simulated exactly on bands with a circulant embedding method, so that simulation errors are exclusively due to the eld approximation. Moreover, we design a Dynamic Programming algorithm that selects band orientations achieving the optimal trade-o between computational cost and precision. Finally, we conduct a numerical study showing that the approximation error does not signicantly depend on the regularity of the elds to be simulated, nor on their degree of anisotropy. Experiments also suggest that simulations preserve eld statistical properties.

Introduction

In this paper, we address the issue of simulating realizations of a generic class of Gaussian elds, known as Anisotropic Fractional Brownian Fields (AFBF) and introduced in [START_REF] Bonami | Anisotropic analysis of some Gaussian models[END_REF]. Date: October 9, 2012.

The simulation of AFBF is an open issue whose complexity is mainly due to both the non-stationarity and the anisotropy of the elds. In [START_REF] Stein | Fast and exact simulation of fractional Brownian surfaces[END_REF], Stein described a specic method for the simulation of (isotropic) FBF. This method is based on a representation of the FBF by a locally stationary isotropic Gaussian eld, which is simulated using circulant embedding matrix techniques developped in [START_REF] Wood | Simulation of stationary Gaussian proceses on [0, 1] d[END_REF]. This simulation is exact and ecient on a regular grid. However, no locally stationary representation is available for general anisotropic elds so that Stein's method cannot be extended to this situation.

More generic methods based on covariance matrix factorizations [START_REF] Brouste | On fractional gaussian random elds simulations[END_REF][START_REF] Chan | An eective method for simulating Gaussian random elds[END_REF] can theoretically be applied to the AFBF simulation issue, but their computational cost is prohibitive and covariance functions are not known explicitely in the general case. Other methods based on the discretization of a continous spectral representation of the eld were used for the simulation of FBF in [START_REF] Saupe | The science of fractal images, chapter Algorithms for random fractals[END_REF] and AFBF in [START_REF] Ayache | Identication and series decomposition of anisotropic Gaussian elds[END_REF][START_REF] Biermé | Estimation of anisotropic gaussian elds through Radon transform[END_REF]. However, due to truncation or periodization of the spectral representation, the statistical properties of the simulated eld does not exactly match those of the theoretical eld.

In this paper, we focus on another generic simulation method, called the turning-band method (TBM) [START_REF] Journel | Geostatistics for conditional simulation of ore bodies[END_REF][START_REF] Matheron | The intrinsic random functions their application[END_REF]. The TBM essentially reduces the problem of simulating a eld in several dimensions to the problem of simulating several processes in one dimension. Indeed, consider the problem of generating a realization of a target eld X on a discrete set G of points of R 2 . Choose n lines (called turning bands) passing through a given origin and denote by θ i the angle indicating the direction of the ith band. The TBM is based on a combination of n appropriate processes (Y i ) 1≤i≤n independently simulated on each predened band:

(3)

∀ x ∈ G, X n (x) = n i=1 λ i Y i (x • u(θ i )),
where the λ i 's are positive weights and u(θ) = (cos(θ), sin(θ)) is the unit vector with direction θ. There are two major issues raised by the TBM. The rst one consists of determining appropriate weights λ i and band processes Y i which ensure the convergence of the turning-band eld X n to the target eld X as n tends to innity. The second one concerns the simulation of the processes Y i on the non-equispaced points {x•u(θ i ), x ∈ G}.

The convergence issue has been extensively studied in the case when the target eld is stationary [START_REF] Brooker | Two-dimensional simulation by turning bands[END_REF][START_REF] Christakos | Stochastic simulation of spatially correlated geo-processes[END_REF][START_REF] Dietrich | A simple and ecient space domain implementation of the turning bands method[END_REF][START_REF] Gneiting | Comment on "a simple and ecient space domain implementation of the turning bands method" by C. Dietrich[END_REF][START_REF] Gneiting | Closed form solutions of the two-dimensional turning bands equation[END_REF][START_REF] Mantoglou | Digital simulation of multivariate two-and three-dimensional stochastic processes with a spectral turning bands method[END_REF][START_REF] Matheron | The intrinsic random functions their application[END_REF]. In this case, the convergence can be obtained using stationary band processes. Let Cθ be the covariance of a band process in the direction θ. Take orientations (θ i ) 1≤i≤n uniformly distributed over (-π/2, π/2), and set λ i = π n . Then, the covariance of X n at point x is C n (x) = π n n i=1 Cθ i (x • u(θ i )) and, as a Riemann sum, it converges to T ( C)(x) = π 2 -π 2 Cθ (x • u(θ))dθ as n tends to innity. Hence, for the turning-band eld X n to converge to a target eld X of covariance C X , it suces that C satises the condition T ( C) ≡ C X . In the special case when the target eld is isotropic, Cθ ≡ C0 does not depend on θ, and the previous condition reduces to T (C 0 ) ≡ C X . This integral equation was solved explicitely for many dierent types of covariance C X (Gaussian, Whittle-Matérn, Cauchy, etc.), making possible to apply the TBM to a wide range of stationary isotropic elds [START_REF] Brooker | Two-dimensional simulation by turning bands[END_REF][START_REF] Christakos | Stochastic simulation of spatially correlated geo-processes[END_REF][START_REF] Dietrich | A simple and ecient space domain implementation of the turning bands method[END_REF][START_REF] Gneiting | Comment on "a simple and ecient space domain implementation of the turning bands method" by C. Dietrich[END_REF][START_REF] Gneiting | Closed form solutions of the two-dimensional turning bands equation[END_REF][START_REF] Lantuéjoul | Geostatistical Simulation: Models and Algorithms[END_REF]. In the anisotropic case, the HERMINE BIERMÉ 1,2 , LIONEL MOISAN 1 , AND FRÉDÉRIC RICHARD 3 equation was solved from spectral representations of covariances by expressing spectral densities of processes as a function of the one of the target eld [START_REF] Mantoglou | Digital simulation of multivariate two-and three-dimensional stochastic processes with a spectral turning bands method[END_REF].

The TBM can also be adapted to the simulation of non-stationnary elds with stationary increments. In such a situation, the convergence of the turning-band eld to the target one is rather expressed in terms of variograms. It can be obtained by taking band processes with stationary increments and variograms ṽθ (in the direction θ) which satisfy the condition (4)

v X (x) = π 2 -π 2 ṽθ (y • u(θ))dθ,
where v X is the variogram of the target eld (see Equation ( 6) later). In [START_REF] Yin | New methods for simulation of fractional Brownian motion[END_REF], the previous integral equation was solved in the particular case when v X is the variogram of an (isotropic) FBF of order H. It was shown that variograms v θ do not depend on θ and are proportional to the variogram of a one-dimensional FBM of the same order H. In [START_REF] Emery | A turning bands program for conditional co-simulation of cross-correlated Gaussian random elds[END_REF], this result was extended to other non-stationary isotropic Gaussian elds with spline generalized covariance. Similar ideas can be found in [START_REF] Dimitrakopoulos | Conditional simulation of intrinsic random functions of order k[END_REF][START_REF] Mantoglou | The turning bands method for simulation of random elds using line generation by a spectral method[END_REF][START_REF] Pardo-Igúzquiza | IRFK2D: a computer program for simulating intrinsic random functions of order k[END_REF] about the simulation of the so-called intrinsic random elds of order k generalizing elds with stationary increments [START_REF] Chilès | Geostatistics: modeling spatial uncertainty[END_REF][START_REF] Matheron | The intrinsic random functions their application[END_REF]. However, none of these works directly addressed the issue of simulating non-stationary anisotropic elds. In [START_REF] Setas | Modeling anisotropic and fractal two-dimensional elds: a tool for image simulation[END_REF][START_REF] Wu | Analyses and simulation of anisotropic fractal surfaces[END_REF], some attempts were made for the simulation of such elds with a TBM, but they only cover a few special cases. Let us also emphasize that the simulated elds are not Gaussian, so that Gaussian realizations may only be approximated by averaging several independent realizations and applying a Central Limit Theorem.

One of the main originalities of this paper is the construction of appropriate turningband elds for the simulation of AFBF, which are themselves centered Gaussian random elds with stationary increments. This is done by solving Equation (4) when v X is dened by Equations ( 1) and ( 2). This construction is completed by an analysis of the simulation error from both theoretical and numerical viewpoints. This study brings new insights into the TBM simulation error, which had been mainly investigated in the stationary isotropic case [START_REF] Chilès | Géostatique des phénomènes non stationnaires[END_REF][START_REF] Gneiting | Closed form solutions of the two-dimensional turning bands equation[END_REF][START_REF] Mantoglou | The turning bands method for simulation of random elds using line generation by a spectral method[END_REF].

In the construction of turning-band elds for AFBF, we show that band processes are one dimensional FBMs with varying Hurst indices. Hence, the application of the TBM to AFBF directly leads to the issue of simulating these processes on non-uniformly spaced points. In the context of TBM application, Yin [START_REF] Yin | New methods for simulation of fractional Brownian motion[END_REF] simulated FBMs using an adaptation of the spectral method [START_REF] Mantoglou | The turning bands method for simulation of random elds using line generation by a spectral method[END_REF][START_REF] Pardo-Igúzquiza | The Fourier integral method: an ecient spectral method for simulation of random elds[END_REF][START_REF] Shinozuka | Digital simulation of random processes and its applications[END_REF]. Based on a discretization of the spectral density of the process covariance, this method induces periodization eects and is inaccurate for mainly two reasons: the simulated process is not Gaussian and its covariance function only approximates the target one. In [START_REF] Emery | A turning bands program for conditional co-simulation of cross-correlated Gaussian random elds[END_REF][START_REF] Emery | TBSIM: A computer program for conditional simulation of threedimensional Gaussian random elds via the turning bands method[END_REF], periodization eects induced by Fourier methods was overcome using a continous spectral method. This method is fast and can be applied with arbitrary simulation points. However, it does not produce Gaussian realizations neither. In another context, Perrin et al. [START_REF] Perrin | Fast and exact synthesis for 1-D fractional Brownian motion a nd fractional gaussian noises[END_REF] developed a circulant embedding method (see [START_REF] Dietrich | Fast and exact simulation of stationary gaussian processes through circulant embedding of the covariance matrix[END_REF][START_REF] Wood | Simulation of stationary Gaussian proceses on [0, 1] d[END_REF] and Section 3.1) for the simulation of FBF. This method is fast and exact but requires equispaced simulation points. However, as shown in this paper, the issue of simulating FBM on band points can be reexpressed on equispaced points using self-similarity properties of FBM, as soon as bands orientations are conveniently chosen.

Hence, we can apply the circulant embedding method to obtain exact simulations of FBM on band points but the cost of these simulations depends on band orientations, and is higher than the one of the continuous spectral method in [START_REF] Emery | A turning bands program for conditional co-simulation of cross-correlated Gaussian random elds[END_REF][START_REF] Emery | TBSIM: A computer program for conditional simulation of threedimensional Gaussian random elds via the turning bands method[END_REF]. To reduce the global computational cost, we thus propose a Dynamic Programming [START_REF] Bellman | The theory of dynamic programming[END_REF] algorithm that selects band orientations in an optimal way. Gaussian eld X is characterized by its covariance function: (y, z) → Cov(X(y), X(z)).

A eld X has stationary increments if the law governing the eld

X(• + z) -X(z) is the same as X(•) -X(0) for all z ∈ R d .
When the eld X is centered and with stationary increments, we have ( 5)

∀y, z ∈ R 2 , Cov(X(y), X(z)) = v X (y) + v X (z) -v X (y -z),
where v X is the so-called variogram of X dened as ( 6)

∀y ∈ R 2 , v X (y) = 1 2 E((X(y) -X(0)) 2 ).
Hence, if the eld X is also Gaussian, its law is characterized by its variogram [START_REF] Biermé | Central limit theorems and quadratic variations in terms of spectral density[END_REF].

In this work, we deal with anisotropic fractional Brownian elds, which are centered Gaussian elds with stationary increments, characterized by a variogram of the form [START_REF] Averbuch | A framework for discrete integral transformations I -the pseudo-polar Fourier transform[END_REF] with a spectral density dened as in Equation [START_REF] Averbuch | A framework for discrete integral transformations II -the 2D discrete Radon transform[END_REF]. When c ≡ C > 0 and h ≡ H ∈ (0, 1)

are both constant, the variogram satises (see Remark 1.1.13 of [START_REF] Lacaux | Real Harmonizable multifractional Levy eld[END_REF] for instance)

(7) v(x) = 1 2 R 2 e ix•ζ -1 2 C ζ -2H-d dξ = C π 1 2 Γ(H + 1/2)γ(H) 2Γ(H + 1) x 2H ,
where for all H ∈ (0, 1),

γ(H) = π HΓ(2H) sin(Hπ) .

It follows that such elds are isotropic, which means that their law is invariant under rotation. They are also H-self-similar. When the function c is not constant but h ≡ H remains constant, the eld remains self-similar of order H but becomes anisotropic. When h is also allowed to vary, the eld is not self-similar anymore but, setting

H = essinf θ∈S d-1 ;c(θ)>0
h(θ), one can still nd a continuous modication of X with H as critical Hölder exponent [START_REF] Bonami | Anisotropic analysis of some Gaussian models[END_REF]. The fractal dimension of its graph is still linked with H by the relation D = 2 -H a.s. (see [START_REF] Xiao | Sample path properties of anisotropic Gaussian random elds[END_REF] for instance).

In general, it is dicult to get an explicit form of the AFBF variogram similar to the one expressed for the FBF in Equation [START_REF] Biermé | Estimation of anisotropic gaussian elds through Radon transform[END_REF]. However, we have computed explicitely the variogram of a particular class of AFBF which is slightly more general than the FBF. This eld, that we call elementary eld, is dened by a spectral density of the form [START_REF] Averbuch | A framework for discrete integral transformations II -the 2D discrete Radon transform[END_REF] 

with c = 1 [α 1 ,α 2 ] for -π/2 ≤ α 1 < α 2 ≤ π/2,
and h ≡ H for H ∈ (0, 1). When α 2 = -α 1 = π/2, an elementary eld corresponds to a FBF of order H. As explained in Section 4, elementary elds will be of particular interest for the numerical evaluation of simulations.

Proposition 2.1. Let H ∈ (0, 1) and

-π/2 ≤ α 1 < α 2 ≤ π/2. Let denote v H,α 1 ,α 2 the variogram of an AFBF with h = H and c = 1 [α 1 ,α 2 ] . Then, ( 9 
) ∀x ∈ R 2 , v H,α 1 ,α 2 (x) = 2 2H-1 γ(H)C H,α 1 ,α 2 (arg(x)) x 2H ,
where x is the Euclidean norm of x and C H,α 1 ,α 2 is a π-periodic function dened on

(-π/2, π/2] by C H,α 1 ,α 2 (θ) =            β H 1-sin(α 2 -θ) 2 + β H 1-sin(α 1 -θ) 2 if α 1 ≤ θ + π/2 ≤ α 2 β H 1+sin(α 2 -θ) 2 + β H 1+sin(α 1 -θ) 2 if α 1 ≤ θ -π/2 ≤ α 2 β H 1-sin(α 2 -θ) 2 -β H 1-sin(α 1 -θ) 2
otherwise with β H the Beta incomplete function given by

∀t ∈ [0, 1], β H (t) = t 0 u H-1/2 (1 -u) H-1/2 du,
and γ(H) is dened in Equation [START_REF] Biermé | ESAIM Proceedings: Mathematical Methods for Imaging and Inverse Problems, volume 26, chapter Anisotropic texture modeling and applications to medical image analysis[END_REF].

The proof of this proposition is given in appendix A. Now, let us consider the general case from which the TBM will follow. 

v X (x) = 1 2 π/2 -π/2 γ(h(θ))c(θ)|x • u(θ)| 2h(θ) dθ,
where u(θ) = (cos(θ), sin(θ)) and γ(H) is dened in Equation [START_REF] Biermé | ESAIM Proceedings: Mathematical Methods for Imaging and Inverse Problems, volume 26, chapter Anisotropic texture modeling and applications to medical image analysis[END_REF].

Proof. Let x ∈ R 2 . Then acording to (1) and ( 2),

2v X (x) = R 2 e ix•ζ -1 2 c(arg(ζ))|ζ| -2h(arg(ζ))-2 dζ = 2π 0 +∞ 0 e ir(x•u(θ)) -1 2 c(θ)r -2h(θ)-1 drdθ,
by a change of variables in polar coordinates. But, for H ∈ (0, 1) and t ∈ R,

+∞ 0 e irt -1 2 r -2H-1 dr = 1 2 R e ist -1 2 |s| -2H-1 ds = 1 2 γ(H)|t| 2H ,
according to (7.2.13) of [START_REF] Samorodnitsky | Stable non-Gaussian random processes[END_REF]. Then the result follows by π-periodicity of h and c.

The integral equation ( 10) is of the form (4) with ṽθ ( θ) . This means that ṽθ is a solution of the integral equation (4) when v X is the variogram of an AFBF. Now recall that a FBM of order H is a centered Gaussian process with stationary increments and variogram w H (t) = 1 2 |t| 2H for all t ∈ R. Hence, ignoring the factor γ(h(θ))c(θ) depending on the orientation θ, the variogram ṽθ is equal to the one of a FBM of order h(θ), also varying with θ.

•) = γ(h(θ))c(θ) 1 2 | • | 2h(
According to previous remarks, we now specify turning-band elds for AFBF simulations. Given an ordered set Θ = (θ i ) 1≤i≤n of band orientations -π/2 ≤ θ 1 < . . . < θ n ≤ π/2, and a set Λ = (λ i ) 1≤i≤n ∈ [0, +∞) n of appropriate band weights, turning-band elds have the form [START_REF] Brouste | On fractional gaussian random elds simulations[END_REF] 

X Θ,Λ (x) = n i=1 λ i γ(h(θ i ))c(θ i )Y i (x • u(θ i )), ∀x ∈ R 2 ,
where the Y i 's are n independent FBM of order h(θ i ). In the remaining of the text, turning-band elds X Θ,Λ will be called the simulation elds and processes Y i will always be FBF of order h(θ i ). We will also describe the precision of simulation elds X Θ,Λ using the variable ( 12)

ε Θ = max i=1,••• ,n+1 (θ i -θ i-1 ) , with n = |Θ|,
and θ 0 ∈ [-π/2, θ 1 ] and θ n+1 ∈ [θ n , π/2] are xed directions chosen according to the AFBF function c. Remark that a uniform choice for the orientations consists in choosing

θ n = θ n+1 = π/2 and θ i = -π/2 + iπ/n for 0 ≤ i ≤ n. This choice leads to ε Θ = π n while, for general orientations, we always have ε Θ ≥ θn-θ 0 n ≥ θn-θ 1 n .
The error of simulating X by X Θ,Λ may be expressed, at point x ∈ R 2 , as the Kolmogorov distance between the random variables X Θ,Λ (x) and X(x), that is, [START_REF] Chilès | Geostatistics: modeling spatial uncertainty[END_REF] 

d Kol (X Θ,Λ (x), X(x)) = sup t∈R |P(X Θ,Λ (x) ≤ t) -P(X(x) ≤ t)| .
When this distance tends to 0, it implies that the random variable X Θ,Λ (x) tends to X(x) in distribution. As stated next, due to our Gaussian framework, this distance can be further bounded by a distance between variograms of simulation and target elds at x. Theorem 2.3. Let X Θ,Λ be a simulation eld dened as in Equation [START_REF] Brouste | On fractional gaussian random elds simulations[END_REF]. Then, X Θ,Λ is a centered Gaussian random eld on R 2 with stationary increments and variogram [START_REF] Chilès | Géostatique des phénomènes non stationnaires[END_REF] 

v Θ,Λ (x) := n i=1 λ i γ(h(θ i ))c(θ i )w h(θ i ) (x • u(θ i )).
Moreover, X Θ,Λ (0) = X(0) = 0 a.s. and, for all x = 0, [START_REF] Christakos | Stochastic simulation of spatially correlated geo-processes[END_REF] 

d Kol (X Θ,Λ (x), X(x)) ≤ 2 |v X (x) -v Θ,Λ (x)| v X (x) . Choosing (Θ n , Λ n ) n in such a way that v Θn,Λn (x) -→ n→+∞ v X (x) for all x ∈ R 2 , (X Θn,Λn (x)) x∈R 2 f dd -→ n→+∞ (X(x)) x∈R 2 ,
where f dd -→ stands for convergence of nite dimensional distributions.

Proof. Let us write

X θ i (x) := Y i (x•u(θ i )), for x ∈ R 2 , with Y i a FBM of order h(θ i ). First, remark that X θ i (0) = Y i (0) = 0 a.s. Moreover, since Y i is a centered Gaussian random HERMINE BIERMÉ 1,2 , LIONEL MOISAN 1 , AND FRÉDÉRIC RICHARD 3 process it is clear that X θ i is a centered Gaussian random eld on R 2 . Finally, since Y i has stationary increments, for any x 0 ∈ R 2 , writing t 0,i = x 0 • u(θ i ) ∈ R, {X θ i (x + x 0 ) -X θ i (x 0 ); x ∈ R 2 } = {Y i (x • u(θ i ) + t 0,i ) -Y i (t 0,i ); x ∈ R 2 } f dd = {Y i (x • u(θ i )) -Y i (0); x ∈ R 2 }, = {X θ i (x) -X θ i (0); x ∈ R 2 }.
It follows that X Θ,Λ is a centered Gaussian random eld on R 2 with stationary increments as a sum of independent centered Gaussian random elds on R 2 with stationary increments elds. Since X Θ,Λ (0) = 0 a.s.,

v X Θ,Λ (x) = 1 2 E X Θ,Λ (x) 2 = 1 2 Var(X Θ,Λ (x)), since X Θ,Λ is centered, = 1 2 n i=1 λ i γ(h(θ i ))c(θ i )Var(Y i (x • u(θ i ))), by independence, = 1 2 n i=1 λ i γ(h(θ i ))c(θ i )|x • u(θ i )| 2h(θ i ) = v Θ,Λ (x).
Let N ∼ N (0, 1), then for x = 0,

d Kol (X Θ,Λ (x), X(x)) = d Kol ( v Θ,Λ (x)N, v X (x)N ).
Then [START_REF] Christakos | Stochastic simulation of spatially correlated geo-processes[END_REF] follows from the fact that d Kol (σ N, σN ) ≤ 2 |σ-σ | σ , already remarked in [START_REF] Biermé | Central limit theorems and quadratic variations in terms of spectral density[END_REF]. Actually, there is nothing to prove when |σ-σ | σ > 1 2 . Otherwise we use the fact that for σ > 1 and z > 0 one has

P(z < N ≤ σz) ≤ (σ -1)ze -z 2 /2 ≤ σ 2 -1. Now, let assume that (Θ n , Λ n ) is such that v Θn,Λn (x) -→ n→+∞ v X (x) for all x ∈ R 2 .

By stationarity of the increments, for all

n ≥ 1, for all x, y ∈ R 2 , Cov(X Θn,Λn (x), X Θn,Λn (y)) = v Θn,Λn (x) + v Θn,Λn (y) -v Θn,Λn (x -y),
and similarly for Cov(X(x), X(y)) and v X . It follows that Cov(X Θn,Λn (x), X Θn,Λn (y)) tends to Cov(X(x), X(y)) for all x, y ∈ R 2 . Using a Cramér-Wold device, this implies that the eld (X Θn,Λn (x)) x∈R 2 converges to (X(x)) x∈R 2 , for nite dimensional distributions.

Let us quote that, since v Θ,Λ appears as a numerical approximation of the integral giving v X , one can choose (Θ n , Λ n ) n in such a way that v Θn,Λn (x) tends to v(x) for x ∈ R 2 . This implies that d Kol (X Θn,Λn (x), X(x)) → 0 so that X Θn,Λn (x) tends to X(x) in distribution.

Note that conversely, since X Θn,Λn (x) and X(x) are centered Gaussian variables, v Θn,Λn (x) tends to v(x) as soon as X Θn,Λn (x) tends to X(x) in distribution. The next section is devoted to the rate of convergence. 2.3. Approximation error. We can choose Θ, Λ such that the following uniform bounds hold for approximation of elementary elds. Proposition 2.4. Let c and h be two π-periodic mesurable functions dened on

(-π/2, π/2] by h = H for some H ∈ (0, 1) and c = 1 [α 1 ,α 2 ] for -π/2 ≤ α 1 < α 2 ≤ π/2. Let Θ = (θ i ) 1≤i≤n with α 1 ≤ θ 1 < . . . < θ n ≤ α 2 and θ 0 = α 1 , θ n+1 = α 2 . Choose Λ as (16) λ 1 = θ 2 -θ 0 and λ i = θ i+1 -θ i for 2 ≤ i ≤ n.
Then, one can nd a positive constant C > 0, independent of Θ, Λ, such that for all

x ∈ R d , (17) 
d Kol (X Θ,Λ (x), X H,α 1 ,α 2 (x)) ≤ Cε min(2H,1) Θ ,
where the precision parameter ε Θ is dened in Equation [START_REF] Chan | An eective method for simulating Gaussian random elds[END_REF].

Moreover, when choosing ( 18)

λ 1 = (θ 1 -θ 0 )+ θ 2 -θ 1 2 , λ n = (θ n+1 -θ n )+ θ n -θ n-1 2 
and λ i = θ i+1 -θ i-1 2 for 2 ≤ i ≤ n-1, one can nd a positive constant C > 0, independent of Θ, Λ, such that for all x ∈ R d , ( 19 
) d Kol (X Θ,Λ (x), X H,α 1 ,α 2 (x)) ≤ C    ε 3 Θ δ -2+min(2H,1) Θ + ε 1+min(2H,1) Θ if H = 1/2, ε 3 Θ δ -1 Θ | log(δ Θ )| + ε 2 Θ if H = 1/2 with δ Θ = min 1≤i≤n-1 (θ i+1 -θ i ).
The proof of Proposition 2.4 is postponed to Appendix B. In [START_REF] Emery | A spectral approach to simulating intrinsic random elds with power and spline generalized covariances[END_REF], the authors also propose a TBM to synthesize isotropic FBF (case

α 1 = -π/2 and α 2 = π/2) in general dimension d ≥ 2.
However, the processes simulated on the bands are not Gaussian so that the Kolmogorov distance between the simulated random variable and

X H,-π/2,π/2 (x)
is bounded by the Berry Esseen bound given by n -1/2 , with n the number of bands, (see Equation ( 27) in [START_REF] Emery | A spectral approach to simulating intrinsic random elds with power and spline generalized covariances[END_REF]). Moreover, in their case this distance also depends on the

point x ∈ R 2 .
Let us compare with our results. Note that when orientations are chosen

uniformly one has ε Θ = δ Θ = α 2 -α 1 n
so that, choosing a rectangular rule, we obtain in [START_REF] Dietrich | A simple and ecient space domain implementation of the turning bands method[END_REF] a bound given by n -min(2H,1) , while for a trapezoidal rule, we obtain in [START_REF] Dimitrakopoulos | Conditional simulation of intrinsic random functions of order k[END_REF] a bound given by n -1-min(2H,1) when H = 1/2 and n -2 log(n) when H = 1/2. Moreover let us emphasize that our bounds do not depend on x ∈ R 2 . This could be generalized to other self-similar AFBF (h ≡ H) under regularity assumptions on c. In the general case, our bounds depend on x through the term 1/v X (x). However, we obtain uniform bounds for the dierence |v X (x) -v Θ,Λ (x)| when x is in a compact set, as stated in the next proposition.

Proposition 2.5. Let assume that h and c are piecewise

C 1 on (-π/2, π/2]. Let Θ = (θ i ) 1≤i≤n with -π/2 ≤ θ 1 < . . . < θ n ≤ π/2
containing the singular points of h and c and θ 0 = -π/2, θ n+1 = π/2. Let T be a compact set of R d . Then, one can nd

Λ = (λ i ) 1≤i≤n ∈ [0, +∞) n and a positive constant C T > 0, independent of Θ, Λ, such that for all x ∈ T , ( 20 
)
|v X (x) -v Θ,Λ (x)| ≤ C T ε min(2H,1) Θ , where H = min θ∈[-π/2,π/2]
h(θ) > 0 and ε Θ is dened in Equation [START_REF] Chan | An eective method for simulating Gaussian random elds[END_REF]. If moreover, h and

c are piecewise C 2 on (-π/2, π/2], one can nd Λ = (λ i ) 1≤i≤n ∈ [0, +∞) n and a positive constant C T > 0, independent of Θ, Λ, such that for all x ∈ T , ( 21 
)
|v X (x) -v Θ,Λ (x)| ≤ C T    ε 3 Θ δ -2+min(2H,1) Θ + ε 1+min(2H,1) Θ if H = 1/2, ε 3 Θ δ -1 Θ | log(δ Θ )| + ε 2 Θ if H = 1/2 with δ Θ = min 1≤i≤n-1 (θ i+1 -θ i ).
The proof of Proposition 2.5 is postponed to Appendix B. A bound for the Kolmogorov distance is then obtained using the fact that

d Kol (X Θ,Λ (x), X(x)) ≤ 2 |v X (x)-v Θ,Λ (x)| v X (x)
. Then we may choose an increasing sequence of (Θ n ) n and choose (Λ n ) n as given in Proposition 2.5. Therefore, if ε Θn → 0, the sequence of random elds (X Θn,Λn (x)) x∈R 2 converges to

(X(x)) x∈R 2 ,
for nite dimensional distributions in view of Theorem 2.3. The next section is devoted to the simulation of the band processes.

3. Fast and exact simulation on bands 3.1. Simulation of 1D fractional Brownian motions. Several methods for the synthesis of 1D fractional Brownian motions have been proposed in the literature. Most of them are approximate procedures. However, considering equispaced points on the band one can get exact simulations using the circulant embedding method [START_REF] Dietrich | Fast and exact simulation of stationary gaussian processes through circulant embedding of the covariance matrix[END_REF]. Let us briey recall this procedure. Let H ∈ (0, 1) and B H a fractional Brownian motion. We consider

Z H = (B H (t + 1) -B H (t)
) t∈R , the fractional Gaussian noise that is a stationary process with covariance function given by

Cov(Z H (t), Z H (s)) = r H (|t -s|) with r H (t) = 1 2 (|t + 1| 2H -2|t| 2H + |t -1| 2H ).
Let l ≥ 1, then the vector (Z H (0), . . . , Z H (l -1)) is a centered Gaussian vector of size l with Toeplitz covariance matrix R H (l) = (r H (|i -j|)) 0≤i,j≤l-1 . One can embed R H (l) in a circulant matrix of size 2l given by S H (l) = circ(s H (l)) with s H (l) = (r H (0), . . . r H (l -

1) r H (l -2), . . . r H (1)).
The main interesting property of circulant matrices is that they are diagonalized in the discrete Fourier basis, with their eigenvalues given by the Discrete Fourier Transform of their rst row. In particular one has

S H (l) = 1 2l F * 2l diag(F 2l s H (l))F 2l , where F 2l = (e iπjk l ) 0≤i,j≤2l-1 .
The main results of [START_REF] Perrin | Fast and exact synthesis for 1-D fractional Brownian motion a nd fractional gaussian noises[END_REF] is that for all H ∈ (0, 1) and l ≥ 1, F 2l s H (l) always has positive entries, so that S H (l) is a covariance matrix. Moreover, if ε (1) 2l and ε (2) 2l are independent vectors of law N (0, I 2p ) the vectors

Z (1) = 1 √ 2l F * 2l diag(F 2l s H (l)) 1/2 (ε (1) 2l + iε (1) 2l
and

Z (2) = 1 √ 2l F * 2l diag(F 2l s H (l)) 1/2 (ε (1) 2l + iε (2) 2l
are independent with common law N (0, S H (l)). In particular, one has

(Z H (0), . . . , Z H (l -1)) d = (Z (i) 0 , . . . , Z (i) 
l-1 ) for i = 1, 2 and using stationarity of the increments of B H and the fact that B H (0) = 0 a.s., one has, for all m ≤ l,

(B H (k)) -m≤k≤l-m = j<k+m Z H (j) - j<m Z H (j) -m≤k≤l-m
, with the convention that j<0 = 0. Let us emphasize that this procedure is very fast since, choosing l as a power of 2, the cost is reduced to O(l log(l)) using the Fast Fourier Transform algorithm.

3.2. Choice of bands. We consider the exact simulation of X Θ,Λ on the discrete grid r -1 Z 2 ∩ [0, 1] 2 for some r ≥ 1. Then for any i with 1 ≤ i ≤ n we have to simulate on each band of direction u(θ i )

Y i (x • u(θ i )); x ∈ r -1 Z 2 ∩ [0, 1] 2 = Y i k 1 r cos(θ i ) + k 2 r sin(θ i ) ; 0 ≤ k 1 , k 2 ≤ r .
Note that when θ i = π/2 we can simply use the fact that

Y i k 2 r ; 0 ≤ k 2 ≤ r d = r -h(θ i ) {Y i (k 2 ) ; 0 ≤ k 2 ≤
r}, by self-similarity. When cos(θ i ) = 0 we may choose θ i such that tan θ i = p i q i , with p i ∈ Z and q i ∈ N and use that fact that

Y i k 1 r cos(θ i ) + k 2 r sin(θ i ) ; 0 ≤ k 1 , k 2 ≤ r d = cos(θ i ) rq i h(θ i ) {Y i (k 1 q i + k 2 p i ) ; 0 ≤ k 1 , k 2 ≤ r} .
Thus, the band with direction u(θ i ) involves the simulation of a 1D fractionnal Brownian motion on a discrete interval of length r(|p i | + q i ). The computational cost of this simula-

tion is O(C(|p i | + q i ))
, where O(C(l)) is the computational cost of the Fourier Transform used in the procedure described in Section 3.1 to simulate a 1D fractional Brownian motion on the discrete interval {0, . . . , rl}. If the Fast Fourier Transform with powers of two is used, then one has C(l) = 2 log 2 (rl) log 2 (rl) , where x denotes the upper integer part of x. Finally, the overall simulation process has to nd a trade-o between the computational cost

C(Θ) = i C(|p i | + q i )
and the precision of the simulation, which is controlled by

E(Θ) = ε min(2H,1)
Θ . The optimal choice of Θ is discussed in the following section.

3.3. Band selection by Dynamic Programming. As we just saw in the previous section, we need to restrain our choice of band orientations to angles θ that correspond to vectors (q, p) with integer coordinates, that is, such that tan θ = p q . Moreover, in order to control the total computational cost, we would like to favor small factors (small values of |p| + q) while controlling the repartition of bands in order to keep ε Θ small. A simple (but non-optimal) solution to select the set of angles Θ = (θ i ) i consists in using a uniform discretization θi = α 1 + i n (α 2 -α 1 ), then choosing for each i a rational approximation p i q i of tan θi (this can be done very eciently using the appropriate convergent of the continued fraction associated to tan θi ). However, as we shall see now, one can nd a simple algorithm, based on Dynamic Programming [START_REF] Bellman | The theory of dynamic programming[END_REF], that is able to select a set of angles Θ that minimizes the computational cost C(Θ) under the error control constraint

ε Θ ≤ ε.
In practice, we restrain our choice to angles that can be written under the form θ = ∠(q, p), where (p, q) belongs to

V N = {(p, q); -N ≤ p ≤ N, 1 ≤ q ≤ N, gcd(p, q) = 1, α 1 < ∠(q, p) < α 2 } and ∠(q, p) is the measure in [-π 2 , π 2 ]
of the angle of the vector (q, p), obtained by ∠(q, p) = arctan p q . The integer N should be chosen large enough to ensure that the optimal solution only involves vectors from V N . It seems that choosing N = 1 + 1 tan ε (so that ∠(N, 1) < ε) is enough, though we do not have a proof of this (even if this were not true, the algorithm we present here would yield slightly sub-optimal sets of bands, with little practical consequences). Now assume that the set V N has been sorted into a sequence (p k , q k ) 1≤k≤n such that the associated angular sequence

θ k = ∠(q k , p k ) is increasing. Writing e k = C(r(|p k | + q k ))
the elementary cost associated to a band with orientation θ k , we can rewrite the total computational cost of a set of angles Θ = (θ i k ) 1≤k≤s as

C(Θ) = s k=1 e i k .
We add the convention that θ n+1 = α 2 and θ 0 = α 1 (with the associated elementary cost e 0 = 0). Now, for 0 ≤ i ≤ n + 1, let us call c i the minimal cost that can be realized with a sequence i 1 = i, i 2 , . . . i s = n + 1 for some integer s. Then, c 0 is the optimal cost we look for, and for all 0 ≤ i ≤ n we have [START_REF] Emery | A spectral approach to simulating intrinsic random elds with power and spline generalized covariances[END_REF] c i = e i + min j; j>i, θ j ≤θ i +ε c j .

This induction formula (called Bellman Equation in the framework of Dynamic Programming) permits us to compute the optimal costs c n , c n-1 , . . . c 0 recursively (the initialization being made with c n+1 = 0). Moreover, each time the minimum in ( 22) is computed, we consider one optimal index

k i ∈ arg min j; j>i, θ j ≤θ i +ε c j ,
then an optimal sequence i 1 , i 2 , . . . i s can be computed by tracking back indexes that achieve the optimal cost c 0 . This sequence is given by

i 1 = k 0 , i 2 = k i 1 , . . . i s = k i s-1 ,
where the value of s is obtained using the fact that i s+1 = n + 1. In the end, the desired sequence of integer vectors is simply (p k , qk ) 1≤k≤s , where (p k , qk ) = (p i k , q i k ) for all

1 ≤ k ≤ s.
The whole procedure we just described is given in pseudo-code in Algorithm 1 of Appendix C. 

Numerical Study

This section is devoted to the numerical evaluation of anisotropic fractional Brownian eld (AFBF) simulations obtained by turning bands.

Let us recall some notations. The eld X is the theoretical eld to be simulated (AFBF). Its variogram v X is of the form (1) with a spectral density dened by [START_REF] Averbuch | A framework for discrete integral transformations II -the 2D discrete Radon transform[END_REF]. The eld X Θ,Λ is the turning-band simulation eld dened by Equation ( 11) for some sets Θ and Λ giving band orientations and weights, respectively. The variogram v Θ,Λ of X Θ,Λ is dened by Equation ( 14).

In all experiments, the set Θ of band orientations was computed automatically using the Dynamic Programming algorithm described in Section C with a constraint on eld precision. The precision parameter ε Θ associated to the set Θ is dened as in Equation [START_REF] Chan | An eective method for simulating Gaussian random elds[END_REF]. Weights λ i of Λ are dened to fulll the condition (16) of Proposition 2.4. 4.1. The use of elementary elds. Our evaluation was focused on elementary elds whose spectral density is given by Equation (2) taking h ≡ H for some H ∈ (0, 1) and

c = 1 [-α,α] for some 0 < α ≤ π/2.
Elementary elds are specied by only two parameters, H and α, which can be interpreted as regularity and anisotropy parameters, respectively. The Hölder regularity of these elds being equal to H (see [START_REF] Bonami | Anisotropic analysis of some Gaussian models[END_REF] for instance), it increases as H tends to 1. When α = π/2, elementary elds correspond to usual isotropic fractional Brownian elds of Hurst index H. When 0 < α < π/2, these elds are no longer isotropic. In this case, they are some kind of fractional Brownian elds whose non-null frequency components are restricted between frequency directions -α and α. As α decreases to 0, non-null eld frequency components become more and more focused around the horizontal direction.

On Figure 2, some elementary eld realizations are shown for illustrating both the eect of increasing H on the eld regularity and the eect of decreasing α on its anisotropy. For the evaluation, we considered elementary elds of varying degrees of regularity and anisotropy, taking all parameter pairs (H, α) for H in {0.2, 0.5, 0.8} and α in {π/6, π/3, π/2}.

Let us further mention that variograms of elementary elds can be computed using the closed form given in Equation ( 9). As it will appear next, this is of particular interest for the computation of evaluation criteria. On Figure 3, some of these variograms are presented for dierent degrees of regularity and anisotropy. Finally, let us notice that any anisotropic fractional Brownian eld whose spectral density is dened with piecewise constant functions h and c can be decomposed as a sum of independent elementary elds. Hence, although achieved on elementary elds, our evaluation accounts for more general anisotropic fractional Brownian elds.

4.2. Approximation error. As mentionned in Section 2.3, simulation errors result from the distance separating simulation and theoretical elds. This distance can be dened as the Kolmogorov distance between distributions of theoretical and simulation elds at each position x. As stated in Theorem 2.3 (Equation ( 15)), the Kolmogorov distance

is further bounded by d Θ,Λ (x) = |v X (x)-v Θ,Λ (x)| v X (x)
, which is proportional to the error made when approximating the variogram of X by the one of X Θ,Λ . Moreover, when X is an elementary eld, it is possible to compute the bound d Θ,Λ (x) using closed forms of v Θ,Λ (x)

and v X (x) given by Equations ( 14) and ( 9), respectively. Hence, using elementary elds, we could numerically evaluate a simulation error by averaging values of d Θ,Λ (x) over points

x of a uniform subgrid of [0, 1] 2 :

(23)

d Θ,Λ = p k,l=1 d Θ,Λ k p , l p = p k,l=1 |v X ( k p , l p ) -v Θ,Λ ( k p , l p )| v X ( k p , l p )
, with p = 64.

As this is evidenced by Equation ( 17) of Proposition 2.4, the measured error d Θ,Λ depends on the precision parameter ε Θ of the simulation eld. Figure 4 illustrates the eect of increasing ε Θ (i.e reducing the simulation precision) on simulations of a fractional Brownian eld of Hurst index H = 0.2. When the precision becomes too low (ε Θ ≥ 0.25), eld realizations have some stripes in dierent directions, and simulation eld variograms present some singularities on lines radiating from the origin. This well-known eect, often called artifact banding in the literature [START_REF] Gneiting | Closed form solutions of the two-dimensional turning bands equation[END_REF][START_REF] Mantoglou | The turning bands method for simulation of random elds using line generation by a spectral method[END_REF][START_REF] Emery | TBSIM: A computer program for conditional simulation of threedimensional Gaussian random elds via the turning bands method[END_REF][START_REF] Emery | A turning bands program for conditional co-simulation of cross-correlated Gaussian random elds[END_REF], is due to the fact that the contribution of a band process Y i to the sum dening the simulation eld (see Equation [START_REF] Brouste | On fractional gaussian random elds simulations[END_REF]) is null for points on the line orthogonal to the band direction θ i and passing through origin.

On Figure 5, we plotted values of error bounds d Θ,Λ obtained for dierent elementary elds as a function of the precision parameter ε Θ . Whatever the eld parameters, error bounds varied almost linearly with respect to ε Θ . They did not seem to depend on the regularity parameter H. However, they were slightly dependent on the anisotropy parameter α, especially at low precision (ε Θ > 0.03). Error bounds of all elds fell below 1% when ε Θ < 0.02, such a precision being reached with around 150 simulation bands.

4.3. Estimation error. We also conducted numerical experiments to evaluate errors which arise when estimating eld features (e.g. parameters, variograms) from eld simulations.

Applying the TBM (with 1321 bands on a 64 × 64 grid of [0, 1] 2 ), we simulated 2000

independent realizations {y (k) , k = 1, • • • , 2000} of a given elementary eld X of variogram v X . Given k ∈ {1, • • • , 2000}
, we then computed the empirical variogram v (K) (x) at position x using the K rst samples: (1)

v (K) (x) = 1 2K K k=1 (y (k) (x)) 2 .
Figure 7. Variations of the estimation error relative to the number K of samples for elementary elds with dierent values of H and α: (1)

H = 0.2, (2) 
H = 0.5, (3) 
H = 0.8.
random variables, and H x 0 be the hypothesis that their distribution is the same as the one of X(x), i.e. a centered gaussian distribution with variance 2v X (x). For testing H x 0 , we dene the rejection interval {D (K) (x) > c}, where the statistic

D (K) (x) = |V (K) (x)-v X (x)| v X (x) with V (K) (x) = 1 2K K k=1 (Y (k) (x)) 2 . Under assumption H x 0 , K V (K) (x) v X (x) has a χ 2 distribution
of degree K. Hence, under H x 0 , the probability of the rejection interval can be computed, and the rejection bound c can be set according to a level of test. Given a realization

d (k) (x) of D (K) (x)
, it also possible to evaluate the p-value p (K) (x) of the test (i.e the minimal risk of rejecting H x 0 ) as

p (K) (x) = 1 -P (Z (K) < K(d (k) (x) + 1)) + P (Z (K) < K(-d (k) (x) + 1)),
where Z (K) is a χ 2 K random variable. To evaluate the simulation-to-model adequacy, we computed for dierent K the average p (K) of p-values p (K) (x) at positions x of the 64 × 64 grid of [0, 1] 2 . On Figure 8, the mean p-values are plotted as a function of the sample number K. Whatever the value of parameters H and α, mean p-values are all above 0.3, indicating that hypotheses H x 0 of adequacy are not rejected at low risks. Besides, the mean p-values seems to reach an upper bound which is below 1 (around 0.5). This is probably due to both the approximation error and estimator inacurracy. (1) 

Discussion

We have constructed turning-band elds suited to the simulation of AFBF. This construction is based on the resolution of an integral equation specic to the non-stationary anisotropic context of AFBF. This ensures the convergence of simulation elds to target elds as the precision increases. Moreover, the band processes involved in the denition of simulation elds are simulated exactly using a circulant embedding method. Hence, errors produced by the simulation method are exclusively due to the approximation of the target eld by the simulation eld. This approximation error was evaluated theoretically and numerically. From a numerical point of view, we observed that it does not depend signicantly on the regularity of target elds, nor on their degree of anisotropy. Experiments have also suggested that simulations preserve the statistical properties of the target eld. Besides, we obtained good simulation results with few bands (around 150) at a low computational cost.

The evaluation was achieved on some elementary elds. However, simulation possibilities oered by the TBM go far beyond those elds, as there is a large choice of parameter denitions and tunings. Using the TBM, it chiey becomes possible to visualize truthfully realizations of dierent anisotropic eld models studied in the literature [START_REF] Bonami | Anisotropic analysis of some Gaussian models[END_REF][START_REF] Biermé | Central limit theorems and quadratic variations in terms of spectral density[END_REF][START_REF] Davies | Fractal analysis of surface roughness by using spatial data[END_REF][START_REF] Richard | Statistical tests of anisotropy for fractional Brownian textures. application to full-eld digital mammography[END_REF]. In the generic model dened by Equation ( 2), we recall that the eld anisotropy is introduced through two direction-dependent and π-periodic functions: the Hurst index function h and the topothesy function c. So as to illustrate the eect of varying these parameter functions, we considered three functions of increasing regularity:

• a discontinuous function g 1 : µ 1 , µ 2 ∈ (0, 1), g 1 (ω) = µ 1 if ω ∈ (-π 4 , π 4 ) and g 1 (ω) = µ 2 if ω ∈ (-π, π)\(-π 4 , π 4 ),
• a continuous but not dierentiable function g 2 : for µ 1 , µ 2 ∈ (0, 1), g 2 (0) = µ 1 , g 2 (-π/2) = g(π/2) = µ 2 , and g 2 is piecewise linear on (-π/2, 0) and (0, π/2).

• an innitely dierentiable function Fixing the Hurst index function to a constant (h ≡ 0.5), we also simulated eld realizations with topothesy functions c = g i for i = 1, 2, 3 and dierent pairs of parameter values (µ 1 , µ 2 ); results are shown on Figure 10. In these realizations, the degree of anisotropy can be dened as the dierence µ 2 -µ 1 between maximal and minimal topothesy values.

From a column to the next one, it is increased, while the eld regularity remains the same for all realizations (H = 0.2). As it can be observed by comparing realizations on a same row, variations of the anisotropy degree cannot be visually detected on textures.

However, comparing realizations on a same column, we can notice that the regularity of the topothesy function has an eect on the eld texture. As previously, some line patterns are present on textures when the topothesy function is discontinous.

In the simulations we presented, eld realizations were generated on a regular subgrid of [0, 1] 2 . Using our TBM approach, it is however possible to simulate elds on other sets of non-uniformly spaced positions. To do so, the only condition is that position coordinates and (µ 1 , µ 2 ) = (0.2, 0.8), respectively. are all rational; this is required for the exact simulation of fractional Brownian motions on turning bands (refer to Section 3.1). The pseudo-polar grid is an example of a set of points satisfying this simulation condition [START_REF] Averbuch | A framework for discrete integral transformations I -the pseudo-polar Fourier transform[END_REF]. Such a grid is of particular interest for computing discrete Radon transforms [START_REF] Averbuch | A framework for discrete integral transformations II -the 2D discrete Radon transform[END_REF], as its points are uniformly spread on dierent lines radiating from the origin. But Radon transforms are one of the key features for the construction of parameter estimators for AFBF [START_REF] Biermé | Estimation of anisotropic gaussian elds through Radon transform[END_REF][START_REF] Richard | Statistical tests of anisotropy for fractional Brownian textures. application to full-eld digital mammography[END_REF]. Hence, those estimators could be better discretized and evaluated using simulations on a pseudo-polar grid. Due to the ability of the TBM to simulate elds on quasi-arbitrary points, it also becomes possible to simulate eld deformations. For instance, let A be the 2 × 2-matrix of an ane transform (with rational components) and X = X • A the deformation of the random eld X by the ane transform A. Realization of X on a uniform grid G of [0, 1] 2 can be obtained by applying the TBM to the simulation of X on {Ax, x ∈ G}. Figure 11 presents an illustration corresponding to the deformation of a fractional Brownian eld of Simulation is a central issue concerning the investigation of anisotropic elds. As shown previously, a simulation technique such as the TBM can serve as a tool for visualizing mathematical properties of anisotropic models under study. From an application viewpoint, it can also help assessing the similarity between model realizations and real-world images. Besides, having reliable simulations is critical for the evaluation of model parameter estimators. In future works, we plan to use TBM simulations of AFBF to evaluate the estimators we constructed using quadratic variations [START_REF] Biermé | Estimation of anisotropic gaussian elds through Radon transform[END_REF][START_REF] Richard | Statistical tests of anisotropy for fractional Brownian textures. application to full-eld digital mammography[END_REF]. We also intend to use those simulations to rene the adequacy between models and radiographic images we analyze for the characterization of osteoporosis and breast cancer [START_REF] Biermé | Parametric estimation for gaussian operator scaling random e lds and anisotropy analysis of bone radiograph textures[END_REF][START_REF] Biermé | ESAIM Proceedings: Mathematical Methods for Imaging and Inverse Problems, volume 26, chapter Anisotropic texture modeling and applications to medical image analysis[END_REF][START_REF] Richard | Statistical tests of anisotropy for fractional Brownian textures. application to full-eld digital mammography[END_REF]. 

θ i+1 θ i (g x (θ) -g x (θ i )) dθ ≤ c 2 (θ i+1 -θ i ) 1+min (1,2H) .

Then, choosing λ 1 = θ 2 -θ 0 and λ i = θ i+1 -θ i for 2 ≤ i ≤ n, one has 

θ i+1 θ i g x (θ) - g x (θ i ) + g x (θ i+1 ) 2 dθ ≤ sup θ∈[θ i ,θ i+1 ] |g x (θ)| (θ i+1 -θ i ) 3 12 . (30) 
Note also that using [START_REF] Lacaux | Real Harmonizable multifractional Levy eld[END_REF] one always has [START_REF] Mantoglou | The turning bands method for simulation of random elds using line generation by a spectral method[END_REF] θ i+1 θ i g x (θ) -g x (θ i ) + g x (θ i+1 ) 2 dθ ≤ c 2 (θ i+1 -θ i ) 1+min (1,2H) . which gives the result using ( 30) with ( 32) and ( 33) for the two rst sums and using [START_REF] Lantuéjoul | Geostatistical Simulation: Models and Algorithms[END_REF] and [START_REF] Mantoglou | The turning bands method for simulation of random elds using line generation by a spectral method[END_REF] for the other terms. The general case where arg(x) = π/2 can be computed similarly.

It follows that

Proof of Proposition 2.5. The proof is similar to the proof of Proposition 2. instead of g x (θ) given by [START_REF] Kolmogorov | Wienersche Spiralen und einige andere interessante Kurven in Hilbertsche Raum[END_REF]. Note that when h and c are assumed of class C l (l = 1 or h(θ). These estimates allow to proceed as in the proof of Proposition 2.4. The result follows by summing the integrals over which the functions h and c are regular using the fact that H ≤ H(α 1 , α 2 ) for all α 1 , α 2 . 
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 1 Figure 1. Comparison of an approximate uniform sampling of turning bands and their selection by dynamic programming.
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 2 Figure 2. Realizations on [0, 1] 2 of elementary elds obtained for dierent values of H and α using the TBM with 5900 bands.

Figure 3 .

 3 Figure 3. Variograms on [0, 1] 2 of elementary elds for dierent values of H and α.

Figure 4 .

 4 Figure 4. Eect of reducing the eld precision on simulations of a fractional Brownian eld of Hurst index H = 0.2. On the rst row, realizations of simulation elds X Θ,Λ of decreasing precision and, on the second row, corresponding variograms: (1) ε Θ = 0.04 (n = 103), (2) ε Θ = 0.077 (n = 51), (3) ε Θ = 0.25 (n = 15) and (4) ε Θ = 0.464 (n = 7).

Figure 6 .

 6 Figure 6. Eect of increasing the number of samples on simulations of a fractional Brownian eld of Hurst index H = 0.2 (simulations were done with 1321 bands on a 64 × 64 grid of [0, 1] 2 ): Empirical variograms v (K) computed with (1) K = 60, (2) K = 1000, (3) K = 2000 samples, and (4) theoretical variogram.

Figure 8 .

 8 Figure 8. Mean p-values p (K) of adequacy tests relative to the number K of samples for elementary elds with dierent values of H and α: (1) H = 0.2, (2) H = 0.5, (3) H = 0.8.

g 3 :

 3 g 3 (ω) = µ 1 r(ω) + µ 2 (1 -r(ω)) with r(ω) = (1 + sin(2ω + π/2))/2 for ω ∈ [0, π/2], and g 3 (ω) = g 3 (-ω) for ω ∈ [-π/2, 0].

Fixing the topothesy function

  to a constant (c ≡ 1), we rst simulated eld realizations with Hurst index functions h = g i for i = 1, 2, 3 and dierent pairs of parameter values (µ 1 , µ 2 ); results are shown on Figure9. In these realizations, the degree of anisotropy can be measured as the dierence µ 2 -µ 1 between maximal and minimal Hurst indices. It is the same for realizations of the rst and second columns (µ 2 -µ 1 = 0.3), and higher for those of the third column (µ 2 -µ 1 = 0.5). Moreover, the Hölder regularity of those realizations is equal to µ 1 . It is the same for realizations of the rst and third columns (µ = 0.2) and higher for those of the second column (µ = 0.5). Comparing realizations on a same row, we clearly see the eect of anisotropy and regularity variations on eld textures: as the eld regularity decreases, the texture gets rougher, and, as the eld anisotropy increases, texture patterns get more obviously oriented. Besides, comparing realizations on a same column, we can observe texture dierences induced by changing the regularity of the Hurst index function h in the model. In particular, realizations obtained with a discontinous function h (on the rst row) have some linear patterns which are not present on those obtained with a more regular function h (on the second and third rows).

Figure 9 .

 9 Figure 9. Field realizations obtained with dierent Hurst index functionsh. For all realizations, the topothesy function c ≡ 1. On the rst, second and third rows, Hurst index functions are h = g 1 (discontinuous), h = g 2 (continuous but not dierentiable), and h = g 3 (innitely dierentiable), respectively. On the rst, second and third columns, Hurst index functions are specied by parameter pair values (µ 1 , µ 2 ) = (0.2, 0.5), (µ 1 , µ 2 ) = (0.5, 0.8),

Figure 10 .

 10 Figure 10. Field realizations obtained with dierent topothesy functions. For all realizations, the Hurst index function h ≡ 0.2. On the rst, second and third rows, topothesy functions are c = g 1 (discontinuous), c = g 2 (continuous but not dierentiable), and c = g 3 (innitely dierentiable), respectively. On the rst, second and third columns, topothesy functions are specied by parameter pair values (µ 1 , µ 2 ) = (1, 5), (µ 1 , µ 2 ) = (1, 100), and (µ 1 , µ 2 ) = (1, 1000), respectively.

  example also shows that deformating isotropic elds is a means to construct anisotropic elds.

Figure 11 .

 11 Figure 11. Shear of a fractional Brownian eld of Hurst index 0.5.
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 3211121 let us remark that since θ → | cos(θ-θ )| 2H is continuous, non negative and non identically equal to 0 one can nd c 1 > 0 such that for allx ∈ R 2 , α cos(θ -arg(x))| 2H dθ ≥ c It follows that d Kol (X Θ,Λ (x), X H,α 1 ,α 2 (x)) ≤ c -1 cos(θ -arg(x))| 2H dθ -n i=1 λ i | cos(θ i -arg(x))| 2H .Now, let us write (26)g x (θ) = | cos(θ -arg(x))| 2H ,and remark that (27)|g x (θ) -g x (θ )| ≤ 2|θ -θ | min(2H,1) for all θ, θ ∈ R,using the fact that ||t| 2H -|t | 2H | ≤ 2|t -t | min(2H,1) for all t, t ∈ [-1, 1].It follows that there exists c 2 > 0 such that for 0 ≤ i ≤ n,

α 2 α 1 g

 1 x (θ) -n i=1 λ i g x (θ i ) ≤ c 2 (α 2 -α 1 ) max 0≤i≤n (θ i+1 -θ i ) min(1,2H) . Moreover g x is of class C 2 on R {arg(x) -π/2 + πZ} with (29) |g x (θ)| ≤ c 3 | cos(θ -arg(x))| 2H-2 , for all θ / ∈ arg(x) -π/2 + πZ,for some c 3 > 0 (non depending on x). According to the trapezoidal rule, when [θ i , θ i+1 ] ∩ {arg(x) -π/2 + πZ} = ∅,

  -θ i ) g x (θ i ) + g x (θ i+1 ) 2 + (θ 1 -θ 0 )g x (θ 1 ) + (θ n+1 -θ n )g x (θ n ) = x (θ) -g x (θ i ) + g x (θ i+1 ) 2 dθ + θ 1 θ 0 g x (θ) -g x (θ 1 )dθ + θ n+1 θn g x (θ) -g x (θ n )dθ ≤ x (θ) -g x (θ 1 )dθ + θ n+1 θn g x (θ) -g x (θ n )dθ ,

  4, consideringgx (θ) = γ(h(θ))c(θ)|x • u(θ))| 2h(θ) = γ(h(θ))c(θ) x 2h(θ) | cos(θ -arg(x))| 2h(θ) .

2) on [α 1 , α 2 ]

 12 ⊂ [-π/2, π/2], one can nd C > 0 such that for all x ∈ T , | gx (θ) -gx (θ )| ≤ C|θ -θ | min(2H(α 1 ,α 2 ),1) , for all θ, θ ∈ [α 1 , α 2 ],and when l = 2,| gx (θ)| ≤ C| cos(θ -arg(x))| 2H(α 1 ,α 2 )-2 , for all θ ∈ [α 1 , α 2 ] with θ / ∈ arg(x) -π/2 + πZ, where H(α 1 , α 2 ) = min θ∈[α 1 ,α 2 ]
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Finally, we computed an estimation error

at point x, and its average over points x of the grid (24)

, with p = 64.

On Figure 6, some empirical variograms v (K) estimated from simulations of a fractional Brownian eld of Hurst index H = 0.2 are compared to the theoretical variogram v X of X. This illustrates both the convergence of empirical variograms to the theoretical one as K tends to +∞, and estimation errors due to the lack of samples.

On Figure 7, we plotted the estimation error d (K) as a function of the sample number K for dierent elementary elds. For a same value of the regularity parameter H, the convergence of the error to zero is about the same for all values of the anisotropy parameter α. However, the convergence gets slower and slower as H increases. In all cases, around 1000 samples are required for the error to get below 5%.

Besides, we built a statistical test to check the adequacy of simulations to the model. 

For any position

We will use the following lemma.

Proof. Since we assume that 

which gives the result.

This allows us to get the next result, which concludes the proof.

according to Lemma A.1. Note that by a change of variables, for all θ ∈ R ( 25)

and the result follows.

Let assume thatπ 2 + 2Zπ = ∅. Then, one can nd k ∈ Z such that a + 2kπ < -π/2 < b + 2kπ, and according to Lemma

which concludes this case using [START_REF] Journel | Geostatistics for conditional simulation of ore bodies[END_REF]. The last case is similar.

Appendix B. Proofs of section 2.3

Proof of Proposition 2.4. Note that X Θ,Λ (0) = X H,α 1 ,α 2 (0) = 0 a.s. so that d Kol (X Θ,Λ (0), X H,α 1 ,α 2 (0)) = 0. Let x ∈ R 2 with x = 0. Then, the error of approximation is bounded by Build the set V of all integer vectors (q, p) ∈ {1, . . . , N } × {-N, . . . , N } such 2 that gcd(p, q) = 1 and α 1 < ∠(q, p) < α 2 Sort V into a sequence (p k , q k ) 1≤k≤n with k → θ k := ∠(q k , k k ) increasing 3

Compute the angle θ k := ∠(q k , p k ) and the cost e k associated to each (q k , p k )

Add extremal angles: θ 0 ← α 1 (e 0 ← 0) and θ n+1 ← α 2