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Abstract  In this note, the problem of states and unknown inputs estimation of nonlinear descriptor system is considered. 
The methodology is based on the use of Proportional Integral and Unknown Input Observers. The considered nonlinear 
descriptor system is transformed into an equivalent multi-models form by using the Takagi-Sugeno (T-S) approach. In this 
paper, the design methods of both proportional integral observers and unknown inputs observers for descriptor 
multi-models are described in detail. Sufficient conditions of stability analysis and gain matrices determination are per-
formed by resolving a set of Linear Matrices Inequalities (LMIs). The design method offers all the degrees of design free-
dom, which can be utilized to achieve various desired system specifications and performances and, thus, has great poten-
tials in applications. A numerical example is employed to show the design procedure of these two observers and illustrate 
the effect of the proposed approach. 

Keywords  Nonlinear Descriptor System, Multi-Model Descriptor System, Proportional Integral and Unknown Input 
Observer, LMIs 

1. Introduction 
Nonlinear descriptor processes are usually described by 

analytical models. These models include both dynamic and 
static relations. Consequently this formalism can model 
physical constraints or impulsive behavior due to an im-
proper part of the system. Descriptor systems appear in 
many f i elds of system design and control such as con- 
strained robots, power systems, hydraulic or electrical 
networks. For conventional systems, various approaches have 
been proposed to design observers. The observer classically 
used, within the framework of linear systems, is known as 
Luenberger observer or with profit Proportional[7]. In 
presence of unknown disturbances affecting system[13], the 
state estimation provided by this type of observer, is con-
siderably degraded. In order to improve the observer design 
with respect to the disturbances, an ob- server with Pro-
portional Integral gain can be used. Indeed, this observer 
makes it possible to integrate certain degree of robustness in 
state estimation thanks to the integral action[3]. Like to 
ordinary system theory, the problem of designing observer 
for descriptor linear system has been considered by many 
authors. Some approaches are lead to the construction of 
full-order and reduced-order observers[12].  Others 
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approaches develop the concept of singular value de-
compositions and generalized inverse matrix[10] in order to 
construct the state vector for this class of systems. Some 
researchers have also introduced the integral term in ob-
server design for descriptor linear systems. Indeed, in[1] 
and[2], a design approach of Proportional Integral Observer 
(PIO) for continuous time descriptor linear systems has been 
proposed. Koenig et al.[6] have investigated the Luenberger 
full-order and reduced order PIO with unknown inputs. 
However, few works have been done to design observers for 
nonlinear descriptor system except for[5]. In a recent work of 
Kaprielian et al.[17], a state observer based on the lineariza-
tion technique of nonlinear descriptor systems with applica-
tion to a physical process has been developed. The design of 
these algorithms can become very difficult even impossible 
according to the type and the complexity of the employed 
model, from where the importance to have a mathematical 
model of the system where it’s at the same time, simple and 
precise. The multi-models approach is a powerful technique 
of modeling nonlinear systems which make it possible to get 
a good compromise between the precision and the complex-
ity of the model[14]. Multi-models are recognized for their 
capacity to take into account the changes in the operating 
mode of the system and to reproduce its behavior with pre-
cision in a broad operating range. Moreover, they offer 
mathematical properties which can be profitable during the 
design of observers. More recently, few results have been 
generalized to the descriptor multi- models. In[4], a state 
estimation method for singular multi-models with measur-
able decision variables affected by unknown inputs has been 
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presented. This proposed observer has been applied to fault 
detection. In[8] and[9] the problem of fault detection isola-
tion and estimation for LPV polytopic descriptor system has 
been studied by using unknown inputs observer and propor-
tional integral observer. From these works and others, state 
estimation as well as unknown inputs is very significant in 
command or diagnosis of systems. This has motivated us to 
study these problems for descriptor multi-models by both 
unknown inputs and PI observers. Thus some new results are 
proposed in this paper, a comparison study between two 
types of observers is presented. This comparison wants to 
underline the differences for the design of such observers 
and also to compare the estimation performances of them. 
This discussion wants to lead us which of these two observ-
ers are less restrictive for nonlinear descriptor systems de-
scribed by a multi-models approach. 

This paper is organized as follows: in Section 2 the multi- 
models structure of nonlinear descriptor systems is intro-
duced. In Section 3, we study the structure and the design of 
the proposed proportional integral and unknown inputs 
multi-observer. An illustrative example is considered in 
section 4. 

2. Multi-models Singular System 
Consider the following nonlinear descriptor system 

Ex(t) F(x(t), u(t),d(t))
y(t) g(x(t), u(t))

=
 =



           (1) 

where x ∈ Rn is the singular state vector, u ∈ Rp is the input 
vector, d ∈ Rq is a constant unknown input vector and     
y ∈ Rm is the output vector. The function F is a continuous 
and infinitely differentiable nonlinear function and E is a 
singular matrix with constant parameters and rank(E)=r < n. 
The dynamic behavior of this nonlinear system can b e 
characterized by a coupled Takagi-Sugeno[15] representa-
tion composed by several local linear models. So, based on 
Taylor series expansion of the smooth nonlinear functions 
around various operating points (xi, ui), the multi-models 
representation[14] of (1) is: 

h

i i i i i
i 1

Ex(t) h ( (t))(A x(t) B u(t) R d(t) x )

y(t) Cx(t)
=


= ξ + + + ∆


 =

∑

 (2) 

Ai, Bi and Ri are the Jacobean matrices relating to the ith 
operating point. ∆ xi is a vector depends on the ith operating 
point. hi(ξ(t)) quantifies the relative contribution of each 
local model to construct the global model[18]. The weight-
ing function satisfies the property of the convex sum 

 
h

h ( (t)) 1ii 1
0 h ( (t)) 1i







ξ =∑
=
≤ ξ ≤

               (3) 

The decision variable ξ (t) is supposed to be real-time ac-
cessible, depending on the control input, or on the measured 
state. Then, before giving the main results, let us make the 

following assumptions.  
Assumption A1: The triple matrix (E, Ai, C) is 

R-detectable, for all i = 1, ..., h[12], i.e., 
isE A

rank n, s
C
− 

= ∀ ∈ς 
 

             (4) 

where C is the complex plane.  
Assumption A2: The triple matrix (E, Ai, C) is Im-

pulse-observable, for all i = 1, ..., h[12], i.e., 
iE A

rank 0 E n rankE
0 C

 
  = + 
  

            (5) 

In the following subsection, a simple method is proposed 
to design a PIO for descriptor multi-models subjects to dis-
turbances. This method is less restrictive then unknown 
inputs observer design since no assumption is made on the 
disturbances matrices Ri.  

3. Proportional Integral (PI) 
Muti-Observer Structure 

In the deterministic case, the Proportional Integral Multi- 
0bserver (PIMO) is characterized by the use of an integral 
term of the estimation outputs error[11]. The equations 
which govern the PIMO are as follows: 

h

i i i i i i
i 1

h

i i
i 1

ˆz(t) h ( (t))(N z(t) G u(t) L y(t) H d(t) z )

x̂(t) z(t) My(t)

ˆ ˆd(t) h ( (t)) (y(t) y(t))

=

=


= ξ + + + + ∆

 = +

 = ξ Φ −


∑

∑





(6) 

where x̂ ∈ Rn , z ∈ Rn and d̂ ∈ Rq are respectively the esti-
mated state vector, the state vector of the observer and the 
estimated unknown input. Φi are the integral gains matrices. 
Ni, Gi, ∆zi, Li, Hi, Φi and M are the unknown parameters of 
the PIMO which we have to design. 

Definition 1. System (6) is called a PIMO for system (2) if 
for arbitrary initial conditions x(0) and z(0) and arbitrary 
input u ( t), the following relations hold: 

x
ˆlim(x(t) x(t)) 0

→∞
− =                (7) 

x
ˆˆlim(d(t) d(t)) 0, d(0)

→∞
− = ∀             (8) 

Let the state estimation error ˆ( ) ( ) ( )e t x t x t= − ; then it fol-
lows from (6) and (2) that: 

ne(t) (I MC)x(t) z(t)= − −  
Let U ∈ Rnxn a real matrix such that: 

nUE I MC= −                 (9) 
So, the state estimation error becomes: 

e(t) UEx(t) z(t)= −               (10) 
Now, we assume that the bounded unknown inputs are with 
slow variation, i.e. d(t) 0

 .  
 
Then, for ˆ(t) d(t) d(t)ζ −  the derivative unknown inputs is: 

ˆ(t) d(t)ζ − 

                   (11) 
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The dynamic equation of the state estimation error becomes: 
e(t) UEx(t) z(t)= −                  (12) 

i i i i

i i i i

i i i

e(t) (N e(t) (UA L C N UE)x(t)

(UB G )u(t) U x z
(U R H )d(t) H (t))

h
h ( (t))ii 1

= + − −

+ − + ∆ −∆
+ − + ζ

ξ∑
=



  

(13) 

 
If the following conditions are satisfied:  

i i iUA N UE L C= +               (14) 

i iG UB=                  (15) 

i iz U x∆ = ∆                 (16) 

i iH UR=                  (17) 

nI UE MC= +                (18) 
and from (6), (11) and (13), the dynamic of the state estima-
tion and the unknown inputs errors become: 

i ie(t) (N e(t) H (t) )
h

h ( (t))ii 1
= + ζξ∑
=

        (19) 

i ˆ(t) C(x(t) x(t) )
h

h ( (t))ii 1
ζ = Φ −ξ∑

=
        (20) 

i(t) Ce(t)
h

h ( (t))ii 1
ζ = − Φξ∑

=
          (21) 

The equality (19) and (21) can be written as follows: 

i i

i

N He(t) e(t)
C 0(t) (t)

h
h ( (t))ii 1

    
=     −Φζ ζ    

ξ∑
=





   (22) 

If the above dynamic equation error (22) is stable, the state 
estimation will converge asymptotically to the real state. 

3.1. PI Observer Design 

Since rank[ET CT]T, and from (18) we obtain, 

[ ] n

E
U M I

C
 

= 
 

              (23) 

Then, it can directly deduced that: 

[ ] E
U M

C

+
 

=  
 

               (24) 

where the superscript (+ ) represents the generalized inverse 
matrix. So, at this step we can get U and M. Gi, Hi and ∆zi 
will be given respectively from (15), (16) and (17). 
By substituting (18) into (14), we obtain:  

i i n iUA N (I MC) L C= − +            (25) 

i i i iN UA (L N M)C= − −           (26) 
Let us note 

i i iK L N M= −                (27) 
then, 

i i iN UA K C= −                (28) 
 
Using the expression of Ki,  

i i iL K N M= +                 (29) 

from (28) and (27), the estimated errors (22) can be written 

as: 

i i

e(t) e(t)
(t) (t)

h
h ( (t))(A K C)ii 1

   
=   ζ ζ   

ξ −∑
=





    (30) 

the above equation (30) is also equivalent to: 

a i i ae (t) e (t)
h

h ( (t))(A K C)ii 1
= ξ −∑
=

       (31) 

where 

[ ]ii i
i i i i

i

a

KUA H
A ,K ,C C 0 ,H UR

0 0
e(t)

and e (t)
(t)

  
= = = =   Φ   

 
=  ζ   

The remaining problem is to find the matrices iK such that 
the state estimation error converges asymptotically to zero.  

3.2. Existence Conditions 

The PIMO (6) exists if and only if the pair i(A ,C)  is de-
tectable ∀ i = 1,..., h. The following theorem gives the exis-
tence conditions of this PIMO. 

Theorem 1.[6] The PIMO (6) for the multi-models de-
scriptor system (2) converge asymptotically to zero, if and 
only if the following conditions are hold: 

i.
E

rank n
C
 

= 
 

 

ii.
i i

q

sE A R
rank 0 sI n q, s et Re(s) 0

C 0

− 
  = + ∀ ∈ ≥ 
  

  

So, it remains to determine the gain iK of the PIMO ensur-
ing the convergence to zeros of the estimation errors. One 
uses here, the second Lyapunov method. 

Theorem 2. The PIMO (6) is asymptotically stable, if 
there exists a common positive definite matrix Q an d ma-
trices i iW QK=  such that: 

( ) { }T T
i i i iA Q QA (W C) W C 0, i 1,..., h+ − − < ∀ ∈    (32) 

Proof: Consider the Lyapunov function with the following 
quadratic form: T

aV(t) e (t)Qe(t)= . The stability condition 
for the dynamic error yields that the time derivative of the 
Lyapunov function should be negative definite. Using the 
equation (31), the function V(t)  is derived such as: 

T T
a a a aV(t) e (t)Qe (t) e (t)Qe (t)= +

    
h

T T
i a i i i i a

i 1
V(t) h ( (t)){e (t)((A K C) Q Q(A K C))e (t)}

=

= ξ − + −∑  (33) 

The time derivative of the Lyapunov function is then nega-
tive definite if the following inequality holds true 

h
T T

i a i i i i a
i 1

h ( (t)){e (t)((A K C) Q Q(A K C))e (t)} 0
=

ξ − + − <∑  (34) 

∀ hi(ξ(t)), with 
h

i
i 1

h ( (t))
=

ξ∑ =1, hi(ξ(t))≥0 and ∀ ea(t)≠0, 

then (34) is satisfied if: 
T

i i i i(A K C) Q Q(A K C) 0, i 1,..., h− + − < ∀ =  
For i iW QK= , the above inequalities become 
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( )T T
i i i iA Q QA (W C) W C 0, i 1,..., h+ − − < ∀ =   

A solution in Q and Wi satisfying LMIs (32) can be found. 
The observers gains can be deduced as: 1

i iK Q W−= Then, the 
design of PIMO is achieved and their parameters are given 
by (28), (29), (15), (16) and (24). 
To ensure the rate of estimation error convergence, one 
defines in the left part of the complex plan a bounded area S 
with a line of abscissa (−α) where α ∈ R+.  
The LMIs (32) must be replaced by the following LMIs. 

( )T T
i i i iA Q QA (W C) W C 2 Q 0, i 1,..., h+ − − + α < ∀ = (35) 

The presented PIMO gives an asymptotic estimation of both 
states and unknown inputs. It can b e applied to fault diag-
nosis for descriptor systems. A restrictive condition of such 
PIMO design is that we have to consider unknown inputs 
with slow variation, i.e. d(t) 0

 . 

4. Unknown Input Multi-Observer 
Structure 

The Unknown Inputs Multi-Observer (UIMO) design for 
descriptor multi-models is addressed in this subsection. Two 
parts are studied, the first is dedicated to the state estimation, 
in the second, an applicability of the disturbance estimate is 
considered. So, taking the descriptor model (2) with a con-
stant matrix disturbance i.e. Ri=R, the proposed UIMO has 
the following form: 

h

i i i i i
i 1

z(t) h ( (t))(N z(t) G u(t) L y(t) z )

x̂(t) z(t) My(t)
=


= ξ + + + ∆


 = +

∑   (36) 

Under assumption A1 and A2, and from (2), (10) and (36), 
the following dynamic estimation error is obtained as: 

i i i i

i i i i

e(t) (N e(t) (UA L C N UE)x(t)

(UB G )u(t) URd(t) U x z

h
h ( (t))ii 1

= + − −

+ − + + ∆ −∆

ξ∑
=



 (37) 

If the conditions (14), (15), (16) and (18) are holds and: 
UR = 0                 (38) 

the dynamic error equation will be reduced to: 

ie(t) N e(t)
h

h ( (t))ii 1
= ξ∑
=

           (39) 

If the above error dynamic equation is stable, the state esti-
mation will converge asymptotically to the real state. 

4.1. UIMO Design 

After checking the convergence conditions (theorem 1), 
the design of the UIMO (36) consists in finding gains ma-
trices Ki such that the equation (39) is stable. By using (27) 
and (28), the inequalities (32) can be rewritten as: 

( )T T
i i i i(UA ) Q QUA (W C) W C 0, i 1,..., h+ + + < ∀ =  (40) 

A solution in Q and Wi satisfying LMIs (40) can be found. 
The observers gains can be deduced as: Ki = Q-1Wi. Then, the 

design of UIMO is achieved and their parameters are de-
duced from the matrices U, M, Q and Wi as: 

1
i iK Q W−=                (41) 

i i iN UA K C= −              (42) 

i i iL N M K= −               (43) 

i iG UB=                 (44) 

i iz U x∆ = ∆                (45) 
where  

[ ] [ ]n

E R
U M I 0

C 0

+
 

=  
 

        (46) 

if the matrix E R
C 0
 
 
 

 is a full column rank[12]. 

At this step, the UIMO makes it possible to rebuild the state 
of the system whatever the presence of the unknown inputs; 
it is based on the methods of decoupling of the unknown 
inputs with respect to the estimation error. However, the 
most critical problem into the design of such UIMO is to 
solve the equation (38). This decoupling problem is restric-
tive when the disturbances matrices Ri are different for all 
the operating point. On the other hand, the PIMO does not 
decouple the unknown inputs and then its design does not 
suffer of this problem.  
The PIMO design is more easy by considering this problem 
but the restriction for the PIMO is to consider that distur-
bances have slow variation i.e. d(t) 0


. By summarizing 

these observers design, the design method of the PIMO is 
less restrictive. 

4.1. Unknown Inputs Estimation 

Under steady state condition, the state estimation error 
converges to zero, then substituting the true state x(t) by its 
estimate x̂(t) and the unknown inputs d(t) by its estimated
d̂(t)  in the multi-models (2) and for hypothesis  

Ri = R, we obtain: 
h

i i i i
i 1

ˆˆˆˆEx(t) h ( (t))(A x(t) B u(t) Rd(t) x )

ˆŷ(t) Cx(t)
=


= ξ + + + ∆


 =

∑

 (47) 

The unknown inputs can then be calculated in the following 
way: 

h

i i i i
i 1

ˆ ˆˆˆd(t) R Ex(t) h ( (t))(A x(t) B u(t) x )+

=

 
= − ξ + + ∆ 

 
∑ (48) 

The existence of d̂(t) is ensured by condition (5), and R is of 
full column rank. The construction of the unknown inputs by 
the UIMO requires an additional procedure which based on 
the derive function of the signal x̂(t) . However the PIMO 
offers an estimate of the unknown inputs with the estimated 
state vector. Where, the interest of the PIMO. 

5. Illustrative Example (A Rolling Disc) 
Consider a singular nonlinear system given by the set of 

differential and algebraic equations (DAE)[16]. The model 
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describes a disc rolling on surface without slipping figure 1. 
The disc is connected to a fixed wall with a nonlinear spring 
and a linear damper. The spring has a positive coefficient k. 
The damping coefficient of the damper is given by a positive 
parameter b. The radius of the disc is r, its inertia is given by 
J and the mass of the disc is m. 

 
Figure 1.  A rolling disc 

2
1

2

2
3

0 1 0 0
K b 11 0 0 0 0

m mm(2 x )0 1 0 0
x(t) x(t)0 1 r 00 0 0 0

b K r0 0 0 0 0
1m m(2 x ) J
m

0 0
0r 0 1J(DAE) u(t) d(t)

0 0 0
r 00
J

1 0 1 0
y(t) 0 0 1 0 x(t)

0 1 0 1

  
  

   − −
 + 
   = −  
  

− − −  
+ +  

 
   
   
   + +    
   
   −  

 
 =  
  































 

The state vector of this model is given by: 
x1 ( t): The position of the center of this disc 
x2 ( t): The translational velocity of the same point. 
x3 ( t): The angular velocity of the disc. 
x4 ( t): The contact force between the disc and the surface. 
The control input is denoted u(t) and is a torque applied at 

the center of the disc. 
Let us: K = 100 Nm-1, b = 30, m = 40 Kg, r = 40 cm and 
J = 0 .5 .m .r2 = 3. 2Kgm-2. 

5.1. Multi-models Representation 

The nonlinear (DAE) can be approximated by three local 
models interpolated by convex weighting functions as fol-
lows: 

3

i i i i i
i 1

Ex(t) h ( (t))(A x(t) B u(t) R d(t) x )

y(t) Cx(t)
=


= ξ + + + ∆


 =

∑

 

The numerical values of those matrices are as follows: 

1 0 0 0
1 0 1 0

0 1 0 0
E ,C 0 0 1 0

0 0 0 0
0 1 0 1

0 0 0 0

 
  
  = =   
    

 

 

1

0 1 0 0
2.508 0.75 0 0.025

A ,
0 1 0.4 0
0 0.75 4.1329 0.075

 
 − − =
 −
 

− − − 

 

2

0 1 0 0
3.2532 0.75 0 0.025

A ,
0 1 0.4 0
0 0.75 2.8267 0.075

 
 − − =
 −
 

− − − 

 

3

0 1 0 0
2.7147 0.75 0 0.025

A ,
0 1 0.4 0
0 0.75 3.6904 0.075

 
 − − =
 −
 

− − − 

 

i i

0 0 0
1 0 1

B B ,R R
0 0 0
0 0.125 0

   
   
   = = = =
   
   

−   

 

1 2 3

0 0 0
0.0002 0.1591 0.0242

x , x , x ,
0 0 0

0.7578 0.6579 0.3163

     
     
     ∆ = ∆ = ∆ =
     
     

− −     

 

The weighting functions depend on the measurable state x3(t) 
as follows: 

i

i 3
i 3 3

3
i 1

(x (t))
h (x (t))

(x (t))
=

µ
=

µ∑
 

where i 3(x (t))µ are defined by: 

23
1 3

23
2 3

23
3 3

x 5
(x (t)) exp( 1/ 2( ) )

2
x

(x (t)) exp( 1/ 2( ) )
2

x 5
(x (t)) exp( 1/ 2( ) )

2

+
µ = −

µ = −

−
µ = −

 

For u(t) t 2 for 0 t 2
u(t) 0 for t 2

= − + ≤ ≤
 = >

 

and d(t) an unknown input applied for 5 ≤ t ≤ 10. The  
simulation of the nonlinear system and the multi-models 
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representation is given by the following figures. 

 
Figure 2.  x1 of nonlinear model and x1 of the multi-models 

 
Figure 3.  x2 of nonlinear model and x2 of the multi-models 

 
Figure 4.  x3 of nonlinear model and x3 of the multi-models 

 
Figure 5.  x4 of nonlinear model and x4 of the multi-models 

These figures consider the multi-models form with the 
nonlinear system. They illustrate the superposition of the 
nonlinear states with those coming from the multi-models 
representation. We can see that the multi-models well ap-
proximate the nonlinear dynamic behavior. 

5.2. State Estimation 
● PI multi-observer matrices: The proportional inte-

gral multi-observer is represented by: 
3

i 3 i i i i i
i 1

3

i 3 i
i 1

ˆz(t) h (x (t))(N z(t) G u(t) L y(t) H d(t) z )

x̂(t) z(t) My(t)

ˆ ˆd(t) h (x (t)) (y(t) y(t))

=

=


= + + + + ∆

 = +

 = Φ −


∑

∑





 

The existence of the multi-observer is checked. A solution 
satisfying the inequality (35) can b e found by using the LMI 
Toolbox. Then, these inequalities (35) are fulfilled with: 

1

2.5371 0.1108 3.5 0.0288
9.9636 3.9838 1.71 0.2866

K ,
16.5466 0.6315 0.3311 0.1852
0.1522 0.0382 0.0093 3.5036

− 
 − − =
 − −
 
− − 

 

2

3.2894 0.2548 3.5 0.0437
26.7464 17.5204 2.1992 1.1789

K ,
54.6251 8.7911 0.2298 1.6922
0.5608 0.7586 0.0048 3.5573

− 
 
 =
 − −
 

− 

 

3

2.7512 0.1429 3.5 0.0325
14.4807 1.7065 1.8432 0.1654

K ,
8.0243 1.8632 0.3111 0.2889
0.0974 0.0564 0.0085 3.4964

− 
 − =
 − − −
 

− − 

 

[ ]
[ ]
[ ]

1

2

3

130.5052 40.4398 29.0434 3.5806 ,

168.1872 186.1140 36.8649 8.0523 ,

131.1294 19.5238 31.2183 1.5719

Φ = − −

Φ =

Φ = −

 

where Ki are the proportional gains matrices and ϕi are the 
integral gains matrices. The other parameters of the PIMO 
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are given by (14) to (14), (24), (28) and (29). 
●  UIMO matrices: The UIMO (36) is designed by 

solving the inequalities (40). Then, their obtained gains 
matrices are: 

1

0.2448 0.0320 3.5 0.0012
3.2631 0.3158 0.2312 0.0237

K ,
0.5922 0.7896 0.0342 0.0592

0 0 0.0012 3.5

− − 
 − − =
 
 

− 

 

2

0.2401 0.0488 3.5 0.0018
3.1642 0.4478 0.2233 0.0336

K ,
0.8395 1.1194 0.0419 0.0840

0 0 0.0018 3.5

− − 
 − − =
 
 

− 

 

3

0.2437 0.0364 3.5 0.0014
3.2369 0.3508 0.229 0.0263

K ,
0.6578 0.8771 0.0367 0.0658

0 0 0.0014 3.5

− − 
 − − =
 
 

− 

 

The other matrices are obtained based on the equations 
(43) and (46). 
●  Comparison performances between PIMO and 

UIMO: To evaluate the performances of both PIMO and 
UIMO in the state and unknown inputs estimation, the fol-
lowing simulation results are given under the same inputs 
and initial conditions of these observers. 

The behavior of the PIMO is shown in the figures (6) to 
(9). It is observed that for both PI and UI multi-observer, the 
estimated states can closely track the original states. How-
ever, the PIMO rebuilds the state by using the estimate of the 
unknown inputs, contrary to the UIMO which completely 
decouples the unknown inputs from the state and thus allows 
a better estimation. 

 
Figure 6.  x1(t) and their estimated by PIMO and UIMO               Figure 7.  x2(t) and their estimated by PIMO and UIMO 

 
Figure 8.  x3(t) and their estimated by PIMO and UIMO            Figure 9.  x4(t) and their estimated by PIMO and UIMO 

5.3. Unknown Inputs Estimation 
Estimated unknown input by booth PIMO and UIMO, is given in the following figure. 
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Figure 10.  Unknown input d(t) and their estimated by PIMO and UIMO 

The estimation of the unknown inputs (Figure 10) by the 
PIMO is less better than the one provided by the UIMO. 

Indeed, the convergence of the estimation of the unknown 
inputs by the PIMO is more slowly than the UIMO. 

6. Conclusions 
Performances and design comparison of the state and 

unknown inputs estimation between Proportional Integral 
and Unknown Inputs Multi-Observers based on a multi- 
models approach, for nonlinear descriptor system with un-
known inputs has been studied. The nonlinear descriptor 
system is represented by a set of sub-models where each ones 
is valid in an operating zone. The PIMO provides a good 
estimation of the state variables but worse unknown inputs 
estimation than the UIMO. However, the design of UIMO is 
more restrictive than the PIMO design. The existence con-
ditions for these both multi-observers and an LMI-based 
computation have been established. The proposed example 
illustrates the effectiveness of these proposed multi- ob-
servers and allows to compare both state and disturbance 
estimation. 
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