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Under the excitation of strings, the wooden structure of string instruments is generally assumed to undergo linear
vibrations. As an alternative to the direct measurement of the distortion rate at several vibration levels and frequen-
cies, we characterise weak non-linearities by a signal-model approach based on cascade of Hammerstein models.
In this approach, in a chain of two non-linear systems, two measurements are sufficient to estimate the non-linear
contribution of the second (sub-)system which cannot be directly linearly driven, as a function of the exciting fre-
quency. The experiment consists in exciting the instrument acoustically. The linear and non-linear contributions to
the response of (a) the loudspeaker coupled to the room, (b) the instrument can be separated. Some methodological
issues will be discussed. Findings pertaining to several instruments - one piano, two guitars, one violin - will be
presented.

1 Introduction: a linear behavior?
Non-linear phenomena such as jump phenomenon, hys-

teresis or internal resonance appear when the transverse vi-
bration of a bi-dimensional structure exceeds amplitudes in
the order of magnitude of its thickness [1].

For string musical instrument (violin family, guitars, pi-
anos...), the soundboard is generally assumed to undergo lin-
ear vibrations: the transverse motion w remains in a smaller
range than the board thickness. For example in the case of
the piano, w remains in a smaller range, even when the pi-
ano is played ff in the lower side of the keyboard. Askenfelt
and Jansson [2] report maximum values of the displacement
at the bridge wmax ≈ 6 · 10−6 m in the frequency range 80–
300 Hz (Fig. 1). This maximum value is less than 10−3 times
the board thickness (around 8 mm). It can therefore be as-
sumed that, to a high level of approximation, the vibration of
the soundboard is linear.

The purpose of this article is thus to quantify experimen-
tally such linear approximation. An original vibro-acoustical
method is presented in Sec. 2 to isolate the soundboard non-
linearity from that of the exciting device and to measure it.
Soundboard intrinsic non-linearities of one upright piano, two
guitars and one violin are then quantified using this method
and results are presented in Sec. 3.

2 A chain of two non-linear systems
When dealing with non-linearities, the non-linear contri-

bution of the system under study (here a soundboard) has to

Figure 1: Vibration levels at the bridge of a grand piano
when played pp (dash-dotted line), mf (dotted line) and ff

(solid line with • marks) for the notes C2 to B5
(fundamental frequencies ≈ 60 to 950 Hz), according to [2].

be quantified, and isolated from the non-linear contribution
of the exciting device, which can be an electromechanical ex-
citer or electrodynamic loudspeaker for example. The vibro-
acoustic method presented in this section faces this problem
and allows the estimation of the non-linear contribution of
the soundboard of the instruments in cases where it cannot
be directly linearly driven.

2.1 Notations
In Fig. 2 two non-linear systems modelling the exciting

device (an electrodynamic loudspeaker) and the system un-
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Figure 2: A chain of two non-linear systems.

der study (the soundboard) are chained. The systemSF trans-
forms its input signal X( f ) into Y( f ), which becomes the
input of the system SG and Z( f ) denotes the output of the
whole chain. SH stands for the non-linear system equivalent
to the chaining of SF and SG.

It is assumed here that only X( f ) can be directly linearly
driven and that both Y( f ) and Z( f ) are measurable. The con-
tribution of the non-linear system SG, which cannot be di-
rectly linearly driven, has to be estimated.

2.2 Modelling non-linear systems
Volterra series are a convenient tool to express analyti-

cally the relationship between the input e(t) and the output
s(t) of a weakly non-linear system [3, 4] which is fully char-
acterized by the knowledge of its Volterra Kernels in the fre-
quency domain {Vk( f1, ..., fk)}k∈N∗ .

Cascade of Hammerstein models constitute an interest-
ing subclass of Volterra systems whose Kernels possess the
following property:

∀k,∃ Ṽk : ∀( f1, . . . , fk), Vk( f1, . . . , fk) = Ṽk( f1+. . .+ fk) (1)

Volterra Kernels of cascade of Hammerstein models can
thus be expressed as functions of only one frequency variable
and are in practice easy to estimate experimentally [5, 6].
This simple method is based on a phase property of expo-
nential sine sweeps and the Kernels of such a model can be
estimated from only one measured response of the system.

2.3 Non-linear system equivalent to the chain
Let the Volterra Kernels {Fk( f1, ..., fk)}k∈N∗ , {Gk( f1, ..., fk)}k∈N∗

and {Hk( f1, ..., fk)}k∈N∗ describe the systems SF , SG et, SH .
In the cascade-case presented in Fig. 2, Volterra Kernels of
SH can be expressed analytically as functions of the Volterra
Kernels of SF and SG following [7]. For k = 1, one obtains:

H1( f1) = F1( f1)G1( f1) (2)

This proves rigorously the intuitive result that the linear
transfer function of a cascade of weakly non-linear systems
is the product of the linear transfer functions of each systems
composing the cascade. For k = 2, the following expression
is obtained:

H2( f1, f2) = F2( f1, f2)G1( f1 + f2) + . . .

. . . F1( f1)F1( f2)G2( f1, f2) (3)

Assuming that SF and SG can be modelled as cascade of
Hammerstein models, Eq. (3) becomes:

H2( f1, f2) = F̃2( f1 + f2)G̃1( f1 + f2) + . . .

. . . F̃1( f1)F̃1( f2)G̃2( f1 + f2) (4)

A chain of cascade of Hammerstein models can thus in
general not be modelled as a cascade of Hammerstein models
as it does not fulfil Eq. (1) for k = 2 due to the F̃1( f1)F̃1( f2)
term.

2.4 Non-linear contribution of the system SG

The output of the system SG can generally be decom-
posed in its linear and non-linear parts as follows:

Z( f ) = G̃1( f )Y( f ) + ZG
NL( f ) (5)

Now suppose that SF and SH can be modelled as cascade
of Hammerstein models and that their Kernels have been es-
timated using the method proposed in [5]. Linear transfer
functions F̃1( f ) and H̃1( f ) and the signals Y( f ) and Z( f ) are
thus known. The non-linear contribution of SG is then:

CSG ( f ) =
ZG

NL( f )

G̃1( f )Y( f )
(6)

Using, Eqs. (2) and (5) and multiplying by F̃1( f ), CSG ( f )
can then be conveniently computed as:

CSG ( f ) =
F̃1( f )Z( f ) − H̃1( f )Y( f )

H̃1( f )Y( f )
(7)

2.5 Numerical validation
The procedure described previously to estimate the non-

linear contribution of the system SG in the chain of Fig. 2 is
now validated on a numerical example.

Systems SF and SG have been modelled as cascade of
Hammerstein models of order 4, and each of their Kernels
as ARMA filters having two zeros and two poles. The poles
and zeros of the different ARMA filters are given in Tab. 1.
The amplitudes of the Kernels of SF and SG are presented in
Fig. 3. The sampling frequency is chosen as equal to 96 kHz.

n
fzeros

|pzeros|
fpoles

|ppoles| Gains
(kHz) (kHz)

S f

1 0.15 0.5 1.5 0.6 3
2 0.4 0.97 2 0.95 3 × 10−2

3 2 0.93 0.1 0.95 3 × 10−3

4 10 0.92 0.5 0.92 3 × 10−4

Sg

1 0.1 0.6 1.2 0.5 1
2 0.3 0.95 1.8 0.96 10−2

3 2 0.93 0.12 0.95 10−3

4 7 0.92 0.5 0.95 10−4

Table 1: Poles and zeros of the ARMA filters used to
simulate the non-linear systems S f and Sg.

The Kernels of the non-linear systems SF and SH have
been afterwards estimated using the method presented in [5]
between 20 Hz and 10 kHz, with 10 second exponential sweeps,
and assuming non-linear systems of order 4.

Cest
SG

( f ), the non-linear contribution of SG is then esti-
mated using Eq. (7) and its real value Creal

SG
( f ) is also com-

puted from the knowledge of the different Kernels of the non-
linear systems. Cest

SG
( f ) and Creal

SG
( f ) are plotted in Fig. 4.

The agreement between the estimated non-linear contri-
bution and the real non-linear contribution is found to be very
good even if the system SH is approximated by a cascade of



Figure 3: Amplitude of the Kernels of the simulated
non-linear systems SF (left) and of SG (right).
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Figure 4: Cest
SG

( f ), the non-linear contribution of SG

estimated using Eq. (7) and its real value Creal
SG

( f ) computed
from the different Kernels of the non-linear systems.

Hammerstein models which is mathematically not true here,
as shown by Eq. (4). This thus validate the use of the pro-
posed method to estimate the non-linear contribution of the
system SG which cannot be directly linearly driven in a chain
of two non-linear systems.

3 Application to string instruments

3.1 Experimental protocol
The soundboard non-linearities of four strings instruments

of no particular merit have been estimated: one piano, two
guitars and one violin. The experimental protocol (first de-
veloped in [8]), similar for each of the instruments, is pre-
sented hereafter and drawn in Fig. 5.

The instrument tuned normally and in playing conditions
is put in a pseudo-anechoic room (anechoic walls and ceiling,
ordinary ground). In the case of the guitars and the violin,
the instrument is suspended vertically, clamped at the neck.
A particular attention is taken to mute the strings by strips of
foam (or woven in two or three places) inserted between them
(see Fig. 6 for example). Two configurations {loudspeaker,
room} and {loudspeaker, instrument, room} have been anal-
ysed with the following procedure. The electrical excita-
tion of the loudspeaker was an exponential swept-sine [50-
4000] Hz (26 s duration). For each instrument, the amplitude
of the loudspeaker was adjusted at the beginning of the study

Loudspeaker

Microphone

Room

Loudspeaker

Vibrometer

Musical 
Instrument

Room

(a) (b)

Figure 5: Experimental protocol: (a) first configuration
(system SF). (b) second configuration (chain of systems
SH). In the case of the piano, the vibrometer was replaced

in the second configuration by accelerometers on the
soundboard.

so to obtain displacements of the soundboard correspond-
ing to realistic playings. To give an idea, the G = 0.5 gain
(see below), generates soundboards displacements at 500 Hz
of around 10−5 m for the guitars and violin. For the pi-
ano soundboard the displacement at 500 Hz is approximately
10−6 m. According to Askenfelt and Jansson [2] these values
correspond to the ff playing (see measurements at the bridge
of a grand piano reported in Fig. 1).

Figure 6: Typical measurement on a violin (in playing
conditions, with muted strings) excited by a loudspeaker.

The reflective adhesive tape (where the velocity is measured
by the laser vibrometer) is visible on the violin soundboard,

just above the bridge.

In the first configuration – {loudspeaker, room} – the acous-
tic response of the room y(t) is measured with a microphone
placed in front of the loudspeaker (where the instrument is to
be put in the second configuration). In the second configu-
ration – {loudspeaker, instrument, room} – where the instru-
ment replaces the microphone, the motion of the soundboard
z(t) was measured with a laser vibrometer for the violin and
the guitars (velocity in this case), and with accelerometers
for the piano (acceleration in this case).

Hence, the corresponding input-output scheme for the
different configurations can be summarised by the diagram
Fig. 2, where each system is weakly non-linear. The first
configuration (a) in Fig. 5 corresponds to the non-linear sys-
tem SF and the second one (b) to the chain of two non-linear
systems SH . Hence, the method presented in Sec. 2 allows



the estimation of the non-linear contribution of the sound-
board of the instrument – second (sub-)system SG – which
cannot be directly linearly driven.

For the present purpose, it will be assumed that the instru-
ment response exhibits the same amount of non-linearity in
the second configuration as it would if it was excited by the
acoustical field that creates y(t) at the microphone. In other
words, we consider that the instrument behaves, as far as
non-linearities are concerned, like a slightly non-linear (and
localised) microphone replacing the true one.

3.2 Results
An example of measurement showing the temporal wave-

form and the spectrogram of the soundboard velocity mea-
sured with the laser vibrometer is given in Fig. 7 (here for
the first guitar). Modes of vibrations of the soundboard are
clearly visible when instantaneous frequency of the excita-
tion signal approaches the modal frequencies: increase of
velocity (visible in the waveform) results in an increase of
non-linearities.
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Figure 7: Spectrogram and temporal waveform of the
soundboard velocity of the first guitar during a typical

measurements.

For the four instruments measured, the spectra of the lin-
ear parts of the responses and the relative non-linear contri-
butions of the responses separated as explained in Sec. 2, are
shown in Fig. 8, Fig. 9, Fig. 10 and Fig. 11 (respectively:
piano, first guitar, second guitar and violin). For each fig-
ures, the upper plots correspond to the Fourier Transform
of the linear impulse reponse (typical “spectrum”) and the
lower plots correspond to the separated non-linear contribu-
tions (with the same x- and y-scale to allow proper compari-
son between the four instruments). The contributions CSF of
the loudspeaker are given in dotted lines (first two figures),
and the contributions CSG for the soundboard of the instru-
ments in solid lines. Except for the piano case where only
one loudspeaker’s gain was tested, measurements have been
done with four or five different loudspeaker’s amplitude.

3.2.1 Piano

The non-linearity content which can be attributed to the
piano soundboard appears to be contained within−30 to−50 dB
(see Fig. 8). The apparent increase in non-linearity for fre-
quencies below 100 Hz is probably an artefact of the method
since the quality of the reconstruction of the non-linear im-
pulse responses is degraded near the lower and upper bounds
of the explored frequency range ([50-4000] Hz in the present

case). Moreover, the increase of non-linearity at anti-resonances
(see vertical green double arrows at 129 Hz and 219 Hz for
example) is certainly due to the decrease of linear contribu-
tion which enhances the measurement noise by construction
(see Eqs. 6 and 7). Altogether, the order of magnitude of
−40 dB can be retained for the non-linear contribution of the
piano soundboard at the level of ff playing.
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Figure 8: Top - Fourier Transform of the linear impulse
reponse of the piano soundboard (typical “spectrum”).

Bottom - Measured relative non-linear contributions for
both systems SF and SG. Dotted line: non-linearities of the

loudspeaker CSF ; Solid line: non-linearities of the piano
soundboard CSG . (Linear contributions are equal to 0 dB on

this graph).

Note that in the method proposed in this paper a high
quality loudspeaker is essential for an efficient separation of
the non-linearity contributions. This quality may be char-
acterised by the amount of “acoustical” non-linearity in the
first configuration (dotted line in Fig. 8). For the piano mea-
surements the non-linearities of the loudspeaker (Bose - 802
Series II) are contained within −40 to −60 dB. In the guitars
and violin cases (next three figures), the loudspeaker (Tapco
S8) has non-linearities contained within −30 to −50 dB for
the G = 0.5 gain.

3.2.2 Guitars

The results on the two guitars are given in Figs. 9 and 10
for several gain G of the loudspeaker. The spectra of the lin-
ear impulse responses are independent of the gain (almost
undistinguishable one from the other; see the top of the fig-
ures) which is consistent with the theory.
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Figure 9: Non-linearities generated by the soundboard of
the first guitar and estimated for different gain of the

loudspeaker. Caption similar to Fig. 8.
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NL Guitar2 (G=0.1)
NL Guitar2 (G=0.2)
NL Guitar2 (G=0.3)
NL Guitar2 (G=0.5)
NL Guitar2 (G=0.7)

Figure 10: Non-linearities generated by the soundboard of
the second guitar and estimated for different gain of the
loudspeaker. Caption similar to Fig. 8. (Dotted lines are

removed for more clarity.)

As explained above, some peaks of non-linearity are clearly
visible at anti-resonances, specially before the Helmholtz mode
(first resonance) of the guitars (see green double arrows at
71 Hz for the first instrument and 79 Hz for the second one).

In the low and mid-frequency ranges the evolution with
frequency of the non-linearities are similar for both guitars:
a constant increase from -50 dB (at 100 Hz) to -30 dB at
600 Hz. For frequencies higher, the non-linearities of the
second guitar seems to reach a plateau level of -20 dB (for
the two highest excitation level) whereas for the first guitar
this increase continues and reaches -10 dB at 3.5 kHz.

Moreover the non-linearities of the soundboards increase
with G for both guitars, particularly in the frequency band
[100-700] Hz which is also consistent with the theory. The
fact that in the high frequencies this evolution of non-linearities
with the gain is inverted for the second guitar may still be
attributed to an increase of the signal to noise ratio (SNR)
which leads to a decrease of the artefacts caused by noise
(when G increases). This explains also why at anti-resonances
the lower gains (lower SNR) increases the amount of esti-
mated non-linearities (see for example the blue curves higher
than black ones at anti-resonance of the Helmholtz modes,
for both guitars).

3.2.3 Violin

Results on the violin are given in Fig. 11. Except for the
peaks at anti-resonances the violin soundboard intrinsic non-
linearity is contained within -20 dB to -50 dB.

3.3 Discussion
The assumption of linearity of the soundboard vibrations

of the four instruments is verified to a high level of approxi-
mation (see Fig. 12 where the results are plotted in the same
graphs). The mean value of non-linearities is more than 20 dB
less than the linear parts in all the cases, except near the lower
and upper bounds of the explored frequency range ([50-4000] Hz)
(artefact of the method) or at anti-resonances where the SNR
decreases. The comparison reveals that the non-linearity con-
tent of the first guitar (red line) is almost 10 dB more than for
the other instruments, for frequencies higher than 1 kHz. A
conclusion on the quality of this instrument is unfortunately
impossible here (and is not the object of this paper). Such
conclusions would require measurements with more instru-
ments of different qualities/origins...
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NL Violin (G=0.2)
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NL Violin (G=0.7)

Figure 11: Non-linearities generated by the soundboard of
the violin and estimated for different gain of the

loudspeaker. Caption similar to Fig. 8. (Dotted lines are
removed for more clarity.)
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Figure 12: Comparison of the non-linearities generated by
the four instruments. (G = 0.5 for the guitars and the violin.)

4 Conclusion & Perspectives
In this article an original vibro-acoustical method is pre-

sented to isolate the soundboard non-linearity of string in-
struments from that of the exciting device (here a loudspeaker)
and to measure it. For a chain of two non-linear systems,
the method allows the estimation of the non-linear contribu-
tion of the second system which cannot be directly linearly
driven. Experimental quantifications of the linear approxi-
mation of the intrinsic soundboard vibrations of one upright
piano, two guitars and one violin is given for level of exci-
tation corresponding to the ff playing. These non-linearities
are contained within 20 dB to 50 dB less than the linear parts
in the [50-4000] Hz frequency range, except in the high fre-
quency domain of one of the guitars. The measurement noise
appears to be crucial for a proper estimation of these non-
linearities. A technique which allows to separate the mea-
surement noise from the system non-linearity and to measure
it (as in [9]) must be integrated in the method before giving
conclusions in terms of musical quality of the measured in-
struments.
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