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We report on a numerical study of the shear flow of a simple two-dimensional model of a granular material

under controlled normal stress between two parallel smooth, frictional walls, moving with opposite velocities

±V . Discrete simulations, which are carried out with the contact dynamics method in dense assemblies of disks,

reveal that, unlike rough walls made of strands of particles, smooth ones can lead to shear strain localization

in the boundary layer. Specifically, we observe, for decreasing V , first a fluid-like regime (A), in which the

whole granular layer is sheared, with a homogeneous strain rate except near the walls; then (B) a symmetric

velocity profile with a solid block in the middle and strain localized near the walls and finally (C) a state with

broken symmetry in which the shear rate is confined to one boundary layer, while the bulk of the material

moves together with the opposite wall. Both transitions are independent of system size and occur for specific

values of V . Transient times are discussed. We show that the first transition, between regimes A and B, can be

deduced from constitutive laws identified for the bulk material and the boundary layer, while the second one

could be associated with an instability in the behavior of the boundary layer. The boundary zone constitutive

law, however, is observed to depend on the state of the bulk material nearby.

PACS numbers: 45.70.Mg, 47.27.N-, 83.80.Fg, 83.50.Ax, 83.10.-y, 83.10.Rs

Keywords: Contact Dynamics method, Shear band, Constitutive laws, Friction law, Shear stress

I. INTRODUCTION

An active field of research over the last three decades [1, 2],

the rheology of dense granular flows recently benefitted from

the introduction of robust and efficient constitutive laws. First

identified in plane homogeneous shear flow [3], those laws

were successfully applied to various flow geometries [4], such

as inclined planes [2], or annular shear devices [5], both in nu-

merical and experimental works [6]. A crucial step in the for-

mulation of these laws is the characterization of the internal

state of the homogeneously sheared material in steady flow

under given normal stress by the inertial number I [3, 4] (see

also Eq. (1)), expressing the ratio of shear time to rearrange-

ment time, thereby regarding the material state as a general-

ization of the quasistatic critical state, which corresponds to

the limit of I → 0. Once identified in one geometry, those con-

stitutive laws prove able to predict velocity fields and various

flow behaviors in other situations, with no adjustable parame-

ter [7].

However, assuming a general bulk constitutive law to be

available, in general, one needs to supplement it with suit-

able boundary conditions in order to solve for velocity and

stress fields in given flow conditions. Recent studies, mostly

addressing bulk behavior, tended to use rough boundary sur-

faces, both in experiments (as in [8–10]) and in simula-

tions [3, 5, 11–13], in order to induce deformation within

the bulk material and study its rheology. Yet, in practical

cases, such as hopper discharge flow [14], granular materi-

als can be in contact with smooth walls (i.e., with asperities

∗Electronic address: zahra.shojaaee@uni-duisburg-essen.de

much smaller than the particle diameter), in which case some

slip (tangential velocity jump) is observed at the wall [15–18],

and the velocity components parallel to the wall can vary very

quickly over a few grain diameters. The specific behavior of

the layer adjacent to the wall should then be suitably charac-

terized in terms of a boundary zone constitutive law in order

to be able to predict the velocity and stress fields.

In this work we use grain-level discrete numerical simula-

tion to investigate the behavior of a model granular material

in plane shear between smooth parallel walls, a simple setup

which has already been observed to produce [19–21], depend-

ing on the control parameters, several possible flow patterns,

with either bulk shear flow, or localization of gradients at one

or both walls. We extract a boundary layer constitutive law

similar to the one applying to the bulk material. The stability

of homogeneous shear profiles and the onset of localized flows

at one or both opposite walls have been also investigated. Al-

though Couette flow between parallel flat smooth walls is not

an experimentally available configuration, we find it conve-

nient as a numerical test apt to probe both bulk and boundary

layer rheology, and their combined effects on velocity fields

and shear localization patterns.

The structure of the paper is as follows: Sec. II describes

the model system that is simulated, and gives the definitions

and methods used to identify and measure various physical

quantities. In Sec. III different flow regimes are described,

according to whether and how the velocity gradient is local-

ized near the walls. In Sec. IV we derive the constitutive laws

both in the bulk and in the boundary layer. Sec. V applies the

constitutive laws identified in Sec. IV to explain some of the

observations of Sec. III, such as the occurrence of localiza-

tion transitions or the characteristic times associated with the

establishment of steady velocity profiles. Sec. VI is a brief
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conclusion.

II. SYSTEM SETUP

A. Sample, boundary conditions, control parameters

In the contact dynamics method [22–25] (CD), grains are

regarded as perfectly rigid, and the mechanical parameters rul-

ing contact behavior are friction and restitution coefficients.

The CD method can deal with dense as well as dilute granular

assemblies, and successfully copes with collisions as well as

enduring contacts, and with the formation and dissociation of

clusters of contacting objects. We consider here a dense as-

sembly of disks (in 2D), with interparticle friction coefficient

µP=0.5. As for dense frictional assemblies, the restitution co-

efficient does not influence the constitutive laws [3], perfectly

inelastic collisions are considered (both normal and tangential

restitution coefficients are set to zero (en=et=0)). With the

same contact properties at smooth walls (µW=0.5,en=et=0),

slip velocities of the same order of magnitude as the shear

velocity occur. To avoid ordering phenomena, disks are poly-

disperse, with diameters uniformly distributed between 0.8d

and d. The largest diameter d is taken as the length unit

throughout the following (d=1[L]). Similarly the mass den-

sity of the particles is set to unity (ρ=1[M]/[L]2), so that

the mass of a disk with unit diameter is m=π/4. The time

unit is chosen such that the pressure (normal forces applied

to the walls divided by the length of the walls) have a value

σyy=Fy/Lx=0.25[M]/[T ]2, which leads to: Fy=5[M][L]/[T ]2.

In other words, we use the following base units for length,

mass and time:

[L] = d,

[M] = d2 ρ ,

[T ] =
√

5d3 ρ/Fy.

We consider simple shear flow within rectangular cells with

periodic boundary conditions in the flow direction (parallel

to the x axis in Fig. 1). Gravity is absent throughout all our

simulations. The top and bottom walls bounding the cell are

geometrically smooth, but their contacts with the grains are

frictional, with a friction coefficient µW set to 0.5. They move

with constant and opposite velocities (±V ) along direction x.

They are both subjected to inwards oriented constant forces Fy

normal to their surface, so that in steady state a constant nor-

mal stress σyy is transmitted to the sample. The wall motion in

the normal direction is ruled by Newton’s law, involving the

wall mass, equal to 50, thereby causing the system height Ly

to vary in time. In steady state shear flow, Ly fluctuates about

its average value.

Results from different samples of various sizes are pre-

sented below. System sizes and simulation parameters are

listed in Tab. I.

As in Refs. [3–5], the dimensionless inertial number, I, de-

FIG. 1: (color online) A polydisperse system of hard frictional disks

in planar shear geometry with periodic boundary conditions in x di-

rection. A prescribed normal force Fy to the confining walls, deter-

mines the constant external pressure of the system. The walls move

with the same constant velocity V in opposite directions. The width

of the lines connecting the centers of contacting particles represents

the magnitude of the normal contact forces above a threshold.

Idx n Ly Lx σyy V TSS TSim

1 511 20 20 0.25 0.005-5.00 620 20000

2 1023 40 20 0.25 0.03-30.00 2500 10000

3 1023 40 20 0.0625 0.03-30.00 9900 10000

4 3199 50 50 0.25 0.01-30.00 4000 8000

5 2047 80 20 0.25 0.01-20.00 10000 4000-12000

6 3071 120 20 0.25 0.01-35.00 22000 6000

7 5119 200 20 0.25 0.01-30.00 64000 13000

TABLE I: Parameters used in the simulations. n is the number of

disks in the sample. TSS denotes the characteristic time to approach

steady state according to Eq. (17). TSim is the total time simulated in

each run.

fined as a reduced form of shear rate γ̇:

I = γ̇

√

m

σyy

, (1)

is used to characterize the state of the granular material in

steady shear flow. In contrast to previous studies [3, 4], the

shear is not homogeneous in the present case (because of wall

slip and of stronger gradients near the walls), and in general

γ̇ is different from
2V

Ly

. Thus, the shear rate has to be mea-

sured locally. We focus in the present study on shear localiza-

tion at smooth walls and try to deduce constitutive laws in the

boundary layer, associating the boundary layer behavior not

only with wall slip, but also with the material behavior in a

layer adjacent to the wall, the internal state of which might be

affected by that of the bulk material.
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B. System preparation

To preserve the symmetry of the top and the bottom walls,

the system is horizontally filled. While distance Ly between

the walls is kept fixed, a third, vertical wall is introduced, on

which the grains (which are temporarily rendered frictionless)

settle in response to a “gravity” force field parallel to the x

axis. Then the force field is switched off, and the free sur-

face of the material is smoothened and compressed by a pis-

ton transmitting σxx = 0.25 (the same value as σyy imposed in

shear flow), until equilibrium is approached. System width Lx

is determined at this stage. Then the vertical wall and the pis-

ton are removed, the friction coefficients are attributed their

final values µP and µW and periodic boundary conditions in

the x direction are enforced. With constant Lx and variable

Ly, the shearing starts with velocities ±V for the walls and an

initial linear velocity profile within the granular layer.

C. Measured quantities

Before presenting the results, we first explain the method

used to measure the effective friction coefficient, the velocity

profiles and the inertial number. For a system in steady state,

assuming a uniform stress tensor in the whole system, a com-

mon method to calculate the effective friction coefficient is to

average the total tangential and normal forces acting on the

walls over time and then calculate their ratio. Another way

to calculate the effective friction coefficient is to consider the

components of the stress tensor with its contact, kinetic and

rotational contributions inside the system [5, 26]. The stress

in our system is dominated by contact contributions. Let σ i
c

denote the total contact stress tensor calculated for each parti-

cle i with area Ai=πd2
i /4:

σ i
c =

1

Ai
∑
j 6=i

~Fi j ⊗ ~ri j. (2)

The summation runs over all particles j having a contact with

particle i. ~Fi j is the corresponding contact force and ~ri j de-

notes the vector pointing from the center of particle i to its

contact point with particle j. We used both methods, but find-

ing no significant difference, we present in all our correspond-

ing graphs the effective friction coefficient (µeff) measured in

the interior of the system considering all terms of the stress

tensor, although the contact contribution dominates.

Our calculation of the velocity profile accounts for parti-

cle rotations, which contribute to the local velocities averaged

in stripes of thickness ∆y=1 along the flow direction, as fol-

lows. To each horizontal stripe centered at y=y′, we attribute

a velocity by averaging the contributions of all the particles it

contains (partly or completely) [27]:

υx(y
′) =

∑
i

∫

Si

(υix +ωiriy)dS

∑
i

Si

. (3)
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FIG. 2: (color online) Transient to steady state for V = 0.70 in a

system with Lx = 50 and Ly = 50.

Si denotes the surface fraction of particle i within the stripe,

υix its center of mass velocity in x direction, ωi its angular

velocity and riy is the vertical distance between the center of

mass of the particle and a differential stripe of vertical position

y and surface dS within surface Si. The velocity profiles pre-

sented here are also averaged over time intervals of ∆t=80.

Those time intervals follow each other directly without any

gap.

In the calculation of the profiles of stress tensor, each parti-

cle contributes to each stripe in proportion to the surface area

contained in the stripe. This corresponds to the scheme used

in [27] and is slightly different from the coarse graining re-

viewed in [28] in the sense that it is highly anisotropic (with a

coarse graining scale of Lx × 1) and does not incorporate the

(stress free) regions beyond the walls. One other method is to

split the contact contributions proportionally to their branch

vector length within each stripe. One may also cut through

the particles and add up the contact forces of all cut branch

vectors. All three different methods lead to the same results

in our simulations.

III. VELOCITY PROFILES AND STRAIN

LOCALIZATION

A. Steady state

A system sheared with a certain constant velocity under

prescribed normal stress is expected to reach a steady state

after a transient. For instance, in a system of size Lx=50 and

Ly=50 with a large shear velocity, V=0.7, the steady state is

reached after a shear distance of about λ ≃ 420, correspond-

ing to a shear strain of γ ≃ 8 (Fig. 2). The shear distance

is calculated by multiplying the total shear velocity (2V ) by

time. Due to slip at the smooth walls and because of non-

homogeneous flow, the values attributed to the shear distance

and the shear strain overestimate the real values in the bulk

material. Transient times before steady state will be estimated
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FIG. 3: (color online) (a) Center of mass velocity versus shear strain

for V = 0.70 in a system with Lx=50 and Ly=50. The dashed red

lines represent the velocity of the top and bottom walls. (b) His-

togram of center of mass velocity (accumulated over a long time and

over different simulated systems).

in Sec. V A, based on the constitutive laws.

In the steady state, the center of mass velocity in the system

of Fig. 3 is not conserved, because of the constant velocity of

the walls, and fluctuates about its vanishing average with an

amplitude amounting to about 10% of velocity V . This rela-

tively high level of fluctuation, which is expected to regress in

larger samples, reflects granular agitation within the sheared

layer at large V . The fluctuations in height Ly and solid frac-

tion ν (measured in the whole system) amount to only about

1% of the average after a short transient (Fig. 4). The ini-

tial sharp drop of ν , for very small shear strains, is due to the

combined effects of shear flow onset, friction activation and

change of boudary conditions on the configuration prepared

as described in Sec. II B.

In the steady state the profiles of the effective friction co-

efficient stay almost uniform throughout the system (Fig. 5),

but fluctuate in time, which is a direct consequent of shear-

ing with constant velocity and consequent fluctuations in the

center of mass velocity.

B. Shear regimes and strain localization

Fig. 6 displays the time evolution of the velocity profiles of

a system of initial height Ly=120 sheared with different veloc-

ities (a) V=2.0, (b) V=0.2 and (c) V=0.03. Those three cases

are characteristics of three different regimes observed in dif-

ferent intervals as velocity V decreases. At large velocity V ,

as for V=2.0 (panel (a) in Fig. 6), the velocity profile adopts

0 50 100 150 200 250
shear strain

0.79

0.8

0.81

0.82

0.83

ν

FIG. 4: Solid fraction ν versus shear strain at V=0.70 in a system

with Lx=50 and Ly=50.

0.2 0.25 0.3 0.35 0.4
µ

0

10

20

30

40

50

y

FIG. 5: (color online) Profiles of the measured effective friction co-

efficient at different times in steady state for V=0.70 (Lx=50 and

Ly=50).

(after a transient) a symmetric, almost linear shape with only

small fluctuations in time. The shear rate is somewhat larger

near the walls than in the bulk, but the latter region is ho-

mogeneously sheared. This is the fast or homogeneous shear

regime (regime A in the sequel). For intermediate velocities,

such as V=0.2 (panel (b) in Fig. 6) the shear rate is strongly

localized at the walls, while, ten grain diameters away from

the walls, the material is hardly sheared at all. While the

profile shape is essentially stable, its position on the veloc-

ity axis fluctuates notably: the bulk material behaves like a

solid block, but its velocity exhibits large fluctuations. To this

situation we shall refer as the intermediate or two-shear band

regime (regime B). Finally, for a low enough shear velocity,

as for V=0.03 (panel (c) in Fig. 6) the profiles fluctuate very

strongly and the top/bottom symmetry is broken. The shear

strain strongly localizes at one wall, while the rest of the sys-

tem, the bulk region and the opposite wall, moves like one sin-

gle solid object [19–21]. This is the slow shear or one-shear
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FIG. 6: (color online) Velocity profiles at different shear distances

for three different values of V , as indicated, in sample with height

Ly=120 (System 6 in Tab. I).

band regime (regime C). Localization occasionally switches

to the other wall, with a transition time that strongly depends

on the system size and on the shear velocity (as we shall dis-

cuss in Sec. V A).

In regime A the sheared layer behaves similarly to the ob-

servations reported by da Cruz et al. [3], in a numerical study

of steady uniform shear flow of a granular material between

rough walls. However, with rough walls the homogeneous

shear regime persists down to very low velocities, in spite of
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FIG. 7: (color online) Profiles of velocity and effective friction coef-

ficient (inset) in steady state and in the transient states for V=0.08 in

a system with Lx=50 and Ly=50.

increasing fluctuations. The smooth walls of our system, al-

lowing for slip and rotation at the walls, are responsible for

the more complex behavior [19–21].

In order to be able to observe the three regimes, sample

height Ly should be large enough. In smaller systems (Ly.80)

the effects of the boundary layers on the central region are

strong enough to preclude the observation of a clearly devel-

oped intermediate regime. Sheared granular layers of smaller

thickness most often exhibit a direct transition from regime A

to regime C on decreasing velocity V .

Our system size analysis shows a discontinuous transition

from regime B to regime C, at VBC≃0.10 and a continuous

transition between regimes A and B completed at VAB≃0.50

[19–21]. VBC and VAB are system size independent.

Upon reducing the shear velocity in the intermediate shear

regime towards VBC larger and larger fluctuations in the ve-

locity fields are observed, involving increasingly long corre-

lation times. Slightly above VBC the approach to a steady state

becomes problematic, even after the largest simulated shear

strain (or wall displacement) intervals. Then below VBC the

width of the distribution of the bulk region velocities reaches

its maximum value, 2V , and the velocity profile stays for

longer and longer time intervals in the localized state with one

shear band at a wall (regime C). Such localized profiles can be

regarded as quasi-steady states – as switches from one wall to

the opposite one, ever rarer at lower velocities, sometimes oc-

cur. The lifetime of these one-shear band asymmetric steady

shear profiles also increases with system height Ly, similar

to ergodic time in magnetic systems [19, 20]. These quasi-

steady states also exhibit uniform stress profiles, contrary to

the nonuniform ones in the transient states, as the localization

pattern is switching to the other side (Fig. 7).

Fig. 8 (a) is a plot of center of mass velocity in the flow di-

rection versus time in regime C. Most of the time, it is slightly

fluctuating about the value of either one of the velocities of the

walls, ±V , as also illustrated in the histogram plot, Fig. 8 (b),

for which values were accumulated over a long time and over
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FIG. 8: (color online) (a) Center of mass velocity fluctuations in

steady state for V=0.05 in a system with Lx=20 and Ly=20. The

dashed red lines represent the velocity of the top and bottom walls.

The transition time (magnified in the inset) is measured at both ends

of direct transitions from one wall to the other, between the round

dots. (b) Histogram of center of mass velocities.

different simulated systems. Transition times as the shear

band switches directly from one wall to the other are mea-

sured as indicated. Those times are recorded to be discussed

in Sec. V A 2.

C. Slip velocity

The slip at smooth walls is a characteristic feature of the

boundary region behavior.

To evaluate the slip velocity at the walls one needs to calcu-

late the average of the surface velocity of particles in contact

with the walls at their contact point. The slip velocity in this

work is defined as the absolute value of the difference between

the wall velocity and the average particle surface velocity at

the corresponding wall, υ
slip
0 at the bottom, respectively υ

slip
Ly

at the top wall. To this end all particles in contact with the

walls over the whole simulation time in steady state should be

considered, and contribute

υ
slip
0 =V + 〈υix +ωiri〉i,t , (4)

υ
slip
Ly

=V −〈υix −ωiri〉i,t , (5)

where υix is the x component of the center of mass velocity of

particle i of radius ri with angular velocity ωi.

Our observations show that the slip velocity in a certain

shear velocity interval 0.2.V .1.0 does not depend on the

system size (Fig. 9). For larger shear velocities, though the

0.01 0.1 1 10 100
V

0.001

0.01

0.1

1

10

100

υsl
ip

System 1

System 2

System 3

System 5

FIG. 9: (color online) Slip velocity υslip (averaged over υ
slip
0 and

υ
slip
Ly

) measured as a function of shear velocity (systems specified in

Tab. I).

general tendency is the same, slight deviations are observable.

The apparent change of slope of the graph near V=1 could

be associated with larger strain rates and inertial numbers in

boundary layers, gradually approaching a collisional regime

(see Sec. IV C, about the coordination number).

IV. CONSTITUTIVE LAWS

Constitutive laws were previously studied, in similar model

materials, in homogeneous shear flow [3, 29, 30]. Their sensi-

tivity to material parameters (restitution coefficients, friction

coefficients and, possibly, finite contact stiffness) is reported,

e.g. in [31]. In our system we separate the boundary re-

gions near both walls, from the central one (or bulk region).

Unless otherwise specified, the boundary regions have thick-

ness h = 10. Near the walls, the internal state of the granular

material is different, and we seek separate constitutive laws

for the boundary layers and for the bulk material. While the

bulk material is expected to abide by constitutive laws that

apply locally, and should be the same as the ones identified

in other geometries or with other boundary conditions [3, 5],

the boundary constitutive law is expected to relate stresses to

the global velocity variation across the layer adjacent to the

wall. In a continuum description suitable for large scale prob-

lems, this will reduce to relating stresses to tangential velocity

discontinuity.

A. Constitutive laws in the bulk region

1. Friction law

The steady state values of the inertial number (Ibulk) and

that of the effective friction coefficient µeff are measured, as

averages over time and over coordinate y within the interval

h < y < Ly − h. µeff is plotted as a function of Ibulk for all
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FIG. 10: (color online) µeff as a function of inertial number in the

bulk region for different system sizes (see Tab. I). The fit function is

calculated according to Eq. 6 for µ0=0.25. The error bars are much

smaller than the symbols. The inset is a semilogarithmic plot of the

same data.
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FIG. 11: (color online) Influence of h on µeff as a function of inertial

number in the bulk region (data from systems 5 and 7 in Tab. I). The

dashed red line represents the critical friction coefficient µ0=0.25.

different system sizes in Fig. 10, showing data collapse for

different sample sizes.

The apparent influence of the choice of h on the measured

effective friction coefficient and inertial number in the bulk

region is presented in Fig. 11 for two different system sizes

and for two different h values.

We observe that some data points with finite values of Ibulk

(Ibulk > 10−4) are shifted to much smaller values of Ibulk upon

increasing h: compare the open and full symbols in Fig. 11.

This effect is apparent in regimes B and C. It is due to the

creep phenomenon (as was also observed in the annular shear

cell in [5]), which causes some amount of shearing at the

edges of the bulk region, adjacent to the boundary layer, al-

though the effective friction coefficient is below the critical

value. Although the local shear stress is too small for the ma-

0 0.1 0.2 0.3 0.4
I
bulk

0.72

0.74

0.76

0.78

0.8

0.82

0.84

ν b
u

lk
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System 4

System 5

System 6

System 7

ν
bulk

 = 0.81 - 0.30 * I
bulk

FIG. 12: (color online) ν as a function of inertial number in the bulk

region. The error bars plotted are much smaller than the symbols

(systems specified in Tab. I).

terial to be continuously sheared, the ambient noise level, due

to the proximity of the sheared boundary layer, entails slow

rearrangements that produce macroscopic shear [32]. Upon

increasing h the central bulk region excludes the outer zone

that is affected by this creep effect. The critical friction coef-

ficient, from Fig. 11, is µ0=0.25 (below which the data points

are sensitive to the value of h), which is consistent with the

results of the literature [3, 5].

Fitting µeff − µ0 with a power law function, as in [29, 30]

µeff − µ0 = A · IB
bulk, (6)

the following coefficient values yield good results (see

Fig. 10):

µ0 = 0.24± 0.01,

A = 0.92± 0.05,

B = 0.80± 0.05.

2. Dilatancy law

We now focus on the variation of solid fraction ν as a func-

tion of inertial number within the bulk region. ν is averaged

over time, once a steady state is achieved, within the cen-

tral region, h < y < Ly − h. Function νbulk(Ibulk) is plotted

in Fig. 12 for different system sizes, leading once again to a

good data collapse. A linear fit for all data sets in the interval

0.03 < Ibulk < 0.20 gives:

νbulk = 0.81− 0.30 · Ibulk, (7)

which is consistent with the linear fit in [3, 5].

B. Constitutive laws in the boundary layer

In order to characterize the state of the boundary layer of

width h adjacent to the wall (recall h = 10 by default), we use
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FIG. 13: (color online) µeff as a function of inertial number in

the boundary layer. The error bars plotted are much smaller

than the symbols. As Iboundary>Ibulk (shear localization at smooth

walls) µeff(Iboundary) lies always beneath µeff(Ibulk). The presented

µeff(Ibulk) curve is based on the same data set as Fig. 10.

a local inertial number Iboundary, defined as follows:

I
top/bottom
boundary =

√

m

σyy

×

〈

∆υ top/bottom

h

〉

t

, (8)

with

∆υ top =V −υx(Ly − h), (9)

∆υbottom = υx(h)+V.

1. Friction law

Fig. 13 is a plot of µeff as a function of the inertial number

Iboundary in the boundary layer for all different system sizes.

In steady state the value of µeff in the boundary layer has to

be equal to the averaged one in the bulk. The observed shear

increase (in regime A) or localization (in regimes B and C)

near the smooth walls entails larger values of inertial numbers

in the boundary region. An equal value of µeff in the bulk

and in the boundary zone then requires that the graph of func-

tion µeff(Iboundary) is below its bulk counterpart in the inertial

number interval measured.

In Sec. IV A we have seen that the friction law can be iden-

tified in the bulk independently of h (see Fig. 11), as an intrin-

sic constitutive law. According to the definition of Iboundary

in Eqs. (8) and (9) any constitutive relation involving Iboundary

should trivially depend on h. In shear regimes B and C, there

is no shearing in the bulk region, and consequently ∆υ in the

numerator of Eq. (8) does not change with h. On multiplying

the measured Iboundary with the corresponding value of h, we

thus expect the data points belonging to shear regimes B and

C to coincide (Fig. 14). In regime A, in contrast, the existence

of shear in the bulk region leads to an apparent h dependence

of the measured ∆υ . Accordingly, after multiplying Iboundary

with h, the curves do not merge. The critical effective friction

coefficient at which the deviation of the curves begins corre-

sponds to µ0=0.25 (the dashed horizontal line in Fig. 14), in

agreement with the results in Sec. IV A 1. This makes it more

difficult to identify a constitutive law for the boundary layer,

when the bulk region is sheared in regime A.

0 10 20 30 40
I
boundary

*h

0.1

0.2

0.3

0.4

0.5

µ ef
f

h=10
h=15
h=20
h=25
h=30

0.01 0.1 1 10 100
I
boundary

*h

0.1

0.2

0.3

0.4

0.5

µ ef
f

FIG. 14: (color online) µeff versus h× Iboundary on linear (top panel)

and semi-logarithmic (bottom panel) plots. The dashed horizontal

line indicates the critical state value µeff = µ0=0.25.

The behavior of µeff shown in Fig. 14 is apparently anoma-

lous in two respects: (i) the ∆υ dependence of µeff does not

seem to follow a single curve (suggesting µeff depends on

other state parameters than the velocity variation across the

boundary zone); (ii) µeff is a decreasing function of Iboundary

for the first data points, as h× Iboundary < 0.2. In Fig. 15 (a),

we take a closer look at the low Iboundary data points, which

bear number labels 1 to 6 in the order of increasing shear ve-

locity V . The transition from regime C (one shear band) to

regime B (two shear bands) occurs between points 4 and 5,

whence a decrease in Iboundary, as the velocity change across

the sheared boundary layers changes from 2V to merely V . In

an attempt to identify one possible other variable influencing

boundary layer friction, the symbols on Fig. 15 (a) also encode

the value of the bulk density. We note then that points 4 and 6,

which have different friction levels, although approximately

the same Iboundary, correspond to different bulk densities. The

constitutive laws in the boundary layer might thus depend on

parameter νbulk in addition to Iboundary.

As to issue (ii), the decrease of µeff before the zig-zag pat-

tern on the curve of Fig. 15 (a) (data points 1 to 3) is associ-

ated to an increase in the boundary layer density with Iboundary.

This is not the case in all of the systems and these features

strongly depend on the preparation and the initial packing den-

sity (compaction in the absence of friction). Independent of

whether µeff in regime C increases or not as Iboundary increases,

µeff always displays a decreasing tendency as νboundary in-

creases, just like µeff and ν vary in opposite directions in bulk

systems under controlled normal stress, as shown in Ref. [3],

or as expressed by Eqs. (6) and (7) (panel (b) in Fig. 15). The
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FIG. 15: (color online) (a) µeff as a function of Iboundary (data from

system 5).The full symbols belong to the states with bulk densities

larger than the critical value νc=0.81 (see Eq. (7)). The full dia-

monds have a density between 0.81 and 0.82, full squares have a

density between 0.82 and 0.83 and full circles have a density larger

than 0.83. The inset represents the zig-zag with some more data

points, which are absent in the master graph for the sake of clarity.

(b) µeff as a function of νboundary. The error bars are smaller than the

symbols.

lack of a perfect collapse of the data points around the de-

creasing linear fit of Fig. 15 (b) shows however that the state

of the boundary layer in slowly sheared systems does not de-

pend on a single local variable, but is influenced by the state

of the neighboring bulk material, as remarked above.

2. Dilatancy law

After averaging the profiles of solid fraction and inertial

number over the whole simulation time in steady state in the

boundary region, νboundary(Iboundary) graphs are then plotted in

Fig. 16 (a) for different system sizes. In Fig. 16 (b), νbulk(Ibulk)
and νboundary(Iboundary) are compared for all data sets. νboundary

and νbulk drop proportionally with increasing Ibulk (shear ve-

locity) until Ibulk≃0.08 (in shear regime A). Afterwards, the

drop in νboundary is much steeper (Fig. 16 (c)).
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FIG. 16: (color online) (a) ν as a function of inertial number in the

boundary layers (systems specified in Tab. I). (b) νboundary(Iboundary)
compared to νbulk(Ibulk). (c) The ratio between νboundary and νbulk as

a function of Ibulk.

C. Coordination number

The coordination number (average number of contacts per

grain) is a quantitative measure of the status of the contact

network. Fig. 17 shows the measured coordination number in

the bulk and in the boundary layers as a function of inertial

numbers in these two regions. The data are collected from

different systems in Tab. I.

The bulk coordination number, Zbulk is fitted with the power

law function Zbulk = 2.70 − 2.76 · I0.44
bulk . The boundary re-

gion coordination number, Zboundary, follows a slightly dif-

ferent dependency on Iboundary, which becomes noticeable for

Iboundary&0.1, which corresponds to V≃1 (see Sec.III C). It

drops to smaller values, as Iboundary reaches larger values,

above 1. The decrease of coordination number as a function of

inertial number is compatible with the observations of [3], in

which some effect of restitution coefficient on Z was however

reported. The finite softness of the particles is also known to

affect coordination numbers [11] much more than the rheo-

logical laws. It is only for configurations extremely close to

equilibrium that coordination numbers are observed to exceed

the minimum value 3 for stable packings of frictionless disks
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FIG. 17: (color online) Coordination number as a function of inertial

number in the bulk and boundary regions. The error bars are much

smaller than the symbols.

(excluding rattlers), and even in quite slow flows this condi-

tion is not fulfilled.

V. APPLICATIONS

We now exploit the constitutive relations and other observa-

tions reported in the previous sections to try and deduce some

features of the global behavior of granular samples sheared

between smooth walls.

A. Transient time

1. Transient to steady state in regime A

The bulk friction law of Sec. IV A 1 can be used to evaluate

the time for a system to reach a uniform shear rate in regime A,

if we assume constant and uniform solid fraction ν and normal

stress σyy, and velocities parallel to the walls at all times. We

write down the following momentum balance equation:

∂ (ρνυx)

∂ t
=

∂σxy

∂y
, (10)

looking for the steady solution: υx = γ̇y. Assuming constant

ρ , ν and σyy we can write:

ρν
∂υx

∂ t
=

∂

∂y
[µeff(γ̇)]σyy, (11)

which leads by derivation to:

ρν
∂ γ̇

∂ t
=

∂ 2

∂y2
[µeff(γ̇)− µ0]σyy. (12)

Separating the shear rate field into a uniform part γ̇0 and a y-

dependent increment ∆γ̇ , and assuming as an approximation

just a linear dependency of µeff on γ̇ , we can rewrite Eq. (12)

as follows:

ρν
∂∆γ̇

∂ t
= σyy

∂ µeff

∂ γ̇

∂ 2

∂y2
∆γ̇, (13)

which is a diffusion equation with diffusion coefficient

D =
∂ µeff

∂ γ̇

σyy

ρν
. (14)

The characteristic time to establish the steady state profile

(uniform γ̇ over the whole sample height Ly) is then:

TSS =
L2

y

D
. (15)

A linear fit of function µeff(Ibulk) (see Fig. 10) in interval

(0.03 < Ibulk < 0.20) is:

µeff = 0.27+ 1.16 · Ibulk. (16)

According to Eqs. (1), (14), (15) and (16) this leads to:

TSS ≃ 1.56L2
y. (17)

The estimated values TSS for different system sizes is listed in

Tab. I. As TSS grows like L2
y , very long simulation runs be-

come necessary to achieve steady states in tall (large Ly) sam-

ples, and some unstable, but rather persistent, distributions of

shear rate can be observed [30, 33]. Our data for Ly=120

and Ly=200 may still pertain to slowly evolving profiles, even

though the constitutive law can be measured in approximately

homogeneous regions of the sheared layer over time intervals

in which profile changes are negligible.

2. Transition from one wall to the other in regime C

As stated in Sec. III B in regime C the asymmetric veloc-

ity profiles can be regarded as steady states and the switch-

ing stages in which the shear band changes sides are tran-

sient states in which the shear stress is not uniform through

the granular layer. We now try to estimate the characteristic

time for such transitions. This estimation does not rely on

a specific model for the triggering mechanism of the transi-

tion. It is based on the simple idea that the transition takes

place when the solid block is accelerated due to a shear stress

difference between the top and the bottom boundary zones.

Taking the whole bulk region as a block of mass M moving

with the velocity of the top wall V , a transition to velocity −V

with acceleration A will take:

Ttransition =
2V

A
, (18)

in which the acceleration A is equal to:

A =
(σ top

xy −σbottom
xy )Lx

M
. (19)
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FIG. 18: (color online) Transition time divided by the shear velocity

as a function of system height. Empty circles correspond to measured

times, while the (red) dashed line plots estimated ones, using (20).

Substituting M=ρνLxLy and σ
top
xy − σbottom

xy =∆µσyy with

∆µ=µ top − µbottom one gets:

Ttransition =
2ρνVLy

∆µσyy

. (20)

Accordingly, the transition time increases proportionally to

the shear velocity and to system height Ly. Using ν ≃ 0.84,

σyy = 0.25 and taking ∆µ ≃ 0.05 as a plausible value in shear

regime C (see Figs. 7 and 14) we calculate
Ttransition

V
as a func-

tion of system height Ly. In Fig. 18 these estimated times are

compared to transition times that are measured as explained

in the caption of Fig. 8.

Admittedly, one does not observe only direct, sharp tran-

sitions in which localization changes from one wall to the

opposite one. Some transient states are more uncertain and

fluctuating, and the system occasionally returns to a localized

state on the same wall after some velocity gradient has tem-

porarily propagated within the central region. The data points

of Fig. 18 correspond to the well-defined transitions, which

become less frequent with increasing system height. Thus a

unique data point was recorded for systems with Ly = 120 and

Ly = 160. The comparison between estimated and measured

transition times is encouraging, although the value of ∆µ in

(20) is of course merely indicative (it is likely to vary during

the transition), and the origin of such asymmetries between

walls is not clear.

B. Transition velocity VAB

µ0=0.25 from the power law fit in Eq. (6) corresponds to

the minimal value of the bulk effective friction coefficient,

the critical value below which the granular material cannot

be continuously sheared (except for local creep effects in the

immediate vicinity of an agitated layer).

Fig. 19 gives the value of the inertial number in the bound-

ary region, such that the boundary friction coefficient matches
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I
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0.4
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µ ef
f

µ
eff

=0.25

FIG. 19: (color online) The critical Iboundary, which corresponds to

µ0=0.250 (dashed red line) and determines the the critical velocity

VAB for the transition from regime A to regime B.

µ0=0.25:

µ0 = 0.25 ⇒ Iboundary=0.086± 0.005. (21)

Thus for Iboundary.0.086 we expect no shearing in the bulk.

According to Eqs. (8) and (9) this results in V=0.485±0.028,

in very good agreement with our observations reported in

Sec. III B (VAB ≃ 0.50).

The explanation of the transition from regime A to regime B

is simple: the boundary layer, with a smooth, frictional wall,

has a lower shear strength (as expressed by a friction coef-

ficient) than the bulk material. Thus for uniform values of

stresses σyy and σxy in the sample, such that their ratio σxy/σyy

is comprised between the static friction coefficient of the bulk

material and that of the boundary layers, shear flow is confined

to the latter.

C. Transition to regime C at velocity VBC

Although it is not systematically observed, and is likely to

depend on the bulk density, the decreasing trend of µeff in the

boundary layer as a function of ∆υ or of Iboundary, as appar-

ent in Figs. 14 and 15 (a), provides a tempting explanation to

the transition from regime B to regime C. Assuming µeff for

given, constant σyy, to vary in the boundary layers as

µeff = µ0 −α|∆υ |, with α > 0, (22)

one may straightforwardly show that the symmetric solution

with ∆υ =±V , and solid bulk velocity υs = 0, is unstable. A

simple calculation similar to the one of Sec. V A 2 shows that

velocity υs, if it differs from zero by a small quantity δυs at

t = 0, will grow exponentially,

υs(t) = δυs exp
2αLxσyyt

M
, (23)
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until it reaches ±V , with the sign of the initial perturba-

tion δυs. Transition velocity VBC would then be associ-

ated to a range of velocity differences ∆υ across the bound-

ary layer with softening behavior (i.e., decreasing function

µeff(Iboundary)).
In view of Fig. 15 (a), where the BC transition takes place

at point 4, this seems plausible, as the slope of function

µeff(Iboundary) appears to vanish towards this point.

VI. CONCLUSION

In this work we have investigated shear localization at

smooth frictional walls in a dense sheared layer of a model

granular material. The slip at the walls induces inho-

mogeneities in the system leading to three different shear

regimes. As the wall velocity is reduced from large values,

two transitions successively occur, in which shear deforma-

tion localizes, first symmetrically near opposite walls, and

then at a single wall. Measuring stress tensor, inertial number

and solid fraction locally in the whole system, the constitu-

tive laws have been identified in the bulk (for which our re-

sults agree with the published literature) and in the boundary

layer. Those constitutive laws, supplemented by an elemen-

tary stability analysis, allow us to predict the occurrence of

both transitions, as well as characteristic transient times. The

consistence of the derived constitutive laws for the bulk rhe-

ology with those in previous contributions [3] using the MD

method, confirm that the rheology is the same for CD and for

MD in the limit of large contact stiffness.

Additional numerical work should be carried out in order

to assess the dependence of the boundary layer constitutive

law on the state of the adjacent bulk material with full gener-

ality. The application of similar constitutive laws for smooth

boundaries should be attempted in a variety of flow configura-

tions: inclined planes, vertical chutes, circular cells. Finally,

the success of the simple type of stability analysis carried out

in the present work calls for more accurate, full-fledged ap-

proaches in which couplings of shear stress and deformation

with the density field would be taken into account.
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