La construction d'Abbes et Saito pour les connexions méromorphes: aspect formel en dimension 1
Résumé
By using a blow-up construction, the nearby-cycle functor and l-adic Fourier transform, Abbes and Saito are able to define a geometric measure of wild ramification of l-adic sheaves on the generic point of any complete discrete valuation ring of equal characteristic p with perfect residue field, where p is different from l. In this paper, we adapt their construction to differential modules over the field of formal Laurent series with coefficients in any characteristic zero field K. For such a module M, we prove a formula relating Abbes and Saito's construction to the differential forms occuring in the Levelt-Turrittin decomposition of M. If K is algebraically closed, one recovers a version of Laurent's micro-characteristic cycles.
Domaines
Géométrie algébrique [math.AG]Origine | Fichiers produits par l'(les) auteur(s) |
---|