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Competition through Cross-Entropy∗

Hélène Le Cadre†

May 28, 2012

Abstract

In this article, we study a two-level non-cooperative game between providers
acting on the same geographic area. Each provider has the opportunity to set up a
network of stations so as to capture as many consumers as possible. Its deployment
being costly, the provider has to optimize both the number of settled stations as
well as their locations. In the first level each provider optimizes independently his
infrastructure topology while in the second level they price dynamically the access
to their network of stations. The consumers’ choices depend on the perception (in
terms of price, congestion and distances to the nearest stations) that they have of
the service proposed by each provider. Each provider market share is then obtained
as the solution of a fixed point equation since the congestion level is supposed to
depend on the market share of the provider which increases with the number of
consumers choosing the same provider. We prove that the two-stage game admits
a unique equilibrium in price at any time instant. An algorithm based on the cross-
entropy method is proposed to optimize the providers’ infrastructure topology and
it is tested on numerical examples providing economic interpretations.

Keywords: Non-cooperative game; Implicit function; Cross-entropy method

1 Introduction
Global warming appears as one of the major concerns of the governments, today. Mea-
sures to reduce the greenhouse effect take various forms like the limitations of the right
to pollute through the introduction of taxes leading to the emergence of CO2 markets
where rights to pollute are negotiated between the involved partners, the development
of more intelligent infrastructures also called smart grids leading to the optimization of
the energy consumption, the introduction on the market of Electric Vehicles (EVs), etc.

This latter objective is quite controversial because the adoption of the EVs depends
deeply on the perception of the consumers and in particular on their degree of concern
∗The author thanks anonymous reviewers for their comments.
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regarding the autonomy of the vehicle. In turn, the EV range of autonomy is conditional
on the latest industrial discoveries about the manufacture of batteries, especially their
chemical constitutions [22].

Great lobbying efforts to promote green technologies and change the consumption
patterns are required to guarantee the EV adoption. But the supports of the various
governments are correlated to their will to become energy independent while providing
new sources of economic growth [22]. Additionally, their involvement is necessary
to give clear guidelines about the use of the EVs: Will they be reserved for intra-
urban usage with a monthly renewable subscription imposed to rent one vehicle of the
city maintained fleet or will their usage be extended to personal use involving longer
distance travels? Which reloading process will be privileged: battery switching where
once discharged the batteries are quickly changed in stations or a mix of short charge
reloadings in public stations located along the road and long charges at home?

From a technical point of view, the introduction of the EVs requires to address three
areas of research:

• First, we need to develop efficient prediction techniques in order to forecast the
energy demand in the stations. A first approach has been proposed in [16] where
the problem is modeled as a partial information game and a machine learning
approach based on regret minimization is provided to forecast online the energy
demand.

• Second, it is necessary to apply planning techniques in order to optimize the
charging ordering. Various techniques of operations research issued from the
management of the supply chain can be applied [30]. Dynamic programming
can also represent an alternative. But it is limited by the curse of dimensionality
especially if the number of states representing for instance the number of clients
entering simultaneously the charge station, is large [28].

• Third, the charging infrastructure topology needs to be optimized. It requires
to determine simultaneously the optimal number of charge stations as well as
their locations. Additionally, the setting up of a station being costly, the in-
frastructure topology optimization is inseparable from the underlying economic
concerns such as: Who invest in the infrastructure? What incentives can push
the providers to invest?

In this article, we focus on the third point.

Technically, the optimization of the charging infrastructure topology belongs to the
category of problems dealing with facility location. Facility location is a branch of
operations research and computational geometry concerned itself with mathematical
modeling and proposing solutions to optimize the placement of facilities in order to
minimize transportation cost, outperform competitors’ facilities, etc. It represents some
of the most widely studied problems in combinatorial optimization [12]. In the basic
formulation, a set of demand points being fixed, the objective is to pick a subset of the
set containing all the facilities to open to minimize the sum of the distances from each
demand point to its nearest facility plus the sum of opening costs of the facilities.
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The literature dealing with facility location can be divided into 4 categories: p-
median problems, p-center problems, uncapacitated facility location problems (UFLP),
capacitated facility location problems (FLP) [12], [26].

We now give some bibliographic details about these 4 categories. p-median prob-
lems find medians among existing weigthed points corresponding to the demand points
on a graph. Taking as applicative starting point the optimization of the locations of
switching centers in a communication network, Hakimi shows that it is always possi-
ble to find a collection of p optimal sites for the facility settings at vertices of the graph
[26]. In p-center problems, the goal is to minimize the maximum distance between
points and centers. A classical illustration for p = 1 is the Fermat-Weber’s problem
where the objective is to place a single facility so as to minimize the sum of the dis-
tances from a given set of points [26]. In UFLP, the objective is to choose sites among
a set of candidates in which facilities can be located so that the demands of a given
set of clients are satisfied at minimum costs. Besides, the capacities of all the facilities
are infinite. Unlike p-median problems, UFLP does not impose any constraint on the
maximum number of facilities and a cost is associated to the location of a facility mak-
ing the link with economics. Finally, FLP problems are similar to UFLP but a capacity
constraint is imposed on each facility.

The facility location problem on general graphs is NP-hard to solve optimally [12],
[26]. A number of approximation algorithms have been developed. Tentatives are
based on heuristics (such as greedy or alternate algorithms, vertex substitution, etc.),
metaheuristics (composed of various search approaches in graphs such as variable
neighborhood search, scatter search, etc., heuristic concentration, genetic algorithms,
tabu search, simulated annealing, branch and bound being the most widely used), ap-
proximation algorithms, linear programming relaxation, integer programming formu-
lations and reductions, enumerations, etc. Reese presents a survey of the algorithmic
techniques and provides detailed bibliographic references in [26]. Many research arti-
cles concentrate now on combinations of the above mentioned algorithms in order to
optimize the convergence speed and accuracy. For instance, Gosh checks that the com-
bination of tabu search and complete local search with memory enables the solving of
large instances of UFLP and outperforms other simple approximations [10].

Facility location problems are strongly linked to economics, more specifically the
design of supply chain structures and algorithmic game theory. To give a few up to
date illustrations, Albareda-Sambola et al. consider multi period location problems
where at each time instant the decision maker decides which existing facilities should
be closed and where new facilities should be opened [1]. Dürr and Nguyen tackle the
problem of placing facilities on the nodes of a metric network inhabited by a fixed
number of autonomous self-interested agents [9], [32]. They provide bounds for the
strategyproof mechanisms where none of the players can be better off by misreporting
his facility locations. The agents’ choices and therefore the optimal facility locations
are based solely on the distance between the agents and the available facilities [9], [32].
Borndörfer et al. consider the problem of optimizing the spatial distribution of controls
over a motorway in order to maximize the sum of the revenues generated by transit fees
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imposed to the drivers assuming evasion is possible [5]. It is solved as a Stackelberg
game using linear and mixed integer programs. For the first time in the literature,
the impact of the network topology and of the spatial distribution of the controls are
taken into account in the game solution. However, it requires to make a number of
simplifying assumptions regarding the drivers: they are route takers implying that their
decision reduces to pay or evade and there is no variation of sensitivity to the penalties
between them.

This article is placed in a context of competition between service providers play-
ing in the same geographic area. Each provider manages a network of stations called
charging infrastructure. He determines the number of stations to be settled and their
locations on the plane. Once the charging infrastructure has been settled, the provider
has to determine dynamically the access price to his stations over a finite time horizon.
The access price is the price that the EV drivers pay to charge their vehicle in the sta-
tion. It is updated at each time instant of the second level game. We aim at answering
the following questions:

• Is it possible to determine the charging infrastructure topology in terms of size
and locations, maximizing the provider’s revenue?

• What are the optimal dynamic pricing strategies under competition between the
providers?

The originality of the article lies in two main aspects. First, compared to classical
approaches used to model consumers’ choices [14], [15], [18], [23], [25], we have
chosen to incorporate the congestion level usually modeled as quality of service or time
before service, in the EV drivers choices. This complexity makes the game resolution
harder than under traditional approaches where the congestion level is supposed fixed
or depending exclusively on the service providers’ investments. Second, the use of
stochastic optimization enables us to solve large instances of the optimal design of the
charging infrastructure problem under dynamic pricing.

The article is organized as follows. In Section 2, we describe the EV drivers’ choice
model and the two-stage game between the service providers. In Section 3, the pric-
ing game to determine the service providers’ optimal access prices to their stations is
solved. In Section 4, a simulation approach based on the cross-entropy method is pro-
posed to optimize the providers’ charging infrastructure topology. Finally, in Section 5,
numerical illustrations highlight the potential of the elaborated method to make deci-
sions in an uncertain and competitive context while providing economic guidelines.

To facilitate the understanding, the main notations used throughout the article are
summarized in the table below.

Sk Service provider k
E Energy provider
Nk Number of stations settled by provider Sk

sk(l) Coordinates of provider Sk’s l-th station
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sk Vector containing the coordinates of all the stations managed by provider Sk

θk(t) Provider Sk market share at t
pk(t) Provider Sk access price at t
Ik Provider Sk unit investment level

pE(t) Energy provider unit selling price
N(t) Number of Electric Vehicles wishing to reload at t
πk(t) Provider Sk’s utility
cE Energy provider’s investment cost in the grid
d̄k(t) Mean value of the distance between the EV drivers and provider Sk’s stations

v(., Q(t)) Density generating the EV locations on the R2 plane
Q(t) Dynamic parameter of the above density at t
cl(k, t) Opportunity cost of EV l associated to provider Sk’s service at t
βl Congestion sensitivity coefficient of EV l
qk(t) Provider Sk’s congestion level at t
T Finite horizon of the repeated game

ϕ(., .) Function describing the congestion
B1,2(t) Indifference bound between S1 and S2 at t
Bk,0(t) Indifference bound between Sk and no reload at t
cmax Maximum admissible opportunity cost
ik Extended capacity of provider Sk

µk Provider Sk’s capacity
δ Discount factor

f(., ρk) Density generating provider Sk’s station locations
ρk Parameter of the above density
M Number of iterations of the cross-entropy algorithm
Ns Sample size
ζ One minus the value of the quantile associated to the performance statistics
d Stopping criterion

2 The model
In this section, we describe the involved players, their economic relationships and give
a mathematical formulation for their utilities.

We consider two competitive service providers S1 and S2. Each provider manages
a fixed number of stations: N1 for provider S1 and N2 for provider S2 with N1, N2 >
0. The vector containing the stations of provider Sk, k = 1, 2 locations is denoted:
sk = (sk(1), ..., sk(Nk)) where sk(l) ∈ R2 contains the coordinates of provider Sk’s
l-th station. At any time instant, EV drivers needing to reload can enter one of the
service providers’ charge stations or delay their reload. Their choice depends on their
intrinsic preferences on prices, on the congestion levels in the charge stations and on
the distances to the providers’ nearest stations1. At time instant t, we let θk(t) ∈ [0; 1]
be provider Sk’s market share. N(t) ∈ N is the dynamic process containing the total
number of EV drivers needing to reload at time instant t.

1It is assumed that online informations regarding the total number of EV drivers wishing to reload, prices,
congestion levels and distance to stations are publicly accessible both for the EVs, through electronic tech-
nologies like smart phones for instance, and for the service providers.
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In a first step, we describe provider Sk, k = 1, 2 utility. Provider Sk, k = 1, 2
determines the access to his station at a price pk(t). This is the fee required to park and
make one’s battery change/car reload, once in the station. Additionally, investing is
necessary to decrease the congestion level in the charge stations and more generally, to
improve the perceived quality. Since at the beginning of each time period, the service
provider ignores how the EV drivers will distribute among them, he is forced to make
investments considering all the EV drivers needing to reload on the plane over this
period i.e., N(t). Ik ∈ R captures the speed of investment per EV driver of provider
Sk. The higher is Ik, the higher is provider Sk’s investment in the infrastructure for
k = 1, 2. The service providers buy energy from an energy provider called E who is
supposed to be in monopoly, at a unit price pE(t) fixed byE. A specificity of the energy
is that it is very difficult to store. An envisaged possibility might be to build energy
stocks in the EV batteries, for instance at night [22]. The development of efficient
planning algorithms for the optimization of the (incoming and outcoming) energy flows
in virtual centrals constitutes one of the major challenges associated with the smart
grid management. However, the case of virtual centrals is out of the scope of this
article. It will be the subject of another article focusing on stochastic games. Therefore,
we assume that the service providers buy the quantity of energy coinciding exactly
with his clients demand. Using the previous definitions, the utility of any provider
Sk, k = 1, 2 is defined as the difference between the revenue generated by the EV
drivers choosing to reload in his stations and the cost to buy energy on provider E’s
grid so as to satisfy the EV drivers’ demand minus the investment which is necessary
to decrease the congestion level:

πk(t) =
(

(pk(t)− pE(t))θk(t)− Ik
)
N(t), ∀k = 1, 2 (1)

In a second step, we detail the energy provider’s utlity. The energy provider E re-
ceives energy from energy producers using either non-renewable or renewable sources.
Let cE ≥ 0 be the fixed cost representing energy provider E investment in the grid per
EV driver. Note that the energy provider’s investment cost can take various forms. In
general, E has to manage a public infrastructure and the investment is financed mostly
from the citizens’ monthly taxes. The energy provider E’s utility is obtained as the
difference between the revenue generated from the service providers who buy energy
on his grid and his investment to prevent congestion and degradation on his grid:

πE(t) =
(
pE(t)

∑
k=1,2

θk(t)︸ ︷︷ ︸
Total market share of the providers

−cE
)
N(t) (2)

In all the article, the distance d(., .) between two vectors of the plane coincides with
the L2- norm. Any EV driver l is located on the plane by a position vector modeled as
a random vector X(t) ∈ R2. We give justifications about this statistical assumption:
Provider Sk, k = 1, 2 does not observe the individual position of the EV drivers.
However, he collects enough information to infer the density function corresponding
to the distribution of their position on the plane. This density function is supposed
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constant over time interval [t; t+ 1[ for any t > 0. As a result, we assume that the EV
driver locations on time interval [t; t+1[ is a random variable distributed according to a
density function v(., Q(t)) whose exogeneous parameter Q(t) is time-dependent. For
instance, we might assume that the EV drivers’ trajectory is distributed according to
a two-dimensional brownian motion with correlated components. Section 5 provides
an illustration of this assumption. At time instant t, the mean value of the distance
between the EV drivers and provider Sk stations is obtained as the expectation of the
minimum distance between Sk stations locations and the EV drivers locations:

d̄k(t) = EX(t)

[
min

l=1,...,Nk

d(X(t), sk(l))
]

=

∫
R2

min
l=1,...,Nk

d(x, sk(l))v(x,Q(t))dx (3)

An EV driver wishing to reload starts by computing the opportunity cost associated
with each service provider. The notion of opportunity cost is classical in economics
[3], [14], [15], [25]. It is used to model the interdependences between the consumers
preferences regarding various attributes. Here, the attributes coincide with prices, con-
gestion levels and distances to the nearest stations. Opportunity costs are used in social
sciences and telecommunication economics to determine the providers’ market shares
in case of oligopolies [3], [14], [15]. We suppose that the EV driver chooses the ser-
vice provider having the smallest opportunity cost or delay his reload in case where
all the opportunity costs are superior to his maximum admissible opportunity cost,
0 < cmax < +∞. This maximum admissible opportunity cost is identical for all the
EV drivers. At time instant t, the congestion in provider Sk’s stations qk(t), is mea-
sured by the mean waiting time. It is captured by a function ϕ(.) of provider Sk’s
market share and investment. ϕ(.) is C2 i.e., continuous, twice differentiable and of
continuous differentiates, both in θk(t) and in Ik. Besides, it is increasing in θk(t) but
decreasing in Ik. Under all these assumptions, EV driver l’s opportunity cost toward
provider Sk is of the form:

cl(k, t) = pk(t) + βlqk(t) + d̄k(t) (4)
qk(t) = ϕ(θk(t), Ik)

where βl ∈ [0; 1] is a coefficient modeling EV driver l’s sensitivity to the congestion
in the station. Having no a priori information about the EV drivers’ preferences, we
assume that the congestion sensitivity coefficient is distributed according to the uniform
density on the interval [0; 1] i.e., βl ∼ U [0; 1], ∀l = 1, ..., N(t)2.

Station locations being fixed, the problem can be modeled as a repeated game with
complete information and finite horizon T < +∞ since at each time instant, each
service provider wants to maximize selfishly his utility by selecting his access price
[21], [34]. However, the service provider’s access price optimization depends on the

2The analytical results obtained in this article can be extended to the case where we choose another
density such as normal, truncated exponential, of gamma type, khi-deux, etc. However, under such density
assumptions, it might not be possible to derive the analytical expressions of the service providers’ market
shares and a numerical approach should be envisaged.
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EV drivers’ choices. The station locations chosen initially by the service providers is
fundamental since it influences directly the EV drivers’ choice to reload and in turn,
the service providers’ pricing strategies. Formally, the game can be described as two
stages with timing delay between the determination of station locations and station
access pricing:

(1) At t = 0, each service provider Sk, k = 1, 2 determines his station locations
simultaneously and independently. The station coordinates are then publicly an-
nounced.

For t = 1, ..., T , a pricing game is played repeatedly

(2) Each service provider Sk determines simultaneously and independently the
station access prices maximizing his utility πk(t), k = 1, 2.

(3) The EV drivers choose their service provider or delay their reload.

The repeated pricing game (steps (2) and (3)) is solved in Section 3. Step (1) i.e.,
the optimal positioning of the providers’ stations is considered in Section 4.

3 Pricing game resolution
In this section, we suppose that both providers have a fixed number of stations and that
their locations are known publicly i.e., step (1) of the game described in Section 2 is
supposed to have already been considered. In this section, the pricing game described
in steps (2) and (3) is solved analytically proceeding by backward induction. In par-
ticular, we prove that it admits a unique Nash equilibrium in price associated with a
unique allocation of the EV drivers between the providers.

3.1 EV drivers allocation between the providers
The congestion sensitivity coefficient being distributed according to a uniform density
over interval [0; 1], the analytical derivation of the providers’ market shares can be
obtained by decomposing interval [0; 1] in sub-intervals over which the EV drivers
preferences are homogeneous. These sub-interval bounds correspond to the case where
the EV drivers are indifferent between both providers and between the providers and
the possibility to delay their reload.

Formally, any EV driver l is indifferent between service providers S1 and S2 if,
and only if, the opportunity costs associated to each provider coincide i.e.: cl(1, t) =
cl(2, t). With the same reasoning, any EV driver l is indifferent between service
providers Sk, k = 1, 2 and no reloading if, and only if, cl(k, t) = cmax, k = 1, 2.

For the sake of simplicity, we introduce the indifference bounds:

• Between S1 and S2

B1,2(t) ≡

(
p1(t)− p2(t)

)
+
(
d̄1(t)− d̄2(t)

)
ϕ
(
θ2(t), I2

)
− ϕ

(
θ1(t), I1

)
8



• Between provider Sk, k = 1, 2 and no reloading

Bk,0(t) ≡ cmax − pk(t)− d̄k(t)

ϕ
(
θk(t), Ik

)
In the following lemma, we detail how the indifference bounds characterizing the

EV drivers’ preferences are derived from the comparison of the opportunity costs.

Lemma 1. At time instant t, EV driver l is indifferent between provider S1 and provider
S2 if, and only if, βl = B1,2(t). He is indifferent between no reload and S1 (resp. S2)
if, and only if, βl = B1,0(t) (resp. βl = B2,0(t)).

Proof of Lemma 1. It can be found in Appendix.

The determination of the ordering of the indifference bounds on interval [0; 1] en-
ables us to derive the analytical expressions of the providers’ market shares. We prove
in the following lemma that this ordering depends on the sign of the difference between
the provider congestion levels.

Proposition 2. Case 1: q2(t) < q1(t). Providers S1 and S2’s market shares are
defined as

θ1(t) =

(
p1(t)− p2(t)

)
+
(
d̄1(t)− d̄2(t)

)
ϕ
(
θ2(t), I2

)
− ϕ

(
θ1(t), I1

) − cmax − p1(t)− d̄1(t)

ϕ
(
θ1(t), I1

)

θ2(t) = 1−

(
p1(t)− p2(t)

)
+
(
d̄1(t)− d̄2(t)

)
ϕ
(
θ2(t), I2

)
− ϕ

(
θ1(t), I1

)
Case 2: q1(t) < q2(t). Provider S1’s market share is

θ1(t) = 1−

(
p1(t)− p2(t)

)
+
(
d̄1(t)− d̄2(t)

)
ϕ
(
θ2(t), I2

)
− ϕ

(
θ1(t), I1

)
and provider S2’s market share is

θ2(t) =

(
p1(t)− p2(t)

)
+
(
d̄1(t)− d̄2(t)

)
ϕ
(
θ2(t), I2

)
− ϕ

(
θ1(t), I1

) − cmax − p2(t)− d̄2(t)

ϕ
(
θ1(t), I1

)
Proof of Proposition 2. It can be found in Appendix.

In the rest of the article, we focus on Case 13 i.e., we assume that the congestion
level in provider S2’s stations is strictly inferior to the one in provider S1’s stations i.e.,

3Case 2 can be solved similarly by reversing the role played by both service providers.
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q2(t) < q1(t). This assumption can be justified by assuming that provider S2 invests
far more than S1 in his charging infrastructure i.e., I2 >> I1.

We introduce constraints on the station access prices guaranteeing that both providers
might emerge i.e., that none of them is condemned a priori to have a zero market share.
The following lemma is straightforward

Lemma 3. At time instant t, both providers’ prices are chosen so that p2(t)− p1(t) >
d̄1(t)− d̄2(t), otherwise provider S1 would have a zero market share.

Proof of Lemma 3. It can be found in Appendix.

Suppose that there exists 0 < pmax < +∞ so that at any time, p1(t), p2(t) ≤ pmax.
Judging by the providers’ utilities as defined in Equation (1), it is necessary to impose
that p1(t), p2(t) ≥ pE(t) at any time to guarantee the non-negativity of the providers’
utilities. Additionally, using Lemma 3, we infer the following price ordering:

pE(t) +
(
d̄1(t)− d̄2(t)

)
≤ p1(t) +

(
d̄1(t)− d̄2(t)

)
< p2(t) ≤ pmax (5)

In Proposition 2, θ1(t) (resp. θ2(t)) is still function of θ1(t) and θ2(t) i.e., we
have no simple expression of θ2(t) as a function of θ1(t) solely. However to solve as
formally as possible the Stackelberg game described in Section 2, we need to express
θ2(t) as a simple function of θ1(t).

Let

C ≡
{

(θ1(t), θ2(t))|θ1(t) + θ2(t) ≤ 1, θ1(t), θ2(t) ∈ [0; 1], ϕ
(
θ2(t), I2

)
< ϕ

(
θ1(t), I1

)}
be the constraint space containing all the possible market share allocations under the
assumption that q2(t) < q1(t) at any time instant t. It is convex as an intersection of
convex spaces.

The two equations characterizing the providers’ market shares obtained in Propo-
sition 2 are recalled below under the constraint that the associated allocations belong
to space C

G(1)

 θ1(t) = B1,2(t)−B1,0(t)
θ2(t) = 1−B1,2(t)
(θ1(t), θ2(t)) ∈ C

In order to fix the ideas, we give the mathematical expression of the congestion
level which is experienced over provider Sk’s charging infrastructure. The chosen
measure is issued from network optimization literature where the congestion of a link
is traditionally evaluated as a convex latency function of the flow crossing the link
[24]. We assume that the congestion level is averaged over all the stations managed by
Sk and that it is measured as the difference between the market share (θk(t)) and the
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normalized (extended) capacity level. Indeed, provider Sk has the opportunity to invest
in his infrastructure to reduce the congestion in his charge stations. The effect of this
investment on the extension of the charge station capacities (µk ∈ [0; 1]) is modeled
thanks to the function ϕ̃(.) which is twice differentiable, non-negative, continuous and
increasing in the provider’s investment Ik. More precisely, the formal expression of
the congestion level is:

qk(t) = ϕ
(
θk(t), Ik

)
=

(
θk(t)− (µk + ϕ̃(Ik))︸ ︷︷ ︸

ik

)
=

(
θk(t)− ik

)
.

For the sake of simplicity, we set ik ≡ µk + ϕ̃
(
Ik

)
.

We give an interpretation of the capacity constraint on the congestion level. One
originality of the model is that provider Sk has the opportunity to extend his capacity
to avoid congestion.

• If θk(t) ≤ ik then no congestion occurs in provider Sk’s charge stations. In this
case qk(t) ≤ 0 and all the arriving EV drivers are served at provider Sk’s stations
i.e., there is no queue at the entries of the stations. In this case, the experienced
quality appears as a measure of the speed at which the EV drivers are served.

• If θk(t) > ik then qk(t) > 0 and congestion is experienced in provider Sk’s
stations. In this case, provider Sk’s station capacity is exceeded and a queue is
being formed. The queue increases linearly in the number of EV drivers arriving
to be served. Therefore, the risk for a queue to appear depends on provider Sk’s
station capacities (µk) and on the provider’s effort to extend his station capacity
(ϕ̃(Ik)).

Proposition 4. Assuming that ϕ(., .) is linear in the provider’s market share, we prove
that at equilibrium, provider S2’s market share can be expressed exclusively as a a
function of provider S1’s market share.

Proof of Proposition 4. We detail the analytical expressions for the first and second
equations of System G(1). The first equation can be rewritten as:

θ1(t)
(
ϕ(θ2(t), I2)− ϕ(θ1(t), I1)

)
ϕ(θ1(t), I1) =

[
(p1(t)− p2(t)) + (d̄1(t)

− d̄2(t))
]
ϕ(θ1(t), I1)−

[
cmax − p1(t)− d̄1(t)

][
ϕ(θ2(t), I2)

− ϕ(θ1(t), I1)
]

(6)

For the second equation, we get:

(θ2(t)− 1)
[
ϕ(θ2(t), I2)− ϕ(θ1(t), I1)

]
= −

(
p1(t)− p2(t)

)
−
(
d̄1(t)

− d̄2(t)
)

(7)
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By substitution of Equation (7) in Equation (6) and by simplification by−
(
p1(t)−

p2(t)
)
−
(
d̄1(t)− d̄2(t)

)
, it comes:

ϕ(θ1(t), I1)
[
θ1(t) + θ2(t)− 1

]
+
[
cmax − p1(t)− d̄1(t)

]
= 0

We then let:

G(θ1(t), θ2(t)) ≡ ϕ(θ1(t), I1)
[
θ1(t) + θ2(t)− 1

]
+
[
cmax − p1(t)− d̄1(t)

]
(8)

Using this simplifying notation, System G(1) becomes:

G(2)

{
G(θ1(t), θ2(t)) = 0
(θ1(t), θ2(t)) ∈ C

In System G(2) we aim at describing the intersection of the zero-level set of the
function G(., .) with the constraint space, C. Differentiating G(., .) with respect to
θ1(t), we get ∂G(θ1(t),θ2(t))

∂θ1(t) = θ1(t) + θ2(t) − 1. Identically, with respect to θ2(t),

we obtain ∂G(θ1(t),θ2(t))
∂θ2(t) = ϕ(θ1(t), I1). Both these differentiates are continuous in

θ1(t) and θ2(t). Using the Implicit function theorem, we know that in cases where
∂G(θ1(t),θ2(t))

∂θ2(t) 6= 0 ⇔ θ1(t) 6= i1, there exists a unique function θ2(t) = ψ(θ1(t)),
defined and continuous in a neighborhood of θ1(t) ∈ C ∩ {θ1(t) 6= i1} such that
G
(
θ1(t), ψ(θ1(t))

)
= 0.

By substitution ofψ(.) in Equation (8) and using the fact that G
(
θ1(t), ψ(θ1(t))

)
=

0, we obtain the analytic expression of function ψ(.) which enables us to express θ2(t)
as a function of θ1(t) solely, i.e.:

θ2(t) = ψ
(
θ1(t)

)
=

(
1− θ1(t)

)
+
p1(t) + d̄1(t)− cmax

θ1(t)− i1
.

System G(2) can then be rewritten by expliciting θ2(t) as a function of θ1(t) exclu-
sively. It gives us a new system of equations that we call G(3).

G(3)


θ2(t) = ψ

(
θ1(t)

)
= (1− θ1(t)) + p1(t)+d̄1(t)−cmax

θ1(t)−κ1

(θ1(t), θ2(t)) ∈ C

The solutions of System G(3) (provided they exist) are contained in the solutions of
System G(1). Furthermore, if we impose the additional constraint that θ1(t) + θ2(t) =
x for any 0 < x < 1 in System G(3), then making x vary enables to browse all the
solutions of System G(1).
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3.2 Optimal pricing
In this section, we solve step (2) of the repeated Stackelberg game described in Sec-
tion 2. As usual in multi-level games, we proceed by backward induction [3], [15].
Step (3) has already been solved in Section 3.1: the EV drivers allocation between the
service providers are obtained through System G(3) which relies on service provider
S1’s price p1(t). Going to step (2), we want to determine the prices p1(t), p2(t) max-
imizing the providers’ utilities as defined in Equation (1) and taking into account the
price constraint defined in Equation (5).

The price ordering obtained in Equation (5) can be decomposed into the following
constraints, giving intervals of definition for both service providers’ prices:

• pE(t) ≤ p1(t) < p2(t)−
(
d̄1(t)− d̄2(t)

)
for provider S1,

• p1(t) +
(
d̄1(t)− d̄2(t)

)
< p2(t) ≤ pmax for provider S2.

The utilities defined in Equation (1) being continuous, the service providers’ opti-
mal prices are reached either in their interior or at one boundary of their price interval of
definition. Besides, System G(3) depends only on service provider S1’s price which in
turn, affects provider S2’s pricing strategy since the upper bound of provider S2’s price
interval of definition depends on p1(t). Depending on whether the optimal prices are
reached at the interior or at one boundary of the interval of definition, 4 cases emerge.
They are detailed below.

3.2.1 Case 1: The service providers’ optimal prices are reached in the interior
of their price intervals of definition

It means that p1(t) ∈]pE(t); p2(t) − (d̄1(t) − d̄2(t))[ and p2(t) ∈]p1(t) + (d̄1(t) −
d̄2(t)); pmax[. At the equilibrium, for any k = 1, 2, provider Sk’s utility should be
solution of the following equation: ∂πk(t)

∂pk(t) = 0. Then, for any provider Sk, k = 1, 2,
we have the following equivalences:

∂πk(t)

∂pk(t)
= 0 ⇔ θk(t) + (pk(t)− pE(t))

∂θk(t)

∂pk(t)
= 0

⇔ ∂θk(t)

θk(t)
= − ∂pk(t)

pk(t)− pE(t)

⇔ log(θk(t)) = log(
1

pk(t)− pE(t)
)

⇔ θk(t) =
1

pk(t)− pE(t)
since log is a bijective function.

We infer that pk(t) = pE(t) + 1
θk(t) for any provider Sk, k = 1, 2 and by substitu-

tion in System G(3), we obtain a new system of equations:

13



G(3, 1)


θ2(t) = ψ(θ1(t))

=
(

1− θ1(t)
)

+ 1
θ1(t)−i1

[
pE(t) + 1

θ1(t) + d̄1(t)− cmax

]
(θ1(t), θ2(t)) ∈ C

The objective is now to prove the existence and unicity of solutions for System G(3, 1).

Unicity of solution for System G(3, 1). In the following lemma, we prove the
unicity of System G(3, 1) solution for any value of the total market share4 x ∈ [0; 1]
such that θ1(t) + θ2(t) = x.

Lemma 5. For any x ∈ [0; 1] there exists a unique couple of value (θ1(t), θ2(t)) such
that θ1(t) + θ2(t) = x and θ2(t) = ψ(θ1(t)).

Proof of Lemma 5. It can be found in Appendix.

Although we have proved that ψ(.) is increasing over interval [0; 1], we have no
guarantees about its concavity yet. Indeed it might admit an inflection point over the
interval. In the following lemma, we introduce a sufficient condition on cmax, the EV
drivers’ maximum admissible opportunity cost, guaranteeing the concavity of function
ψ(.) over interval [0; 1].

Lemma 6. If cmax ≤ (1− i1) + pE(t) + d̄1(t) then ψ(.) is concave in θ1(t).

Proof of Lemma 6. It can be found in Appendix.

Existence of solution for System G(3, 1). In the following proposition, we detail
conditions on i1, i2 guaranteeing the existence of solutions for System G(3, 1), for any
fixed value of the total market share x ∈ [0; 1] such that θ1(t) + θ2(t) = x.

We introduce two three-order polynoms that will be useful in the following propo-
sition proof:

P1

(
θ1(t)

)
≡ 2θ3

1(t)− θ2
1(t)

[
1 + 2i1 +

(
ϕ̃(I1)− ϕ̃(I2)

)]
− θ1(t)

[
− i1

(
1

+ (ϕ̃(I1)− ϕ̃(I2))
)

+ pE(t) + d̄1(t)− cmax

]
− 1

and

P2

(
θ1(t)

)
≡ θ3

1(t)− θ2
1(t)(1 + i1) + θ1(t)

(
κ1 − pE(t)− d̄1(t) + cmax

)
− 1

The limits in −∞ and +∞ of P1(.) (resp. P2(.)) being infinite and of opposite
signs, function P1(.) (resp. P2(.)) being continuous since polynomial, the intermediate
value theorem provides us the guarantee of the existence of at least a real root solution
of the equation: P1(.) = 0 (resp. P2(.) = 0). The three roots associated with polynom
P1(.) are denoted rP1(l), l = 1, 2, 3 (resp. rP2(l), l = 1, 2, 3 for polynom P2(.)).

4In economics, the total market share i.e., the sum of the rival providers’ market share is also called
penetration or market coverage rate [13].
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We give necessary and sufficient conditions on i1, i2 guaranteeing that System G(3, 1)
admits a solution.

Proposition 7. Suppose providers S1 and S2’s optimal prices are reached in the inte-
rior of their price intervals of definition.

• In case where θ1(t) < i1 (no congestion), System G(3, 1) admits a solution if,
and only if, i1, i2 are chosen so that

i1 ≤
1

cmax − d̄1(t)− pE(t)

θ1(t) ∈ [0; rP1
(1)[ ∪ ]rP1

(1); rP1
(3)[

θ1(t) ∈ [rP2
(1); rP2

(2)] ∪ [rP2
(3); +∞[

θ1(t) ∈ [0; 1]

• In case where θ1(t) ≥ i1 (congestion occurs), System G(3, 1) admits a solution
if, and only if, i1, i2 are chosen so that

i1 >
1

cmax − pE(t)− d̄1(t)

θ1(t) ∈ [rP1
(1); rP1

(2)] ∪ [rP1
(3); +∞[

θ1(t) ∈ [0; rP2
(1)[ ∪ ]rP2

(2); rP2
(3)[

θ1(t) ∈ [0; 1]

Proof of Proposition 7. It can be found in Appendix.

As a corollary of Proposition 7, if we impose that the whole market is captured i.e.,
θ1(t) + θ2(t) = 1 then the EV driver allocation is unique: θ1(t) = 1

cmax−pE(t)−d̄1(t)

and θ2(t) = 1− θ1(t). In all generalities, if we fix the number of EV drivers delaying
their reload as 1 − x ∈]0; 1] then the optimal number of consumers for provider S1

satisfying θ1(t) + θ2(t) = x is defined uniquely as:

θ1(t) =
1

2

( 1

x− 1
(pE(t) + d̄1(t)− cmax) + i1

−

√
(

1

1− x
(pE(t) + d̄1(t)− cmax) + i1)2 +

4

1− pE(t)

)
.

Then θ2(t) is inferred from the relation: θ2(t) = x− θ1(t).

3.2.2 Case 2: Provider S1’s optimal price is reached at the inferior bound of his
price interval of definition.

In this case, p1(t) = pE(t) and pE(t) + (d̄1(t)− d̄2(t)) < p2(t) ≤ pmax. By substitu-
tion of provider S1’s optimal price in System G(3), we obtain:

G(3, 2)


θ2(t) = ψ(θ1(t))

= (1− θ1(t)) + 1
θ1(t)−i1

[
pE(t) + d̄1(t)− cmax

]
(θ1(t), θ2(t)) ∈ C

(9)
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Proposition 8. Suppose provider S1’s optimal price is reached at the inferior bound
of his price interval of definition. System G(3, 2) admits a unique solution θ1(t) = 0
and θ2(t) = 1− 1

i1
[pE(t) + d̄1(t)− cmax] if, and only if, cmax ≤ pE(t) + d̄1(t).

Proof of Proposition 8. It can be found in Appendix.

As a corollary of Proposition 8, the whole market is captured by provider S2 if, and
only if, cmax = pE(t) + d̄1(t). In all the other cases, it is impossible for the provider
to capture the total market.

3.2.3 Case 3: Provider S1’s optimal price is reached at the upper bound of his
price interval of definition and provider S2 in the interior of his price in-
terval of definition

Under these assumptions, there exists a real ε > 0 such that ε→ 0 and p1(t) = p2(t)−
(d̄1(t)− d̄2(t))− ε. Provider S2 price constraint becomes: p1(t) + (d̄1(t)− d̄2(t)) <
p2(t) ≤ pmax. Since S2 reaches his optimal price in the interior of the interval, we
have: p2(t) = pE(t) + 1

θ2(t) .

Proposition 9. Suppose provider S1’s optimal price is reached at the upper bound of
his price interval of definition and provider S2 in the interior of his price interval of
definition. The relations between the providers’ market shares take the following forms
depending whether congestion occurs.

• If θ1(t) > i1 (congestion occurs),

θ2(t) =
1

2

[
(1− θ1(t)) +

1

θ1(t)− i1
(pE(t) + d̄1(t)− cmax)

+

√
[(θ1(t)− 1)− 1

θ1(t)− i1
(pE(t) + d̄1(t)− cmax)]2 +

4

θ1(t)− i1

]
.

• If θ1(t) ≤ i1 (no congestion),

θ2(t) =
1

2

[
(1− θ1(t)) +

1

θ1(t)− i1
(pE(t) + d̄1(t)− cmax)

−

√
[(θ1(t)− 1)− 1

θ1(t)− i1
(pE(t) + d̄1(t)− cmax)]2 +

4

θ1(t)− i1

]
.

Proof of Proposition 9. It can be found in Appendix.

As a corollary of Proposition 9, if we assume that the whole market is captured
we infer each provider’s market share: θ2(t) = 1

(ε+cmax)−(d̄2(t)+pE(t))
and θ1(t) =

1− θ2(t).
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3.2.4 Case 4: Both providers reach their optimal prices at the upper bounds of
their own price interval of definition

It means that p2(t) = pmax from which we infer p1(t) = pmax − (d̄1(t)− d̄2(t))− ε.

Proposition 10. Suppose that both providers reach their optimal prices at the upper
bounds of their own price interval of definition, the relation between the providers’
market shares takes the following form:

θ2(t) = (1− θ1(t)) +
pmax − ε+ (d̄2(t)− cmax)

θ1(t)− i1

Proof of Proposition 10. It is straightforward by substitution of provider S1’s opti-
mal price in the equation: θ2(t) = ψ(θ1(t)) described in System G(3).

As a corollary of Proposition 10, if we assume that the whole market is captured,
we infer that: cmax = pmax − ε+ d̄2(t). This means that no EV drivers would choose
provider S2. Therefore, θ1(t) = 1 and θ2(t) = 0.

4 Optimization of the charging infrastructure topolo-
gies using the Cross-Entropy method

In this section, the service providers determine simultaneously and independently the
number of stations that they wish to settle as well as their locations on the R2 plane.
This coincides with step (1) of the game described in Section 2. Step (1) is solved so
as to optimize the service provider’s utility over the complete duration of the game i.e.,
over time interval [0;T ]. For this purpose, we need to define service provider Sk, k =
1, 2’s long-term utility. Indeed, in general, the optimal decisions of a player differ
in cases where we consider a repeated game that leads to a sequencial optimization
problem and in cases where the decisions are optimized over the entire course of the
game. In our game setting, provider Sk, k = 1, 2 chooses Nk ∈ N∗ as the number
of stations to settle and sk ∈ R2Nk , k = 1, 2 as their locations on the R2 plane. His
long-term utility is the sum of his one-shot utilities as described in Equation (1) which
outputs are added sequentially over the discretized finite horizon [0;T ], coefficiented
by a discount factor δ ∈]0; 1]5:

Πk(s1, s2) =

T∑
t=0

δtπk(t) (10)

x ∈ [0; 1] is the total market share i.e., the sum of both providers’ market shares.
It is known publicly by all the providers and satisfies: θ1(t) + θ2(t) = x at any time

5The discount factor is supposed identical for both providers. It means that both of them has the same
risk aversion level for the future [28], [34]. The introduction of a discount factor is classical in (stochastic)
dynamic programming and repeated game theory where the players consider their long-term utilities and
have uncertainties on the future. However, extensions where it differs between the rival providers could be
considered in a companion paper more devoted to simulation results.
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instant t. It is supposed constant over time since the batteries have a limited autonomy
which force the EV drivers to reload periodically in time. Using the total market share
value, Cases 1, 2 and 4 as described in Section 3.2, can be solved analytically. In
these cases, the resolution of the pricing game requires to solve polynomial equations
in the market shares. Case 3 is more complex and requires a numerical resolution to
identify the service providers’ market shares. However, in all the cases, it is impossible
to determine analytically the service providers’ optimal number of stations as well
as their locations, since the EV drivers’ choices depend on their spatial distribution
on the plane which is modeled as a time-dependent density function in Equation (3).
Consequentely, we resort to use simulation to determine the optimal topologies of the
service providers’ charging infrastructures.

We decouple the problem of determining the optimal number of stations to settle in
the R2 plane which is solved numerically from the problem of optimizing the station
locations on the R2 plane which is solved through simulation. We now describe both
phases. For any service provider Sk, k = 1, 2, the problem of optimizing his charging
infrastructure topology can be written as:

γ∗k = Πk(s∗1, s
∗
2) = max

sk∈R2Nk

Πk(sk, s
∗
{1,2}−k) (11)

where s∗{1,2}−k denotes the vector containing the station locations of the provider dif-
ferent from Sk for k = 1, 2, γ∗k is the maximum long-term utility output for service
provider Sk. It is not necessarily unique and might be different for the rival providers.

To determine the charging infrastructure topologies optimizing Equation (11), we
transform the initial deterministic optimization problem in an estimation one. The
cross-entropy method introduced by Rubinstein et al. [8], [27] is a general Monte-
Carlo approach to combinatorial problems like the travelling salesman, quadratic as-
signment, etc., continuous multi-extremal optimization and importance sampling [11].
It originates from the field of rare event simulation where very small probabilities need
to be accurately estimated like in queueing theory applications or more generally, per-
formance analysis of complex systems. The method has been successfully applied to
problems belonging to the field of combinatorial optimization [12] which are consid-
ered to be hard to solve. There have been many successful applications of the method
to diverse fields such as routing and performance evaluation in telecommunication net-
works [27], queueing theory, sensor selection/management [31], the optimization of
the locations of a sparse antenna array [20], etc. Le Cadre et al. use it to solve the
global level when decomposing a hierarchical search problem in two optimization lev-
els. They check that it enables to find optimal solutions in most cases with a reasonable
time [31]. These points motivated us in our turn to use the method. Additionally, we
obtain as output of the algorithm the optimal density function generating the charge
station locations which is quite original compared to previous approaches in combi-
natorial optimization [5] and might facilitate potential computations of performance
measures.

To apply the cross-entropy method to our problem, we need to suppose that provider
Sk, k = 1, 2 station locations are distributed according to a density parametrized by a

18



multi-dimensional vector of parameters called ρk, k = 1, 2 i.e.,
sk = (sk(1), ..., sk(Nk)) ∼ f(., ρk) where ρk ∈ R2Nk . We let γk be a fixed level for
service provider Sk’s long-term utility. For a certain ρk ∈ R2Nk , we associate with
(11), the problem of estimating the number l(γk):

l(γk) = Pρk [Πk(s, s∗{1,2}−k) ≥ γk] =

∫
s∈R2Nk

1{Πk(s,s∗{1,2}−k
)≥γk}f(s, ρk)ds

= Eρk [1{Πk(s,s∗{1,2}−k
)≥γk}] (12)

We give below a description of the algorithm that we use to optimize the service
providers’ charging infrastructure topologies. It is based on updates of density param-
eters ρk ∈ R2Nk , k = 1, 2.

4.1 Algorithm description
We take service provider Sk, k = 1, 2’s point of view. The algorithm is based on the
cross-entropy method introduced by Rubinstein et al. in [8], [27]. We use the following
convention: for any real number r ∈ R, dre corresponds to the smallest integer number
superior to r.

Algorithm: Charging infrastructure topology optimization

Parameters:

• M ∈ N∗ number of iterations

• Ns ∈ N∗ sample size

• ζ ∈]0; 1[ one minus the value of the quantile associated to the performance statis-
tics

• d ∈ N∗ stopping criterion

The algorithm is run for m = 1, ...,M iterations.

1. Define ρ̂k(0). Set m = 1.

2. For any m ∈ {1, ...,M}. Generate a sample (s1
k, ..., s

Ns

k ) ∼ f(., ρ̂k(m − 1))

where slk ∈ R2Nk , ∀l = 1, ...,Ns. Let Π1
k = Πk(s1

k, s
∗
{1,2}−k),..., ΠNs

k =

Πk(sNs

k , s∗{1,2}−k) and determine the associated ordered statistic: Π
(1)
k ≤ ... ≤

Π
(Ns)
k . Compute the (1 − ζ) quantile γ̂k(m) of the performance according to

γ̂k(m) = Πk(d(1− ζ)Nse).

3. Use the same sample s1
k, ..., s

Ns

k and solve:

ρ̂k(m) = max
ρk∈R2Nk

1

Ns

Ns∑
l=1

1Πk(slk,s
∗
{1,2}−k

)≥γ̂k(m)logf(slk, ρk) (13)
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4. If for some m ≥ d (ex.: d = 5), ρ̂k(m) = ρ̂k(m − 1) = ... = ρ̂k(m − d) then
stop. Otherwise set m = m+ 1 and go back to step 2 of the algorithm.

Making some assumptions on the station location generating density, we now detail
how to solve Equation (13).

For the sake of simplicity, service provider Sk’s l-th station coordinates are stored
in the two-dimensional coordinate vector:

sk(l) = (sk(l)|x, sk(l)|y) ∈ R2

where sk(l)|x contains vector sk(l) projection on the x-axis and sk(l)|y , on the y-axis.
We assume that there exists a bijective mapping between the station coordinates

and the first 2Nk integers:

M : sk(1)|x, sk(1)|y, ..., sk(Nk)|x, sk(Nk)|y 7→ {1, 2, ..., 2Nk − 1, 2Nk}

Practically, this means that two charge stations settled by provider Sk cannot share
identical x-axis (resp. y-axis) coordinates. Using the same idea, for any generated
sample l = 1, ...,Ns, there exists a bijective application Ml(.), mapping the l-th coor-
dinate vector slk on the first 2Nk integers:

Ml : slk(1)|x, slk(1)|y, ..., slk(Nk)|x, slk(Nk)|y 7→ {1, 2, ..., 2Nk − 1, 2Nk}

Besides, we assume that at iteration step m ∈ {1, ...,M} of the algorithm, service
provider Sk’s station locations are distributed according to a 2Nk- dimensional normal
density with covariance matrix:

σk =

 σk(1, 1) . . . σk(1, 2Nk)
...

...
...

σk(2Nk, 1) . . . σk(2Nk, 2Nk)

 . The covariance matrix contains

the uncertainty levels associated with the knowledge of the service providers’ station
locations. It is supposed fixed a priori and known publicly. We make the assump-
tion that the covariance matrix coefficients remaining on its diagonal always remain
positive. They coincide with the variances associated with provider Sk’s stations coor-
dinates.

The mean ρ̂k(m) ∈ R2Nk associated with the 2Nk-components of the normal den-
sity are unknown and should be estimated through Equation (13) solving. Differentiat-
ing Equation (13) with respect to the mean components, we obtain that it is equivalent
to solve the following matricial system:

ρ̂k(m) =
1∑N

l=1 1Πk(slk,s
∗
{i,j}−k

)≥γ̂k(m)

N∑
l=1

1Πk(slk,s
∗
{i,j}−k

)≥γ̂k(m)R
−1
k Clk
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whereClk =



slk(1)|x+ 1
2

∑
h6=1

σk(1,h)
σk(1,1)M

l,−1(h)

slk(1)|y + 1
2

∑
h6=2

σk(2,h)
σk(2,2)M

l,−1(h)
...

slk(Nk)|x+ 1
2

∑
h6=2Nk−1

σk(2Nk−1,h)
σk(2Nk−1,2Nk−1)M

l,−1(h)

slk(Nk)|y + 1
2

∑
h6=2Nk

σk(2Nk,h)
σk(2Nk,2Nk)M

l,−1(h)


and Ml,−1(.)

denotes the inverse of mapping Ml(.) associated with the l-th generated sequence.

Rk is a 2Nk × 2Nk matrix defined so that Rk(i, i) = 1, ∀i = 1, ..., 2Nk and
Rk(j, i) = 1

2
σk(j,i)
σk(j,j) ≥ 0, ∀i, j = 1, ..., 2Nk, i 6= j. Note that using the co-

variance definition, Rk is semi-positive definite and we observe that: Rk(j, i) =
Rk(i, j), ∀i, j = 1, ..., 2Nk, i 6= j. This last point implies that matrix Rk is sym-
metric.

Lemma 11. Matrix Rk is invertible.

Proof of Lemma 11. It is trivial to check that Rk is invertible. Using the covariance
definition, we have the inequality:

1 0 . . . 0
0 1 . . . 0
...

. . . . . .
...

0 0 . . . 1

 ≤ Rk
where inequality between two matrices of the same size is defined coordinate per co-
ordinate. Determinant being a linear form, we infer that: 1 ≤ det(Rk).

The results obtained above are summarized in the following theorem.

Theorem 12. Assuming that service provider Sk’s stations locations are distributed
according to a 2Nk- dimensional normal density centered in vector ρ̂k(m) and of fixed
covariance matrix σk, the updating rule of vector ρ̂k(m) as described in Equation (13)
is equivalent with the matricial equation:

ρ̂k(m) =
1∑Ns

l=1 1Πk(slk,s
∗
{1,2}−k

)≥γ̂k(m)

Ns∑
l=1

1Πk(slk,s
∗
{1,2}−k

)≥γ̂k(m)R
−1
k Clk

where Clk =



slk(1)|x+ 1
2

∑
j 6=1

σk(1,j)
σk(1,1)M

l,−1(j)

slk(1)|y + 1
2

∑
j 6=2

σk(2,j)
σk(2,2)M

l,−1(j)
...

slk(Nk)|x+ 1
2

∑
j 6=2Nk−1

σk(2Nk−1,h)
σk(2Nk−1,2Nk−1)M

l,−1(j)

slk(Nk)|y + 1
2

∑
j 6=2Nk

σk(2Nk,j)
σk(2Nk,2Nk)M

l,−1(j)


and Rk is a

symmetric invertible 2Nk × 2Nk matrix defined so that Rk(j, j) = 1, ∀j = 1, ..., 2Nk
and Rk(i, j) = 1

2
σk(i,j)
σk(i,i) ≥ 0, ∀i, j = 1, ..., 2Nk, i 6= j.
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Figure 1: Cone of the simulated EV trajectories.

5 Numerical illustrations
The aim of this section is to explain practical realisations of the model elaborated in
this article and to provide some economic guidelines.

The total number of EV on the market is supposed constant: N = 100. How-
ever, the number of EVs which reload at each time instant t is defined as a fraction
of the total number of EVs i.e., there exists a random variable α(t) ∈ [0; 1] such that
N(t) = α(t)N . In the numerical analysis, we assume that α(t) is generated according
to the uniform density over interval [0; 1]. Additionally, the EV drivers’ trajectories are
generated according to independent two-dimensional brownian motions whose com-
ponents are correlated. N independent brownian motions are generated. To generate
N correlated brownian motions, we need to specify the correlation matrix between the
components of these brownian motions: Q, which is of size N ×N . At time instant t,
the matrix containing the variances-covariances of the N correlated Brownian motion
equals: Q(t) = tQ. Then, the Choleski decomposition of matrix Q(t) enables us to
express the correlated brownian motion components as a linear combination of the N
independent brownian motions.

The mean value of the distance between the EV drivers and provider Sk, k = 1, 2
is obtained as an approximation of Equation (3). At each time instant t, once the
EV locations on the R2 plane has been obtained through the realizations of the N(t)
correlated brownians motions, for each provider Sk, we compute the minimum of their
distance to the closest station of the provider and average this value over N(t).

As an illustration, in Figure 1, we have simulated the trajectories of 4 EVs starting
from the same origin (0; 0), over time interval [0; 100]. The cone of the 100 simulated
trajectories for the EVs is represented in light blue.

In all this section, the game parameters are fixed as follows:

• The discount factor is: δ = 0.7.

• The service providers’ capacity per station are: µ1 = 0.83, µ2 = 0.90.
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• The providers’ investment level increases linearly in the number of stations set-
tled i.e.: I1 = 0.01N1 + 0.05 and I2 = 0.03N2 + 0.02.

• Provider Sk, k = 1, 2’s extended capacity is defined as: ik = µk + 0.1Ik.

• The total market share also called market coverage in the article, is: x = 0.8.

• The repeated pricing game parameters are defined as: T = 100, pmax = 50,
cmax = 100, pE = 10, cE = 10, ε = 10−3.

• σ1 and σ2 are non-negative symmetric matrices whose upper-diagonal and di-
agonal coefficients are generated according to a uniform density on interval
[10−3; 1].

• For the cross-entropy algorithm, the sample size is fixed so that: Ns = 10 and the
associated quantile is: ζ = 0.7. Finally, the cross-entropy algorithm maximum
number of iterations is: M = 100.

5.1 Optimization of the charging infrastructure topologies
Each provider can settle: 5, 15 or 25 stations over the R2 plane. This gives rise to 32

potential combinations. The long-term utilities of both providers are stored in Table 1
below, for each potential combination of numbers of stations.

PPPPPPPPN1

N2 5 15 25

5 (−23.38; 204.97) (−97.55; 333.67) (443.93;962.40)
15 (649.97;−23.04) (−57.65; 691.24) (510.34; 601.63)
25 (895.43;231.71) (64.62;−319.58) (−21.55;−531.99)

Table 1: Providers’ long-term utilities as functions of the number of settled stations.

We observe that there are two pure Nash equilibria (NE) in Table 1. They are both
highlighted in bold and correspond to the cases: N1 = 5, N2 = 25 for the first NE
and N1 = 25, N2 = 5 for the second one. NE N1 = 5, N2 = 25 is more favorable to
provider S2 who maximizes his long-term utility over all the potential combinations of
number of stations whereas NE N1 = 25, N2 = 5 is more favorable to provider S1. As
a result, the system might become instable if the providers does not agree and generate
periodic go-backs between the two NEs. However, if it is an unbiased decision maker
who drives the system, he will force the system to stabilize in the first NE. Indeed, this
latter coincides with the game maximum social welfare i.e., it maximizes the sum of
both providers’ long-term utilities.

In Figure 2, we have represented the providers’ long-term utilities obtained as out-
put of the dynamic pricing game, as functions of the number of stations settled by each
provider. The two NEs are highlighted by squares.
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Figure 2: Numerical determination of the number of stations to settle.

Figure 3: Providers’ long-term utilities as functions of their market share.

5.2 Market coverage
In Figure 3, we have represented the logarithm of both providers’ long-term utilities
(provider S1 in blue with o and provider S2 in magenta with ∗) as functions of the
market coverage called x ∈ [0; 1] in all the article. We observe that provider S1’s long-
term utility is increasing provided 0 ≤ x ≤ 0.6 whereas provider S2’s long-term utility
is increasing provided 0.8 ≤ x ≤ 1. This enables us to define intervals for x, the first
one being favorable to S2 and the second one to S1. The value x = 0.8 appears as
good compromise since it is not penalizing any of the providers.

5.3 An alliance to share the investments in the charging infrastruc-
ture?

Sorensen indexes are traditionally used in ecology to characterize the similarity in
terms of species present on two geographic area [2]. We make the analogy with our
illustration by defining 4 species: none of the providers (spece 0); provider S1 exclu-
sively (spece 1); provider S2 exclusively (spece 2); both providers (spece 3). To define
geographic areas, we realize a mesh over the R2 plane. It is delimitated by the extreme
coordinates of the settled stations:
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Figure 4: Density of the station locations.

[
mink=1,2{minl=1,...,Nk

sk(l)|x}; maxk=1,2{maxl=1,...,Nk
sk(l)|x}

]
×[

mink=1,2{minl=1,...,Nk
sk(l)|y}; maxk=1,2{maxl=1,...,Nk

sk(l)|y}
]
. It is then divided

into a collection of squares of equal size. Over each axis, the division step is fixed at
100 giving rise to 1002 squares of equal size.

In top of Figure 4, we have plotted the optimal stations locations over the R2 plane
for the first NE (N1 = 5, N2 = 25) at left and for the second NE (N1 = 25, N2 = 5) at
right. At the bottom of the figure, we have represented the number of species ranking
from 0 to 3 present in each square of the mesh area. In case of the first NE, the sta-
tion locations are complementary i.e., each provider covers a closed area of the plane
and the intersection between both coverage area is negligeable. In case of the second
NE, the stations are more densely concentrated and there appears a conflict in the lo-
cations. The complementary configuration seems more promising since it generates
higher long-term utilities than the conflicting one as observed in Section 5.1. Addition-
ally, it might favor the emergence of geographic alliances between the providers en-
abling them to share their charging infrastructure investment cost while widening their
coverage area. Mechanisms of cost sharing between the involved providers should then
be designed so as to encourage long-term collaboration between them. This is one of
the subject extensively studied in the mechanism design theory [21], [29]. It might
provide possible extensions of this article.

6 Conclusion
In this article, we have considered two competitive service providers optimizing inde-
pendently and simulatneously their charging infrastructure topology (in number of sta-
tions managed and in locations) while dynamically updating their station access prices
so as to maximize their utility. The resulting two-stage game is solved in two steps.
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First, the pricing game is solved using backward induction. We characterize analyti-
cally the unique Nash equilibrium in prices, at each time instant. Then, the chargining
infrastructure is optimized using simulation to determine the station locations and nu-
merical analysis to optimize their number.

Interesting extensions of the article might generalize the two-stage game resolution
to an arbitrary large number of interacting service providers. In this case, the analytic
approach provided in this article to solve the pricing game does not hold anymore. A
first alternative might be to model the game as a differential one and to determine the
optimal open-loop strategies in prices for the service providers [6]. A second alternative
might be to consider the game as a cooperative one where coalitions might emerge
[3], [21]. In such a case, the prices might be optimized using a convenient sharing
mechanism for the coalitions. Another possible extension should be to add a third level
to the two-stage game, by assuming that the energy provider M makes his price vary
dynamically and that the energy that he can sold to the service providers at any time
instant is constrained by his network capacity.

Appendix

Proof of Lemma 1
As stated above, EV driver l is indifferent between S1 and S2 if, and only if, cl(1, t) =

cl(2, t) ⇔ βl =

(
p1(t)−p2(t)

)
+

(
d̄1(t)−d̄2(t)

)
ϕ

(
θ2(t),I2

)
−ϕ
(
θ1(t),I1

) . Identically, EV driver l is indifferent

between Sk and no reload if, and only if, cl(k, t) = cmax ⇔ βl = cmax−pk(t)−d̄k(t)

ϕ

(
θk(t),Ik

) ,

for any k = 1, 2.

Proof of Proposition 2
To determine which provider is preferred at the left or at the right of the indifference
bound B1,2(t), it is important to determine the relative order between q1(t) and q2(t).
Let consider an arbitrar EV driver l.

Suppose for instance that q2(t) < q1(t) then cl(1, t) < cl(2, t) i.e., provider S1 is
preferred over provider S2 if, and only if, βl < B1,2(t). This case is denoted Case 1.

But, if q1(t) < q2(t) then cl(1, t) < cl(2, t) i.e., provider S1 is preferred over
provider S2 if, and only if, B1,2(t) < βl. This case is denoted Case 2.

Depending on the EV drivers’ congestion sensitivity coefficient position on interval
[0; 1], it is possible to determine the providers’ market shares since the EV drivers’
sensitivity coefficient is supposed to be distributed according to the uniform density on
the interval [0; 1] by the assumption described in Section 2. We obtain the following
market shares:

In Case 1, θ2(t) = 1−B1,2(t), θ1(t) = B1,2(t)−B1,0(t).
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In Case 2, θ1(t) = 1−B1,2(t), θ2(t) = B1,2(t)−B2,0(t).

Informally, it is possible to interpret the EV drivers choices with the following ar-
guments: When the EV drivers congestion sensitivity coefficient approaches 1, they
choose the provider offering the smallest congestion level. When their sensitivity co-
efficient takes intermediate values, they might be less sensitive to the congestion than
to the price. As a result, in this case, they accept to reload in the stations of the service
provider having the highest congestion level. Finally, when their sensitivity coefficient
approaches 0, the EV drivers are rather insensitive to the congestion i.e., they are not
so eager to reload and can delay it.

Proof of Lemma 3
By assumption, the congestion level in S2’s charge stations is smaller that in S1’s ones
since we have supposed that q2(t) < q1(t). At time instant t, provider S2 is always
preferred over provider S1 by any EV driver l if, and only if, cl(2, t) ≤ cl(1, t) ⇔
p2(t) + βlq2(t) + d̄2(t) ≤ p1(t) + βlq1(t) + d̄1(t) ⇔ p2(t) − p1(t) ≤ d̄1(t) − d̄2(t)

since βl
(
q1(t)− q2(t)

)
> 0 by assumption.

Proof of Lemma 5
Differentiating ψ(.) once with respect to θ1(t), we obtain:
ψ′(θ1(t)) = −1 − 1

(θ1(t)−i1)2 (pE(t) + 1
θ1(t) + d̄1(t) − cmax) − 1

θ1(t)−i1
1

θ21(t)
. By

absurd reasoning, we assume that ψ′(θ1(t)) < 0. This is equivalent with the follow-
ing inequality: − 1

(θ1(t)−κ1)2 (pE(t) + 1
θ1(t) + d̄1(t) − cmax) + 1

θ1(t)−i1 (− 1
θ21(t)

) < 1.

Multyplying each side of the inequality by the term (θ1(t) − i1)2θ1(t), we infer:
θ4

1(t)− 2i1θ
3
1(t) + θ2

1(t)[i21 − d̄1(t) + cmax − pE(t)]− i1 > 0. This inequality should
be true for any θ1(t) ∈ [0; 1]. But at the boundary θ1(t) = 0 we obtain −i1 > 0
which contradicts the definition of i1 given in Section 3.1. Therefore, ψ′(.) is positive
over interval [0; 1] meaning that function ψ(.) is increasing other this interval. As a by
product, the intersection of function ψ(.) with the line of equation θ2(t) = x− θ1(t) is
unique.

Proof of Lemma 6
Differentiating ψ(.) twice with respect to θ1(t), we obtain:

ψ′′(θ1(t)) =
2(pE(t) + 1

θ1(t) + d̄1(t)− cmax)

(θ1(t)− i1)3
+

2

θ3
1(t)(θ1(t)− i1)

+
2

θ2
1(t)(θ1(t)− i1)2

From this, we infer that ψ(.) cannot be convex provided it is continuous by assumption.
Reducing ψ′′(.) to the same denominator θ3

1(t)(θ1(t) − i1)3, we obtain ψ′′(.) < 0 ⇔
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θ3
1(t)(pE(t)+d̄1(t)−cmax)+θ1(t)(3θ1(t)−2i1)+2κ2

1 < 0. This is a polynom of order
3 in θ1(t). The constant coefficient is positive whereas the coefficient of the higest order
term (pE(t) + d̄1(t) + cmax) is negative. Indeed, if it were non-negative, provider S1

would not have any clients. Besides, the polynom derivative is negative in zero meaning
that the polynom is decreasing in the neighborhood of zero. As a result, if the polynom
admits three real roots, there are necessarily non-negative. The polynom admits a
unique minimum and a unique maximum. A sufficient condition to guaranteeing that
θ3

1(t)(pE(t) + d̄1(t) − cmax) + θ1(t)(3θ1(t) − 2i1) + 2i21 < 0 is to impose that the
game parameters are chosen so that the polynom minimum is greater than 1. But, the

polynom minimum is reached in 6+
√

36+24(pE(t)+d̄1(t)−cmax)κ1

6(cmax−pE(t)+d̄1(t))
. Finally, this value is

smaller than 1 if, and only if, cmax ≤ (1− i1) + pE(t) + d̄1(t).

Proof of Proposition 7
ψ(.) being increasing (cf. Lemma 5), System G(3, 1) admits a solution if, and only if
the couple of allocations (θ1(t), θ2(t)) belongs to the constraint space C. Formally, it
means that the following inequalities should be simultaneously checked:

0 ≤ θ1(t) ≤ 1 (14)
ψ(θ1(t)) ≤ 1− θ1(t) (15)

ψ(θ1(t)) ≤ θ1(t)−
(
ϕ̃(I1)− ϕ̃(I2)

)
(16)

ψ(θ1(t)) ≥ 0 (17)

Constraint (15) gives us 1
θ1(t)−i1 [pE(t) + 1

θ1(t) + d̄1(t)− cmax] ≤ 0. Depending on
the sign of θ1(t) − i1, two cases appear. Either θ1(t) < i1 i.e., there is no congestion
in provider S1’s stations, or θ1(t) ≥ i1 i.e., congestion occurs. It is easy to check that
if θ1(t) < i1, the second constraint is checked if, and only if, i1 ≤ 1

cmax−d̄1(t)−pE(t)
.

If θ1(t) ≥ i1; the second constraint is checked if, and only if, i1 > 1
cmax−pE(t)−d̄1(t)

.

Constraint (16) is equivalent with (1 − θ1(t)) + 1
θ1(t)−i1 [pE(t) + 1

θ1(t) + d̄1(t) −

cmax] ≤ θ1(t)−
(
ϕ̃(I1)− ϕ̃(I2)

)
. To simplify the expression, we need to multiply it

by (θ1(t)− i1)θ1(t). The two cases cited above already hold.
Besides, we note that P1(0) = −1 < 0 and that P ′1(0) = i1(1+

(
ϕ̃(I1)−ϕ̃(I2)

)
)−

pE(t) − d̄1(t) + cmax ≥ 0 since by assumption q2(t) < q1(t) therefore
(
ϕ̃(I1) −

ϕ̃(I2)
)
≥ 0 and cmax needs to be greater than pE(t) + d̄1(t) since otherwise no EV

driver would choose S1 as provider. These remarks imply in turn that if polynom P1(.)
admits three real roots, they are all non-negative.

In case where θ1(t) > i1, we need to determine the θ1(t) so that P1(θ1(t)) ≥ 0
whereas in case where θ1(t) ≤ i1, we need to determine the θ1(t) so that P1(θ1(t)) ≤
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0. This is easily performed by comparing the positions of θ1(t) and those of polynom
P1(.)’s roots.

Constraint (17) is equivalent with (1 − θ1(t)) + 1
θ1(t)−i1 [pE(t) + 1

θ1(t) + d̄1(t) −
cmax] ≥ 0. To simplilfiy this inequality, we need to multiply it by (θ1(t)− i1)θ1(t).

Proceeding as above, we observe that P2(0) = −1 and that P ′2(0) = κ1 − pE(t)−
d̄1(t)+cmax > 0. As cited in Constraint (16) study, two cases should be distinguished.
If θ1(t) > i1, we need to determine the θ1(t) so that P2(θ1(t)) ≤ 0 whereas in case
where θ1(t) ≤ i1, we need to determine the θ1(t) so that P2(θ1(t)) ≥ 0. This is
performed by comparing the position of θ1(t) and those of polynom P2(.)’s roots.

Depending on whether congestion occurs, the admissible area for the couple of
allocations are summarized in Proposition 7 statement.

If the whole market is captured then θ1(t) + θ2(t) = 1⇔ θ1(t) +ψ(θ1(t)) = 1⇔
p1(t) + d̄1(t) − cmax = 0. Since at equilibrium p1(t) = pE(t) + 1

θ1(t) we infer that
θ1(t) = 1

cmax−pE(t)−d̄1(t)
when the whole market is captured.

If only a fraction x 6= 1 of the market is captured, solving θ1(t) + θ2(t) = x is
equivalent to solve a second order polynomial equation in θ1(t): θ2

1(t)+ [ 1
x−1 (pE(t)+

d̄1(t)− cmax) + i1]θ1(t)− 1
x−1 = 0. The constant coefficient being non-negative and

the polynom increasing to infinity both when θ1(t) → +∞ and θ1(t) → −∞, we
infer that if the polynom admits real roots they are non-negative. Therefore, under
the assumption that the parameters i1, i2 have been chosen so that the second-order
polynom admits real roots, we conclude that the unique allocation for S1 coincides
with the smallest root whose expression is recalled in Proposition 7 statement.

Proof of Proposition 8
Differentiating ψ(.) twice with respect to θ1(t), we obtain:
ψ′′(θ1(t)) = 2

(θ1(t)−i1)3 (pE(t) + d̄1(t) − cmax). To determine the sign of ψ′′(.), two
cases should be distinguished:

• Suppose cmax > pE(t) + d̄1(t). In this case ψ′′(θ1(t)) < 0 meaning that ψ(.) is

concave. But ψ(0) = 1− 1

i1
[pE(t) + d̄1(t)− cmax]︸ ︷︷ ︸

>0

> 1. Since ψ(.) is concave,

ψ(.) cannot belong to the constraint space C. Therefore, under this assumption
on cmax, System G(3, 2) has no solution.

• Suppose cmax ≤ pE(t)+d̄1(t). Provider S1’s congestion level being positive, the
opportunity cost associated to provider S1 is always greater than the maximum
admissible opportunity cost. It implies that provider S1’s market share vanishes
i.e., θ1(t) = 0. By substitution in ψ(.) expression, we obtain provider S2’s
market share: θ2(t) = 1− 1

i1

[
pE(t) + d̄1(t)− cmax

]
≤ 1.
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Proof of Proposition 9

By substitution of p1(t) expression in System G(3), function ψ(.) takes the form:
ψ(θ1(t)) = (1− θ1(t)) + p2(t)−ε+(d̄1(t)−cmax)

θ1(t)−i1 .

We want to express θ2(t) exclusively as a function of θ1(t). Therefore, we multiply
the equation θ2(t) = ψ(θ1(t)) by θ1(t). Then, we need to solve a second-order polyno-
mial equation in θ2(t): θ2

2(t) +
[
(θ1(t)− 1)− 1

θ1(t)−i1 (pE(t) + d̄1(t) + cmax)
]
θ2(t)−

1
θ1(t)−i1 = 0. Suppose that the parameter i1 is chosen so that the polynom’s discrimant
remains non-negative, then θ2(t) is obtained as the smallest or the largest root of the
polynom depending whether congestion occurs. The root analytical expressions are
given in Proposition 9 statement.
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