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Dealing with Uncertainty in the Smart Grid: A Learning Game
Approach∗

Hélène Le Cadre† Jean-Sébastien Bedo‡

Abstract

We model the smart grid as a decentralized and hierarchical network, made up of three categories of agents: suppliers,
generators and captive consumers organized in microgrids. To optimize their decisions concerning prices and traded power,
agents need to forecast the demand of the microgrids and the fluctuating renewable productions. The biases resulting from
the decentralized learning could create imbalances between demand and supply leading to penalties for suppliers and for
generators. We analytically determine prices that provide generators with a guarantee to avoid such penalties, transferring risk
to the suppliers. Additionally, we prove that collaborative learning, through coalitions of suppliers among which information
is shared, minimizes the sum of their average risk. Simulations, run for a large sample of parameter combinations, using
external and internal regret minimization, show that the convergence of collaborative learning strategies is clearly faster than
that resulting from individual learning. Finally, we analyze the suppliers’ incentives to organize in a grand coalition versus
multiple coalitions, and the tightness of the learning algorithm’s theoretical bounds.

Keywords: Learning ; Regret ; Optimization Under Uncertainty ; Game Theory

1 Introduction
In Europe, and especially France, power networks rely heavily on nuclear-based technology. With this type of non-renewable
technology, generations can be adapted by the plant operator who alternates openings and closings and optimizes the duration
of the switches between modes. The objective is thus to adapt the generations so as to meet the uncertain demand level
[12]. For renewables, generations can only be partially controlled, for instance, by lowering the wind turbine speed [17].
Renewable integration in the power network requires deploying smart Information and Communication Technologies (ICTs)
to supervise the grid operations [18]. Indeed, renewable generation is highly unpredictable since it depends on uncontrollable
exogenous factors like wind, sun, swell, etc. Furthermore, the new active role of end users, who can become power generators,
dynamically adapt their consumption and fit into a multitude of microgrids [24], [25], dramatically increases the volume of
exchanged data flows. ICTs appear to be a means to retrieve the most salient information from this large amount of data and to
train forecasters to provide efficient predictions regarding fluctuating generations such as renewables. These predictions will
then be used as inputs to optimize the smart grid operations [2].

In practice, it is increasingly apparent that current forecasting methods cannot properly handle extreme situations cor-
responding to either severe weather phenomena or critical periods for power system operations. For example, forecasting
methods used to predict wind power were mostly designed to provide single value forecasts to estimate the generations. Only
recently, probabilistic methods have been introduced to provide estimations of the entire distribution of future generations [3]
or predictions based on intervals [11]. In such methods, forecasts may take the form of either quantile estimations or density
estimations [5]. The difficulty to process massive, heterogeneous and dynamic volumes of data emanating from decentralized
and heterogeneous sources has favored the launching of automatic data processing methods grouped under the umbrella of
Machine Learning [11]. Learning based on regret minimization [4] belongs to this latter category. This class of method pro-
vides the forecaster with a density function that associates a weight to each possible output. The density function is updated by
merging (online) information from various experts’ reports. As a result, these methods are more robust in the face of extreme
events and appear particularly well suited to model erratic processes such as renewables.

In the framework of the smart grid, learning is performed in a decentralized manner since each agent primarily learns the
hidden information using its own observations. Existing literature on distributed learning mostly focuses on distributed learn-
ing algorithms that are suitable for implementation in large-scale engineering systems [13, 14, 23]. Many articles concentrate
on games of potential [26]. This class of games is of particular interest since they have inherent properties that can provide
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guarantees on the convergence and stability of the system but remain very difficult to use in a full systemic framework. Indeed
some systems may not be modeled as potential games [17]. A signaling game is also introduced in [13] to model competition
among geographic demand markets constrained by limited transmission capacities.

The learning game studied in this paper belongs to the category of repeated uncoupled games since one agent cannot
predict the forecasts and so actions of the other agents at a given time period. To take its decision i.e., optimal prices and
power orders, each agent is aware of the forecast history of all the agents in its coalition and of its utility. For finite games
with generic payoffs, recent work has shown the existence of completely uncoupled learning rules i.e., rules where the agents
observe only their own prediction history and their utility, leading to Pareto-optimal Nash equilibria [23]. Marden et al. exhibit
a different class of learning procedures that lead to a Pareto-optimal vector of actions that do not necessarily coincide with
Nash equilibria [17]. Close to the work exposed in our article, Zheng et al. propose an online algorithm that simultaneously
updates the weight given to each forecaster using regularized sequential linear regression, while allowing each forecaster to be
retrained based on the latest observations in an online manner [27]. The updating of the individual forecasters to accommodate
the online observations relies on a gradient-descent algorithm. Expert system coordination can also be used to aggregate the
set of predictors into a better global predictor [10].

Most collaborative mechanisms studied in literature lead to price or quality of service alignment. In addition, the group
composition provides an additional state space in which information about the environment can be accumulated [19]. To
our knowledge, no study has so far been made of the impact of collaboration through information sharing, when prices are
individually determined, on the underlying system performance. Of course, collaboration might not emerge due to the agents’
natural incentives to cheat and deviate from the cooperative equilibrium and also, most frequently, due to the regulator’s
intervention. There are a number of well-understood reasons why regulators often do not allow horizontal collaboration: if
suppliers are allowed to collaborate, they might cooperate to raise the price i.e., reduce quantity below the efficient baseline,
and create market power [6]. Alternatively, suppliers might cooperate to reduce quality of service. Courts punish agreements
that explicitly aim to decrease competition.

In this article, we answer the following questions:

1) How will the biases caused by the errors made by the agents in their predictions affect the agents’ average risk?

2) Does collaborative learning improve the smart grid’s overall performance?

3) Do the agents have greater incentives to organize in a grand coalition than in a multiplicity of smaller size coalitions?

The article is organized as follows. In Section 2, we introduce the foundation of our model i.e., the agents, their utility
and their optimization program. Complete information Stackelberg game is then solved in Section 3, proceeding by backward
induction. We analytically derive the optimal prices and power orders for the agents. Partial information is introduced in
Section 4 where the interacting agents learn hidden individual sequences in a distributed fashion. To illustrate the theoretical
results derived in the previous sections, in Section 5 we compare: firstly, the time of convergence of suppliers’ learning
strategies under external and internal regret minimization in cooperative and non-cooperative scenarios, secondly, which
behaviors should emerge depending on the game parameters value and finally, analyze the tightness of the bounds derived
theoretically in various scenarios.

Notation and modeling assumptions
Agents and utility functions:
Mi Microgrid i
Si Supplier i
Gk Generator k
TSO Transmission System Operator
Πi(t) Si utility
Π̃k(t) Gk utility
Bi(t) Net benefit forMi

Π0
i (t) Si utility evaluated in unbiased forecasts

Parameters:
t Generic time period
n Number of suppliers
K Number of generators
θi Parameter depending on the composition ofMi

b0, b1 Generic positive parameters
γi Si unitary penalty cost
γ̃i Gk unitary penalty cost in the provision of Si
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Decision variables:
p̃k(t) Gk unitary price
qik(t) Power order from Si to Gk
pi(t) Si unitary price
ai(t) Mi decision variable
αki(t) Proportion of power allocated by Gk to Si

Random variables and forecasters:
νSi (t) Mi generation
νGk (t) Gk production
EG Set of all the possible production levels for one generator
ES Set of all the possible generation levels for one microgrid
fi(t) Vector of the predictions made by Si

fi(ν
S
i , t) Si forecast ofMi generation

fi(ν
G
k , t) Si forecast of Gk production

f(t) Vector of forecasts of all the suppliers
f−i(y, t) Vector of forecasts of all the suppliers except Si whose prediction is replaced by y
ν(t) Vector of productions of microgrids and generators
dkij(t) Disagreement between Si and Sj on the prediction of Gk production
DSS(i) Lower bound on the disagreements between Si and the other suppliers
DSS(i) Upper bound on the disagreements between Si and the other suppliers
dt(.) Supplier’s learning strategy

Losses and regrets:
T Horizon of the repeated game

li

(
f(t), ν(t)

)
Si loss

l
(1)
i

(
fi(t), ν(t)

)
Upper bound on Si loss depending exclusively on the supplier’s predictions

l
(2)
i

(
(dkij(t))j,k, ν(t)

)
Upper bound on Si loss depending on

(
dkij(t)

)
j 6=i

Ri(T ) Si external regret over horizon T
RIi(T ) Si internal regret over horizon T

l(f(t), ν(t)) TSO loss
l̃g(f(t), ν(t)) sum of the suppliers’ losses

FS Set of predictors for each supplier
Fm Set of predictors for the TSO
Ṽg Partial value of the game

Payoffs:
Hfi(νSi )(x, t) Si payoff evaluated in its forecast ofMi generation
Hfi(νGk )(x, t) Si payoff evaluated in its forecast of Gk’s production
Hνsi (x, t) TSO payoff evaluated in its forecast ofMi power generation
HνGi

(x, t) TSO payoff evaluated in its forecast of Gk’s production
HfC(νSi )(x, t) Grand coalition payoff evaluated in its forecast ofMi generation
HfC(νG

k
)(x, t) Grand coalition payoff evaluated in its forecast of Gk production

dy→y
′

t (.) Modified strategy obtained when the forecaster predicts y′ each time it would have predicted y
wt(x) Weights in the external regret learning algorithm

w(y,y′)(x) Weights in the internal regret learning algorithm

Notation:
|E| Cardinality of the set E , βi = 1− n−1

δγiγ̃i
, δ =

∑
j=1,...,n

1
γj γ̃j

x+ , max{x; 0} positive part of real x

ξ1(x) = 1− x
min{EG}

1x<0 − x
max{EG}

1x≥0, ξ2(x) = 1− x
min{EG}

1x≥0 − x
max{EG}

1x<0

ψi(x, y) = γiβi

(
1

ξ2(y)
− 1
ξ1(x)

+
max{EG}
min{EG}

− min{EG}
max{EG}

)
l̃g
(
f(t), ν(t)

)
=
∑
i=1,...,n l

(1)
i

(
fi(t), ν(t)

)

2 The model
A large number of agents interact in the smart grid. In this article, we model the smart grid as a three layer hierarchical
network whose evolution depends on the interactions between the agents composing each layer and also, on the ability of
the agents to cope with fluctuating power generations and demand [2], [18]. We detail the three categories of agents and the
repeated game which captures the interactions between them in Subsection 2.1. Then, we define each agent’s optimization
program in Subsection 2.2.
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2.1 Description of the agents
We model the smart grid through three categories of agents: microgrids, suppliers and generators. The first category of
agents is composed of microgrids. Microgrids generate some power demands (mostly for heating/cooling buildings and for
the individual usages of their inhabitants) and also some power through non renewable sources like solar panels and wind
roofings. Demand can be flattened through pricing demand response mechanisms which give incentives to end users to
change their normal power consumption patterns in response to price variations [1], [15], [22]. The second category of agents
is composed of suppliers who buy power from several generators and resell it to the end users. The third category is composed
of generators. Each generator produces and sells power to all suppliers.

We assume that each end user is captive i.e., it has a contract with one supplier only and does not churn from one supplier
to another for all the duration of our study. This assumption holds good if we consider local or regional utility companies. In
this sense, the set made of end users supplied by a single supplier can be seen as an individual microgrid, as defined in [24],
[25] and in Section 1. Largely speaking, the microgrid economic model is based on sharing economy, which refers to peer to
peer based sharing of access to goods and services. The need to crowdsource technologies such as solar panels, rooftop wind
turbines, demand response applications and local storage facilities, will encourage individuals to connect together through
communities to use other members’ rooftops, applications, facilities, etc. It is already possible to share apartments (Airbnb),
cars (Uber), and bikes. For solar power, Yeloha1 relies on consumers with solar panels, to provide the electricity that is shared
among the community. The community members use the energy that is generated by their solar panels to reduce their own
electricity bills as well as share the supply with the community. In the same spirit, Vandebron2 arranges from consumers to
buy electricity directly from independent producers, such as farmers with wind turbines in their fields. Note that the modeling
of bilateral exchanges between the consumers in the microgrid is out of the scope of this article. Indeed, we take an aggregated
view of the microgrids (i.e., we do not represent the individual consumers, that would require to take into account behavioral
models). Instead the microgrid is seen as a global player which can use its generation and buy from the supplier in case of
under supply.

We denote by Si, with i varying between 1 and n, the i-the supplier and by Mi the corresponding group of end users.
The generators are denoted Gk with k varying between 1 and K. The generators can be associated with photovoltaic park
managers, wind farm administrators, etc. In this article, we assume that the generator cannot directly influence its power
generation at each time period. This assumption holds good if we look at renewable sources like solar photovoltaic panels
without any investment in additional solar panels during the study period. The variation of sun intensity will impact the
amount of power generated without any lever for the generator 3.

We model the interplay between the agents through a repeated game. At each time period t, the following game is played:

Basic Game Description

(i) Each generator Gk communicates its unitary price p̃k(t) > 0 to the suppliers. The prices are fixed independently and simultane-
ously by each generator so as to maximize its utility.

(ii) Each supplier Si places power orders with the generators: the quantity ordered by supplier Si from generator Gk is denoted
by qik(t). Each supplier Si communicates its unitary price pi(t) > 0 to its microgrid. The power orders and prices are fixed
independently and simultaneously by each supplier so as to maximize its utility.

(iii) MicrogridMi generates νSi (t) power units and buys ai(t) power units from supplier Si. The quantity ai(t) is chosen so as to
maximize the benefits forMi.

At each time period, generator Gk produces νGk (t) power units. It then delivers αki(t)νGk (t) units to supplier Si where
αki(t) ≥ 0 denotes the proportion of its generation that generator Gk allocates to supplier Si, with the normalization con-
straint:

∑
i=1,...,n αki(t) = 1. This proportion is defined depending on power orders received by Gk. The sum of orders

received by Gk may exceed νGk (t) and so each supplier may receive less power than it initially ordered.
Penalties are incurred by both suppliers and power generators if they cannot fully satisfy their customers’ demand. Supplier

Si incurs a cost γi > 0 per power unit missing for the supply of its microgrid, measured a posteriori. The cost scale is defined
through the Balance Operator Rules as designed by the Transmission System Operator (TSO)4. Note that we do not consider
over provision and assume that the excess supply is lost. In our article, the penalty is specific to each supplier. This assumption
is justified by the fact that depending on its geographic location, a negative energy balance can be easily corrected in densely
interconnected areas whereas it is much more difficult in remote ones due to the high cost of electricity transmission. As a

1Yeloha http://www.digitaltrends.com/cool-tech/yeloha-solar-panel-sharing/
2Vanderbron http://www.fastcoexist.com/3036271/the-sharing-economy-takes-on-electricity-so-you-can-buy-your-power-from-neighbors
3Non-renewable generators like nuclear plants could be integrated into the grid. This would require using distributed control rules, such as those described

in [12], [17]. Furthermore, control variables on both the generators and microgrid size on their production could be introduced. This would constrain the
values taken by the generators’ production processes and change the updating rules of the microgrid generation forecasters.

4French Transmission System Operator Balance Rules http://clients.rte-france.com/lang/fr/clients_producteurs/
services_clients/dispositif_re.jsp [Online September 2015]
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result, γi is higher for suppliers serving remote locations than in densely interconnected areas. Similarly generator Gk incurs
a cost γ̃i > 0 per missing power unit in the provision of supplier Si, measured a posteriori. In the short term, the level of
production on suppliers’ orders can be readjusted by imports from neighboring energy markets.

2.2 Optimization program for each agent
In this subsection, we describe the decision variables and utilities for each category of agents. The optimization program for
each agent is presented using a mathematical formulation.

2.2.1 Microgrid programs

The only decision variable for microgridMi is the power that it demands from supplier Si at time period t: ai(t). We assume
that the microgrid has no lever to influence the random generation from its intermittent sources (solar panels): νSi (t).

We model the microgrid benefit of consuming x power units as a quadratic function. More precisely we use the model
of Fahrioglu and Alvarado [7]. The utility of consuming x power units then equals θi

(
b0x − 1

2b1x
2
)

where θi is a positive
parameter depending on the microgrid composition (households, firms, etc.) and b0 and b1 are generic positive parameters. We
note that this model is valid only when x < b0

b1
. Beyond this threshold, the marginal benefit of consuming an additional power

unit is zero and the total benefit of consuming power is constant and equals θi
b20
2b1

. As a result, the net benefit for microgrid
Mi, defined as the benefit of consuming νSi (t) + ai(t) power units minus the cost of buying ai(t) power units from supplier
Si, is:

Bi(t) =


θi

(
b0(νSi (t) + ai(t))− 1

2b1(νSi (t) + ai(t))
2
)

−pi(t)ai(t) if νSi (t) + ai(t) <
b0
b1

θi

(
b20
2b1

)
− pi(t)ai(t) if νSi (t) + ai(t) ≥ b0

b1

(1)

MicrogridMi chooses ai(t) ≥ 0 in order to maximize its net benefit5. Therefore, the microgrid optimization program
takes the form: maxai(t)≥0Bi(t). Note that the microgrid decision depends on the price pi(t) fixed by supplier Si.

2.2.2 Supplier programs

Supplier Si decision variables are its unit price pi(t) and the power orders
(
qik(t)

)
k

placed with each generatorGk. Following
our description of the interplay between the agents, supplier Si’s utility at time period t is:

Πi(t) = pi(t)ai(t)−
∑

k=1,...,K

qik(t)p̃k(t)− γi
(
ai(t)−

∑
k=1,...,K

αki(t)ν
G
k (t)

)
+︸ ︷︷ ︸

shortfall in the supply ofMi

(2)

Supplier Si chooses its unit price and its power orders in order to maximize Πi(t) defined in Equation (2). Its optimization
program takes the form:

max
pi(t)>0,(qik(t))k∈RK+

Πi(t)

2.2.3 Generator programs

Generator Gk decision variable is the unit price, p̃k(t), at which it provides power to the suppliers. Then Gk’s utility at time
period t equals:

Π̃k(t) = p̃k(t)
∑

i=1,...,n

qik(t)−
∑

i=1,...,n

γ̃i

(
qik(t)− αki(t)νGk (t)

)
+︸ ︷︷ ︸

shortfall in the provision of Si

To define the sharing coefficients,
(
αki(t)

)
i
, we consider a weighted proportional allocation of resources that allows gen-

erators to discriminate power allocation by supplier while allocating its power simultaneously among the suppliers. This
framework is a generalization of the well-known proportional allocation mechanism in which the suppliers’ bids coincide

5Note that at the individual household scale, the net demand might be negative since the household can produce power through non renewable sources
and use it for its own consumption.

5



with their power orders weighted by their penalty coefficients (γ̃i)i [21], [25]. This means that when two suppliers have iden-
tical power orders, the one with the highest penalty coefficient receives the largest share of the generator’s available power.
Indeed, the generator wants to minimize its overall penalty and, therefore, allocates larger shares of its power to suppliers
serving isolated areas where failure of electricity supply may be critical. The choice of such a resource sharing mechanism
can be justified by three factors: firstly, a small extension of Nguyen and Vojnović’s work [21] shows that weighted payment
auction achieves competitive transfers to generators compared to standard price discrimination schemes at the equilibrium;
secondly, the implementation of a sequential resource allocation mechanism based on priority and without storage facilities
should be avoided since some suppliers might be left without allocation at all; thirdly, a sequential allocation of the power
at the beginning of the time period is almost impossible because the generations are random individual sequences of which
outputs are only (partially) observed at the end of the time period. This last point will be detailed in Section 4. We set:

αki(t) ,
γ̃iqik(t)

Ck(t)
(3)

where Ck(t) =
∑

j=1,...,n

γ̃jqjk(t). Using Equation (3), generator Gk’s utility at time period t can be rewritten:

Π̃k(t) = p̃k(t)
∑

i=1,...,n

qik(t)−
∑

i=1,...,n

γ̃iqik(t)
(

1− γ̃i
Ck(t)

νGk (t)
)

+
(4)

Generator Gk chooses its unitary price so that Π̃k(t), as defined in Equation (4), is maximized. Its optimization program takes
the form:

max
p̃k(t)>0

Π̃k(t)

3 Complete information game resolution
The game setting described in Subsection 2.1 implies that in generator-supplier relationship (Steps (i)-(ii) of Basic Game),
generators act as leaders and suppliers as followers. Similarly, in supplier-microgrid relationships (Steps (ii)-(iii) of Basic
Game), suppliers are leaders and microgrids followers. Under such a setting, the game is called a Stackelberg game and, as
usual, it should be solved using backward induction [20].

Additionally, we assume that each generator receives at least one power order from a supplier, guaranteeing that the
Stackelberg game admits non trivial solutions.

3.1 Optimization of the microgrids’ decisions
MicrogridMi has to choose ai(t) in order to maximize its net benefit, defined by Equation (1).

If ai(t) + νSi (t) ≥ b0
b1

, then the derivative of Bi(t) with respect to ai(t) equals −pi(t). Under this assumption, the optimal
ai(t) is reached at the lower bound of the interval i.e., ai(t) = b0

b1
− νSi (t).

If ai(t) + νSi (t) < b0
b1

, the derivative of Bi(t) with respect to ai(t) equals:

∂Bi(t)

∂ai(t)
= θi

(
b0 − b1(ai(t) + νSi (t))

)
− pi(t)

This derivative equals 0 when:

ai(t) =
b0
b1
− νSi (t)− pi(t)

b1θi
(5)

We note that for this value of ai(t) we automatically obtain ai(t) + νSi (t) < b0
b1

. In addition, we compute the second order

derivative of Bi(t) with respect to ai(t): ∂2Bi(t)
∂ai(t)2

= −θib1 < 0. This implies that the maximum of Bi(t) is reached when
ai(t) is defined by Equation (5).

To avoid a negative demand, we need to impose the following constraint: νSi (t) < b0
b1
− pi(t)

b1θi
. Otherwise, the optimal

demand from the microgrid is 0.

3.2 Optimization of the suppliers’ decisions
To find its optimal price and power orders, supplier Si has to replace ai(t) by its optimal value, defined in Equation (5), in
Πi(t) which was defined in Equation (2). The resulting utility function Πi(t) is non differentiable because of the positive part
in its right hand side. Therefore to derive supplier i’s utility in pi(t) and in qik(t), we need to distinguish between two cases.
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3.2.1 Case 1: power generation satisfies demand from the microgrid

This is the case when:
b0
b1
− νSi (t)− pi(t)

b1θi
<

∑
k=1,...,K

αki(t)ν
G
k (t) (6)

Then deriving supplier i’s utility in pi(t) leads to: ∂Πi(t)
∂pi(t)

= b0
b1
− νSi (t) − 2pi(t)b1θi. This derivative equals 0 when pi(t) =

θi

(
b0−b1νSi (t)

)
2 which is the optimal price for supplier Si. Then the positivity constraint for ai(t) becomes νSi (t) < b0

b1
. In

addition, the derivative of the supplier’s utility in qik(t) leads to: ∂Πi(t)
∂qik(t) = −p̃k(t) which means that supplier Si will try to

minimize all of its power orders to maximize its utility. As a result, αki(t) will tend to be small. This implies, in turn, that
supplier Si will tend to break the inequality defining Case 1 in Inequality (6) and we will always fall on the frontier between
Case 1 and Case 2. The frontier between these two cases is defined by the equation:

b0
2b1
− νSi (t)

2
=

∑
k=1,...,K

αki(t)ν
G
k (t) (7)

3.2.2 Case 2: power generation does not satisfy power demand from the microgrid

This is the case when b0
b1
− νSi (t)− pi(t)

b1θi
≥

∑
k=1,...,K

αki(t)ν
G
k (t). Then deriving supplier Si’s utility with respect to pi(t) and

qik(t) gives us:

∂Πi(t)

∂pi(t)
=

b0
b1
− νSi (t) +

γi
b1θi

− 2pi(t)

b1θi

∂Πi(t)

∂qik(t)
= −p̃k(t) + γiν

G
k (t)

∂αki(t)

∂qik(t)
(8)

By using the definition of αki(t), given in Equation (3), we obtain:

∂αki(t)

∂qik(t)
= γ̃i

Ck(t)− γ̃iqik(t)

Ck(t)2

Going back to the system of Equations (8), we conclude that the derivatives equal 0 when:

pi(t) =
θi

(
b0 − b1νSi (t)

)
+ γi

2
(9)

p̃k(t)Ck(t)2 = γiν
G
k (t)γ̃i

(
Ck(t)− γ̃iqik(t)

)
(10)

On the one side, we directly obtain the price at which the derivative of Πi(t) equals 0 through Equation (9). We derive from
this equation the positivity constraint for ai(t) which is:

νSi (t) <
b0
b1
− γi
b1θi

On the other side, Equation (10) can be rewritten as follows:

γ̃iqik(t) = Ck(t)− p̃k(t)Ck(t)2

νGk (t)γiγ̃i
(11)

If supplier Si anticipates that the other suppliers will make the same optimization program, replicating Equation (11) for the

n suppliers and adding them all together results in the following equality: Ck(t) = nCk(t) − p̃k(t)Ck(t)2

νGk (t)

∑
j=1,...,n

1

γj γ̃j
by

definition of Ck(t). Then, given that Ck(t) is not zero because each generator Gk receives at least one power order otherwise
it would be out of the game, by dividing the previous equation by Ck(t) and reordering we obtain: Ck(t) =

νGk (t)
p̃k(t)

n−1
δ where

δ =
∑

j=1,...,n

1

γj γ̃j
. By replacing Ck(t) in Equation (11), we obtain the power orders for which the derivatives of Πi(t) equal

0:

qik(t) =
νGk (t)

p̃k(t)

n− 1

δ

βi
γ̃i

(12)

7



in which we have introduced the notation βi = 1− n−1
δγiγ̃i

to simplify future calculations.
We now have to check that the price and power orders for which the derivatives of Πi(t) equal 0 satisfy the conditions of

Case 2.
Firstly, it is easy to check that the price is positive through Equation (9) and the positivity constraint for ai(t). However,

the power orders defined in Equation (12) are non-negative if, and only if, βi ≥ 0 which is equivalent to 1 ≥ n−1
δγiγ̃i

which, in
turn, is equivalent to:

γiγ̃i ≥
n− 1

δ

⇔ 1

γiγ̃i
≤ 1

n− 1

∑
j=1,...,n

1

γj γ̃j
(13)

This inequality means that the penalties related to supplier Si i.e., γi, γ̃i, are close to the penalties related to the other suppliers
i.e., (γj , γ̃j)j . Indeed, if all penalties are equal to γ, then δ = n

γ2 and Inequality (13) is true for all suppliers. On the contrary,

if all penalties are equal to γ except for supplier S1 which has a penalty of γ
n−1 , then δ = (n−1)n

γ2 and Inequality (13) for
supplier S1 becomes n ≥ (n − 1)2 which is false as soon as n > 2. In this case, supplier S1 would not buy any power from
the generators, and so would be out of the game.

Secondly, by replacing the power orders, defined by Equation (12), in Equation (3), we obtain:

αki(t) =

νGk (t)
p̃k(t)

n−1
δ βi∑

j=1,...,n

νGk (t)

p̃k(t)

n− 1

δ
βj

=
βi∑

j=1,...,n

βj
= βi

This proves that the sharing coefficient αki(t) depends on neither generator Gk nor time instant t. Furthermore, the above
result means that the total power delivered to microgridMi is:

∑
k=1,...,K

αki(t)ν
G
k (t) = βi

∑
k=1,...,K

νGk (t). As a result, the price

and power orders for which the derivatives of Πi(t) equal 0 verify the inequality defining Case 2 if, and only if:

b0θi − γi
2b1θiβi

− νSi (t)

2βi
≥

∑
k=1,...,K

νGk (t) (14)

This inequality states that the total generation should not be too high. If this is not the case, then the over-supply situation
would probably end up with the most expensive generator out of the game. Indeed, the suppliers have the choice to buy
electricity coming from a set of generators. They base their choice on the price at which electricity is provided by each
generator. As a result, the cheapest generators are chosen first. However, the productions of the generators are limited by their
capacity and the supplier might not get their complete order. In case of over-supply, the total generation exceeds the demand
from the suppliers. As a result, only the cheapest generators would be selected to satisfy the microgrid demand while the most
expensive generator would have no client and would be forced to leave the market place.

If Inequalities (13) and (14) are true, the optimum for supplier Si is reached for pi(t) defined by Equation (9) and qik(t)
defined by Equation (12). If one of these inequalities is not true, then the optimum for supplier Si is reached on the frontier
defined by Equation (7).

3.3 Optimization of the generators’ decisions
After substituting qik(t) and Ck(t) by the expressions found Subsection 3.2.2 in generator Gk’s utility, as defined in Equa-
tion (4), we obtain:

Π̃k(t) = νGk (t)
n− 1

δ

∑
i=1,...,n

βi

[ 1

γ̃i
− γ̃i

( 1

p̃k(t)γ̃i
− δ

n− 1

)
+

]
(15)

The only part of this equation depending on p̃k(t) always has a negative impact on the utility of the generator under the
assumption of fair penalties. Indeed, in that case, as raised in the previous section, we obtain: βi ≥ 0 for all suppliers (Si)i.
As a result, to maximize its utility, the generator has to choose p̃k(t) such that the part depending on p̃k(t) in Equation (15)
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equals 0. This implies that the term 1
p̃k(t)γ̃i

− δ
n−1 is below 0 for all i = 1, ..., n. It is equivalent to: p̃k(t) ≥ n−1

δγ̃i
. Consequently,

the optimal price for the generator with fair penalties should satisfy:

p̃k(t) ≥ n− 1

δ min
i=1,...,n

{γ̃i}

4 A distributed learning game

In this section, we assume that the generations from the microgrids
(
νSi (t)

)
i

and the productions of the generators
(
νGk (t)

)
k

are random individual sequences. As explained in the Introduction, this means that the underlying random processes generat-
ing the sequences do not necessarily have a probabilistic structure. They can be quite erratic [4].

To guarantee optimal system-wide operation, it is fundamental that the suppliers elaborate efficient learning strategies
regarding the microgrids’ generation and the generators’ production. The risk associated with this learning task will be
measured by the supplier’s loss. It will be defined in Subsection 4.1.

Suppliers should optimize their prices and quantities ordered at each time period, at which point they possess no infor-
mation on either the microgrids’ generation or about the generators’ decentralized production. As a result, the game can be
considered as having incomplete information [20]. Each supplier Si has to forecast νSi (t) and νGk (t) for all k = 1, ...,K, at
each time period, in order to optimize its decisions. The game will be repeated over a finite time horizon 0 < T < +∞.

To simplify, we will consider a common closed space EG of possible values for the production of each generator and a
common closed space ES of possible values for the generation from a microgrid. EG,ES ⊆ R are considered to be of finite
dimension i.e., their cardinalities |EG| and |ES | are such that |EG| < +∞ and |ES | < +∞. We will denote by fi(X, t) the
forecast of supplier Si about the variable X at time period t. We will use boldface type to denote vectors. We will also use
the simplifying notations:

• fi(t) ,
(

fi(ν
S
i , t)︸ ︷︷ ︸

forecast ofMi’s generation

, fi(ν
G
1 , t), ..., fi(ν

G
K , t)︸ ︷︷ ︸

forecasts of the generators’ productions

)
to denote the predictions made by supplier Si about the

generation from microgridMi and about the production of each generator Gk, k = 1, ...,K, at time period t

• f(t) ,
(
f1(t), ..., fn(t)

)
which contains the forecasts of the suppliers, at time period t

• f−i(y, t) =
(
f1(t), ..., fi−1(t),y, fi+1(t), ..., fn(t)

)
which contains the forecasts of the suppliers except Si whose

prediction is set equal to y, at time period t

• ν(t) ,
(
νS1 (t), ..., νSn (t)︸ ︷︷ ︸

microgrids’ generations

, νG1 (t), ..., νGK(t)︸ ︷︷ ︸
generators’ productions

)
which contains the generation from each microgridMi and the produc-

tion of each generator Gk, k = 1, ...,K, at time period t

Under conditions of power shortage as defined in Subsection 3.2.2, we obtain the optimal price for supplier Si by substitution
of the forecasters in Equation (9) and the optimal power orders for supplier Si by doing the same in Equation (12). The optimal

decisions for supplier Si at each time period t are then: pi(fi(t), t) =
γi+θi

(
b0−b1fi(νSi ,t)

)
2 and qik(fi(t), t) =

fi(ν
G
k ,t)

p̃k(t)
βi
γ̃i
n−1
δ .

Therefore, the demands from the microgrids are ai(fi(t), ν(t)) = b0
2b1
− γi

2b1θi
− νSi (t) +

fi(ν
S
i ,t)
2 because the microgrids have

exact knowledge of their generation, unlike the suppliers, which have to forecast theirs. In addition, since suppliers may differ
in their forecasts, αki can no longer be reduced to βi, and instead we obtain αki(f(t)) =

fi(ν
G
k ,t)βi∑

j=1,...,n

fj(ν
G
k , t)βj

. As a result, the

utility of supplier Si at each time period t is:

Πi(f(t), ν(t)) =
γi + θi

(
b0 − b1fi(νSi , t)

)
2

( b0
2b1
− γi

2b1θi
− νSi (t) +

fi(ν
S
i , t)

2

)
− βi

γ̃i

n− 1

δ

∑
k=1,...,K

fi(ν
G
k , t)− γi

( b0
2b1
− γi

2b1θi
− νsi (t)

+
fi(ν

S
i , t)

2
−

∑
k=1,...,K

fi(ν
G
k , t)βi∑

j=1,...,n

fj(ν
G
k , t)βj

νGk (t)
)

+
(16)
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The game parameters and random events (fluctuating generations and penalties) are chosen to obtain a constant power short-
age, in the sense that:

• Inequality (14) transposed to the incomplete information setting will always be true i.e.:

b0
2b1
− γi

2b1θi
− νSi (t)

2
≥

∑
k=1,...,K

αki(f(t))ν
G
k (t) (17)

• The positivity constraint on ai(fi(t), ν(t)) holds i.e., b0
2b1
− γi

2b1θi
≥ νSi (t)− fi(ν

S
i ,t)
2

Lemma 1. To maximize its utility, supplier Si should be unbiased in its forecast of the generation from microgridMi and its
forecast of the generators’ productions.

Proof of Lemma 1. Firstly, since the conditions are a constant power shortage, we have ∂Πi(f(t),ν(t))

∂fi(νSi ,t)
= − θib12 ai(fi(t), ν(t))+

pi(fi(t),t)
2 − γi

2 = θib1
2

(
νSi (t) − fi(ν

S
i , t)

)
. This derivative equals 0 if, and only if, fi(νSi , t) = νSi (t). In addition,

∂2Πi(f(t),ν(t))

∂fi(νSi ,t)
2 = − θib12 < 0 which means that Πi is concave in fi(νSi , t) so its maximum is reached when fi(νSi , t) = νSi (t).

Secondly, we have:
∂Πi(f(t), ν(t))

∂fi(νGk , t)
= −βi

γ̃i

n− 1

δ
+ γiν

G
k (t)

βiCk(f(t))− β2
i fi(ν

G
k , t)

Ck(f(t))2

where Ck(f(t)) ,
∑

j=1,...,n

fj(ν
G
k , t)βj . This derivative equals 0 if, and only if:

βifi(ν
G
k , t) = Ck(f(t))− 1

γiγ̃i

n− 1

δ

Ck(f(t))2

νGk (t)
(18)

By summing this condition for all suppliers, we obtain: Ck(f(t)) = nCk(f(t))− n−1
δ

Ck(f(t))2

νGk (t)

∑
j=1,...,n

1

γj γ̃j
which is equiva-

lent to: Ck(f(t)) = Ck(f(t))2

νGk (t)
by definition of δ, which means Ck(f(t)) = νGk (t). By replacement in Equation (18), we obtain

that the derivative equals 0 if, and only if: fi(νGk , t) = νGk (t). In addition, ∂
2Πi(f(t),ν(t))

∂fi(νGk ,t)
2 = −2γiβiν

G
k (t)

∑
j 6=i

βjfj(ν
G
k , t)

Ck(f(t))3 < 0

which means that Πi is concave in fi(νGk , t) so its maximum is reached when fi(νGk , t) = νGk (t).

4.1 Learning risk measure definition and first observations
As already mentioned, the supplier’s risk, associated with the learning task, will be measured by its resulting loss. We have
chosen a loss function representing the lack of profit compared to a case in which the supplier produces perfect forecasts of
power demands and generations. More precisely, for any supplier Si, i = 1, ..., n, its loss is defined as:

li

(
f(t), ν(t)

)
=
(

Π0
i (t)−Πi(f(t), ν(t))

)
where Π0

i (t) corresponds to supplier Si’s utility evaluated in fi(νSi , t) = νSi (t) and fi(νGk , t) = νGk (t) for any k = 1, ...,K.
We now decouple the upper bound in the supplier’s loss to highlight the impact of information structures i.e., how informa-

tion is shared and forecasts are made, on the overall performance of the smart grid. To that purpose, we upper bound supplier
Si’s loss as the sum of a loss function depending exclusively on the supplier’s predictions, l(1)

i , and on another function, l(2)
i ,

which relies on the disagreements between all the suppliers’ predictions. The notion of disagreement needs to be carefully
explained. To that purpose, we introduce:

dkij(t) , fi(ν
G
k , t)− fj(νGk , t),∀i, j = 1, ..., n, j 6= i,∀k = 1, ...,K (19)

as a measure of the disagreement between supplier Si and supplier Sj , i 6= j, in the prediction of generator Gk’s power
production, at time period t.
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Proposition 2. Supplier Si’s loss can be upper bounded by the sum of two functions: the first, l(1)
i , depends exclusively on its

forecasts and the second, l(2)
i , depends on its disagreement with the other suppliers’ predictions:

li

(
f(t), ν(t)

)
≤ l

(1)
i

(
fi(t), ν(t)

)
︸ ︷︷ ︸

loss caused exclusively by supplier Si’s forecasts

+ l
(2)
i

(
(dkij(t))j,k, ν(t)

)
︸ ︷︷ ︸

loss caused by the disagreements of supplier Si with the others’ forecasts

∀i = 1, ..., n

with

l
(1)
i

(
fi(t), ν(t)

)
= b1θi

(
fi(ν

S
i , t)− νSi (t)

)2

4
− βi
γ̃i

n− 1

δ

∑
k=1,...,K

(
νGk (t)− fi(νGk , t)

)
and

l
(2)
i

(
(dkij(t))j,k, ν(t)

)
= γiβi

∑
k=1,...,K

( νGk (t)2

min{Eg}
− νGk (t)∑

j=1,...,n

βjξ1(dkij(t))

)

where ξ1(x) = 1− x
min{EG}1x<0 − x

max{EG}1x≥0.

Proof of Proposition 2. The proof can be found in Appendix A.

4.2 Optimal learning strategies for each supplier
In this context of incomplete information on the power generations from the microgrids and on the fluctuating renewable
productions, we test two regret criteria to build the suppliers’ learning strategy, dt(.): external and internal regret minimization
[4]. Both regret minimization algorithms give rise to an optimized learning strategy [4] i.e., a density function defined over
the space ES × EKG . As explained in the Introduction, regret minimization is more robust to extreme events as it provides a
density function over the prediction set. Other learning rules based on different regret criteria exist such as regret-matching
[9] and regret-testing [8]. However, they offer no guarantee on the convergence of the algorithm and require longer times to
reach an equilibrium when it exists.

The external regret over the sequence of time periods 1, ..., T , is the difference between the observed cumulative loss and
the cumulative loss of the best constant prediction i.e., pure strategy. To be more precise, for supplier Si, it takes the form:

Ri(T ) ,
T∑
t=1

li

(
f(t), ν(t)

)
− min

y∈ES×EKG

T∑
t=1

li

(
f−i(y, t), ν(t)

)
We will consider that the learning strategy of supplier Si is optimal if asymptotically its external regret remains in o(T ) where

T is the number of time periods that have been played. This means that with probability 1: lim supT→+∞
1
T

T∑
t=1

Ri(t) = 0.

Forecasters satisfying these inequalities are said to be Hannan consistent [4].
By definition, a strategy dt(.) has a small internal regret if for every couple of predictions y,y′ ∈ ES ×EKG , the forecaster

does not regret not having chosen prediction y′ for time periods for which it chose prediction y:

RIi(T ) , max
y,y′∈ES×EKG

∑
t=1,...,T

dt(y)
[
li

(
f−i(y, t), ν(t)

)
− li

(
f−i(y

′, t), ν(t))
)]

In a repeated game, this regret criterion ensures that the joint empirical frequencies of play converge with the set of correlated
equilibria [4] whereas there is no guarantee that the product of the marginal empirical frequencies of play will converge
with the Nash equilibria, under external regret minimization in a general game. Internal regret minimization will be used
exclusively in the simulations in Subsection 5.3 as a benchmark to compare external regret minimization properties.

In the following lemma, we prove that it is possible to construct learning strategies for the suppliers that asymptotically
minimize their external regret.

Lemma 3. A Hannan consistent learning strategy exists for each supplier Si.
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Proof of Lemma 3. In our case setting, at the end of each time period, supplier Si knows6 the power demand from
microgrid Mi and it can infer its generation, νSi (t), from Equation (5). Supplier Si also knows the power that has been
delivered to it by each generator Gk, from which it can infer the power that could have been delivered to it if it had ordered
a different quantity qik(t), all other suppliers ordering the same power quantities, using Equation (3). As a result, supplier Si
can calculate its loss for all of its possible actions. In [4], Cesa-Bianchi and Lugosi proved that a Hannan consistent learning
strategy always exists if the agent can compute its loss for each possible action at the end of each time period.

We now introduce lower and upper bounds on the disagreements between supplier Si and the other suppliers regarding
the predictions of the generations: DSS(i) , mint=1,...,T minj 6=i,k d

k
ij(t) and DSS(i) , maxt=1,...,T maxj 6=i,k d

k
ij(t). They

contain the extreme disagreement values between the suppliers, about the estimated generations.

Lemma 4. If supplier Si plays according to a Hannan consistent strategy then an upper bound exists for the external regret
associated with supplier Si’s loss caused by its own predictions, l(1)

i , which depends only on the extreme disagreement values
between the suppliers regarding the estimated generations, DSS(i) and DSS(i). More precisely:

lim sup
T→+∞

1

T

[ T∑
t=1

l
(1)
i

(
fi(t), ν(t)

)
− min

y∈ES×EKG

( T∑
t=1

l
(1)
i

(
y, ν(t)

))]
≤ ψi

(
DSS(i), DSS(i)

) ∑
k=1,...,K

νGk (t)

where the function ψi from R2 to R is defined by:

ψi(x, y) = γiβi

( 1

ξ2(y)
− 1

ξ1(x)
+

max{EG}
min{EG}

− min{EG}
max{EG}

)
with ξ2(x) = 1− x

min{EG}1x≥0 − x
max{EG}1x<0.

Proof of Lemma 4. The proof can be found in Appendix B.
The aim of the next subsections will be to derive bounds for suppliers’ losses under cooperative and non-cooperative

scenarios.

4.3 Analysis of the upper bounds of the sum of suppliers’ loss functions
We express the TSO’s loss as the opposite of the sum of all of the suppliers’ losses. This coincides with the price of imports
from neighboring markets that the TSO should pay to guarantee that the production level meets the suppliers’ demand:

l
(
f(t), ν(t)

)
,

∑
i=1,...,n

(
Πi(t)−Π0

i (t)
)

It is also possible to consider that the suppliers play against Nature [4] which exhibits its worst behavior towards suppliers
when setting the random individual sequences. Similarly to the suppliers, the TSO will try to keep its external regret R(T ) in
o(T ).

We define l̃g as the sum of the suppliers’ losses exclusively caused by their own predictions:

l̃g

(
f(t), ν(t)

)
,

∑
i=1,...,n

l
(1)
i

(
fi(t), ν(t)

)
(20)

We let FS be the set of predictors (i.e., discrete density function set or alternatively, randomized prediction set) for each
supplier and Fm the set of predictors for the TSO. The value of the game, in which the suppliers exclusively consider the
losses caused by their own predictions as utilities, is defined as follows:

Ṽg , min
⊗i=1,...,nd(fi)∈FnS︸ ︷︷ ︸

suppliers’ predictors

max
d(ν)∈Fm︸ ︷︷ ︸

TSO’s predictor

E
[
l̃g(X,Y )|X ∼ ⊗i=1,...,nd(fi), Y ∼ d(ν)

]

where l̃g is defined in Equation (20).

6In the smart grid, the monitoring is performed through communicating meters deployed at the end user level [2], [18].
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Theorem 5. Assume that all suppliers play according to Hannan consistent strategies for their loss upper bound then when
T is large enough (T → +∞):

1

T

T∑
t=1

l̃g

(
f(t), ν(t)

)
≤ Ṽg +

1

T

T∑
t=1

∑
i=1,...,n

ψi

(
DSS(i), DSS(i)

) ∑
k=1,...,K

νGk (t)

Proof of Theorem 5. The proof can be found in Appendix C.

Corollary 6. Assume that the TSO plays according to a Hannan consistent strategy for its loss upper bound. Then when T is
large enough (T → +∞):

1

T

T∑
t=1

l̃g

(
f(t), ν(t)

)
≥ Ṽg −

1

T

T∑
t=1

∑
i=1,...,n

ψi

(
DSS(i), DSS(i)

) ∑
k=1,...,K

νGk (t)

Proof of Corollary 6. Applying Theorem 5 to the TSO i.e, by symmetry, considering that the TSO’s loss upper bound is
the opposite of the sum over i of supplier Si’s loss upper bounds, and using von Neuman-Morgenstern’s Minimax Theorem
[20] for Ṽg , we derive the proposed inequality.

We let:

lg

(
f(t), ν(t)

)
,

∑
i=1,...,n

li

(
f(t), ν(t)

)
(21)

be the sum of the suppliers’ losses. Using the definitions established in Equations (20) and (21), we derive the following
inequality:

lg

(
f(t), ν(t)

)
≤ l̃g

(
f(t), ν(t)

)
+

∑
i=1,...,n

l
(2)
i

(
(dkij(t))j=1,...,n,k=1,...,K , ν(t)

)
By substitution in Theorem 5, we obtain the following result:

Corollary 7. If all suppliers play according to a Hannan consistent strategy for their loss upper bounds then, when T is large
enough (T → +∞), their average loss cannot be greater than:

Ṽg +
1

T

T∑
t=1

∑
i=1,...,n

ψi

(
DSS(i), DSS(i)

) ∑
k=1,...,K

νGk (t)

+
1

T

T∑
t=1

∑
i=1,...,n

l
(2)
i

(
(dkij(t))j=1,...,n,k=1,...,K , ν(t)

)
whatever strategy is chosen by the TSO.

4.4 Collaborative learning strategies
Cooperation takes place within coalitions. In cooperative Game Theory literature, a coalition is a group of agents who have
incentives to collaborate by sharing resource access, information, etc., in the hope of increasing their revenue, knowledge,
social welfare (in case of altruism), etc., compared to a case where they behave non-cooperatively [20], [25]. Adapted to our
learning context, we define coalitions of agents as follows:

Definition 8. • A coalition of suppliers is a group of suppliers which collaborate to learn the hidden productions of the
generators

(
νGk (t)

)
k
.

• Cooperation takes place within the coalition when its members share their information and align their predictions to a
common value.

• The grand coalition contains all the suppliers involved in the learning task i.e.,
(
Si

)
i=1,...,n

.

13



Shared information concerns only the power productions of the generators. Indeed, each supplier independently predicts
the generation from its microgrid and has no impact on the other suppliers’ forecasts of their microgrid generation.

In the following, we consider two information structures i.e., either suppliers cooperate through a grand coalition or
coalitions of intermediate size might emerge. We derive bounds for the grand coalition average loss and compute analytically
the probability for suppliers to deviate from the grand coalition.

4.4.1 The suppliers form a grand coalition

At this stage, the objective is to identify conditions on the disagreement levels between the suppliers regarding the forecasted
power productions such that the term at the right of Ṽg defined in Corollary 7, remains as small as possible. Indeed, the smaller
the term defined in Corollary 7, the smaller the upper bound of the sum of the agents’ losses will be.

Such a strategy would minimize ψi
(
DSS(i), DSS(i)

)
and l(2)

i

(
(dkij(t))j,k, ν(t)

)
at any time period. This implies that

DSS(i) = DSS(i) = 0 and dkij(t) = 0,∀i, j, k,∀t.
This means that suppliers can decrease the upper bound of their average loss by coordinating their predictions about the

power productions
(
νGk (t)

)
k
, at any time period t. Suppliers therefore have an incentive to form a grand coalition because it

might enable them to decrease their total loss.

Proposition 9. If the suppliers cooperate through a grand coalition and play Hannan consistent strategies, the suppliers’ av-

erage loss over time interval [1;T ] when T is large enough (T → +∞) cannot be larger than: Ṽg+
∑

i=1,...,n

γiβi

(
2

max{EG}
min{EG}

−

min{EG}
max{EG}

− 1
)( 1

T

T∑
t=1

∑
k=1,...,K

νGk (t)
)

Proof of Proposition 9. By substitution in l(2)
i , as introduced in Proposition 2, since dkij(t) = 0 for all i, j, k, we have:

l
(2)
i

(
(dkij)j,k(t), ν(t)

)
= γiβi

∑
k=1,...,K

( νGk (t)2

min{EG}
− νGk (t)

)
(22)

This depends on the supplier index (i) and on time period (t), and not on the suppliers’ forecasts. In addition, ψi(0, 0) =

γiβi

(
max{EG}
min{EG} −

min{EG}
max{EG}

)
. As a result, applying Corollary 7, we obtain that the suppliers’ average loss over time interval

[1;T ] when T is large enough (T → +∞) cannot be larger than:

Ṽg +
1

T

T∑
t=1

∑
i=1,...,n

γiβi

(max{EG}
min{EG}

− min{EG}
max{EG}

) ∑
k=1,...,K

νGk (t)

+
1

T

T∑
t=1

∑
i=1,...,n

γiβi
∑

k=1,...,K

( νGk (t)2

min{EG}
− νGk (t)

)
(23)

Then the proposition statement is straightforward.

4.4.2 Multiple coalitions of suppliers emerge

Let c and c′ be two coalitions of suppliers strictly included in the set {1, 2, ..., n}. The difference between supplier i’s loss in
case where it belongs to coalition c and coalition c′ can be obtained analytically:

li

(
f(t), ν(t)

)
|i∈c − li

(
f(t), ν(t)

)
|i∈c′ = γi

∑
k=1,...,K

νGk (t)
[ fi(ν

G
k , t)βi

fi(νGk , t)
∑
j∈c′ βj +

∑
j /∈c′ fj(ν

G
k , t), βj

− fi(ν
G
k , t)βi

fi(νGk , t)
∑
j∈c βj +

∑
j /∈c fj(ν

G
k , t)βj

]
(24)

Using the definition of the disagreement measure introduced in Equation (19) and the fact that
∑
i=1,...,n βi = 1, we obtain

the following simplification: fi(νGk , t)
∑
j∈c βj +

∑
j /∈c fj(ν

G
k , t)βj = fi(ν

G
k , t)−

∑
j /∈c d

k
ij(t)βj and fi(νGk , t)

∑
j∈c′ βj +
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∑
j /∈c′ fj(ν

G
k , t)βj = fi(ν

G
k , t)−

∑
j /∈c′ d

k
ij(t)βj . By substitution in Equation (24), we obtain:

li

(
f(t), ν(t)

)
|i∈c − li

(
f(t), ν(t)

)
|i∈c′ = βiγi

∑
k=1,...,K

νGk (t)︸ ︷︷ ︸
estimated by fi(νGk , t)

fi(ν
G
k , t)

[ 1

fi(νGk , t)−
∑
j /∈c′ d

k
ij(t)βj

− 1

fi(νGk , t)−
∑
j /∈c d

k
ij(t)βj

]
(25)

Since at the beginning of period t, νGk (t) is unknown, supplier i has to estimate it by fi(νGk , t) in Equation (25). However,
supplier i’s choice of coalition entering depends on its forecast of each generator’s production and also on its disagreements
with the forecasts made by coalition c and c′, which are unknown at the beginning of period t. Supplier i might estimate
them by assuming that information is exchanged among coalitions but this is out of the scope of the article. Furthermore,
due to the fair penalty constraint, we recall that βi ≥ 0,∀i ∈ {1, ..., n}. Therefore an upper bound for Equation (25) is:
βiγi

∑
k=1,...,K fi(ν

G
k , t)

2
[

1
fi(νGk ,t)−Dss(i)

∑
j /∈c′ βj

− 1
fi(νGk ,t)−Dss(i)

∑
j /∈c βj

]
. If it is negative then supplier i will prefer

entering coalition c than coalition c′.

We want now to compute analytically the probability that supplier i leaves the grand coalition to enter a smaller size
coalition c:

Proposition 10. At period t, the probability for supplier i to prefer coalition c over the grand coalition depends on its forecasts
of the generators’ productions and of the game parameters as follows:∑

k=1,...,K fi(ν
G
k , t)

fi(ν
G
k ,t)−max{EG}

fi(νGk ,t)(1−
∑
j /∈c βj)+min{EG}

∑
j /∈c βj∑

k=1,...,K fi(ν
G
k , t)

[
fi(νGk ,t)−max{EG}

fi(νGk ,t)(1−
∑
j /∈c βj)+min{EG}

∑
j /∈c βj

− fi(νGk ,t)−min{EG}
fi(νGk ,t)(1−

∑
j /∈c βj)+max{EG}

∑
j /∈c βj

]
Proof of Proposition 10: We detail the computation of the difference between supplier i’s loss in case where it belongs to

coalition c and the grand coalition:

li

(
f(t), ν(t)

)
|i∈c − li

(
f(t), ν(t)

)
|i∈{1,..,n}

= −βiγi
∑

k=1,...,K

νGk (t)fi(ν
G
k , t)

[ ∑
j /∈c d

k
ij(t)βj

fi(νGk , t)
(
fi(νGk , t)−

∑
j /∈c d

k
ij(t)βj

)]
The term between brackets can be lower bounded as follows:

−
(fi(ν

G
k , t)−min{EG})

∑
j /∈c βj

fi(νGk , t)
(
fi(νGk , t)(1−

∑
j /∈c βj) + max{EG}

∑
j /∈c βj

)
︸ ︷︷ ︸

<0

≤
∑
j /∈c d

k
ij(t)βj

fi(νGk , t)
(
fi(νGk , t)−

∑
j /∈c d

k
ij(t)βj

)
and upper bounded as follows:∑

j /∈c d
k
ij(t)βj

fi(νGk , t)
(
fi(νGk , t)−

∑
j /∈c d

k
ij(t)βj

) ≤ − (fi(ν
G
k , t)−max{EG})

∑
j /∈c βj

fi(νGk , t)
(
fi(νGk , t)(1−

∑
j /∈c βj) + min{EG}

∑
j /∈c βj

)
︸ ︷︷ ︸

>0

This implies that at period t the probability for supplier i to prefer coalition c over the grand coalition can be computed

analytically as follows:

∑
k=1,...,K fi(ν

G
k ,t)

fi(ν
G
k ,t)−max{EG}

fi(ν
G
k
,t)(1−

∑
j /∈c βj)+min{EG}

∑
j /∈c βj∑

k=1,...,K fi(νGk ,t)

[
fi(ν

G
k
,t)−max{EG}

fi(ν
G
k
,t)(1−

∑
j /∈c βj)+min{EG}

∑
j /∈c βj

−
fi(ν

G
k
,t)−min{EG}

fi(ν
G
k
,t)(1−

∑
j /∈c βj)+max{EG}

∑
j /∈c βj

] .

5 Simulations
The aim of this section is to explain how the economic model of the hierarchical network, described in Section 2, can be
applied in practice to take decisions in an uncertain context and then to check that the results derived analytically in Section 4
hold, for a given smart grid structure.

The rest of the section is organized as follows: Subsection 5.1 deals with payoff function estimation for each forecast,
Subsection 5.2 elaborates on the update of mixed strategies for each forecast and in the last part we discuss the numerical
illustrations that we have obtained, for a large sample of parameters, considering non-cooperative and cooperative scenarios.
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5.1 Payoff functions
At each time period, each supplier must make K + 1 forecasts: one for its microgrid power generation and one to evaluate
the fluctuating production of each of the K generators. As a result, each supplier should define a randomized strategy on the
space ES × EKG . We recall that a randomized strategy is the standard terminology used in Game Theory for a discrete density
function defined over the considered set [20]. The size of the set grows very fast with K and, as a result, each probability in
the randomized strategy of forecasts is very low, with the effect that errors are rounding off during computation. In order to
overcome this issue, we decided to divide the suppliers into smaller entities, with each making only one forecast at each time
period, and to consider that these entities are uncoupled. This trick results in K + 1 randomized strategies in the space of
forecasts ES × EKG for each supplier.

For a given forecast X , we derive the payoffs for each value x ∈ E (E = ES for power generation from the microgrid and
E = EG for power productions from the generators) of the forecast at each time period t by using the utilities of the suppliers
and retaining only those terms that depend on forecast X . This is summarized in the following definition:

Definition 11. The payoff function associated with forecast X , evaluated in x ∈ E , coincides with the utility of supplier Si
restricted to its terms depending solely on forecast X and evaluated in x.

For the forecasts of power generation from microgridMi, supplier Si’s payoff takes the form:

Hfi(νSi )(x, t) =
γi + θi(b0 − b1x)

2

( b0
2b1
− γi

2b1θi
− νSi (t) +

x

2

)
− γi

x

2

Concerning the forecasts of generator Gk’s power production, supplier Si’s payoff takes the form:

Hfi(νGk )(x, t) = −βi
γ̃i

n− 1

δ
x+ γi

βix∑
j=1,...,n,j 6=i

βjfj(ν
G
k , t) + βix

νGk (t)

As already stated in Section 4, we will also consider that the TSO is non oblivious and tries to maximize the sum of the
suppliers’ losses. As for the suppliers, we uncouple νSi (t) and νGk (t) to improve the computation. More precisely the TSO’s
payoffs are:

HνSi
(x, t) =

(θi(b0 − b1fi(νSi , t))− γi
2

)
x

and

HνGk
(x, t) = −

∑
i=1,...,n

γiβifi(ν
G
k , t)∑

j=1,...,n

βjfj(ν
G
k , t)

x

It is very straightforward to adapt the repeated learning game and payoffs when considering that the suppliers integrate a
coalition c. The coalition c payoffs take the following forms:

Hfc(νSi )(x, t) = Hfi(νSi )(x, t)∀i ∈ c

Hfc(νGk )(x, t) = −
∑
i∈c

βi
γ̃i

n− 1

δ
x+

∑
i∈c

γiβix∑
i∈c

βix+
∑
i/∈c

βifi(ν
G
k , t)

νGk (t)

The TSO’s payoffs HνSi
(x, t) and HνGk

(x, t) are unchanged.

5.2 Updates of forecasting strategies
We consider two types of update for the forecasting randomized strategies based on the exponential forecaster for signed
games: one based on external regret and the other based on internal regret. We assume that the game considered in this article
is a signed game because the range of values of payoff function HX might include a neighborhood of 0.

We let: ϑt ,
t∑

s=1

V ar
(
HX(Xs, s))

)
=

t∑
s=1

E
[(
HX(Xs, s)) − E[HX(Xs, s)]

)2]
be the sum of the variances associated

with the random variable HX(Xt, t) under the mixed strategy dt(X) which is defined over space E . Using the exponential
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forecaster for signed games with external regret [4] means that the mixed strategy is updated according to the algorithm
described below.

External Regret Learning Algorithm: Updating of the Exponential Forecaster

Initialization. For t = 0, we set: w0(x) =
1
|E| , ∀x ∈ E .

Step 1 to T . The updating rules are the following:

dt(x) =
wt(x)∑
x∈E wt(x)

, ∀x ∈ E

wt+1(x) = exp
(
ηt+1

t∑
s=1

HX(x, s)
)

= wt(x)
ηt+1
ηt exp

(
ηt+1HX(x, t)

)
, ∀x ∈ E

ηt+1 = min
{ 1

2max{|HX |}
;

√
2(
√
2− 1)

e− 2

√
ln|E|
ϑt

}
ϑt+1 = ϑt + V ar

(
HX(Xt+1, t+ 1)

)
For the internal regret, the definition of which was introduced in Subsection 4.2, the updating rules are similar but with

dt(.) =
∑
y 6=y′ d

y→y′
t (.)∆(y,y′)(t) where dy→y

′

t (.) is the modified forecasting strategy obtained when the forecaster predicts
y′ each time it would have predicted y and

∆(y,y′)(t) ,

exp
(
ηt

t−1∑
s=1

∑
x∈E

dy→y
′

s (x)HX(x, s)
)

∑
z 6=z′

exp
(
ηt

t−1∑
s=1

∑
x∈E

dz→z
′

s (x)HX(x, s)
)

We note that, if we take the notation w(y,y′)(t) , exp
(
ηt

t−1∑
s=1

∑
x∈E

dy→y
′

s (x)HX(x, s)
)

, then the weights in the internal regret

learning algorithm are updated according to the following updated rule:

∆(y,y′)(t) =
w(y,y′)(t)∑

z 6=z′
w(z,z′)(t)

w(y,y′)(t) = w(y,y′)(t− 1)
ηt
ηt−1 exp

(
ηt
∑
x∈E

dy→y
′

t−1 (x)HX(x, t− 1)
)

5.3 Numerical illustrations
Convergence times and incentives to cooperate: In this first part of the simulation, we consider two suppliers (n = 2). We
compare the cumulative payoff of each agent (supplier or grand coalition) to the cumulative payoff of the same agent in a case
where it has forecasted the best value at each time period in terms of payoffs. More precisely, we compute for each agent a
(the supplier S1, S2 or the grand coalition C), the following performance metric:

Ra(T ) ,
1

T

T∑
s=1

∑
X∈Fa

(
HX(Xs, s)−max

x∈E
(HX(x, s))

)
where Fa is the generic set of forecasts made by agent a. Then, we measure the convergence of the learning algorithm through
the convergence of this performance metric. That is to say, we consider that convergence is reached when the variation of the
performance metric, Ra(T )−Ra(T−1)

Ra(T−1) , is less than 10−2.

We let T ∗Si , i = 1, 2 (resp. T ∗C) be the number of time steps needed for the regret-based algorithm for supplier Si (resp. the
grand coalition) to converge. According to these notations, supplier Si has incentives to cooperate if, and only if, T ∗Si ≥ T ∗C .
Depending on the position of T ∗C with respect to min{T ∗S1

;T ∗S2
} and max{T ∗S1

;T ∗S2
} we identify three emerging behaviors:

• Both suppliers have incentives to cooperate if, and only if, min{T ∗S1
;T ∗S2
} ≥ T ∗C .
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• The suppliers have no incentive to cooperate if, and only if, max{T ∗S1
;T ∗S2
} < T ∗C

• The smart grid is instable (one supplier having an incentive to cooperate and not the other) if, and only if, min{T ∗S1
;T ∗S2
} <

T ∗C ≤ max{T ∗S1
;T ∗S2
}

In our simulations, we calculated the convergence times of learning algorithms for a wide range of combinations of penalty
coefficients (γ1,γ2,γ̃1,γ̃2). More precisely, in Figures 1 and 2 (a), we make the assumption that: γ1 = 2γ2 = 2γ ∈ [0; 1]
while in (b): γ = γ1 = γ2 ∈ [0; 1]. For each figure, we use 1000 combinations corresponding to 10 values equally distributed
between 0.1 and 1 for γ, γ̃1 and γ̃2. We can easily check that all these penalty coefficient combinations satisfy Equation (13).
In addition, we chose ES = [5, 8] and EG = [1, 2] so that Equation (17), i.e. power shortage, is always true.

In Figure 1, the learning strategies of the suppliers and the grand coalition are based on external regret minimization while
in Figure 2, they rely on internal regret minimization. In the top of Figures 1 and 2 (a) and (b), we plot the histograms of the
maximum of T ∗S1

, T ∗S2
(resp. T ∗C) left (resp. right) for all the combinations of penalty coefficients (γ,γ̃1,γ̃2). The bin heights

of each histogram are determined by the number of penalty coefficients that have the same convergence time. The algorithms
are run for T = 100 time periods. At the bottom of Figures 1 and 2 (a) and (b), we plot the ratio of the maximum (resp.
minimum) of T ∗S1

and T ∗S2
over T ∗C , left (resp. right), for all penalty coefficient combinations (γ, γ̃1, γ̃2). From the top figures

in both cases we observe that, for a far larger number of penalty coefficients, the learning algorithm convergence times are
shorter under cooperative scenarios than under non-cooperative scenarios. Furthermore, by comparison of Figures 1 and 2 top,
the convergence times are shorter for learning algorithms based on internal regret minimization than for learning algorithms
based on external regret minimization, though convergence occurs under both regret criteria.

Regarding the potential for a grand coalition to emerge, we infer from Figure 1 (a) and (b) (resp. 2 (a) and (b)) bottom, that
for 97% of the penalty coefficient combinations at least one supplier has incentives to cooperate and that for 95% (resp. 94.5%)
of the combinations of penalty coefficients both suppliers have incentives to cooperate, using external regret minimization
(resp. internal regret minimization) as criterion.

In terms of scalability, the complexity of our learning algorithm is in O(nK). An interesting property is that it can be
easily parallelized (one agent corresponding to one core) due to the fact that the weight updating rules are specific to each
supplier (i.e., they do not depend on the other suppliers’ forecasts).

Tightness of the bounds: To measure performance, we chose to compute two upper bounds: firstly, the upper bound
derived in Corollary 7, where the suppliers perform individual learning. This is called BOUND SELFISH. Secondly, the
upper bound derived in Proposition 9, where the suppliers enter a grand coalition and align their forecasts of the generators’
productions. This is called BOUND COALITION. Both upper bounds are matched with the sum of the suppliers’ average loss:

1
T

T∑
t=1

lg(f(t), ν(t)). The latter is computed under external (AV. LOSSext,.) and internal regret minimization (AV. LOSSint,.),

assuming that either the suppliers’ learning process is non-cooperative or cooperative. These performance measures are
averaged over 103 combinations of parameters (γ, γ̃1, γ̃2), each parameter takes one of the 10 values equally distributed
between 0.1 and 1. In Table 1, we compute BOUND SELFISH, AV. LOSSext,selfish and AV. LOSSint,selfish for a fixed number
of values of γ1

γ2
. In Table 2, we compute BOUND COALITION, AV. LOSSext,coal and AV. LOSSint,coal for a fixed number

of values of γ1
γ2
. According to both tables, we observe that BOUND COALITION is striclty smaller than BOUND SELFISH

and that AV. LOSS.,coal is striclty smaller than AV. LOSS.,selfish whichever learning scenario (i.e., either non-cooperative or
cooperative) is chosen by the suppliers.

γ1
γ2

BOUND SELFISH AV. LOSSext,selfish AV. LOSSint,selfish
0.2 1.539.10−2 −8.152.10−3 −2.204.10−2

0.5 0.00 −6.611.10−3 −1.738.10−2

0.7 1.634.10−2 −7.150.10−3 −1.604.10−2

1.0 3.668.10−2 −7.630.10−3 −1.624.10−2

1.5 6.627.10−3 −4.395.10−3 −1.719.10−2

2.0 0.0 −3.124.10−3 −1.552.10−2

2.5 3.371.10−2 −2.853.10−3 −1.233.10−2

3.0 0.00 −1.755.10−3 −9.433.10−3

3.5 0.00 −1.600.10−3 −1.060.10−2

4.0 0.00 −7.738.10−4 −6.675.10−3

Table 1: Comparison of the upper bound derived in Corollary 7 with the suppliers’ average loss in cases where the latter learn the generators’
power productions non-cooperatively through external and internal regret minimization.
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(a)

(b)

Figure 1: Convergence times and incentives to collaborate under external regret minimization for two suppliers. In (a), we have: γ1 =
2γ2 = 2γ ∈ [0; 1] and in (b), we have: γ = γ1 = γ2 ∈ [0; 1]. At the top of each subfigure, we plot the histograms of the maximum of
T ∗S1

, T ∗S2
(resp. T ∗C ) left (resp. right) for all the combinations of penalty coefficients and for a maximum number of time periods T = 100.

At the bottom left (resp. right), we plot the ratio of the maximum (resp. minimum) of T ∗S1
, T ∗S2

over T ∗C as a function of all the penalty
coefficient combinations.
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(a)

(b)

Figure 2: Convergence times and incentives to collaborate under internal regret minimization for two suppliers. In (a), we have: γ1 =
2γ2 = 2γ ∈ [0; 1] and in (b), we have: γ = γ1 = γ2 ∈ [0; 1]. At the top of each subfigure, we plot the histograms of the maximum of
T ∗S1

, T ∗S2
(resp. T ∗C ) left (resp. right) for all the penalty coefficient combinations and for a maximum number of time periods T = 100.

At the bottom left (resp. right), we plot the ratio of the maximum (resp. minimum) of T ∗S1
, T ∗S2

over T ∗C as a function of all the penalty
coefficient combinations.
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γ1
γ2

BOUND COALITION AV. LOSSext,coal AV. LOSSint,coal
0.2 5.579.10−3 −4.853.10−2 −5.991.10−2

0.5 0.00 −5.694.10−2 −6.490.10−2

0.7 5.584.10−3 −6.047.10−2 −6.896.10−2

1.0 1.297.10−2 −5.114.10−2 −7.176.10−2

1.5 2.441.10−3 −5.512.10−2 −6.884.10−2

2.0 0.0 −5.445.10−2 −6.923.10−2

2.5 1.181.10−2 −4.258.10−2 −5.213.10−2

3.0 0.00 −3.940.10−2 −4.371.10−2

3.5 0.00 −2.839.10−2 −3.757.10−2

4.0 0.00 −2.384.10−2 −2.740.10−2

Table 2: Comparison of the upper bound derived in Proposition 9 with the suppliers’ average loss in cases where the latter enter a grand
coalition and align their forecasts of the generators’ power productions under external and internal regret minimization.

Incentives for two player coalitions to emerge: In this lart part of the simulation, we consider three suppliers (n = 3).
In terms of organization, this means that five coalition structures might emerge: either the suppliers learn selfishly leading to
the coalition structure {S1}, {S2}, {S3}; or they form a grand coalition C = {S1, S2, S3}; or two player coalitions emerge
leading to three possible combinations {S1, S2}, {S3} or {S1, S3}, {S2} or {S2, S3}, {S1}. Staying in line with the notations
used in the two supplier simulations, we denote CS the set containing all the coalition structures and T ∗c the number of time
steps needed for the regret-based algorithm for coalition c ∈ CS to converge. The algorithms are run for T = 100 time
periods and we use 104 combinations corresponding to 10 values equally distributed between 0.1 and 1 for γ, γ̃i,∀i = 1, 2, 3.
Going back to the definition of convergence times, coalition structures different from the grand coalition will emerge if, and
only if, max{T∗c ,c∈CS}

T∗C
≤ 1. Furthermore, coalition structure CS1 is preferred other coalition structure CS2 if, and only if,

max{T∗c ,c∈CS1}
T∗C

≤ max{T∗c ,c∈CS2}
T∗C

. In Figures 3 (a) and (c) we have represented the ratio max{T∗c ,c∈CS}
T∗C

for the five coalition
structures listed above, under external and internal regret minimization respectively. We observe that:

• Coalitions containing less than three suppliers might emerge for 50 combinations of the parameters under external regret
minimization and under 150 combinations of the parameters under internal regret minimization

• Median values of convergence times of coalitions containing two suppliers are smaller than full competition but larger
than the grand coalition, as illustrated by the Box and Whiskers plots in Figure 3 (b) and (d)

6 Conclusion
In this article, we study a model of decentralized renewable generations in which generators, suppliers and microgrids are
organized into a hierarchical network. Renewable generations are modeled by random individual sequences which need not
have a probabilistic structure. This general demand and supply structure is capable of taking into account exogenous events.
As a result, it is more robust to extreme events and appears particularly suitable for modeling fairly erratic processes such
as renewables. We analytically determine the optimal prices that enable generators to avoid the penalties that the balance
operators threaten to apply when suppliers’ orders are not entirely satisfied. All the risk is then transferred to the suppliers.
Additionally, we prove that the latter can minimize their average risk by sharing information in a grand coalition containing
all the suppliers. Finally, numerical simulations, run on a large sample of parameter combinations, lead us to observe that the
convergence times in collaborative learning, performed either through a grand coalition or through coalitions having smaller
cardinality but containing more than one supplier, are clearly lower than times resulting from individual learning and that
they are lower for learning algorithms based on internal regret minimization than for external regret minimization, though
convergence occurs under both criteria. The tightness of convergence bound under collaborative learning is shown to be
clearly better than for individual learning.
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(a)

(b)

(c)

(d)

Figure 3: Incentives for suppliers to form intermediate size coalitions under external (a),(b) and internal (c),(d) regret minimization. For the
simulations, we take: γ = γi ∈ [0; 1], ∀i{1, 2, 3}. In (a), (c), we evaluate the agents’ incentives to maintain their coalition structure rather
than integrating the grand coalition by comparing their convergence times. In (b), (d), we represent Box and Whiskers plots associated with
the convergence times for each coalition structure.

Appendix

Appendix A: Proof of Proposition 2
Following a number of calculations, we obtain:

ai(ν(t), ν(t))pi(ν(t), t)− ai(fi(t), ν(t))pi(fi(t), t)

=
fi(ν

S
i , t)− νSi (t)

4

(
b1θi(fi(ν

S
i , t)− νSi (t))− 2γi

)
and

ai(ν(t), ν(t))− ai(fi(t), ν(t)) =
νSi (t)− fi(νSi , t)

2

Given supplier Si’s loss due to power shortage conditions, we have:

li

(
f(t), ν(t)

)
= l

(1)
i

(
fi(t), ν(t)

)
+ γiβi

∑
k=1,...,K

(νGk (t)− fi(νGk , t))νGk (t)

Ck(f(t))
(26)
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where:

l
(1)
i

(
fi(t), ν(t)

)
= b1θi

(fi(ν
S
i , t)− νSi (t))2

4
− βi
γ̃i

n− 1

δ

∑
k=1,...,K

(
νGk (t)− fi(νGk , t)

)
In addition, we observe that:

( fi(ν
G
k , t)∑

j=1,...,n

βjfj(ν
G
k , t)

)−1

=

∑
j=1,...,n

βj

(
fi(ν

G
k , t)− dkij(t)

)
fi(νGk , t)

=
∑

j=1,...,n

βj

(
1−

dkij(t)

fi(νGk , t)

)
≤

∑
j=1,...,n

βjξ1

(
dkij(t)

)
where ξ1(x) = 1 − x

min{EG}1x<0 − x
max{EG}1x≥0. To obtain the inequality above, we followed the logic that since EG is

a close subset of R, the forecasters are upper and lower bounded i.e., min{EG} ≤ fi(ν
G
k , t) ≤ max{EG}. Furthermore,

fj(ν
G
k , t) ≥ min{EG} means that:

1∑
j=1,...,n

βjfj(ν
G
k , t)

≤ 1
min{EG} since

∑
j=1,...,n

βj = 1. As a result, we have:

li

(
f(t), ν(t)

)
− l(1)

i

(
fi(t), ν(t)

)
≤ γiβi

∑
k=1,...,K

( νGk (t)2

min{EG}
− νGk (t)∑

j=1,...,n

βjξ1(dkij(t))

)

We then introduce the notation:

l
(2)
i

(
(dkij)j,k(t), ν(t)

)
= γiβi

∑
k=1,...,K

( νGk (t)2

min{EG}
− νGk (t)∑

j=1,...,n

βjξ1(dkij(t))

)

We obtain an upper bound of li
(
f(t), ν(t)

)
as the sum of two parts: the first, l(1)

i , depends exclusively on its predictions and

the second, l(2)
i , depends on its interactions with the others’ predictions.

Appendix B: Proof of Lemma 4
Suppose that supplier Si plays according to a Hannan consistent strategy. Taking into account Equation (26) defining the loss
of supplier Si, this means that:

lim sup
T→+∞

1

T

[ T∑
t=1

(
l
(1)
i (fi(t), ν(t)) + ζ(fi(t), f(t), ν(t))

)
− min

y∈ES×EKG

( T∑
t=1

(
l
(1)
i (y, ν(t)) + ζ(y, f(t), ν(t))

))]
≤ 0 (27)

where ζ(y, f(t), ν(t)) = γiβi
∑

k=1,...,K

νGk (t)2

Ck(f−i(y, t))
− yk+1ν

G
k (t)

Ck(f−i(y, t))
.

Let dkij(y, t) denote the disagreement between supplier Si and supplier Sj when supplier Si makes the prediction y at
time period t without any change in the predictions of the other suppliers. Following the same approach as in Appendix A, we
obtain for all y ∈ ES × EKG :

1∑
j=1,...,n

βjξ1

(
dkij(y, t)

) ≤ yk+1

Ck(f−i(y, t))
≤ 1∑

j=1,...,n

βjξ2

(
dkij(y, t)

)
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where ξ2(x) = 1− x
min{EG}1x≥0 − x

max{EG}1x<0.
Similarly, we have:

1

max{EG}
≤ 1

Ck(f−i(y, t))
≤ 1

min{EG}

As a result, we obtain for all y ∈ ES × EKG :

γiβi
∑

k=1,...,K

νGk (t)2

max{EG}
− νGk (t)∑

j=1,...,n

βjξ2(dkij(y, t))
≤ ζ(y, f(t), ν(t))

≤ γiβi
∑

k=1,...,K

νGk (t)2

min{EG}
− νGk (t)∑

j=1,...,n

βjξ1(dkij(y, t))

In Section 4, we introduced lower and upper bounds on the disagreements between supplier si and the other suppliers
regarding the forecasts of the generations: DSS(i) and DSS(i). Since ξ1 and ξ2 are decreasing in x (they are linear functions
by parties with negative coefficients), we have ξ1(DSS(i)) ≤ ξ1(x) ≤ ξ1(DSS(i)) and ξ2(DSS(i)) ≤ ξ2(x) ≤ ξ2(DSS(i))
for any disagreement value x.

Then, since
∑

j=1,...,n

βj = 1, the lower bound of ζ(y, f(t), ν(t)) is: bl(i, t) = γiβi
∑

k=1,...,K

νGk (t)2

max{EG}
− νGk (t)

ξ2(DSS(i))
.

Whereas, the upper bound takes the form: bu(i, t) = γiβi
∑

k=1,...,K

νGk (t)2

min{EG}
− νGk (t)

ξ1(DSS(i))
. If Inequality (27) is checked,

then the following inequality holds:

lim supT→+∞
1
T

[ T∑
t=1

l
(1)
i

(
fi(t), ν(t)

)
+

T∑
t=1

bl(i, t)− min
y∈ES×EKG

( T∑
t=1

l
(1)
i

(
y, ν(t)

)
−

T∑
t=1

bu(i, t)
)]
≤ 0. This last inequality

provides an upper bound for the external regret associated with supplier Si’s partial loss.

Appendix C: Proof of Theorem 5

With the proposed expression of ψi, the upper bound of the external regret evaluated in supplier Si’s loss, l(1)
i , becomes:

lim sup
T→+∞

1

T

[ T∑
t=1

l
(1)
i

(
fi(t), ν(t)

)
− min
yi∈E

T∑
t=1

l
(1)
i

(
yi, ν(t)

)]
≤ lim sup

T→+∞

1

T
ψi

(
DSS(i), DSS(i)

) T∑
t=1

∑
k=1,...,K

νGk (t) (28)

Summing Inequality (28) over all i = 1, ..., n, the external regret evaluated in the sum of the suppliers’ losses (l
(1)
i )i=1,...,n,

becomes:

lim sup
T→+∞

1

T

[ T∑
t=1

l̃g

(
f(t), ν(t)

)
−min

f

T∑
t=1

l̃g

(
f , ν(t)

)]
≤ lim sup

T→+∞

1

T

∑
i=1,...,n

ψi

(
DSS(i), DSS(i)

) T∑
t=1

∑
k=1,...,K

νGk (t)

We assume that each supplier makes its forecasts independently of the other suppliers. Then l̃g
(
X, ν(t)

)
is linear in X . As a

result, its minimum over the simplex of probability vectors is reached in one of the corners of the simplex. Consequently:

min
f

1

T

T∑
t=1

l̃g

(
f , ν(t)

)
= min

⊗id(fi)∈FnS

1

T

T∑
t=1

E
[
l̃g(X,Y )|X ∼ ⊗id(fi), Y = ν(t)

]
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Let: dT (z) = 1
T

∑T
t=1 1{ν(t)=z} be the marginal empirical frequency of play evaluated in prediction z ∈ EnS × EKG . We

obtain:

min
⊗id(fi)∈FnS

1

T

T∑
t=1

E
[
l̃g(X,Y )|X ∼ ⊗id(fi), Y = ν(t)

]
= min

⊗id(fi)∈FnS

∑
z∈EnS×EKG

dT (z)E
[
l̃g(X,Y )|X ∼ ⊗id(fi), Y = z

]
= min

⊗id(fi)∈FnS
E
(
l̃g(X,Y )|X ∼ ⊗id(fi), Y ∼ dT

)
≤ max

d(ν)∈Fm
min

⊗id(fi)∈FnS
E
[
l̃g(X,Y )|X ∼ ⊗id(fi), Y ∼ d(ν)

]
︸ ︷︷ ︸

Ṽg
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