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Dealing with Uncertainty in the Smart Grid: A
Learning Game Approach

Hélène Le Cadre∗ Jean-Sébastien Bedo†

Abstract

In this article, the smart grid is modeled as a decentralized and hierarchical
network, made up of three categories of agents: suppliers, generators and micro-
grids. To optimize their decisions concerning prices and traded power, agents need
to forecast the demand of the microgrids and the fluctuating productions of the
generators. The biases resulting from the decentralized learning could create im-
balances between demand and supply leading to penalties for suppliers and for
generators. We analytically determine prices that provide generators with a guar-
antee to avoid such penalties, transferring risk to the suppliers. Additionally, we
prove that collaborative learning, through a grand coalition of suppliers in which
information is shared and forecasts aligned on a single value, minimizes the sum of
their average risk. Simulations, run for a large sample of parameter combinations
using external and internal regret minimization, show that the convergence of the
collaborative learning strategy is clearly faster than that resulting from distributed
learning. Finally, we analyze the suppliers’ individual incentives to enter into a
grand coalition and the tightness of the learning algorithm’s theoretical bounds.

Keywords: Distributed Learning ; Information ; Regret ; Learning Game Theory

1 Introduction
In Europe, and especially France, power networks rely heavily on nuclear-based tech-
nology. With this type of non-renewable technology, generations can be adapted by
the plant operator who alternates openings and closings and optimizes the duration of
the switches between modes. The objective is thus to adapt the generations so as to
meet the uncertain demand level. We built a first model in [13], using two learning
strategies: the first was based on tit for tat and the second, on fictitious play. For re-
newables, generations can only be partially controlled, for instance, by lowering the
wind turbine speed [18]. Renewable integration in the power network requires deploy-
ing smart Information and Communication Technologies (ICTs) to supervise the grid
operations [19]. Indeed, renewable generation is highly unpredictable since it depends
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on uncontrolable exogenous factors like wind, sun, swell, etc. [22]. Furthermore, the
new active role of end users, who can become power generators, dynamically adapt
their consumption and fit into a multitude of microgrids [14], [25], [26], dramatically
increases the volume of exchanged data flows. ICTs appear to be a means to retrieve
the most salient information from this large amount of data and to train forecasters
to provide efficient predictions regarding fluctuating generations such as renewables.
These predictions will then be used as inputs to optimize the smart grid operations [2].

In practice, it is increasingly apparent that current forecasting methods cannot prop-
erly handle extreme situations corresponding to either severe weather phenomena or
critical periods for power system operations. For example, forecasting methods used to
predict wind power were mostly designed to provide single value forecasts to estimate
the generations. Only recently, probabilistic methods have been introduced to provide
estimations of the entire distribution of future generations [3]. In such methods, fore-
casts may take the form of either quantile estimations or density estimations [5], [9].
Learning based on regret minimization, as described in [4], belongs to this latter cate-
gory. This class of method is particulary efficient [12]. It provides the forecaster with a
density function that associates a weight to each possible output. The density function
is updated by merging information from various experts’ reports. As a result, these
methods are more robust in the face of extreme events and appear particularly well
suited to modeling erratic processes such as renewable productions.

In the framework of the smart grid, learning is performed in a decentralized manner
since each agent primarily learns the hidden information using its own observations.
Existing literature on distributed learning mostly focuses on distributed learning al-
gorithms that are suitable for implementation in large-scale engineering systems [15],
[24]. The results mainly concentrate on a specific class of games, called games of
potential [27]. This class of games is of particular interest since they have inherent
properties that can provide guarantees on the convergence and stability of the system.
However, this framework has some limitations, the most striking of which is that it is
very difficult to build a full system model from a potential game [18].

The learning game studied in this paper belongs to the category of repeated un-
coupled games since one agent cannot predict the forecasts and so actions of the other
agents at a given time period. To take its decision i.e., optimal prices and power orders,
each agent is aware of the forecast history of all of the agents and of its utility. For
finite games with generic payoffs, recent work has shown the existence of completely
uncoupled learning rules i.e., rules where the agents observe only their own prediction
history and their utility, leading to Pareto-optimal Nash equilibria [24]. Marden et al.
exhibit a different class of learning procedures that lead to a Pareto-optimal vector of
actions that do not necessarily coincide with Nash equilibria [18]. Close to the work
exposed in our article, Zheng et al. propose an online algorithm that simultaneously
updates the weight given to each forecaster using regularized sequential linear regres-
sion, while allowing each forecaster to be retrained based on the latest observations in
an online manner [28]. The updating of the individual forecasters to accomodate the
online observations relies on a gradient-descent algorithm. Expert system coordination
can also be used to aggregate the set of predictors into a better global predictor. Hol-
sapple et al. provide a method based on competition among distinct expert systems in
[11].

2



Most collaborative mechanisms studied in literature lead to price or quality of ser-
vice alignment. In addition, the group composition provides an additional state space in
which information about the environment can be accumulated [20]. To our knowledge,
no study has so far been made of the impact of collaboration through information shar-
ing and forecast alignment, when prices are individually determined, on the underlying
system performance. Of course, collaboration might not emerge due to the agents’
natural incentives to cheat and deviate from the cooperative equilibrium and also, most
frequently, due to the regulator’s intervention. There are a number of well-understood
reasons why regulators often do not allow horizontal collaboration: if suppliers are al-
lowed to collaborate, they might cooperate to raise the price i.e., reduce quantity below
the efficient baseline, and create market power [6]. Alternatively, suppliers might co-
operate to reduce quality of service. Courts punish agreements that explicitly aim to
decrease competition.

In this article, we answer the following questions:

• How will the biases, introduced by errors made by the agents in their predictions,
affect the agents’ average risk?

• Does collaborative learning improve the smart grid’s overall performance and
should it therefore be encouraged by the regulator?

The article is organized as follows. In Section 2, we introduce the economic basis of
our model, the agents, their utility and their optimization program. Complete informa-
tion Stackelberg game is then solved in Section 3, proceeding by backward induction.
We analytically derive the optimal prices and power orders for the agents. Partial infor-
mation is introduced in Section 4 where the interacting agents learn hidden individual
sequences in a distributed fashion. To illustrate the theoretical results derived in the
previous sections, in Section 5 we compare: firstly the time of convergence of suppli-
ers’ learning strategies under external and internal regret minimization in cooperative
and non-cooperative scenarios, secondly which behaviors should emerge depending
on the game parameters value and finally, analyze the tightness of the bounds derived
theoretically in various scenarios.

Throughout the article, we use the notation: x+ , max{x; 0} to denote the positive
part of the real number x.

2 The model
A large number of agents interact in the smart grid. In this article, we model the smart
grid as a three layer hierarchical network whose evolution depends on the interactions
between the agents composing each layer and also, on the ability of the agents to cope
with fluctuating power generations and demand [2], [19]. We detail the three categories
of agents and the repeated game which captures the interactions between them in Sub-
section 2.1. Then, we define each agent’s optimization program in Subsection 2.2.
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2.1 Description of the agents
We model the smart grid through three categories of agents: microgrids, suppliers and
generators. The first agent category is composed of microgrids. Microgrids gener-
ate some power demands (mostly for heating/cooling buildings and for the individual
usages of their inhabitants) and also some power through non renewable sources like
solar panels and wind roofings. Demand can be flattened when end users change their
normal power consumption patterns in response to price variations over time [1], [16].
These online changes are called pricing demand response (DR) in literature [14]. The
second agent category is composed of suppliers who buy power from several genera-
tors and resell it to the end users. The third category is composed of generators. Each
generator produces and sells power to all suppliers.

We assume that each end user has a contract with one supplier only and does not
churn from one supplier to another for all the duration of our study. This assumption
holds good if we consider local or regional utility companies. In this sense, the set
made of end users supplied by a single supplier can be seen as an individual microgrid,
as defined in [14], [25], [26] and recalled in the Introduction. We denote by si, with i
varying between 1 and n, the i-th supplier and byMi the corresponding group of end
users. The generators are denoted gk with k varying between 1 and K. The generators
can be associated with photovoltaic park managers, wind farm administrators, etc. In
this article, we assume that the generator cannot directly influence its power generation
at each time period. This assumption holds good if we look at renewable sources
like a wind turbine farm without any investment in an additional wind turbine during
the study period. The variation of wind intensity will impact the amount of power
generated without any lever for the generator 1.

We model the interplay between all of the agents through a repeated game. At each
time period t, the following game is played:

Basic Game Description

(i) Each generator gk communicates its unitary price p̃k(t) > 0 to the suppliers. The
prices are fixed independently and simultaneously by each generator so as to maximize
its utility.

(ii) Each supplier si places power orders with the generators: the quantity ordered by
supplier si from generator gk is denoted by qik(t). Each supplier si communicates its
unitary price pi(t) > 0 to its microgrid. The power orders and prices are fixed indepen-
dently and simultaneously by each supplier so as to maximize its utility.

(iii) MicrogridMi generates νsi (t) power units and buys ai(t) power units from supplier
si. The quantity ai(t) is chosen so as to maximize the benefits forMi.

At each time period, generator gk produces νgk(t) power units. It then delivers
αki(t)ν

g
k(t) units to supplier si where αki(t) ≥ 0 denotes the proportion of its gen-

eration that generator gk allocates to supplier si, with the normalization constraint:∑
i=1,...,n

αki(t) = 1. This proportion is defined depending on power orders received by

1Non-renewable generators like nuclear plants could be integrated into the grid. This would require using
distributed control rules, such as those described in [13], [18].
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gk from all of the suppliers. The sum of the orders received by gk may exceed νgk(t)
and so each supplier may receive less power than it initially ordered.

Penalties are incurred by both suppliers and power generators if they cannot fully
satisfy their customers’ demand. Supplier si incurs a cost γi > 0 per power unit
missing for the supply of its microgrid, measured a posteriori. The cost scale is pub-
lished on the TSO’s website [29]. It is paid to the Transmission System Operator for
electricity (TSO). In France, the TSO defined rules to encourage agents to become bal-
ance operators. According to these rules, a negative balance on the free market must
be compensated by buying the missing power from the TSO at a unit price defined
through the adjustment mechanism. This adjustment mechanism price is higher than
the free market electricity unit price. The entire adjustment mechanism is implemented
by the TSO, which compensates any negative balances to maintain the power network’s
reliability. In our article, the adjustment price is different for each supplier. The price
discrimination is justified by the fact that depending on its geographic location, a neg-
ative energy balance can be easily corrected in densely interconnected areas whereas it
is much more difficult in remote ones due to the high cost of electricity transmission.
As a result, γi is higher for suppliers serving remote locations than in densely intercon-
nected areas. Generator gk incurs a cost γ̃i > 0 per missing power unit in the provision
of supplier si, measured a posteriori. This fee is paid to the regulator of the capacity
market that needs to be implemented to balance supply and demand in the smart grid
[30]. Indeed, to guarantee the reliability of the capacity market, it might be necessary
to implement a feedback mechanism by which the regulator compensates the negative
energy balances of the generators by making its own investment in capacity [30]. The
costs of these investments would be recovered from the penalties imposed on the gen-
erators. These investments are spread over relatively long periods; in the short term,
the regulator must appeal to the TSO whose share of imports from neighboring energy
markets readjusts the level of production on suppliers’ orders.

2.2 Optimization program for each agent
In this subsection, we describe the decision variables and utilities for each category of
agents. The optimization program for each agent is presented using a mathematical
formulation.

2.2.1 Microgrid programs

The only decision variable for microgridMi is the power that it demands from supplier
si at time period t: ai(t). We assume that the microgrid has no lever to influence the
random generation from its intermittent sources: νsi (t).

We model the microgrid benefit of consuming x power units as a quadratic func-
tion. More precisely we use the model of Fahrioglu and Alvarado [7]. The utility of
consuming x power units then equals θi

(
b0x − 1

2b1x
2
)

where θi is a positive param-
eter depending on the microgrid composition (households, firms, etc.) and b0 and b1
are generic positive parameters. We note that this model is valid only when x < b0

b1
.

Beyond this threshold, the marginal benefit of consuming an additional power unit is
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zero and the total benefit of consuming power is constant and equals θi
b20
2b1

. As a result,
the net benefit for microgrid Mi, defined as the benefit of consuming νsi (t) + ai(t)
power units minus the cost of buying ai(t) power units from supplier si, is:

Bi(t) =


θi

(
b0(νsi (t) + ai(t))− 1

2b1(νsi (t) + ai(t))
2
)

−pi(t)ai(t) if νsi (t) + ai(t) <
b0
b1

θi

(
b20
2b1

)
− pi(t)ai(t) if νsi (t) + ai(t) ≥ b0

b1

(1)
MicrogridMi chooses ai(t) ≥ 0 in order to maximize its net benefit2. Therefore,

its optimization program takes the form: maxai(t)≥0

{
Bi(t)

}
. Its decision depends on

the price pi(t) fixed by supplier si.

2.2.2 Supplier programs

The decision variables for each supplier si are the unit price pi(t) and the power orders(
qik(t)

)
k

placed with each generator gk.
Following our description of the interplay between the agents, supplier si’s utility

at time period t is:

πi(t) = pi(t)ai(t)−
∑

k=1,...,K

qik(t)p̃k(t)− γi
(
ai(t)−

∑
k=1,...,K

αki(t)ν
g
k(t)

)
+
(2)

Supplier si chooses its unit price and its power orders in order to maximize πi(t),
as defined in Equation (2). Its optimization program takes the form:
maxpi(t)>0,(qik(t))k∈RK+

{
πi(t)

}
.

2.2.3 Generator programs

The only decision variable for each generator gk is the unit price, p̃k(t), at which it
provides power to the suppliers.

The utility of generator gk at time period t equals:

π̃k(t) = p̃k(t)
∑

i=1,...,n

qik(t)−
∑

i=1,...,n

γ̃i

(
qik(t)− αki(t)νgk(t)

)
+

To define the sharing coefficients,
(
αki(t)

)
i
, we consider a weighted proportional

allocation of resources that allows generators to discriminate power allocation by sup-
plier while allocating its power simultaneously among the suppliers. This framework
is a generalization of the well-known proportional allocation mechanism in which the
suppliers’ bids coincide with their power orders weighted by their penalty coefficients
(γ̃i)i [23], [26]. This means that when two suppliers have identical power orders,

2Note that at the individual household scale, the net demand might be negative since the household can
produce power through non renewable sources and use it for its own consumption.
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the one with the highest penalty coefficient receives the largest share of the genera-
tor’s available power. Indeed, the generator wants to minimize its overall penalty and,
therefore, allocates larger shares of its power to suppliers serving isolated areas where
failure of electricity supply may be critical. The choice of such a resource sharing
mechanism can be justified by three factors: firstly, a small extension of Nguyen and
Vojnović’s work [23] shows that weighted payment auction achieves competitive trans-
fers to generators and to the TSO compared to standard price discrimination schemes
at the equilibrium; secondly, the implementation of a sequential resource allocation
mechanism based on priority and without storage facilities should be avoided since
some suppliers might be left without allocation at all [14]; thirdly, a sequential allo-
cation of the power at the beginning of the time period is almost impossible because
the generations are random individual sequences of which outputs are only (partially)
observed at the end of the time period. This last point will be detailed in Section 4. We
set:

αki(t) ,
γ̃iqik(t)

Ck(t)
(3)

where Ck(t) =
∑

j=1,...,n

γ̃jqjk(t). Using Equation (3), generator gk’s utility at time

period t can be rewritten:

π̃k(t) = p̃k(t)
∑

i=1,...,n

qik(t)−
∑

i=1,...,n

γ̃iqik(t)
(

1− γ̃i
Ck(t)

νgk(t)
)
+

(4)

Generator gk chooses its unit price so that π̃k(t), as defined in Equation (4), is
maximized. Its optimization program takes the form: maxp̃k(t)>0

{
π̃k(t)

}
.

3 Complete information game resolution
The game setting described in Subsection 2.1 implies that in generator-supplier re-
lationship, generators lead and suppliers follow. Similarly, in supplier-microgrid re-
lationships, suppliers lead and microgrids follow. Under such a setting, the game is
called a Stackelberg game and, as usual, it should be solved using backward induction
[14], [21].

Additionally, we assume that each generator receives at least one power order from
a supplier, guaranteeing that the Stackelberg game admits non trivial solutions.

3.1 Optimization of the microgrids’ decisions
Microgrid Mi has to choose ai(t) in order to maximize its net benefit, defined by
Equation (1).

If ai(t) + νsi (t) ≥ b0
b1

, then the derivative of Bi(t) with respect to ai(t) equals
−pi(t). Under this assumption, the optimal ai(t) is reached at the lower bound of the
interval i.e., ai(t) = b0

b1
− νsi (t).
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If ai(t) + νsi (t) < b0
b1

, the derivative of Bi(t) with respect to ai(t) equals:

∂Bi(t)

∂ai(t)
= θi

(
b0 − b1(ai(t) + νsi (t))

)
− pi(t)

This derivative equals 0 when:

ai(t) =
b0
b1
− νsi (t)− pi(t)

b1θi
(5)

We note that for this value of ai(t) we automatically obtain ai(t) + νsi (t) < b0
b1

.
In addition, we compute the second order derivative of Bi(t) with respect to ai(t):
∂2Bi(t)
∂2ai(t)

= −θib1 < 0. This implies that the maximum of Bi(t) is reached when ai(t)
is defined by Equation (5).

To avoid a negative demand, we need to impose the following constraint: νsi (t) <
b0
b1
− pi(t)

b1θi
. Otherwise, the optimal demand from the microgrid is 0.

3.2 Optimization of the suppliers’ decisions
To find its optimal price and power orders, supplier si has to replace ai(t) by its optimal
value, defined in Equation (5), in πi(t), defined in Equation (2), and to derive the result
in pi(t) and in qik(t). This derivation results in two cases.

3.2.1 Case 1: power generation satisfies demand from the microgrid

This is the case when:

b0
b1
− νsi (t)− pi(t)

b1θi
<

∑
k=1,...,K

αki(t)ν
g
k(t) (6)

Then deriving the supplier’s utility in pi(t) leads to: ∂πi(t)∂pi(t)
= b0

b1
− νsi (t)− 2pi(t)b1θi.

This derivative equals 0 when pi(t) =
θi

(
b0−b1νsi (t)

)
2 which is the optimal price for

supplier si. Then the positivity constraint for ai(t) becomes νsi (t) < b0
b1

. In addition,

the derivative of the supplier’s utility in qik(t) leads to: ∂πi(t)
∂qik(t)

= −p̃k(t) which means
that supplier si will try to minimize all of its power orders to maximize its utility. As
a result, αki(t) will tend to be small. This implies, in turn, that supplier si will tend
to break the inequality defining Case 1 in Inequality (6) and we will always fall on the
frontier between Case 1 and Case 2. The frontier between these two cases is defined
by the equation:

b0
2b1
− νsi (t)

2
=

∑
k=1,...,K

αki(t)ν
g
k(t) (7)
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3.2.2 Case 2: power generation does not satisfy power demand from the micro-
grid

This is the case when b0
b1
−νsi (t)− pi(t)

b1θi
≥

∑
k=1,...,K

αki(t)ν
g
k(t). Then deriving supplier

si’s utility with respect to pi(t) and qik(t) gives us:

∂πi(t)

∂pi(t)
=

b0
b1
− νsi (t) +

γi
b1θi

− 2pi(t)

b1θi

∂πi(t)

∂qik(t)
= −p̃k(t) + γiν

g
k(t)

∂αki(t)

∂qik(t)
(8)

By using the definition of αki(t), given in Equation (3), we obtain:

∂αki(t)

∂qik(t)
= γ̃i

Ck(t)− γ̃iqik(t)

Ck(t)2

Going back to the system of Equations (8), we conclude that the derivatives equal 0
when:

pi(t) =
θi

(
b0 − b1νsi (t)

)
+ γi

2
(9)

p̃k(t)Ck(t)2 = γiν
g
k(t)γ̃i

(
Ck(t)− γ̃iqik(t)

)
(10)

On the one side, we directly obtain the price at which the derivative of πi(t) equals 0
through Equation (9). We derive from this equation the positivity constraint for ai(t)
which is:

νsi (t) <
b0
b1
− γi
b1θi

On the other side, Equation (10) can be rewritten as follows:

γ̃iqik(t) = Ck(t)− p̃k(t)Ck(t)2

νgk(t)γiγ̃i
(11)

If supplier si anticipates that the other suppliers will make the same optimization pro-
gram, replicating Equation (11) for the n suppliers and adding them all together results

in the following equality: Ck(t) = nCk(t) − p̃k(t)Ck(t)
2

νgk(t)

∑
j=1,...,n

1

γj γ̃j
by definition of

Ck(t). Then, given that Ck(t) is not zero because each generator gk receives at least
one power order otherwise it would be out of the game, by dividing the previous equa-

tion by Ck(t) and reordering we obtain: Ck(t) =
νgk(t)

p̃k(t)
n−1
δ where δ =

∑
j=1,...,n

1

γj γ̃j
.

By replacing Ck(t) in Equation (11), we obtain the power orders for which the deriva-
tives of πi(t) equal 0:

qik(t) =
νgk(t)

p̃k(t)

n− 1

δ

βi
γ̃i

(12)
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in which we have introduced the notation βi = 1− n−1
δγiγ̃i

to simplify future calculations.
We now have to check that the price and power orders for which the derivatives of

πi(t) equal 0 satisfy the conditions of Case 2.
Firstly, it is easy to check that the price is positive through Equation (9) and the

positivity constraint for ai(t). However, the power orders defined in Equation (12) are
non-negative if, and only if, βi ≥ 0 which is equivalent to 1 ≥ n−1

δγiγ̃i
which, in turn, is

equivalent to:

γiγ̃i ≥
n− 1

δ

⇔ 1

γiγ̃i
≤ 1

n− 1

∑
j=1,...,n

1

γj γ̃j
(13)

This inequality means that the penalties related to supplier si i.e., γi, γ̃i, are close to
the penalties related to the other suppliers i.e., (γj , γ̃j)j . Indeed, if all penalties are
equal to γ, then δ = n

γ2 and Inequality (13) is true for all suppliers. On the contrary,
if all penalties are equal to γ except for supplier s1 which has a penalty of γ

n−1 , then

δ = (n−1)n
γ2 and Inequality (13) for supplier s1 becomes n ≥ (n−1)2 which is false as

soon as n > 2. In this case, supplier s1 would not buy any power from the generators,
and so would be out of the game.

Secondly, by replacing the power orders, defined by Equation (12), in Equation (3),
we obtain:

αki(t) =

νgk(t)

p̃k(t)
n−1
δ βi∑

j=1,...,n

νgk(t)

p̃k(t)

n− 1

δ
βj

=
βi∑

j=1,...,n

βj
= βi

This proves that the sharing coefficient αki(t) depends on neither generator gk nor
time instant t. Furthermore, the above result means that the total power delivered to
microgridMi is:

∑
k=1,...,K

αki(t)ν
g
k(t) = βi

∑
k=1,...,K

νgk(t). As a result, the price and

power orders for which the derivatives of πi(t) equal 0 verify the inequality defining
Case 2 if, and only if:

b0θi − γi
2b1θiβi

− νsi (t)

2βi
≥

∑
k=1,...,K

νgk(t) (14)

This inequality states that the total generation should not be too high. If this is not the
case, then the over-supply situation would probably end up with the most expensive
generator out of the game.

If Inequalities (13) and (14) are true, the optimum for supplier si is reached for
pi(t) defined by Equation (9) and qik(t) defined by Equation (12). If one of these
inequalities is not true, then the optimum for supplier si is reached on the frontier
defined by Equation (7).
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3.3 Optimization of the generators’ decisions
After substituting qik(t) and Ck(t) by the expressions found Subsection 3.2.2 in gen-
erator gk’s utility, as defined in Equation (4), we obtain:

π̃k(t) = νgk(t)
n− 1

δ

∑
i=1,...,n

βi

[ 1

γ̃i
− γ̃i

( 1

p̃k(t)γ̃i
− δ

n− 1

)
+

]
The only part of this equation depending on p̃k(t) always has a negative impact on the
utility of the generator under the assumption of fair penalties. Indeed, in that case, as
raised in the previous section, we obtain: βi ≥ 0 for all suppliers (si)i. As a result, to
maximize its utility, the generator has to choose p̃k(t) such that the part depending on
p̃k(t) in the above equation equals 0. This implies that the term 1

p̃k(t)γ̃i
− δ
n−1 is below

0 for all i = 1, ..., n. It is equivalent to: p̃k(t) ≥ n−1
δγ̃i

. Consequently, the optimal price
for the generator with fair penalties should satisfy:

p̃k(t) ≥ n− 1

δ min
i=1,...,n

{γ̃i}

4 Distributed learning game

In this section, we assume that the generations from the microgrids
(
νsi (t)

)
i

and the

productions of the generators
(
νgk(t)

)
k

are random individual sequences. As explained
in the Introduction, this means that the underlying random processes generating the
sequences do not necessarily have a probabilistic structure. They can be quite erratic
[4].

To guarantee optimal system-wide operation, it is fundamental that the suppliers
elaborate efficient learning strategies regarding the microgrids’ generation and the gen-
erators’ production. The risk associated with this learning task will be measured by the
supplier’s loss. It will be defined in Subsection 4.1.

Suppliers should optimize their prices and quantities ordered at each time period, at
which point they possess no information on either the microgrids’ generation or about
the generators’ decentralized production. As a result, the game can be considered as
having incomplete information [21]. Each supplier si has to forecast νsi (t) and νgk(t)
for all k = 1, ...,K, at each time period, in order to optimize its decisions. The game
will be repeated over a finite time horizon 0 < T < +∞.

To simplify, we will consider a common closed space Eg of possible values for the
production of each generator and a common closed space Es of possible values for the
generation from a microgrid. Eg ,Es ⊆ R are considered to be of finite dimension i.e.,
their cardinals |Eg| and |Es| are such that |Eg| < +∞ and |Es| < +∞. We will denote
by fi(X, t) the forecast of supplier si about the variable X at time period t. We will
use boldface type to denote vectors. We will also use the simplifying notations:

• fi(t) ,
(

fi(ν
s
i , t)︸ ︷︷ ︸

forecast ofMi’s generation

, fi(ν
g
1 , t), ..., fi(ν

g
K , t)︸ ︷︷ ︸

forecasts of the generators’ productions

)
to denote the pre-

dictions made by supplier si about the generation from microgridMi and about

11



the production of each generator gk, k = 1, ...,K, at time period t

• f(t) ,
(
f1(t), ..., fn(t)

)
which contains the forecasts of all of the suppliers, at

time period t

• f−i(y, t) =
(
f1(t), ..., fi−1(t),y, fi+1(t), ..., fn(t)

)
which contains the fore-

casts of all of the suppliers except si whose prediction is set equal to y, at time
period t

• ν(t) ,
(
νs1(t), ..., νsn(t)︸ ︷︷ ︸

microgrids’ generations

, νg1 (t), ..., νgK(t)︸ ︷︷ ︸
generators’ productions

)
which contains the generation

from each microgridMi and the production of each generator gk, k = 1, ...,K,
at time period t

Under conditions of power shortage as defined in Subsection 3.2.2, we obtain the
optimal price for supplier si by substitution of the forecasters in Equation (9) and the
optimal power orders for supplier si by substitution in Equation (12). The optimal deci-

sions for supplier si at each time period t are then: pi(fi(t), t) =
γi+θi

(
b0−b1fi(νsi ,t)

)
2

and qik(fi(t), t) =
fi(ν

g
k ,t)

p̃k(t)
βi
γ̃i
n−1
δ . Therefore, the demands from the microgrids are

ai(fi(t), ν(t)) = b0
2b1
− γi

2b1θi
− νsi (t) +

fi(ν
s
i ,t)
2 because the microgrids have exact

knowledge of their generation, unlike the suppliers, which have to forecast theirs. In
addition, since suppliers may differ in their forecasts, αki can no longer be reduced to
βi, and instead we obtain αki(f(t)) =

fi(ν
g
k ,t)βi∑

j=1,...,n

fj(ν
g
k , t)βj

. As a result, the utility of

supplier si at each time period t is:

πi(f(t), ν(t)) =
γi + θi

(
b0 − b1fi(νsi , t)

)
2

( b0
2b1
− γi

2b1θi
− νsi (t) +

fi(ν
s
i , t)

2

)
− βi

γ̃i

n− 1

δ

∑
k=1,...,K

fi(ν
g
k , t)− γi

( b0
2b1
− γi

2b1θi
− νsi (t)

+
fi(ν

s
i , t)

2
−

∑
k=1,...,K

fi(ν
g
k , t)βi∑

j=1,...,n

fj(ν
g
k , t)βj

νgk(t)
)
+

(15)

The game parameters and random events (fluctuating generations and penalties) are
chosen to obtain a constant power shortage, in the sense that:

• Inequality (14) transposed to the incomplete information setting will always be
true i.e.:

b0
2b1
− γi

2b1θi
− νsi (t)

2
≥

∑
k=1,...,K

αki(f(t))ν
g
k(t) (16)
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• The positivity constraint on ai(fi(t), ν(t)) holds i.e., b0
2b1
− γi

2b1θi
≥ νsi (t) −

fi(ν
s
i ,t)
2

Lemma 1. To maximize its utility, supplier si should be unbiased in its forecast of the
generation from microgridMi and its forecast of generator productions.

Proof of Lemma 1. Firstly, since the conditions are a constant power shortage, we
have ∂πi(f(t),ν(t))

∂fi(νsi ,t)
= − θib12 ai(fi(t), ν(t))+ pi(fi(t),t)

2 − γi
2 = θib1

2

(
νsi (t)−fi(νsi , t)

)
.

This derivative equals 0 if, and only if, fi(νsi , t) = νsi (t). In addition, ∂
2πi(f(t),ν(t))
∂fi(νsi ,t)

2 =

− θib12 < 0 which means that πi is concave in fi(νsi , t) so its maximum is reached when
fi(ν

s
i , t) = νsi (t). Secondly, we have:

∂πi(f(t), ν(t))

∂fi(ν
g
k , t)

= −βi
γ̃i

n− 1

δ
+ γiν

g
k(t)

βiCk(f(t))− β2
i fi(ν

g
k , t)

Ck(f(t))2

where Ck(f(t)) ,
∑

j=1,...,n

fj(ν
g
k , t)βj . This derivative equals 0 if, and only if:

βifi(ν
g
k , t) = Ck(f(t))− 1

γiγ̃i

n− 1

δ

Ck(f(t))2

νgk(t)
(17)

By summing this condition for all suppliers, we obtain: Ck(f(t)) = nCk(f(t)) −
n−1
δ

Ck(f(t))
2

νgk(t)

∑
j=1,...,n

1

γj γ̃j
which is equivalent to: Ck(f(t)) = Ck(f(t))

2

νgk(t)
by definition

of δ, which means Ck(f(t)) = νgk(t). By replacement in Equation (17), we obtain that

the derivative equals 0 if, and only if: fi(ν
g
k , t) = νgk(t). In addition, ∂

2πi(f(t),ν(t))
∂fi(ν

g
k ,t)

2 =

−2γiβiν
g
k(t)

∑
j 6=i

βjfj(ν
g
k , t)

Ck(f(t))3
< 0 which means that πi is concave in fi(ν

g
k , t) so its

maximum is reached when fi(ν
g
k , t) = νgk(t).

4.1 Learning risk measure definition and first observations
As already mentioned, the supplier’s risk, associated with the learning task, will be
measured by its resulting loss. We have chosen a loss function representing the lack
of profit compared to a case in which the supplier produces perfect forecasts of power
demands and generations. More precisely, for any supplier si, i = 1, ..., n, its loss is
defined as:

li

(
f(t), ν(t)

)
=
(
π0
i (t)− πi(f(t), ν(t))

)
where π0

i (t) corresponds to supplier si’s utility evaluated in fi(ν
s
i , t) = νsi (t) and

fi(ν
g
k , t) = νgk(t) for any k = 1, ...,K.
We now upper bound supplier si’s loss as the sum of a loss function depending ex-

clusively on the supplier’s predictions, l(1)i , and on another function, l(2)i , which relies
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on the disagreements between all the suppliers’ predictions. The notion of disagree-
ment needs to be carefully explained. To that purpose, we introduce:

dkij(t) , fi(ν
g
k , t)− fj(ν

g
k , t),∀i, j = 1, ..., n, j 6= i,∀k = 1, ...,K

as a measure of the disagreement between supplier si and supplier sj , i 6= j, in the
prediction of generator gk’s power production, at time period t.

Proposition 2. Supplier si’s loss can be upper bounded by the sum of two functions:
the first, l(1)i , depends exclusively on its forecasts and the second, l(2)i , depends on its
disagreement with the other suppliers’ predictions:

li

(
f(t)ν(t)

)
≤ l

(1)
i

(
fi(t), ν(t)

)
︸ ︷︷ ︸

loss caused exclusively by supplier si’s forecasts

+ l
(2)
i

(
(dkij(t))j,k, ν(t)

)
︸ ︷︷ ︸

loss caused by the disagreements of supplier si with the others’ forecasts

∀i = 1, ..., n

with

l
(1)
i

(
fi(t), ν(t)

)
= b1θi

(
fi(ν

s
i , t)− νsi (t)

)2
4

− βi
γ̃i

n− 1

δ

∑
k=1,...,K

(
νgk(t)−fi(νgk , t)

)
and

l
(2)
i

(
(dkij(t))j,k, ν(t)

)
= γiβi

∑
k=1,...,K

( νgk(t)2

min{Eg}
−

νgk(t)∑
j=1,...,n

βjξ1(dkij(t))

)

where ξ1(x) = 1− x
min{Eg}1x<0 − x

max{Eg}1x≥0.

Proof of Proposition 2. The proof can be found in Appendix A.

4.2 Optimal learning strategies for each supplier
In this context of incomplete information on the power generations from the microgrids
and on the fluctuating renewable productions, we test two regret criteria to build the
suppliers’ learning strategy, dt(.): external and internal regret minimization [4]. Both
regret minimization algorithms give rise to an optimized learning strategy [4] i.e., a
density function defined over the space Es × EKg . As explained in the Introduction,
regret minimization is more robust to extreme events as it provides a density function
over the prediction set. Other learning rules based on different regret criteria exist such
as regret-matching [10] and regret-testing [8]. However, they offer no guarantee on the
convergence of the algorithm and require longer times to reach an equilibrium when it
exists.
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The external regret over the sequence of time periods 1, ..., T , is the difference
between the observed cumulative loss and the cumulative loss of the best constant
prediction i.e., pure strategy. To be more precise, for supplier si, it takes the form:

Ri(T ) ,
T∑
t=1

li

(
f(t), ν(t)

)
− min

y∈Es×EKg

T∑
t=1

li

(
f−i(y, t), ν(t)

)
We will consider that the learning strategy of supplier si is optimal if asymptotically
its external regret remains in o(T ) where T is the number of time periods that have

been played. This means that with probability 1: lim supT→+∞
1
T

T∑
t=1

Ri(t) = 0.

Forecasters satisfying these inequalities are said to be Hannan consistent [4].
By definition, a strategy dt(.) has a small internal regret if for every couple of

predictions y,y′ ∈ Es×EKg , the forecaster does not regret not having chosen prediction
y′ for time periods for which it chose prediction y:

RIi(T ) , max
y,y′∈Es×EKg

∑
t=1,...,T

dt(y)
[
li

(
f−i(y, t), ν(t)

)
− li

(
f−i(y

′, t), ν(t))
)]

In a repeated game, this regret criterium ensures that the joint empirical frequencies of
play converge with the set of correlated equilibria [4] whereas there is no guarantee that
the product of the marginal empirical frequencies of play will converge with the Nash
equilibria, under external regret minimization in a general game. Internal regret mini-
mization will be used exclusively in the simulations in Subsection 5.3 as a benchmark
to compare external regret minimization properties.

In the following lemma, we prove that it is possible to construct learning strategies
for the suppliers that asymptotically minimize their external regret.

Lemma 3. A Hannan consistent learning strategy exists for each supplier si.

Proof of Lemma 3. In our case setting, at the end of each time period, supplier si
knows3 the power demand from microgrid Mi and it can infer its generation, νsi (t),
from Equation (5). Supplier si also knows the power that has been delivered to it by
each generator gk, from which it can infer the power that could have been delivered to it
if it had ordered a different quantity qik(t), all other suppliers ordering the same power
quantities, using Equation (3). As a result, supplier si can calculate its loss for all of
its possible actions. In [4], Cesa-Bianchi and Lugosi proved that a Hannan consistent
learning strategy always exists if the agent can compute its loss for each possible action
at the end of each time period.

We now introduce lower and upper bounds on the disagreements between sup-
plier si and the other suppliers regarding the predictions of the generations: Dss(i) ,
mint=1,...,T minj 6=i,k d

k
ij(t) and Dss(i) , maxt=1,...,T maxj 6=i,k d

k
ij(t). They contain

the extreme disagreement values between the suppliers, about the estimated genera-
tions.

3In the smart grid, the monitoring is performed through communicating meters deployed at the end user
level [2], [19].
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Lemma 4. If supplier si plays according to a Hannan consistent strategy then an upper
bound exists for the external regret associated with supplier si’s loss caused by its own
predictions, l(1)i , which depends only on the extreme disagreement values between the
suppliers regarding the estimated generations, Dss(i) and Dss(i). More precisely:

lim sup
T→+∞

1

T

[ T∑
t=1

l
(1)
i

(
fi(t), ν(t)

)
− min

y∈Es×EKg

( T∑
t=1

l
(1)
i

(
y, ν(t)

))]
≤ ψi

(
Dss(i), Dss(i)

) ∑
k=1,...,K

νgk(t)

where the function ψi from R2 to R is defined by:

ψi(x, y) = γiβi

( 1

ξ2(y)
− 1

ξ1(x)
+

max{Eg}
min{Eg}

− min{Eg}
max{Eg}

)
with ξ2(x) = 1− x

min{Eg}1x≥0 −
x

max{Eg}1x<0.

Proof of Lemma 4. The proof can be found in Appendix B.
The aim of the next subsections will be to derive bounds for suppliers’ losses under

cooperative and non-cooperative scenarios.

4.3 Analysis of the upper bounds of the sum of suppliers’ loss func-
tions

We express the TSO’s loss as the opposite of the sum of all of the suppliers’ losses.
This coincides with the balance price that the TSO would have to pay to ensure the
reliability of the power network:

l
(
f(t), ν(t)

)
,

∑
i=1,...,n

(
πi(t)− π0

i (t)
)

It is also possible to consider that the suppliers play against Nature [4] which exhibits
its worst behavior towards suppliers when setting the random individual sequences.
Similarly to the suppliers, the TSO will try to keep its external regret R(t) in o(T ).

We define l̃g as the sum of the suppliers’ losses exclusively caused by their own
predictions:

l̃g

(
f(t), ν(t)

)
,

∑
i=1,...,n

l
(1)
i

(
fi(t), ν(t)

)
(18)

We let Fs be the set of all of the predictors (i.e., discrete density function set or
alternatively, randomized prediction set) for each supplier and Fm the set of all of
the predictors for the TSO. The value of the game, in which the suppliers exclusively
consider the losses caused by their own predictions as utilities, is defined as follows:

Ṽg , min
⊗i=1,...,nd(fi)∈Fns︸ ︷︷ ︸

suppliers’ predictors

max
d(ν)∈Fm︸ ︷︷ ︸

TSO’s predictor

E
[
l̃g(X,Y )|X ∼ ⊗i=1,...,nd(fi), Y ∼ d(ν)

]

where l̃g is defined in Equation (18).
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Theorem 5. Assume that all suppliers play according to Hannan consistent strategies
for their loss upper bound then when T is large enough (T → +∞):

1

T

T∑
t=1

l̃g

(
f(t), ν(t)

)
≤ Ṽg +

1

T

T∑
t=1

∑
i=1,...,n

ψi

(
Dss(i), Dss(i)

) ∑
k=1,...,K

νgk(t)

Proof of Theorem 5. The proof can be found in Appendix C.

Corollary 6. Assume that the TSO plays according to a Hannan consistent strategy
for its loss upper bound. Then when T is large enough (T → +∞):

1

T

T∑
t=1

l̃g

(
f(t), ν(t)

)
≥ Ṽg −

1

T

T∑
t=1

∑
i=1,...,n

ψi

(
Dss(i), Dss(i)

) ∑
k=1,...,K

νgk(t)

Proof of Corollary 6. Applying Theorem 5 to the TSO i.e, by symmetry, consider-
ing that the TSO’s loss upper bound is the opposite of the sum over i of supplier si’s
loss upper bounds, and using von Neuman-Morgenstern’s Minimax Theorem [21] for
Ṽg , we derive the proposed inequality.

We let:

lg

(
f(t), ν(t)

)
,

∑
i=1,...,n

li

(
f(t), ν(t)

)
(19)

be the sum of the suppliers’ losses. Using the definitions established in Equations (18)
and (19), we derive the following inequality:

lg

(
f(t), ν(t)

)
≤ l̃g

(
f(t), ν(t)

)
+

∑
i=1,...,n

l
(2)
i

(
(dkij(t))j=1,...,n,k=1,...,K , ν(t)

)
By substitution in Theorem 5, we obtain the following result:

Corollary 7. If all suppliers play according to a Hannan consistent strategy for their
loss upper bounds then, when T is large enough (T → +∞), their average loss cannot
be greater than:

Ṽg +
1

T

T∑
t=1

∑
i=1,...,n

ψi

(
Dss(i), Dss(i)

) ∑
k=1,...,K

νgk(t)

+
1

T

T∑
t=1

∑
i=1,...,n

l
(2)
i

(
(dkij(t))j=1,...,n,k=1,...,K , ν(t)

)
whatever strategy is chosen by the TSO.
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4.4 Collaborative learning strategy
Collaboration takes place within coalitions. In cooperative Game Theory literature, a
coalition is a group of agents who have incentives to collaborate by sharing resource ac-
cess, information, etc., in the hope of increasing their revenue, knowledge, social wel-
fare (in case of altruism), etc., compared to a case where they behave non-cooperatively
[21], [26]. Adapted to our learning context, we define coalitions of agents as follows:

Definition 8. • A coalition of suppliers is a group of suppliers which collaborate
to learn the hidden productions of the generators

(
νgk(t)

)
k
.

• The grand coalition contains all the suppliers involved in the learning task i.e.,
{si}i=1,...,n.

• Cooperation takes place within the coalition when its members share their infor-
mation and align their predictions to a common value.

Shared information concerns only the power productions of the generators. Indeed,
each supplier independently predicts the generation from its microgrid and has no im-
pact on the other suppliers.

At this stage, the objective is to identify conditions on the disagreement levels
between the suppliers regarding the forecasted power productions such that the term at
the right of Ṽg defined in Corollary 7, remains as small as possible. Indeed, the smaller
the term defined in Corollary 7, the smaller the upper bound of the sum of the agents’
losses will be.

Such a strategy would minimize ψi
(
Dss(i), Dss(i)

)
and l(2)i

(
(dkij(t))j,k, ν(t)

)
at

any time period. This implies that Dss(i) = Dss(i) = 0 and dkij(t) = 0,∀i, j, k, ∀t.
This means that suppliers can decrease the upper bound of their average loss by

coordinating their predictions about the power productions
(
νgk(t)

)
k
, at any time pe-

riod t. Suppliers therefore have an incentive to form a grand coalition because it might
enable them to decrease their total loss.

Proposition 9. If the suppliers cooperate through a grand coalition and play Hannan
consistent strategies, the suppliers’ average loss over time interval [1;T ] when T is

large enough (T → +∞) cannot be larger than: Ṽg +
∑

i=1,...,n

γiβi

(
2

max{Eg}
min{Eg}

−

min{Eg}
max{Eg}

− 1
)( 1

T

T∑
t=1

∑
k=1,...,K

νgk(t)
)

Proof of Proposition 9. By substitution in l(2)i , as introduced in Proposition 2, since
dkij(t) = 0 for all i, j, k, we have:

l
(2)
i

(
(dkij)j,k(t), ν(t)

)
= γiβi

∑
k=1,...,K

( νgk(t)2

min{Eg}
− νgk(t)

)
(20)
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This depends on the supplier index (i) and on time period (t), and not on the suppliers’
forecasts. In addition, ψi(0, 0) = γiβi

(
max{Eg}
min{Eg} −

min{Eg}
max{Eg}

)
. As a result, applying

Corollary 7, we obtain that the suppliers’ average loss over time interval [1;T ] when T
is large enough (T → +∞) cannot be larger than:

Ṽg +
1

T

T∑
t=1

∑
i=1,...,n

γiβi

(max{Eg}
min{Eg}

− min{Eg}
max{Eg}

) ∑
k=1,...,K

νgk(t)

+
1

T

T∑
t=1

∑
i=1,...,n

γiβi
∑

k=1,...,K

( νgk(t)2

min{Eg}
− νgk(t)

)
(21)

Then the proposition statement is straightforward.

5 Simulations
The aim of this section is to explain how the economic model of the hierarchical net-
work, described in Section 2, can be applied in practice to take decisions in an uncertain
context and then to check that the results derived analytically in Section 4 hold, for a
given smart grid structure.

The rest of the section is organized as follows: Subsection 5.1 deals with payoff
function estimation for each forecast, Subsection 5.2 elaborates on the update of mixed
strategies for each forecast and in the last part we discuss the numerical illustrations
that we have obtained, for a large sample of parameters, considering non-cooperative
and cooperative scenarios.

5.1 Payoff functions
At each time period, each supplier must make K + 1 forecasts: one for its microgrid
power generation and one to evaluate the fluctuating production of each of the K gen-
erators. As a result, each supplier should define a randomized strategy on the space
Es × EKg . We recall that a randomized strategy is the standard terminology used in
Game Theory for a discrete density function defined over the considered set [21]. The
size of the set grows very fast with K and, as a result, each probability in the random-
ized strategy of forecasts is very low, with the effect that errors are rounding off during
computation. In order to overcome this issue, we decided to divide the suppliers into
smaller entities, with each making only one forecast at each time period, and to con-
sider that these entities are uncoupled. This trick results inK+1 randomized strategies
in the space of forecasts Es × EKg for each supplier.

For a given forecast X , we derive the payoffs for each value x ∈ E (E = Es
for power generation from the microgrid and E = Eg for power productions from the
generators) of the forecast at each time period t by using the utilities of the suppliers
and retaining only those terms that depend on forecast X . This is summarized in the
following definition:
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Definition 10. The payoff function associated with forecastX , evaluated in x ∈ E , co-
incides with the utility of supplier si restricted to its terms depending solely on forecast
X and evaluated in x.

For the forecasts of power generation from microgridMi, supplier si’s payoff takes
the form:

Hfi(νsi )
(x, t) =

γi + θi(b0 − b1x)

2

( b0
2b1
− γi

2b1θi
− νsi (t) +

x

2

)
− γi

x

2

Concerning the forecasts of generator gk’s power production, supplier si’s payoff takes
the form:

Hfi(ν
g
k)

(x, t) = −βi
γ̃i

n− 1

δ
x+ γi

βix∑
j=1,...,n,j 6=i

βjfj(ν
g
k , t) + βix

νgk(t)

As already stated in Section 4, we will also consider that the TSO is non oblivious
and tries to maximize the sum of the suppliers’ losses. As for the suppliers, we un-
couple νsi (t) and νgk(t) to improve the computation. More precisely the TSO’s payoffs
are:

Hνsi
(x, t) =

(θi(b0 − b1fi(νsi , t))− γi
2

)
x

and

Hνgk
(x, t) = −

∑
i=1,...,n

γiβifi(ν
g
k , t)∑

j=1,...,n

βjfj(ν
g
k , t)

x

It is very straightforward to adapt the repeated learning game and payoffs when
considering that the suppliers integrate a grand coalition. The grand coalition payoffs
take the following forms:

HfC(νsi )
(x, t) = Hfi(νsi )

(x, t)

HfC(νgk)
(x, t) = −

∑
i=1,...,n

βi
γ̃i

n− 1

δ
x+

∑
i=1,...,n

γiβi

The TSO’s payoff Hνsi
(x, t) is unchanged whereas payoff Hνgk

(x, t) becomes:

Hνgk
(x, t) = −

∑
i=1,...,n

γiβix

5.2 Updates of forecasting strategies
We consider two types of update for the forecasting randomized strategies based on
the exponential forecaster for signed games: one based on external regret and the other
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based on internal regret. We assume that the game considered in this article is a signed
game because the range of values of payoff functionHX might include a neighborhood
of 0.

We let: ϑt ,
t∑

s=1

V ar
(
HX(Xs, s))

)
=

t∑
s=1

E
[(
HX(Xs, s)) − E[HX(Xs, s)]

)2]
be the sum of the variances associated with the random variable HX(Xt, t) under the
mixed strategy dt(X) which is defined over space E . Using the exponential forecaster
for signed games with external regret [4] means that the mixed strategy is updated
according to the algorithm described below.

External Regret Learning Algorithm: Updating of the Exponential Forecaster

Initialization. For t = 0, we set: w0(x) =
1
|E| , ∀x ∈ E .

Step 1 to T . The updating rules are the following:

dt(x) =
wt(x)∑
x∈E wt(x)

, ∀x ∈ E

wt+1(x) = exp
(
ηt+1

t∑
s=1

HX(x, s)
)

= wt(x)
ηt+1
ηt exp

(
ηt+1HX(x, t)

)
, ∀x ∈ E

ηt+1 = min
{ 1

2max{|HX |}
;

√
2(
√
2− 1)

e− 2

√
ln|E|
ϑt

}
ϑt+1 = ϑt + V ar

(
HX(Xt+1, t+ 1)

)
For the internal regret, the definition of which was introduced in Subsection 4.2, the

updating rules are similar but with dt(.) =
∑
y 6=y′ d

y→y′
t (.)∆(y,y′)(t) where dy→y

′

t (.)
is the modified forecasting strategy obtained when the forecaster predicts y′ each time
it would have predicted y and

∆(y,y′)(t) ,

exp
(
ηt

t−1∑
s=1

∑
x∈E

dy→y
′

s (x)HX(x, s)
)

∑
z 6=z′

exp
(
ηt

t−1∑
s=1

∑
x∈E

dz→z
′

s (x)HX(x, s)
)

We note that, if we take the notation w(y,y′)(t) , exp
(
ηt

t−1∑
s=1

∑
x∈E

dy→y
′

s (x)HX(x, s)
)

,

then:

∆(y,y′)(t) =
w(y,y′)(t)∑

z 6=z′
w(z,z′)(t)

w(y,y′)(t) = w(y,y′)(t− 1)
ηt
ηt−1 exp

(
ηt
∑
x∈E

dy→y
′

t−1 (x)HX(x, t− 1)
)
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5.3 Numerical illustrations
Convergence times and emerging behaviors: We consider two suppliers and two
generators (n = 2,K = 2). We compare the cumulative payoff of each agent (supplier
or grand coalition) to the cumulative payoff of the same agent in a case where it has
forecasted the best value at each time period in terms of payoffs. More precisely, we
compute for each agent a (the supplier s1, s2 or the grand coalition C), the following
performance metric:

Ra(T ) ,
1

T

T∑
s=1

∑
X∈Fa

(
HX(Xs, s)−max

x∈E
(HX(x, s))

)
where Fa is the generic set of forecasts made by agent a. Then, we measure the conver-
gence of the learning algorithm through the convergence of this performance metric.
That is to say, we consider that convergence is reached when the variation of the per-
formance metric, Ra(T )−Ra(T−1)

Ra(T−1) , is less than 10−2.

We let T ∗si , i = 1, 2 (resp. T ∗C) be the number of time steps needed for the regret-
based algorithm for supplier si (resp. the grand coalition) to converge. According
to these notations, supplier si has incentives to cooperate if, and only if, T ∗si ≥ T ∗C .
Depending on the position of T ∗C with respect to min{T ∗s1 ;T ∗s2} and max{T ∗s1 ;T ∗s2}
we identify three emerging behaviors:

• Both suppliers have incentives to cooperate if, and only if, min{T ∗s1 ;T ∗s2} ≥ T
∗
C .

• The suppliers have no incentive to cooperate if, and only if, max{T ∗s1 ;T ∗s2} <
T ∗C

• The smart grid is unstable (one supplier having an incentive to cooperate and not
the other) if, and only if, min{T ∗s1 ;T ∗s2} < T ∗C ≤ max{T ∗s1 ;T ∗s2}

In our simulations, we calculated the convergence times of learning algorithms for a
wide range of combinations of penalty coefficients (γ1,γ2,γ̃1,γ̃2). More precisely, in
Figures 1 and 2 (a), we make the assumption that: γ1 = 2γ2 = 2γ ∈ [0; 1] while in (b):
γ = γ1 = γ2 ∈ [0; 1]. For each figure, we use 1000 combinations corresponding to 10
values equally distributed between 0.1 and 1 for γ, γ̃1 and γ̃2. We can easily check that
all these penalty coefficient combinations satisfy Equation (13). In addition, we chose
Es = [5, 8] and Eg = [1, 2] so that Equation (16), i.e. energy shortage, is always true.

In Figure 1, the learning strategies of the suppliers and the grand coalition are
based on external regret minimization while in Figure 2, they rely on internal regret
minimization. In the top of Figures 1 and 2 (a) and (b), we plot the histograms of the
maximum of T ∗s1 , T

∗
s2 (resp. T ∗C) left (resp. right) for all of the combinations of penalty

coefficients (γ,γ̃1,γ̃2). The bin heights of each histogram are determined by the num-
ber of penalty coefficients that have the same convergence time. The algorithms are
run for T = 100 time periods. At the bottom of Figures 1 and 2 (a) and (b), we plot
the ratio of the maximum (resp. minimum) of T ∗s1 and T ∗s2 over T ∗C , left (resp. right),
for all penalty coefficient combinations (γ, γ̃1, γ̃2). From the top figures in both cases
we observe that, for a far larger number of penalty coefficients, the learning algorithm
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convergence times are shorter under cooperative scenarios than under non-cooperative
scenarios. Furthermore, by comparison of Figures 1 and 2 top, the convergence times
are shorter for learning algorithms based on internal regret minimization than for learn-
ing algorithms based on external regret minimization, though convergence occurs under
both regret criteria.

Regarding the potential for a grand coalition to emerge, we infer from Figure 1 (a)
and (b) (resp. 2 (a) and (b)) bottom, that for 97% of the penalty coefficient combina-
tions at least one supplier has incentives to cooperate and that for 95% (resp. 94.5%)
of the combinations of penalty coefficients both suppliers have incentives to cooperate,
using external regret minimization (resp. internal regret minimization) as criterion.

In terms of scalability, the complexity of our learning algorithm is in O(nK). An
interesting property is that it can be easily parallelized (one agent corresponding to one
core) due to the fact that the weight updating rules are specific to each supplier (i.e.,
they do not depend on the other suppliers’ forecasts).

Tightness of convergence bounds: To measure performance, we chose to compute
two upper bounds: firstly, the upper bound derived in Corollary 7, where the suppli-
ers perform distributed learning non-cooperatively. This is called BOUND SELFISH.
Secondly, the upper bound derived in Proposition 9, where the suppliers enter a grand
coalition and align their forecasts of the generators’ productions. This is called BOUND
COALITION. Both upper bounds are matched with the sum of the suppliers’ average

loss: 1
T

T∑
t=1

lg(f(t), ν(t)). The latter is computed under external (AV. LOSSext,.) and in-

ternal regret minimization (AV. LOSSint,.), assuming that either the suppliers’ learning
process is non-cooperative or cooperative. These performance measures are averaged
over 1000 combinations of parameters (γ, γ̃1, γ̃2), each parameter takes one of the 10
values equally distributed between 0.1 and 1. In Table 1, we compute BOUND SELF-
ISH, AV. LOSSext,selfish and AV. LOSSint,selfish for a fixed number of values of γ1

γ2
.

In Table 2, we compute BOUND COALITION, AV. LOSSext,coal and AV. LOSSint,coal
for a fixed number of values of γ1γ2 . According to both tables, we observe that BOUND
COALITION is striclty smaller than BOUND SELFISH and that AV. LOSS.,coal is striclty
smaller than AV. LOSS.,selfish whichever learning scenario (i.e., either non-cooperative
or cooperative) is chosen by the suppliers.

6 Conclusion
In this article, we study a model of decentralized renewable generations in which gen-
erators, suppliers and microgrids are organized into a hierarchical network. Renewable
generations are modeled by random individual sequences which need not have a prob-
abilistic structure. This extraordinarily general demand and supply structure is capable
of taking into account exogenous events. As a result, it is more robust to extreme events
and appears particularly suitable for modeling fairly erratic processes such as renew-
ables. We analytically determine the optimal prices that enable generators to avoid the
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(a)

(b)

Figure 1: Convergence times and incentives to collaborate under external regret minimization.
In (a), we have: γ1 = 2γ2 = 2γ ∈ [0; 1] and in (b), we have: γ = γ1 = γ2 ∈ [0; 1]. At the
top of each subfigure, we plot the histograms of the maximum of T ∗s1 , T

∗
s2 (resp. T ∗C ) left (resp.

right) for all the combinations of penalty coefficients and for a maximum number of time periods
T = 100. At the bottom left (resp. right), we plot the ratio of the maximum (resp. minimum) of
T ∗s1 , T

∗
s2 over T ∗C as a function of all of the penalty coefficient combinations.
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(a)

(b)

Figure 2: Convergence times and incentives to collaborate under internal regret minimization.
In (a), we have: γ1 = 2γ2 = 2γ ∈ [0; 1] and in (b), we have: γ = γ1 = γ2 ∈ [0; 1]. At the
top of each subfigure, we plot the histograms of the maximum of T ∗s1 , T

∗
s2 (resp. T ∗C ) left (resp.

right) for all of the penalty coefficient combinations and for a maximum number of time periods
T = 100. At the bottom left (resp. right), we plot the ratio of the maximum (resp. minimum) of
T ∗s1 , T

∗
s2 over T ∗C as a function of all the penalty coefficient combinations.
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γ1
γ2

BOUND SELFISH AV. LOSSext,selfish AV. LOSSint,selfish
0.2 1.539.10−2 −8.152.10−3 −2.204.10−2

0.5 0.00 −6.611.10−3 −1.738.10−2

0.7 1.634.10−2 −7.150.10−3 −1.604.10−2

1.0 3.668.10−2 −7.630.10−3 −1.624.10−2

1.5 6.627.10−3 −4.395.10−3 −1.719.10−2

2.0 0.0 −3.124.10−3 −1.552.10−2

2.5 3.371.10−2 −2.853.10−3 −1.233.10−2

3.0 0.00 −1.755.10−3 −9.433.10−3

3.5 0.00 −1.600.10−3 −1.060.10−2

4.0 0.00 −7.738.10−4 −6.675.10−3

Table 1: Comparison of the upper bound derived in Corollary 7 with the suppliers’ average
loss in cases where the latter learn the generators’ power productions non-cooperatively through
external and internal regret minimization.

γ1
γ2

BOUND COALITION AV. LOSSext,coal AV. LOSSint,coal
0.2 5.579.10−3 −4.853.10−2 −5.991.10−2

0.5 0.00 −5.694.10−2 −6.490.10−2

0.7 5.584.10−3 −6.047.10−2 −6.896.10−2

1.0 1.297.10−2 −5.114.10−2 −7.176.10−2

1.5 2.441.10−3 −5.512.10−2 −6.884.10−2

2.0 0.0 −5.445.10−2 −6.923.10−2

2.5 1.181.10−2 −4.258.10−2 −5.213.10−2

3.0 0.00 −3.940.10−2 −4.371.10−2

3.5 0.00 −2.839.10−2 −3.757.10−2

4.0 0.00 −2.384.10−2 −2.740.10−2

Table 2: Comparison of the upper bound derived in Proposition 9 with the suppliers’ average
loss in cases where the latter enter a grand coalition and align their forecasts of the generators’
power productions under external and internal regret minimization.

penalties that the balance operators threaten to apply when suppliers’ orders are not
entirely satisfied. All the risk is then transferred to the suppliers. Additionally, we
prove that the latter can minimize their average risk by sharing information and align-
ing their forecasts. Finally, numerical simulations, run on a large sample of parameter
combinations, lead us to observe that the convergence times in collaborative learning
are clearly lower than times resulting from decentralized learning and that they are
lower for learning algorithms based on internal regret minimization than for external
regret minimization, though convergence occurs under both criteria. The tightness of
convergence bound under collaborative learning is shown to be clearly better than for
distributed learning.

An area of improvement is the design of the penalties paid to the electricity Trans-
mission System Operator, which compensates negative energy balances. Is it possible
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to design more generic mechanisms? Could rules be adapted to guarantee open mar-
kets and avoid speculation, such as capacity retention or under-investment in the means
of production?

Appendix

Appendix A: Proof of Proposition 2
Following a number of calculations, we obtain:

ai(ν(t), ν(t))pi(ν(t), t)− ai(fi(t), ν(t))pi(fi(t), t)

=
fi(ν

s
i , t)− νsi (t)

4

(
b1θi(fi(ν

s
i , t)− νsi (t))− 2γi

)
and

ai(ν(t), ν(t))− ai(fi(t), ν(t)) =
νsi (t)− fi(νsi , t)

2

Given supplier si’s loss due to power shortage conditions, we have:

li

(
f(t), ν(t)

)
= l

(1)
i

(
fi(t), ν(t)

)
+ γiβi

∑
k=1,...,K

(νgk(t)− fi(νgk , t))ν
g
k(t)

Ck(f(t))
(22)

where:

l
(1)
i

(
fi(t), ν(t)

)
= b1θi

(fi(ν
s
i , t)− νsi (t))2

4
− βi
γ̃i

n− 1

δ

∑
k=1,...,K

(
νgk(t)− fi(νgk , t)

)
In addition, we observe that:

( fi(ν
g
k , t)∑

j=1,...,n

βjfj(ν
g
k , t)

)−1
=

∑
j=1,...,n

βj

(
fi(ν

g
k , t)− d

k
ij(t)

)
fi(ν

g
k , t)

=
∑

j=1,...,n

βj

(
1−

dkij(t)

fi(ν
g
k , t)

)
≤

∑
j=1,...,n

βjξ1

(
dkij(t)

)
where ξ1(x) = 1 − x

min{Eg}1x<0 − x
max{Eg}1x≥0. To obtain the inequality above,

we followed the logic that since Eg is a close subset of R, the forecasters are upper
and lower bounded i.e., min{Eg} ≤ fi(ν

g
k , t) ≤ max{Eg}. Furthermore, fj(ν

g
k , t) ≥

min{Eg} means that:
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1∑
j=1,...,n

βjfj(ν
g
k , t)

≤ 1
min{Eg} since

∑
j=1,...,n

βj = 1. As a result, we have:

li

(
f(t), ν(t)

)
− l(1)i

(
fi(t), ν(t)

)
≤ γiβi

∑
k=1,...,K

( νgk(t)2

min{Eg}
−

νgk(t)∑
j=1,...,n

βjξ1(dkij(t))

)

We then introduce the notation:

l
(2)
i

(
(dkij)j,k(t), ν(t)

)
= γiβi

∑
k=1,...,K

( νgk(t)2

min{Eg}
−

νgk(t)∑
j=1,...,n

βjξ1(dkij(t))

)

We obtain an upper bound of li
(
f(t), ν(t)

)
as the sum of two parts: the first, l(1)i ,

depends exclusively on its predictions and the second, l(2)i , depends on its interactions
with the others’ predictions.

Appendix B: Proof of Lemma 4
Suppose that supplier si plays according to a Hannan consistent strategy. Taking into
account Equation (22) defining the loss of supplier si, this means that:

lim sup
T→+∞

1

T

[ T∑
t=1

(
l
(1)
i (fi(t), ν(t)) + ζ(fi(t), f(t), ν(t))

)
− min

y∈Es×EKg

( T∑
t=1

(
l
(1)
i (y, ν(t)) + ζ(y, f(t), ν(t))

))]
≤ 0 (23)

where ζ(y, f(t), ν(t)) = γiβi
∑

k=1,...,K

νgk(t)2

Ck(f−i(y, t))
−

yk+1ν
g
k(t)

Ck(f−i(y, t))
.

Let dkij(y, t) denote the disagreement between supplier si and supplier sj when
supplier si makes the prediction y at time period twithout any change in the predictions
of the other suppliers. Following the same approach as in Appendix A, we obtain for
all y ∈ Es × EKg :

1∑
j=1,...,n

βjξ1

(
dkij(y, t)

) ≤ yk+1

Ck(f−i(y, t))
≤ 1∑

j=1,...,n

βjξ2

(
dkij(y, t)

)
where ξ2(x) = 1− x

min{Eg}1x≥0 −
x

max{Eg}1x<0.
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Similarly, we have:

1

max{Eg}
≤ 1

Ck(f−i(y, t))
≤ 1

min{Eg}

As a result, we obtain for all y ∈ Es × EKg :

γiβi
∑

k=1,...,K

νgk(t)2

max{Eg}
−

νgk(t)∑
j=1,...,n

βjξ2(dkij(y, t))
≤ ζ(y, f(t), ν(t))

≤ γiβi
∑

k=1,...,K

νgk(t)2

min{Eg}
−

νgk(t)∑
j=1,...,n

βjξ1(dkij(y, t))

In Section 4, we introduced lower and upper bounds on the disagreements be-
tween supplier si and the other suppliers regarding the forecasts of the generations:
Dss(i) and Dss(i). Since ξ1 and ξ2 are decreasing in x (they are linear functions by
parties with negative coefficients), we have ξ1(Dss(i)) ≤ ξ1(x) ≤ ξ1(Dss(i)) and
ξ2(Dss(i)) ≤ ξ2(x) ≤ ξ2(Dss(i)) for any disagreement value x.

Then, since
∑

j=1,...,n

βj = 1, the lower bound of ζ(y, f(t), ν(t)) is: bl(i, t) =

γiβi
∑

k=1,...,K

νgk(t)2

max{Eg}
−

νgk(t)

ξ2(Dss(i))
.Whereas, the upper bound takes the form: bu(i, t) =

γiβi
∑

k=1,...,K

νgk(t)2

min{Eg}
−

νgk(t)

ξ1(Dss(i))
. If Inequality (23) is checked, then the following

inequality holds:

lim supT→+∞
1
T

[ T∑
t=1

l
(1)
i

(
fi(t), ν(t)

)
+

T∑
t=1

bl(i, t) − min
y∈Es×EKg

( T∑
t=1

l
(1)
i

(
y, ν(t)

)
−

T∑
t=1

bu(i, t)
)]
≤ 0. This last inequality provides an upper bound for the external regret

associated with supplier si’s partial loss.

Appendix C: Proof of Theorem 5
With the proposed expression of ψi, the upper bound of the external regret evaluated in
supplier si’s loss, l(1)i , becomes:

lim sup
T→+∞

1

T

[ T∑
t=1

l
(1)
i

(
fi(t), ν(t)

)
− min
yi∈E

T∑
t=1

l
(1)
i

(
yi, ν(t)

)]
≤ lim sup

T→+∞

1

T
ψi

(
Dss(i), Dss(i)

) T∑
t=1

∑
k=1,...,K

νgk(t) (24)
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Summing Inequality (24) over all i = 1, ..., n, the external regret evaluated in the sum
of the suppliers’ losses (l

(1)
i )i=1,...,n, becomes:

lim sup
T→+∞

1

T

[ T∑
t=1

l̃g

(
f(t), ν(t)

)
−min

f

T∑
t=1

l̃g

(
f , ν(t)

)]
≤ lim sup

T→+∞

1

T

∑
i=1,...,n

ψi

(
Dss(i), Dss(i)

) T∑
t=1

∑
k=1,...,K

νgk(t)

We assume that each supplier makes its forecasts independently of the other suppli-
ers. Then l̃g

(
X, ν(t)

)
is linear in X . As a result, its minimum over the simplex of

probability vectors is reached in one of the corners of the simplex. Consequently:

min
f

1

T

T∑
t=1

l̃g

(
f , ν(t)

)
= min

⊗id(fi)∈Fns

1

T

T∑
t=1

E
[
l̃g(X,Y )|X ∼ ⊗id(fi), Y = ν(t)

]
Let: dT (z) = 1

T

∑T
t=1 1{ν(t)=z} be the marginal empirical frequency of play eval-

uated in prediction z ∈ Ens × EKg . We obtain:

min
⊗id(fi)∈Fns

1

T

T∑
t=1

E
[
l̃g(X,Y )|X ∼ ⊗id(fi), Y = ν(t)

]
= min

⊗id(fi)∈Fns

∑
z∈Ens ×EKg

dT (z)E
[
l̃g(X,Y )|X ∼ ⊗id(fi), Y = z

]
= min

⊗id(fi)∈Fns
E
(
l̃g(X,Y )|X ∼ ⊗id(fi), Y ∼ dT

)
≤ max

d(ν)∈Fm
min

⊗id(fi)∈Fns
E
[
l̃g(X,Y )|X ∼ ⊗id(fi), Y ∼ d(ν)

]
︸ ︷︷ ︸

Ṽg
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