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Dealing with Uncertainty in the Smart Grid: A
Learning Game Approach∗

Hélène Le Cadre† Jean-Sébastien Bedo‡

Abstract

In this article, the smart grid is modeled as a decentralized and hierarchical
network, made of three categories of agents: producers, providers and microgrids.
To optimize their decisions concerning the energy prices and the traded quantities
of energy, the agents need to forecast the energy productions and the demand of
the microgrids. The biases resulting from the decentralized learning might create
imbalances between demand and supply, leading to penalties for the providers and
for the producers. We determine analytically prices that provide to the producers a
guarantee to avoid such penalties, reporting all the risk on the providers. Addition-
ally, we prove that collaborative learning, through a grand coalition of providers
where information is shared and forecasts aligned on a single value, minimizes
their average risk. Simulations, run for a large sample of parameter combinations,
lead us to observe that the convergence times of the collaborative learning strategy
are clearly superior to times resulting from distributed learning, using external and
internal regret minimization. Furthermore, a grand coalition has 98% (resp. 85%)
of chances to emerge under internal (resp. external) regret minimization.

Keywords: Distributed Learning ; Information ; Regret ; Learning Game Theory

1 Introduction
In Europe, and in France especially, traditional electrical networks rely on nuclear
based energies, which are non renewable energy sources. With such energies, the pro-
duction level can be adapted by the plant operator who alternates openings and closings
and optimizes the duration of the switches between both modes. The objective then, is
to adapt the production level so as to meet the uncertain demand level. We built a first
model in [12], where two learning strategies based on tit for tat and fictitious play are
used to adapt the production level to meet the demand level. For renewable energies,
the production level can only be partially controlled, for instance, by lowering the wind
turbine speed [16]. Renewable energy integration in the electrical network requires the
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deployment of smart Information and Communication Technologies (ICTs), to super-
vise the grid operations [17]. Indeed, renewable energy production is highly unpre-
dictable since it depends on uncontrolable exogenous factors like wind power, sunshine
level, swell intensity, etc. [20]. Furthermore, the new active role of the end users, who
can become energy producers and adapt dynamically their consumption while falling
into a multitude of microgrids [13], [23], [24], dramatically increase the volume of the
exchanged data flows. ICTs appear as a mean to retrieve the most salient information
from this big amount of data and to train forecasters to provide efficient predictions
about the renewable energy production and about the microgrid energy demand. These
predictions will then be used as inputs to optimize the smart grid operations [2].

In practice, it is increasingly apparent that current forecasting technology cannot
properly handle extreme situations corresponding to either extreme weather phenom-
ena or critical periods for power system operations. For example, forecasting methods
used to predict wind power were mostly designed to provide single value forecasts of
expected productions. Only recently, probabilistic methods have been introduced to
provide estimations of the entire distribution of future productions [3]. In such meth-
ods, forecasts may take the form of either quantile estimations or density estimations
[5], [8]. Learning based on regret minimization, as described in [4], belongs to this
latter category. This class of methods is particulary efficient [11]. It provides to the
forecaster a density function which associates a weight to each possible outputs. The
density function is updated by merging informations from various sources’ reports. As
a result, these methods are more robust to extreme events and appear as particularly
well suited to model erratic processes such as renewable energy production.

In the framework of the smart grid, learning is performed in a decentralized manner
since each agent primarly learns the hidden information using his own observations.
The existing literature on distributed learning primarly focuses on distributed learning
algorithms that are suitable for implementation in large scale engineering systems [14],
[22]. The results mainly concentrate on a specific class of games, called games of
potential [25]. This class of games is of particular interest since they have inherent
properties that can provide guarantees on the convergence and stability of the system.
However, there exist some limitations to this framework. The most striking one is that
it is frequently impossible to represent the interaction framework of a given system as a
potential game [16]. The learning game studied in this paper belongs to the category of
repeated uncoupled games since one player cannot predict the forecasts and so actions
of the other agents at a given time period. To take his decision i.e., optimal prices and
energy orders, each agent is aware of the history of forecasts of all the agents and of
his utility. Recent work has shown that for finite games with generic payoffs there exist
completely uncoupled learning rules i.e., rules where the agents observe only their own
prediction history and their utility, that lead to Nash equilibria that are Pareto optimal
[22]. Marden et al. exhibit a different class of learning procedures that lead to Pareto
optimal vector of actions that do not necessarily coincide with Nash equilibria [16].
Close to the work exposed in our article, Zheng et al. propose an online algorithm that
simultaneously updates the weight given to each forecaster using regularized sequential
linear regression, while allowing each forecaster to be retrained based on the latest
observations in an online manner [26]. The updating of the individual forecasters to
accomodate the online observations relies on a gradient-descent algorithm. Expert
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system coordination can also be used to aggregate the set of predictors into a better
global predictor. Holsapple et al. provide a method based on the competition among
the distinct expert systems in [10].

Most collaborative mechanisms studied in the literature lead to price or quality of
service alignment. Besides, the group composition provides an additional state space in
which information about the environment can be accumulated [18]. To our knowledge
the impact of collaboration through information sharing and forecast alignment, while
prices are individually determined, on the underlying system performance has not been
studied so far. Of course, collaboration might not emerge due to the agents’ natural
incentives to cheat and to deviate from the cooperative equilibrium and also, most
frequently, due to the regulator’s intervention. There is a number of well-understood
reasons why regulator often does not allow horizontal collaboration: if providers are
allowed to collaborate, they might cooperate to raise the price i.e., reducing quantity
below the efficient baseline, and create market power [6]. Alternatively, providers
might cooperate to reduce quality of service. Courts punish explicit agreements whose
objectives are clearly to decrease the competition. In this article, we will answer the
following questions:

• How will the biases, introduced by the errors made by the agents in their predic-
tions, affect the agents’ average risk?

• Will collaborative learning improve the smart grid wide performance and should
therefore be encouraged by the regulator?

The article is organized as follows. In Section 2, we introduce the economic basis
of our model, the agents, their utility and their optimization program. Then the com-
plete information Stackelberg game is solved in Section 3, proceeding by backward
induction. We derive analytically the optimal prices and energy orders for the agents.
Partial information is introduced in Section 4 where the interacting agents learn in a
distributed fashion hidden individual sequences.

To illustrate the theoretical results derived in the previous sections, we compare in
Section 5: firstly, the times of convergence of providers’ learning strategies under ex-
ternal and internal regret minimization, in cooperative and non-cooperative scenarios ;
secondly, their incentives to enter a grand coalition depending on the parameter values.

Throughout the article, we will use the notation: x+ , max{x; 0} to denote the
positive part of the real number x.

2 The model
The number of agents interacting in the smart grid is large. In this article, we model
the smart grid as a three layer hierarchical network which evolution depends on the
interactions between the agents composing each layer and also, on the ability of the
agents to cope with energy production and demand variations [2], [17]. We detail
the three categories of agents and the repeated game which captures the interactions
between them in Subsection 2.1. Then, we define each agent optimization program in
Subsection 2.2.

3



2.1 Description of the agents
We model the smart grid through three categories of agents: the microgrids, the provi-
ders and the energy producers. The microgrids generate some energy demand, and
fulfill it either by buying energy to a provider or by finding alternatives (solar panels,
more efficient appliances, etc.). Furthermore, the demand can be significantly flattened
through end user changes in their normal electrical consumption patterns in response
to changes in the price of electricity over time [1]. These online changes are called
pricing demand response (DR) in the literature [13]. Each provider buys energy to
several energy producers and resell it to the end users. Each energy producer produces
and sells energy to all providers.

We assume that each end user contracts with only one provider and does not churn
from one provider to another during all the period of our study. This assumption holds
well if we consider local or regional utility companies for example. In this sense,
the set made of end users supplied by a single provider can be seen as an individual
microgrid, as defined in [13], [23], [24] and recalled in the Introduction. We denote by
(si)i, with i varying between 1 and n, the i-th provider and byMi the corresponding
group of end users. The energy producers are denoted (ek)k with k varying between 1
and K. The energy producers can be associated with nuclear plants, photovoltaic park
managers, wind farm administrators, etc. In this article, we assume that the energy
producer cannot influence directly the energy he produces at each time period. This
assumption holds well if we look at renewable energy sources like a wind turbine farm
without any investment in an additional wind turbine during the study period. The
variation of the wind intensity will impact the amount of the produced energy without
any lever for the energy producer 1.

We model the interplay between all the agents through a repeated game. At each
time period t, the following game is played:

Basic Game Description G(t)

(1) The energy producers ek communicate their unitary prices p̃k(t) > 0 to the providers.
The energy prices are fixed independently and simultaneously by each energy producer
so as to maximize his profit.

(2) The providers si place energy quantity orders to energy producers: the quantity
ordered by si to ek is denoted by qik(t). The providers si communicate their prices
pi(t) > 0 for one energy unit to their microgrid. The orders and the energy prices are
fixed independently and simultaneously by each provider so as to maximize his profit.

(3) Microgrid Mi net demand, defined as the difference between its demand and the
production of its own alternative means, reaches νsi (t) energy units for the time period.

It decides to perform DR by postponing ai(t) energy units and buys the rest
(
νsi (t) −

ai(t)
)
+

to provider si. The quantity of DR is chosen so as to minimize the total cost of

energy forMi.

1Non-renewable energy producers like nuclear plants might be integrated into the grid. It requires to use
distributed control rules as the ones described in [12], [16].
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At each time period, the production of energy producer ek reaches νek(t) energy
units. He then delivers αki(t)νek(t) energy units to provider si where αki(t) ≥ 0
denotes the proportion of his production that producer ek allocates to provider si, with
the normalization constraint:

∑
i=1,...,n

αki(t) = 1. This proportion is defined depending

on quantity orders received by ek from all providers. The sum of the orders received
by ek may exceed νek(t) and so the quantity of energy received by each provider may
be inferior to his quantity order.

Penalties are undertaken by both providers and energy producers if they cannot sat-
isfy the entire demand of their customers. Provider si incurs a cost γi > 0 per missing
energy unit for his microgrid, measured a posteriori. It is paid to the transmission sys-
tem operator for electricity (TSO). In France, the TSO has defined some rules to give
incentives to the agents to become balance operators [27]. According to these rules, a
negative energy balance on the free market must be compensated by buying the miss-
ing energy to the TSO with a unit price defined through the adjustment mechanism.
This adjustment mechanism price is higher than the free market energy unit price. The
whole adjustement mechanism is implemented by the TSO who compensates the nega-
tive balances to ensure the electrical network reliability. In our article, the adjustement
price is different for each provider. The price discrimination is justified by the fact that
depending on its geographic location, a negative energy balance can be easily corrected
in densely interconnected areas whereas it is much more difficult in isolated ones due
to the high cost of electricity transmission. As a result, γi is higher for providers serv-
ing isolated locations than over densely interconnected areas. Producer ek incurs a cost
γ̃i > 0 per missing energy unit for provider si, measured a posteriori. It is paid to the
regulator of the capacity market that should be implemented to balance supply and de-
mand in the smart grid [28]. Indeed, to guarantee the reliability of the capacity market,
it might be necessary to implement a feedback mechanism where the regulator com-
pensates the negative energy balances of the producers by investing himself in capacity
[28]. The costs of these investments would be recovered from the penalties imposed to
the producers. These investments are spread over relatively long periods ; in the short
term, the regulator must call the TSO whose share of imports from neighboring energy
markets re-balances the level of production at the providers’ demand.

2.2 Optimization program for each agent
In this subsection, we describe the decision variables and the utilities for each category
of agents. The optimization program for each agent is presented using a mathematical
formulation.

2.2.1 Programs of the microgrids

The only decision variable for microgridMi is the quantity of energy that it decides
to postpone through DR: ai(t). We assume that the microgrid has no lever to influence
its random net demand, defined as the difference between its demand and the random
production from its alternative sources: νsi (t).

5



Flattening the energy demand by postponing or even deleting one’s demand, rather
than buying it to the provider, has some cost for the microgrid. More precisely, the
cost of shaving ai(t) energy units through DR, is measured through the end users’ hy-
perbolic absolute risk aversion [15], resulting from the possibility that their postponed
demand might not be fulfilled later on. As a special case of hyperbolic absolute risk
aversion measure, we model the associated utility as a quadratic cost function. As a
result, the total cost of energy for microgridMi is:

pi(t)
(
νsi (t)− ai(t)

)
+ c
(
ai(t)

)
(1)

where c
(
ai(t)

)
= ai(t)

2

2 , according to the assumptions made on the end users’ abso-
lute risk aversion. This hypothesis is not restrictive and constants or more complicated
cost functions can be introduced. The main advantage of this choice is that it is generic
enough and allows to solve a large part of the game analytically.

MircrogridMi chooses ai(t) in order to minimize its total energy cost. Therefore,
its optimization program is of the form: minai(t)≥0

{
pi(t)

(
νsi (t)−ai(t)

)
+c
(
ai(t)

)}
.

Its decision depends on the energy price pi(t) fixed by provider si.

2.2.2 Programs of the providers

The decision variables for each provider si are the unit energy price pi(t) and the
energy orders

(
qik(t)

)
k

for each energy producer ek.
Following our description of the interplay between the agents, the utility for provider

si at time period t is:

πi(t) = pi(t)
(
νsi (t)− ai(t)

)
−

∑
k=1,...,K

qik(t)p̃k(t)− γi
(
νsi (t)− ai(t)

−
∑

k=1,...,K

αki(t)ν
e
k(t)

)
+

(2)

Provider si chooses his energy unit price and his energy orders toward energy pro-
ducers so that πi(t), as defined in Equation (2), is maximized. His optimization pro-
gram takes the form: maxpi(t)>0,(qik(t))k∈RK+

{
πi(t)

}
.

2.2.3 Programs of the energy producers

The only decision variable for each energy producer ek is the energy unit price, p̃k(t),
that he proposes to the providers.

The utility of energy producer ek at time period t equals:

π̃k(t) = p̃k(t)
∑

i=1,...,n

qik(t)−
∑

i=1,...,n

γ̃i

(
qik(t)− αki(t)νek(t)

)
+

To define the sharing coefficients,
(
αki(t)

)
i
, we consider a weighted proportional

allocation of resource that allows producers to discriminate energy allocation by provi-
ders while allocating his energy production simultaneously among the providers. This
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framework is a generalization of the well-known proportional allocation mechanism
where the providers’ bids coincide with their energy orders weighted by their penalty
coefficients (γ̃i)i [21], [24]. This means that between two providers with identical en-
ergy orders, the one having the highest penalty coefficient will receive the largest part
of the producer’s available energy. Indeed, the producer wants to minimize his over-
all penalty and, therefore, allocates larger parts of his production to providers serv-
ing isolated areas where failure of electricity supply may be critical. The choice of
such a resource sharing mechanism can be justified by three points: firstly, a small
extension of Nguyen and Vojnović’s work [21] shows that weighted payment auction
achieves competitive transfers to energy producers and to the TSO compared to stan-
dard price discrimination schemes at the equilibrium ; secondly, the implementation of
a sequential resource allocation mechanism based on priority and without storage facil-
ities should be avoided since some providers might be left without allocation at all [13]
; thirdly, a sequential allocation of the energy production at the beginning of the time
period is almost impossible because the productions are random individual sequences
of which outputs are only (partially) observed at the end of the time period. This last
point will be detailed in Section 4. We set:

αki(t) ,
γ̃iqik(t)

Ck(t)
(3)

where Ck(t) =
∑

j=1,...,n

γ̃jqjk(t). Using Equation (3), energy producer ek’s utility at

time period t can be rewritten:

π̃k(t) = p̃k(t)
∑

i=1,...,n

qik(t)−
∑

i=1,...,n

γ̃iqik(t)
(

1− γ̃i
Ck(t)

νek(t)
)
+

(4)

Energy producer ek chooses his energy unit price so that π̃k(t), as defined in Equa-
tion (4), is maximized. His optimization program is of the form: maxp̃k(t)>0

{
π̃k(t)

}
.

3 Complete information game resolution
The game setting described in Subsection 2.1 implies that in the relation producers-
providers, producers appear as leaders whereas providers are followers. Identically, in
the relation providers-microgrids, providers appear as leaders whereas microgrids are
mere followers. Under such a setting, the game is called a Stackelberg game and, as
usual, it should be solved using backward induction [13], [19].

Additionally, we make the assumption that each energy producer receives at least
one energy order from a provider, guaranteeing that the Stackelberg game admits non
trivial solutions.
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3.1 Optimization of the microgrids’ decision
To minimize their total cost of energy, defined by Equation (1), microgridMi has to
choose ai(t) so that the derivative of the total cost of energy equals 0 which means:

ai(t) = pi(t) (5)

3.2 Optimization of the providers’ decisions
To find his optimal price and energy orders, provider si has to replace ai(t) by its
optimal value in πi(t), defined in Equation (2), and to derivate the result in pi(t) and
in qik(t). This derivation raises two cases.

3.2.1 Case 1: the energy production fulfills the energy demand of the microgrid

It is the case when:
νsi (t)− pi(t) <

∑
k=1,...,K

αki(t)ν
e
k(t) (6)

Then derivating the provider’s utility in qik(t) leads to: ∂πi(t)
∂qik(t)

= −p̃k(t) which means
that si will try to minimize all his energy orders to maximize his utility. As a re-
sult, αki(t) will tend toward zero. This implies, in turn, that si will tend to break
the inequality defining Case 1 in Inequality (6) and we will always fall on the frontier
between Case 1 and Case 2. The frontier between these two cases is defined by the
equation:

νsi (t)− pi(t) =
∑

k=1,...,K

αki(t)ν
e
k(t) (7)

Therefore, in a complete information setting, it is possible for provider si to define his
unit energy price so that it belongs to the frontier between both cases, avoiding the
penalties from the TSO.

3.2.2 Case 2: the energy production does not fulfill the energy demand of the
microgrid

It is the case when νsi (t) − pi(t) ≥
∑

k=1,...,K

αki(t)ν
e
k(t). Then derivating si’s utility

gives us:

∂πi(t)

∂pi(t)
= νsi (t) + γi − 2pi(t)

∂πi(t)

∂qik(t)
= −p̃k(t) + γiν

e
k(t)

∂αki(t)

∂qik(t)
(8)

By using the definition of αki(t), given in Equation (3), we obtain:

∂αki(t)

∂qik(t)
= γ̃i

Ck(t)− γ̃iqik(t)

Ck(t)2
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Then going back to the system of Equations (8), we conclude that the derivatives equal
0 when:

pi(t) =
νsi (t) + γi

2
(9)

p̃k(t)Ck(t)2 = γiν
e
k(t)γ̃i

(
Ck(t)− γ̃iqik(t)

)
(10)

On the one side, we obtain directly the price for which the derivative of πi(t) equals 0
through Equation (9). On the other side, Equation (10) can be rewritten as follows:

γ̃iqik(t) = Ck(t)− p̃k(t)Ck(t)2

νek(t)γiγ̃i
(11)

If si anticipates that the other providers will make the same optimization program,
replicating Equation (11) for the n providers and summing them all, results in the

following equality: Ck(t) = nCk(t)− p̃k(t)Ck(t)
2

νek(t)

∑
j=1,...,n

1

γj γ̃j
by definition of Ck(t).

Then asCk(t) is not zero because each producer ek receives at least one order of energy
otherwise he would be out of the game, by dividing the previous equation by Ck(t) and

reordering we obtain: Ck(t) =
νek(t)
p̃k(t)

n−1
δ where δ =

∑
j=1,...,n

1

γj γ̃j
. By replacing Ck(t)

in Equation (11), we obtain the energy orders for which the derivatives of πi(t) equals
0:

qik(t) =
νek(t)

p̃k(t)

n− 1

δγ̃i
α(i) (12)

where we have introduced the notation α(i) = 1− n−1
δγiγ̃i

to simplify future calculations.
Presently, we have to check that the price and energy orders for which the deriva-

tives of πi(t) equal 0 satisfy the conditions of Case 2.
Firstly, it is easy to check that the price is positive through Equation (9). However,

the energy orders defined in Equation (12) are non-negative if, and only if, 1 ≥ n−1
δγiγ̃i

which is equivalent to:

γiγ̃i ≥
n− 1

δ

⇔ 1

γiγ̃i
≤ 1

n− 1

∑
j=1,...,n

1

γj γ̃j
(13)

This inequality means that the penalties related to si are close to the penalties related
to the other providers. Indeed, if all penalties are equal to γ, then δ = n

γ2 and Inequal-
ity (13) is true for all providers. On the contrary, if all penalties are equal to γ except
for s1 which has a penalty of γ

n−1 , then δ = (n−1)n
γ2 and Inequality (13) for s1 becomes

n ≥ (n−1)2 which is false as soon as n > 2. In this case, s1 would not buy any energy
to the producers and so would be out of the game.

Secondly, by replacing the energy orders, defined by Equation (12), in Equation (3),
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we obtain:

αki(t) =
α(i)∑

j=1,...,n

α(j)

=
α(i)∑

j=1,...,n(1− n−1
δγj γ̃j

)
using α(j) definition

=
α(i)

n− n−1
δ

∑
j=1,...,n

1
γj γ̃j

=
α(i)

n− (n− 1)
using δ definition

= α(i)

This proves that the sharing coefficient αki(t) does depend neither on producer ek
nor on time instant t. Therefore, in the rest of the article, the sharing coefficients
will be denoted α(i),∀i = 1, ..., n. Furthermore, the above result means that the total
energy delivered to microgridMi is:

∑
k=1,...,K

αki(t)ν
e
k(t) = α(i)

∑
k=1,...,K

νek(t). As a

result, the price and energy orders for which the derivatives of πi(t) equal 0 verify the
inequality defining Case 2 if, and only if:

νsi (t) ≥ γi + 2α(i)
∑

k=1,...,K

νek(t) (14)

This inequality states that the total production of energy by energy producers should
not be too large compared to the demand of the microgrid. If it would not be the case,
the over provisioning situation may probably get the most expensive producer out of
the game.

If Inequalities (13) and (14) are true, the optimum for si is reached for pi(t) defined
by Equation (9) and qik(t) defined by Equation (12). If one of these inequalities is not
true, then the optimum for si is reached on the frontier defined by Equation (7).

3.3 Optimization of the energy producers’ decision
After substituting qik(t) and Ck(t) by the expressions found in the previous section in
energy producer ek’s utility, as defined in Equation (4), we obtain:

π̃k(t) = νek(t)
n− 1

δ

[ ∑
i=1,...,n

1

γ̃i
(1−

∑
i=1,...,n

( α(i)

p̃k(t)
− p̃k(t)γ̃iδ

n− 1
)+

)]
The only part of this equation depending on p̃k(t) has always a negative impact on the
profit of the energy producer under the assumption of fair penalties. Indeed, in that
case, as raised in the previous section, we have: α(i) ≥ 0 for all providers (si)i. As a
result, to maximize his profit, the energy producer has to choose p̃k(t) such that the part
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depending on p̃k(t) in the above equation equals 0. It implies that the term 1− p̃k(t)γ̃iδ
n−1

is inferior to 0 for all i = 1, ..., n. It is equivalent to: p̃k(t) ≥ n−1
δγ̃i

. Consequently, the
optimal price for the energy producer with fair penalties should satisfy:

p̃k(t) ≥ n− 1

δmini=1,...,n{γ̃i}

4 Distributed learning game

In this section, we assume that the microgrids’ net energy demands,
(
νsi (t)

)
i
, and

the energy productions,
(
νek(t)

)
k
, are random individual sequences. As explained

in the Introduction, this means that the underlying random processes generating the
sequences do not necessarily have a probabilistic structure. They can be quite erratic
[4].

In the previous section, we defined the optimal decisions for each agent at time
period t. We proved that these decisions do depend neither on the microgrids net
demands, νsi (t), nor on the energy productions, νek(t), except for the providers. To
guarantee the optimal system wide operation, it is fundamental for the providers to
elaborate efficient learning strategies about the net demand of the microgrids and about
the productions of the energy producers. The risk associated with this learning task
will be measured by the provider’s loss. It will be defined in Subsection 4.1.

Providers should optimize their prices and ordered quantities at each time period,
having no information about the produced energy and the demands of the microgrids at
this instant. As a result, the game can be considered as having incomplete information
[19]. Each provider si has to forecast νsi (t) and νek(t) for all k = 1, ...,K, at each time
period, in order to optimize his decisions. Furthermore, in a context of incomplete
information, it is very likely that energy will be under provisioned to satisfy the end
users’ demand. The game parameters and random events (demands of the microgrids,
energy productions and penalties) will be chosen so that we are always in energy short-
age, in the sense that Inequality (14) will always be true, and with close values for the
penalties, in the sense of Inequality (13). As a result, the optimal price for si is defined
by Equation (9) and the optimal orders for si are defined by Equation (12).

To simplify, we will consider a common closed space Ee of possible values for the
production of each energy producer and a common closed space Es of possible values
for the net demand of a microgrid. Ee,Es ⊆ R are supposed to be of finite dimension
i.e., their cardinals |Ee| and |Es| are such that |Ee| < +∞ and |Es| < +∞. We will
denote by fi(X, t) the forecast of provider si about the variableX at time period t. We
will use boldface type to denote vectors. We will also use the simplifying notations:

• fi(t) ,
(

fi(ν
s
i , t)︸ ︷︷ ︸

forecast ofMi’s net demand

, fi(ν
e
1 , t), ..., fi(ν

e
K , t)︸ ︷︷ ︸

forecasts of the productions

)
to denote the predic-

tions made by provider si about microgridMi’s net demand and about the pro-
duction of each energy producer ek, k = 1, ...,K.

• f(t) ,
(
f1(t), ..., fn(t)

)
which contains the forecasts of all the providers.

11



• f−i(y, t) =
(
f1(t), ..., fi−1(t),y, fi+1(t), ..., fn(t)

)
which contains the fore-

casts of all the providers except si of which prediction is set equal to y.

• ν(t) ,
(
νs1(t), ..., νsn(t)︸ ︷︷ ︸

microgrids’ net demands

, νe1(t), ..., νeK(t)︸ ︷︷ ︸
productions

)
which contains the microgrids’

net demands and the production of each energy producer ek, k = 1, ...,K.

By substitution of the forecasters in the Stackelberg game solution at equilibrium
as obtained in Section 3, we infer the optimal decisions for provider si at each time
period t: pi(t) =

fi(ν
s
i ,t)+γi
2 and qik(t) =

fi(ν
e
k,t)

p̃k(t)
α(i)
γ̃i

n−1
δ . As a result, the utility of

provider si at each time period t is:

πi(t) =
fi(ν

s
i , t) + γi

2

(
νsi (t)− fi(ν

s
i , t) + γi

2

)
− α(i)

γ̃i

n− 1

δ

∑
k=1,...,K

fi(ν
e
k, t)

− γi

(
νsi (t)− fi(ν

s
i , t) + γi

2
−

∑
k=1,...,K

fi(ν
e
k, t)α(i)∑

j=1,...,n

fj(ν
e
k, t)α(j)

νek(t)
)
+

(15)

The game will be repeated over a finite time horizon 0 < T < +∞.

4.1 Learning risk measure definition and first observations
As already mentioned, the provider’s risk, associated with the learning task, will be
measured by his resulting loss. We have chosen a loss function representing the missing
profit compared to the case where the provider would have made perfect forecasts of
energy demands and energy productions. More precisely, for any provider si, i =
1, ..., n, his loss is defined as:

li

(
f(t), ν(t)

)
=
(
π0
i (t)− πi(t)

)
where π0

i (t) corresponds to provider si’s utility evaluated in fi(νsi , t) = νsi (t) and
fi(ν

e
k, t) = νek(t) for any k = 1, ...,K.
We now upper bound provider si’s loss as the sum of a loss function depending ex-

clusively on the provider’s predictions, l(1)i , and on another function, l(2)i , which relies
on the disagreements between all the providers’ predictions. The notion of disagree-
ment needs to be carefully explained. To that purpose, we introduce:

dkij(t) , fi(ν
e
k, t)− fj(νek, t),∀i, j = 1, ..., n, j 6= i,∀k = 1, ...,K

as a measure of the disagreement between provider si and provider sj , i 6= j, in the
prediction of producer ek’s energy production, at time period t. By extension, dkij(y, t)
contains the disagreement between provider si and all the other providers when si
makes the prediction y at time period t without any change in the predictions of the
other providers.

12



Proposition 1. Provider si’s loss can be upper-bounded by the sum of two functions:
the first one, l(1)i , depending exclusively on his forecasts and the second one, l(2)i , which
depends on his disagreement with the other providers’ predictions:

li

(
f(t)ν(t)

)
≤ l

(1)
i

(
fi(t), ν(t)

)
︸ ︷︷ ︸

loss caused by si’s forecasts exclusively

+ l
(2)
i

(
(dkij(t))j,k, ν(t)

)
︸ ︷︷ ︸

loss caused by the disagreements with the others’ forecasts

∀i = 1, ..., n

Proof of Proposition 1. The proof can be found in Appendix A.
We now demonstrate functional properties for provider si’s upper bounds which

lead us to the following observations concerning the provider’s strategic learning be-
havior.

Corollary 2. To minimize his loss, provider si should:

• Have no bias in his forecast of microgridMi’s demand

• Make his disagreements with the other providers’ forecasts close to zero

Proof of Corollary 2. We use the analytical expressions of l(1)i and l(2)i detailed in
Appendix A. The derivative of l(1)i in fi(νsi , t) equals 0 when fi(νsi , t) = νsi (t). Since
l
(1)
i is a second order polynomial in fi(ν

s
i , t) with a positive first order coefficient

( 14 ), the minimum of l(1)i is reached in νsi (t). As a result, to reduce his loss, si has
incentives to choose fi(νsi , t) = νsi (t). Furthermore, since the derivative of l(2)i in
dkij(t) is always positive, l(2)i increases when the disagreement with the other providers
dkij(t) increases.

4.2 Optimal learning strategies for each provider
In this context of incomplete information on the microgrids’ net demands and on the
energy productions, we test two regret criteria to build the providers’ learning strategy,
dt(.): external and internal regret minimization [4]. Both regret minimization algo-
rithms give rise to an optimized learning strategy [4] i.e., a density function defined
over the space Ee × EKs . As explained in the Introduction, regret minimization is more
robust to extreme events as it provides a density function over the prediction set. Other
learning rules based on different regret criteria exist such as regret-matching [9] and
regret-testing [7]. However, they do not offer any guarantees on the convergence of the
algorithms and require larger times to reach an equilibrium when it exists.

The external regret over the sequence of time periods 1, ..., T , is the difference
between the observed cumulative loss and the cumulative loss of the best constant
prediction i.e., pure strategy. To be more precise, for provider si, it takes the form:

Ri(T ) ,
T∑
t=1

li

(
f(t), ν(t)

)
− min

y∈Es×EKe

T∑
t=1

li

(
f−i(y, t), ν(t)

)

13



We will consider that the learning strategy of provider si is optimal if asymptotically his
external regret remains in o(T ) where T is the number of time periods which have been

played. It means that with probability 1: lim supT→+∞
1
T

T∑
t=1

Ri(t) = 0. Forecasters

satisfying these inequalities are said Hannan consistent [4].
By definition, a strategy dt(.) has a small internal regret if for every couple of pre-

dictions y,y′ ∈ Es×EKe , the forecaster does not regret of not having chosen prediction
y′ each time instant he has chosen prediction y:

RIi(T ) , max
y,y′∈Es×EKe

∑
t=1,...,T

dt(y)
[
li

(
f−i(y, t), ν(t)

)
− li

(
f−i(y

′, t), ν(t))
)]

In a repeated game, this regret criterium ensures convergence of the joint empirical fre-
quencies of play to the set of correlated equilibria [4] whereas there is no guarantees on
the convergence of the product of the marginal empirical frequencies of play to Nash
equilibria, under external regret minimization in a general game. Internal regret mini-
mization will be used exclusively in the simulations in Subsection 5.2 as a benchmark
to compare external regret minimization properties.

In the following lemma, we prove that it is possible to construct learning strategies
for the providers which minimize their external regret asymptotically.

Lemma 3. A Hannan consistent learning strategy exists for each provider si.

Proof of Lemma 3. In our case setting, at the end of each time period, provider si
knows the quantity of demand postponed by the microgridMi i.e., its DR2 as defined
in Equation (5), and he can infer νsi (t) from that quantity using Equation (9). si also
knows the energy which has been delivered by each energy producer ek to him. He can
infer from that the energy which could have been delivered to him, if he had ordered a
different quantity qik(t), all other providers ordering the same energy quantities, using
Equation (3). As a result, si can calculate his loss for all his possible actions. In [4], it
is proved that a Hannan consistent learning strategy always exists when the player can
compute his loss for each possible action at the end of each time period.

We now introduce lower and upper bounds on the disagreements between provider
si and the other providers about the predictions of the energy productions: Dss(i) ,
mint=1,...,T minj 6=i,k d

k
ij(t) and Dss(i) , maxt=1,...,T maxj 6=i,k d

k
ij(t). They contain

the extreme disagreement values between the providers, about the estimated energy
productions. For the sake of simplicity, we introduce the following notation: g(x) =

1− max{x;0}
max{Ee} −

min{x;0}
min{Ee} ,∀x ∈ R. It will be used in the following lemma proof.

Lemma 4. If provider si plays according to a Hannan consistent strategy for his
loss upper bound then, there exists an upper bound for the external regret associated
with si’s loss caused by his own predictions, l(1)i , which depends only on the extreme
disagreement values between the providers about the estimated energy productions,
Dss(i) and Dss(i).

2In the smart grid, the monitoring is performed through communicating meters deployed at the end user
level [2], [17].
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Proof of Lemma 4. The proof can be found in Appendix B.
The aim of the next subsections will be to derive bounds for providers’ losses in

cooperative and non-cooperative scenarios.

4.3 Analysis of the sum of providers loss functions upper bounds
We express the TSO’s loss as the opposite of the sum of all the providers’ losses. It
coincides with the balance price that he should pay to ensure the electrical network
reliability:

l
(
f(t), ν(t)

)
=

∑
i=1,...,n

(
πi(t)− π0

i (t)
)

It is also possible to consider that the providers play against Nature [4] who adopts
the worst behavior with regards to the providers, when setting the random individual
sequences.

Similarly to the providers, the TSO will try to keep his external regret R(t) in o(T ).
We define l̃g as the sum of the providers’ losses caused by their own predictions

exclusively:
l̃g

(
f(t), ν(t)

)
=

∑
i=1,...,n

l
(1)
i

(
fi(t), ν(t)

)
(16)

We let Fs be the set of all the predictors (i.e., discrete density function set or alterna-
tively, randomized prediction set) for each provider and Fm the set of all the predictors
for the TSO. The value of the game, where the providers consider the losses caused by
their own predictions exclusively as utilities, is defined as follows:

Ṽg , min
⊗i=1,...,nd(fi)∈Fns︸ ︷︷ ︸

providers’ predictors

max
d(ν)∈Fm︸ ︷︷ ︸

TSO’s predictor

l̃Eg

(
⊗i=1,...,n d(fi), d(ν)

)

where l̃Eg represents the expectation of function l̃g defined in Equation (16).
To simplify the analytical derivation of the following theorem, which is detailed in

the Appendix, we define the function ψ from R2 to R such that:

ψ
(
Dss(i), Dss(i)

)
= γiα(i)

∑
k=1,...,K

νek(t)
( 1

g(Dss(i))
− 1

g(Dss(i))

)
(17)

Theorem 5. Assume that all providers play according to Hannan consistent strategies
for their loss upper bound then:

lim sup
T→∞

1

T

T∑
t=1

l̃g

(
f(t), ν(t)

)
≤ Ṽg +

1

T

T∑
t=1

∑
i=1,...,n

ψ
(
Dss(i), Dss(i)

) ∑
k=1,...,K

νek(t)

Proof of Theorem 5. The proof can be found in Appendix C.
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Corollary 6. Assume that the TSO plays according to a Hannan consistent strategy
for his loss upper bound. Then:

lim
T→∞

1

T

T∑
t=1

l̃g

(
f(t), ν(t)

)
≥ Ṽg −

1

T

T∑
t=1

∑
i=1,...,n

ψ
(
Dss(i), Dss(i)

) ∑
k=1,...,K

νek(t)

Proof of Corollary 6. Applying Theorem 5 to the TSO i.e, by symmetry, consid-
ering that the TSO’s loss upper bound is the opposite of the sum over i of si’s loss
upper bounds, and using von Neuman-Morgenstern’s minimax theorem [19] for Ṽg ,
we derive the proposed inequality.

We let:

lg

(
f(t), ν(t)

)
=

∑
i=1,...,n

li

(
f(t), ν(t)

)
(18)

be the sum of the providers’ losses. Using the definitions settled in Equations (16) and
(18), we derive the following inequality:

lg

(
f(t), ν(t)

)
≤ l̃g

(
f(t), ν(t)

)
+

∑
i=1,...,n

l
(2)
i

(
(dkij(t))j=1,...,n,k=1,...,K , ν(t)

)
By substitution in Theorem 5, we obtain the following result:

Corollary 7. If all the providers play according to a Hannan consistent strategy for
their loss upper bounds then, their average loss cannot be larger than:

Ṽg +
1

T

T∑
t=1

∑
i=1,...,n

ψ
(
Dss(i), Dss(i)

) ∑
k=1,...,K

νek(t)

+
1

T

T∑
t=1

∑
i=1,...,n

l
(2)
i

(
(dkij(t))j=1,...,n,k=1,...,K , ν(t)

)
whatever strategy is chosen by the TSO.

4.4 Collaborative learning strategy
Collaboration takes place within coalitions. In cooperative game theory literature,
a coalition is a group of agents who have incentives to collaborate by sharing re-
source access, information, etc., in the hope of increasing their revenue, knowledge,
social welfare (in case of altruism), etc., compared to the case where they behave non-
cooperatively [19], [24]. Adapted to our learning context, we define coalitions of agents
as follows:

Definition 8. • A coalition of providers is a group of providers who collaborate to
learn the hidden energy productions

(
νek(t)

)
k
.
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• The grand coalition contains all the providers involved in the learning task i.e.,
{si}i=1,...,n.

• Cooperation takes place within the coalition when its members share their infor-
mation and align their predictions on a common value.

Shared information concerns only energy productions. Indeed, each provider pre-
dicts independently his microgrid’s net demand and it has no impact on the other
providers.

At this stage, the objective is to identify conditions on the disagreement levels
between the providers about the forecasted energy productions such that the term at the
right of Ṽg defined in Corollary 7, remains as small as possible. Indeed, the smaller is
the term defined in Corollary 7, the smaller is the upper bound of the sum of the agents’
losses.

Such a strategy would satisfy the following relations, at any time period t:

ψ
(
Dss(i), Dss(i)

) ∑
k=1,...,K

νek(t) = 0, ∀i = 1, ..., n

⇔ Dss(i) = Dss(i), ∀i = 1, ..., n

It means that providers can decrease the upper bound of their average loss by coor-
dinating their predictions about the produced energies

(
νek(t)

)
k
, at any time period t.

Providers therefore have incentives to form a grand coalition because it might enable
them to decrease their total loss.

Proposition 9. If the providers cooperate through a grand coalition and play Hannan
consistent strategies, the system average loss over time interval [1;T ] cannot be larger

than: Ṽg −
∑

i=1,...,n

γiα(i)
1

T

T∑
t=1

∑
k=1,...,K

νek(t).

Proof of Proposition 9. By substitution in the second part of the loss upper bounds,
as introduced in Proposition 1 and detailed analytically in Appendix A, we obtain:

l
(2)
i

(
(dkij(t))j,k, ν(t)

)
|dkij(t)=0, ∀j,k = −γiα(i)

∑
k=1,...,K

νek(t)

It depends only on the provider index (i) and on time period t, but not on the providers’
forecasts. Furthermore, by definition:

lg(t) =
∑

i=1,...,n

li(t)

≤
∑

i=1,...,n

l
(1)
i (t)︸ ︷︷ ︸

l̃g(t)

+
∑

i=1,...,n

l
(2)
i (t) = l̃g(t)− γiα(i)

∑
k=1,...,K

νek(t)

Taking the average of these values over time interval [1;T ], the proposition statement
is straightforward.
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5 Simulations
The aim of this section is to explain how the economic model of the hierarchical net-
work, described in Section 2, can be applied in practice to take decisions in an uncertain
context and then to check that the results derived analytically in Section 4 hold, for a
given smart grid structure.

The rest of the section is organized as follows: Subsection 5.1 deals with payoff
function estimation for each forecast, Subsection 5.2 elaborates on the update of mixed
strategies for each forecast and we discuss in the last part the numerical illustrations
that we have obtained, for a large sample of parameters, considering non-cooperative
and cooperative scenarios.

5.1 Payoff functions
At each time period, each provider has K + 1 forecasts to do: one for his microgrid
net demand and one to evaluate the production of each of the K energy producers.
As a result, each provider should define a randomized strategy on the space Es × EKe .
We recall that a randomized strategy is the classical terminology used in game theory
to name a discrete density function defined over the considered set [19]. The size of
the set grows very fast with K and, as a result, each probability in the randomized
strategy of forecasts, is very small, which leads to rounding errors during computation.
In order to overcome this issue, we have decided to cut the providers in smaller entities,
each of them making only one forecast at each time period and to consider that these
entities are uncoupled. This trick results in K + 1 randomized strategies in the space
of forecasts Es × EKe for each provider.

For a given forecast X , we derive the payoffs for each value x ∈ E (E = Es for
net energy demands and E = Ee for energy productions) of the forecast at each time
period t by using the utilities of the providers and keeping only the terms depending on
forecast X . This is summarized in the following definition:

Definition 10. The payoff function associated to forecast X , evaluated in x ∈ E ,
coincides with the utility of provider si restricted to its terms depending on forecast X
solely and evaluated in x.

For the forecasts of microgrid Mi’s net demand, provider si’s payoff takes the
form:

Hfi(νsi )
(x, t) =

x+ γi
2

(
νsi (t)− x+ γi

2

)
− γi

(
νsi (t)− x+ γi

2

−
∑

k=1,...,K

α(i)fi(ν
e
k, t)∑

j=1,...,n

α(j)fj(ν
e
k, t)

νek(t)
)
+

Concerning the forecasts of energy producer ek’s production, provider si’s payoff takes
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the form:

Hfi(νek)
(x, t) = −α(i)

γ̃i

n− 1

δ
x− γi

(
νsi (t)− fi(ν

s
i , t) + γi

2

−
∑
l 6=k

α(i)fi(ν
e
l , t)∑

j=1,...,n

α(j)fj(ν
e
l , t)

νel (t)− α(i)x∑
j 6=i

α(j)fj(ν
e
k, t) + α(i)x

νek(t)
)
+

As already stated in Section 4, we will also consider that the TSO is non oblivious
and tries to maximize the sum of the providers’ losses. As for the providers, we un-
couple νsi (t) and νek(t) to improve the computation. More precisely the TSO’s payoffs
are:

Hνsi
(x, t) =

fi(ν
s
i , t) + γi

2

(fi(νsi , t) + γi
2

− x
)

+ γi

(
x− fi(ν

s
i , t) + γi

2
−

∑
k=1,...,K

α(i)fi(ν
e
k, t)∑

j=1,...,n

α(j)fj(ν
e
k, t)

νek(t)
)
+

and

Hνek
(x, t) =

∑
i=1,...,n

γi

(
νsi (t)− fi(ν

s
i , t) + γi

2
−
∑
l 6=k

α(i)fi(ν
e
l , t)∑

j=1,...,n α(j)fj(νel , t)

νel (t)− α(i)fi(ν
e
k, t)∑

j=1,...,n

α(j)fj(ν
e
k, t)

x
)
+

It is very straightforward to adapt the repeated learning game and payoffs consider-
ing that the providers integrate a grand coalition. The grand coalition payoffs take the
following forms:

HfC(νsi )
(x, t) = Hfi(νsi )

(x, t)

HfC(νek)
(x, t) = −

∑
i=1,...,n

α(i)

γ̃i

n− 1

δ
x

Whereas, the TSO’s payoffs become:

Hνsi
(x, t) =

fi(ν
s
i , t) + γi

2

(fi(νsi , t) + γi
2

− x
)

+ γi

(
x− fi(ν

s
i , t) + γi

2

− α(i)
∑

k=1,...,K

νek(t)
)
+

and

Hνek
(x, t) =

∑
i=1,...,n

γi

(
νsi (t)− fi(ν

s
i , t) + γi

2
− α(i)(

∑
l 6=k

νel (t) + x)
)
+
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5.2 Updates of forecasting strategies
We consider two types of updates for the forecasting randomized strategies based on
the exponential forecaster for signed games: one based on the external regret and the
other based on the internal regret. We assume that the game considered in this article
is a signed game because the range of values of payoff function HX might include a
neighborhood of 0.

We let: ϑt ,
t∑

s=1

V ar
(
HX(Xs, s))

)
=

t∑
s=1

E
[(
HX(Xs, s)) − E[HX(Xs, s)]

)2]
be the sum of the variances associated with the random variable HX(Xt, t) under the
mixed strategy dt(X) which is defined over space E . Using the exponential forecaster
for signed games with external regret means that the mixed strategy is updated accord-
ing to the algorithm described below.

External Regret Learning Algorithm: Updating of the Exponential Forecaster

Initialization. For t = 0, we set: w0(x) =
1
|E| , ∀x ∈ E .

Step 1 to T . The updating rules are the following:

dt(x) =
wt(x)∑
x∈E wt(x)

, ∀x ∈ E

wt+1(x) = exp
(
ηt+1

t∑
s=1

HX(x, s)
)

= wt(x)
ηt+1
ηt exp

(
ηt+1HX(x, t)

)
, ∀x ∈ E

ηt+1 = min
{ 1

2max{|HX |}
;

√
2(
√
2− 1)

e− 2

√
ln|E|
ϑt

}
ϑt+1 = ϑt + V ar

(
HX(Xt+1, t+ 1)

)
For the internal regret, which definition has been introduced in Subsection 4.2, the

updating rules are similar but with dt(.) =
∑
y 6=y′ d

y→y′
t (.)∆(y,y′)(t) where dy→y

′

t (.)
is the modified forecasting strategy obtained when the forecaster predicts y′ each time
it would have predicted y and

∆(y,y′)(t) ,

exp
(
ηt

t−1∑
s=1

∑
x∈E

dy→y
′

s (x)HX(x, s)
)

∑
z 6=z′

exp
(
ηt

t−1∑
s=1

∑
x∈E

dz→z
′

s (x)HX(x, s)
)

We note that, if we take the notation w(y,y′)(t) , exp
(
ηt

t−1∑
s=1

∑
x∈E

dy→y
′

s (x)HX(x, s)
)

,
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then:

∆(y,y′)(t) =
w(y,y′)(t)∑

z 6=z′
w(z,z′)(t)

w(y,y′)(t) = w(y,y′)(t− 1)
ηt
ηt−1 exp

(
ηt
∑
x∈E

dy→y
′

t−1 (x)HX(x, t− 1)
)

We see that we need to compute the maximum of the absolute value of the payoff
function |HX | for all forecasts X to run a simulation of the game. This maximum is
reached for x = min{E} or x = max{E} for all payoff functions except for Hfi(νsi )

because their derivative with respect to x is never equal to 0. ForHfi(νsi )
, the derivative

equals 0 if, and only if, fi(νsi , t) = νsi (t), so the maximum of |HX | is reached either
for x = min{E} or x = max{E} or x = νsi (t).

5.3 Numerical illustrations
The code for the numerical illustrations is written in Python. We consider two
providers and two producers. We compare the cumulative payoff of each player (provi-
der or grand coalition) to the cumulative payoff of the same player who would have
forecasted the best value at each time period in terms of payoffs. More precisely, we
compute for each actor a (the provider s1, s2 or the grand coalition C), the following
performance metric:

Ra(T ) ,
1

T

T∑
s=1

∑
X∈Fa

(
HX(Xs, s)−max

x∈E
(HX(x, s))

)
where Fa is the generic set of forecasts made by the actor a. Then, we measure the
convergence of the learning algorithm through the convergence of this performance
metric. That is to say, we consider that convergence is reached when the variation of
the performance metric, Ra(T )−Ra(T−1)

Ra(T−1) , is smaller than 10−2.

We let T ∗si , i = 1, 2 and T ∗C be the number of time steps which are necessary for the
convergence of the regret based algorithms for provider si and for the grand coalition,
in non-cooperative and cooperative scenarios respectively. According to these nota-
tions, provider si has incentives to cooperate if, and only if, T ∗si ≥ T

∗
C . Both providers

have incentives to cooperate if, and only if, min{T ∗s1 ;T ∗s2} ≥ T
∗
C .

In our simulations, we have calculated the convergence times of learning algorithms
for a wide range of combinations of penalty coefficients (γ1,γ2,γ̃1,γ̃2). More precisely,
in Figures 1 and 2 (a), we make the assumption that: γ2 = 2γ1 = 2γ ∈ [0; 1] while in
(b): γ = γ1 = γ2 ∈ [0; 1]. For each figure, we use 1000 combinations corresponding to
10 values equally distributed between 0.1 and 1 for γ2, γ̃1 and γ̃2. We can check easily
that all these combinations of penalty coefficients satisfy Equation (13). In addition,
we have chosen Es = [5, 8] and Ee = [1, 2] so that Equation (14), i.e. energy shortage,
is always true.

In Figure 1, the providers and the grand coalition’s learning strategies are based on
external regret minimization while in Figure 2, they rely on internal regret minimiza-
tion. In the top of Figures 1 and 2 (a) and (b), we plot the histograms of the maximum
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of T ∗s1 , T
∗
s2 (resp. T ∗C) left (resp. right) for all the combinations of penalty coefficients

(γ,γ̃1,γ̃2). The height of each histogram is determined by the number of penalty coeffi-
cients having the same convergence time. The class T ∗si = 30 (resp. T ∗C = 30) contains
combinations of penalty coefficients that did not converge for T ≤ 30. At the bottom
of Figures 1 and 2 (a) and (b), we plot the ratio of the maximum (resp. minimum)
of T ∗s1 and T ∗s2 over T ∗C , left (resp. right), for all the combinations of penalty coeffi-
cients (γ, γ̃1, γ̃2). According to the top of both figures, we observe that, for a far larger
number of penalty coefficients, the learning algorithm convergence times are smaller in
cooperative scenarios than in non-cooperative scenarios. Furthermore, by comparison
of Figures 1 and 2 top, the convergence times are smaller for learning algorithms based
on internal regret minimization than for learning algorithms based on external regret
minimization.

On the opportunity of a grand coalition to emerge, we infer from Figure 1 (a)
and (b) (resp. 2 (a) and (b)) bottom, that for 99% of the combinations of penalty
coefficients at least one provider has incentives to cooperate and that for 85% (resp.
98.5%) of the combinations of penalty coefficients both providers have incentives to
cooperate, using external regret minimization (resp. internal regret minimization) as
criterion.

Judging by the numerical illustrations, we conclude that:

• For all the combinations of penalty coefficients, convergence times are smaller
for cooperative scenarios than for non-cooperative scenarios and under internal
regret minimization than under external regret minimization

• A grand coalition has 85% (resp. 98.5%) of chances to emerge under external
(resp. internal) regret minimization

6 Conclusion
In this article, we studied a model of decentralized renewable energy production in
which producers, providers and microgrids are organized in a hierarchical network.
Renewable energy productions were modeled by random individual sequences which
need not to have a probabilistic structure. This extraordinarily general demand and
supply structure allows to take into account exogenous events. As a result, it is more
robust to extreme events and appears as particularly well suited to model quite erratic
processes such as renewable energy production. We determined analytically the energy
prices enabling the producers to avoid the penalties that the balance operators threaten
to apply in case where the providers’ orders would not entirely be satisfied. All the risk
was then reported on the providers. Additionally, we proved that these latter can min-
imize their average risk by sharing information and aligning their forecasts. Finally,
numerical simulations, run on a large sample of parameter combinations, led us to ob-
serve that the convergence times of collaborative learning strategy are clearly superior
to times resulting from decentralized learning, using external and internal regret mini-
mization. Furthermore, a grand coalition has 85% (resp. 98.5%) of chances to emerge
under external (resp. internal) regret minimization.
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(a)

(b)

Figure 1: Convergence times and incentives to collaborate under external regret minimization.
In (a), we have: γ2 = 2γ1 = 2γ ∈ [0; 1] and in (b), we have: γ = γ1 = γ2 ∈ [0; 1]. At the
top of each subfigure, we plot the histograms of the maximum of T ∗s1 , T

∗
s2 (resp. T ∗C ) left (resp.

right) for all the combinations of penalty coefficients and for a maximum number of time steps
T = 30. At the bottom left (resp. right), we plot the ratio of the maximum (resp. minimum) of
T ∗s1 , T

∗
s2 over T ∗C as a function of all the combinations of penalty coefficients.
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(a)

(b)

Figure 2: Convergence times and incentives to collaborate under internal regret minimization.
In (a), we have: γ2 = 2γ1 = 2γ ∈ [0; 1] and in (b), we have: γ = γ1 = γ2 ∈ [0; 1]. At the
top of each subfigure, we plot the histograms of the maximum of T ∗s1 , T

∗
s2 (resp. T ∗C ) left (resp.

right) for all the combinations of penalty coefficients and for a maximum number of time steps
T = 30. At the bottom left (resp. right), we plot the ratio of the maximum (resp. minimum) of
T ∗s1 , T

∗
s2 over T ∗C as a function of all the combinations of penalty coefficients.
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An area of improvement concerns the design of the penalties paid to the electricity
transmission operator who compensates the negative energy balances. Is it possible
to design more generic mechanisms? Could rules be adapted to guarantee the mar-
ket opening and avoid speculations, like capacity retention or under investment in the
means of production?

Appendix

Appendix A: Proof of Proposition 1
Using Equation (15), we infer the analytical expression of provider si’s utility when
his forecasts are perfectly aligned with microgridMi’s net demand and with the pro-
duction of each energy producer:

π0
i (t) =

νsi (t) + γi
2

(
νsi (t)− νsi (t) + γi

2

)
− α(i)

γ̃i

n− 1

δ

∑
k=1,...,K

νek(t)

− γi

(
νsi (t)− νsi (t) + γi

2
−

∑
k=1,...,K

νek(t)α(i)∑
j=1,...,n

fj(ν
e
k, t)α(j)

νek(t)
)
+

By definition of provider si’s loss and thanks to Equation (15), we have:

li

(
f(t), ν(t)

)
=
(
π0
i (t)− πi(t)

)
=

νsi (t) + γi
2

(
νsi (t)− νsi (t) + γi

2

)
− α(i)

γ̃i

n− 1

δ

∑
k=1,...,N

νek(t)

− fi(ν
s
i , t) + γi

2
(νsi (t)− fi(ν

s
i , t) + γi

2
) +

α(i)

γ̃i

n− 1

δ

∑
k=1,...,K

fi(ν
e
k, t)

− γi

[(
νsi (t)− νsi (t) + γi

2
−

∑
k=1,...,K

νek(t)α(i)∑
j=1,...,n

fj(ν
e
k, t)α(j)

νek(t)
)
+

−
(
νsi (t)− fi(ν

s
i , t) + γi

2
−

∑
k=1,...,K

fi(ν
e
k, t)α(i)∑

j=1,...,n

fj(ν
e
k, t)α(j)

νek(t)
)
+

]

A first approach might consist at assuming that:(
νsi (t) − νsi (t)+γi

2 −
∑

k=1,...,K

νek(t)α(i)∑
j=1,...,n

νek(t)α(j)
νek(t)

)
+

= 0 since in a case of com-

plete information, provider si might choose his price pi(t) so that Equation (7) holds
i.e., that no penalty applies. On the contrary, in case of incomplete information, the
provider might be in energy shortage. This implies that:

(
νsi (t) − fi(ν

s
i ,t)+γi
2 −
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∑
k=1,...,K

fi(ν
e
k, t)α(i)∑

j=1,...,n

fj(ν
e
k, t)α(j)

νek(t)
)
+
> 0. In the setting of this first approach, it is

now possible to break li
(
f(t), ν(t)

)
into two parts: the first one, l(1)i , depending ex-

clusively on his predictions and the second one, l(2)i , depending on his interactions with
the others’ predictions. Therefore, we let:

l
(1)
i

(
fi(t), ν(t)

)
=

νsi (t) + γi
2

(
νsi (t)− νsi (t) + γi

2

)
− α(i)

γ̃i

n− 1

δ

∑
k=1,...,K

νek(t)

− fi(ν
s
i , t) + γi

2

(
νsi (t)− fi(ν

s
i (t)) + γi

2

)
+

α(i)

γ̃i

n− 1

δ

∑
k=1,...,K

fi

(
νek(t)

)
+ γi

(
νsi (t)− fi(ν

s
i , t) + γi

2

)
The second part takes the form:

li

(
f(t), ν(t)

)
− l(1)i

(
fi(t), ν(t)

)
= −γiα(i)

∑
k=1,...,K

fi(ν
e
k, t)ν

e
k(t)∑

j=1,...,n

fj(ν
e
k, t)α(j)

≤ −γiα(i)
∑

k=1,...,K

νek(t)
[ ∑
j=1,...,n

α(j)
(

1−
dkij(t)

min{Ee}
1dkij(t)<0

−
dkij(t)

max{Ee}
1dkij(t)≥0

)]−1
= l

(2)
i

(
(dkij(t))j=1,...,n,k=1,...,K , ν(t)

)
Indeed, we observed that:

( fi(ν
e
k, t)∑

j=1,...,n

α(j)fj(ν
e
k, t)

)−1
=

∑
j=1,...,n

α(j)
(
fi(ν

e
k, t)− dkij(t)

)
fi(νek, t)

=
∑

j=1,...,n

α(j)
(

1−
dkij(t)

fi(νek, t)

)
≤

∑
j=1,...,n

α(j)
(

1−
dkij(t)

min{Ee}
1dkij(t)<0 −

dkij(t)

max{Ee}
1dkij(t)≥0

)
since, Ee being a close subset of R, the forecasters are upper and lower bounded i.e.,
min{Ee} ≤ fi(νek, t) ≤ max{Ee}.

A second approach where energy shortage occurs both under complete and incom-
plete information is possible. The statements of the proposition remain unchanged.
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Appendix B: Proof of Lemma 4
Suppose that provider si plays according to a Hannan consistent strategy according to
his loss upper bound i.e., l(1)i

(
fi(t), ν(t)

)
+ l

(2)
i

(
(dkij)j,k(t), ν(t)

)
. This means that:

lim sup
T→+∞

1

T

[ T∑
t=1

(
l
(1)
i (fi(t), ν(t)) + l

(2)
i ((dkij(t))j,k, ν(t))

)
− min

y∈Es×EKe

( T∑
t=1

(
l
(1)
i (y, ν(t)) + l

(2)
i ((dkij(y, t))j,k, ν(t))

))]
≤ 0 (19)

In Section 4, we have introduced lower and upper bounds on the disagreements be-
tween provider si and the other providers about the forecasts of the energy productions:
Dss(i) and Dss(i). According to Corollary 2, l(2)i being increasing in dkij(t), it is pos-
sible to provide lower and upper bounds for the function by evaluating it in Dss(i)

and Dss(i) respectively. The lower bound is: bl(i, t) = − γiα(i)
g(Dss(i))

∑
k=1,...,K ν

e
k(t).

Whereas, the upper bound takes the form: bu(i, t) = − γiα(i)

g(Dss(i))

∑
k=1,...,K ν

e
k(t).

If Inequality (19) is checked, then the following inequality holds:

lim supT→+∞
1
T

[ T∑
t=1

l
(1)
i

(
fi(t), ν(t)

)
+

T∑
t=1

bl(i, t) − min
y∈Es×EKe

( T∑
t=1

l
(1)
i

(
y, ν(t)

)
−

T∑
t=1

bu(i, t)
)]
≤ 0. This last inequality provides an upper bound for the external regret

associated with provider si’s partial loss.

Appendix C: Proof of Theorem 5
With the proposed expression of ψ, the upper bound of the external regret evaluated in
provider si’s loss l(1)i becomes:

lim sup
T→+∞

1

T

[ T∑
t=1

l
(1)
i

(
fi(t), ν(t)

)
− min
yi∈E

T∑
t=1

l
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(
yi, ν(t)

)]
≤ 1

T
ψ
(
Dss(i), Dss(i)

) T∑
t=1

∑
k=1,...,K

νek(t) (20)

Summing Inequality (20) over all i = 1, ..., n, the external regret evaluated in the sum
of the providers’ losses (l

(1)
i )i=1,...,n, becomes:

lim sup
T→+∞

1

T

[ T∑
t=1

l̃g

(
f(t), ν(t)

)
−min

f

T∑
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(
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)]
≤ 1

T

∑
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ψ
(
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∑
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In addition: minf
1
T

T∑
t=1

l̃g

(
f , ν(t)

)
= min
⊗id(fi)∈Fns

1

T

T∑
t=1

l̃Eg

(
⊗i d(fi), ν(t)

)
where l̃Eg

represents the expectation of function l̃g .
We assume that each provider makes his forecasts independently of the other providers.

Then l̃Eg
(
., ν(t)

)
is linear in⊗i=1,...,nd(fi). As a result, its minimum over the simplex

of probability vectors is reached in one of the corners of the simplex.
Let: dT (z) = 1

T

∑T
t=1 1{ν(t)=z} be the marginal empirical frequency of play eval-

uated in prediction z ∈ Ens × EKe . We obtain:

min
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︸ ︷︷ ︸

Ṽg
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