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Abstract

In this article, the smart grid is modeled as a decentralized and hierarchical
network, made of three categories of agents: producers, providers and microgrids.
To optimize their decisions concerning the energy prices and the traded quantities
of energy, the agents need to forecast the energy productions and the demand of
the microgrids. The biases resulting from the decentralized learning might create
imbalances between demand and supply, leading to penalties for the providers and
for the producers. We determine analytically prices that provide to the producers a
guarantee to avoid such penalties, reporting all the risk on the providers. Addition-
ally, we prove that collaborative learning, through a grand coalition of providers
where information is shared and forecasts aligned on a single value, minimizes
their average risk. Simulations, run on a toy network, lead us to observe that the
convergence rates of the collaborative learning strategy are clearly superior to rates
resulting from distributed learning, using external and internal regret minimization.

Keywords: Distributed Learning; Information; Regret; Learning Game Theory

1 Introduction
In Europe, and in France especially, traditional electrical networks rely on nuclear
based energies [8], which are non renewable energy sources. With such energies, the
production level can be adapted by the plant operator who alternates openings and
closings and optimizes the duration of the switches between both modes. The objec-
tive then, is to adapt the production level so as to meet the uncertain demand level. We
have built a first model in [11], where two learning strategies based on tit for tat and
fictitious play are used to adapt the production level to meet the demand level. For
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renewable energies, the production level can only be partially controlled, for instance,
by lowering the wind turbine speed [15]. Renewable energy integration in the electrical
network requires the deployment of smart Information and Communication Technolo-
gies (ICTs), to supervise the grid operation [5]. Indeed, renewable energy production is
highly unpredictable since it depends on uncontrolable exogenous factors like level of
wind, sunshine, swell, etc. [17]. Furthermore, the new active role of the end users, who
can become energy producers and adapt dynamically their consumption while falling
into a multitude of microgrids [8], [12], [20], [21], dramatically increase the volume of
the exchanged data flows. ICTs appear as a means to retrieve the most salient informa-
tion from this big amount of data and to train forecasters to provide efficient predictions
about the renewable energy production and about the microgrid energy demand. These
predictions will then be used as inputs to optimize the smart grid operation.

In practice, it is increasingly apparent that current forecasting technology cannot
properly handle extreme situations corresponding to either extreme weather phenom-
ena or critical periods for power system operation. For example, forecasting methods
used to predict wind power were mostly designed to provide single value forecasts of
expected productions. Only recently, probabilistic methods have been introduced to
provide estimations of the entire distribution of future productions [1]. In such meth-
ods, forecasts may take the form of either quantile estimations or density estimations
[6], [9]. Learning based on regret minimization, as described in [4], belongs to this lat-
ter category. This class of methods is particulary efficient [10], [13]. It provides to the
forecaster a density function which associates a weight to each possible outputs. The
density function is updated by merging informations from various sources’ reports. As
a result, these methods are more robust to extreme events and appear as particularly
well suited to model erratic processes such as renewable energy production.

In the framework of the smart grid, learning is performed in a decentralized manner
since each agent primarly learns the hidden information using his own observations.
The existing literature on distributed learning primarly focuses on distributed learning
algorithms that are suitable for implementation in large scale engineering systems [14],
[19]. The results mainly concentrate on a specific class of games, called games of
potential [22]. This class of games is of particular interest since they have inherent
properties that can provide guarantees on the convergence and stability of the system.
However, there exist some limitations to this framework. The most striking one is that
it is frequently impossible to represent the interaction framework of a given system as a
potential game [15]. The learning game studied in this paper belongs to the category of
repeated uncoupled games since one player cannot predict the forecasts and so actions
of the other agents at a given time period. To take his decision i.e., optimal prices and
energy orders, each agent is aware of the history of forecasts of all the agents and of his
utility. Recent work has shown that for finite games with generic payoffs there exists
completely uncoupled learning rules i.e., rules where the agents observe only their own
prediction history and their utility, that lead to Nash equilibria that are Pareto optimal
[19]. Marden et al. exhibit a different class of learning procedures that lead to Pareto
optimal vector of actions that do not necessarily coincide with Nash equilibria [15].

Most collaborative mechanisms studied in the literature lead to price or quality of
service alignment. To our knowledge the impact of collaboration, through information
sharing and forecast alignment while prices are individually determined, on the under-
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lying system performance, has not been studied so far. Of course, collaboration might
not emerge due to the agents’ natural incentives to cheat and to deviate from the coop-
erative equilibrium and also, most frequently, due to the regulator’s intervention. There
is a number of well-understood reasons why regulator often does not allow horizontal
collaboration: if providers are allowed to collaborate, they might cooperate to raise the
price i.e., reducing quantity below the efficient baseline, and create market power [7].
Alternatively, providers might cooperate to reduce quality of service. Courts punish
explicit agreements whose objectives are clearly to decrease the competition [2]. In
this article, we will answer the following questions:

• How will the biases, introduced by the errors made by the agents in their predic-
tions, affect the agents’ average risk?

• Will collaborative learning improve the smart grid wide performance and should
therefore be encouraged by the regulator?

The article is organized as follows. In Section 2, we introduce the economic basis
of our model, the agents, their utility and their optimization program. Then the com-
plete information Stackelberg game is solved in Section 3, proceeding by backward
induction. We derive analytically the optimal prices and energy orders for the agents.
Partial information is introduced in Section 4 where the interacting agents learn in a
distributed fashion hidden individual sequences. Using the theoretical results obtained
in the previous sections, we explain how to simulate the smart grid operation in Sec-
tion 5 and an illustration of the previously derived theoretical results is provided for a
toy network.

2 The model
The number of agents interacting in the smart grid is large. In this article, we model
the smart grid as a three layer hierarchical network which evolution depends on the
interactions between the agents composing each layer and also, on the ability of the
agents to cope with energy production and demand variations. We detail the three cat-
egories of agents and the repeated game which captures the interactions between them
in Subsection 2.1. Then, we define each agent optimization program in Subsection 2.2.

2.1 Description of the agents
We model the smart grid through three categories of agents: the microgrids, the provi-
ders and the energy producers. The end users generate some energy demand, and
fulfill it either by buying energy to a provider or by finding alternatives (solar panels,
more efficient appliances, etc.). Each provider buys energy to several energy producers
and resell it to the end users. Each energy producer produces and sells energy to all
providers.

We assume that each end user contracts with only one provider and does not churn
from one provider to another during all the period of our study. This assumption holds
well if we consider local or regional utility companies for example. In this sense,
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the set made of end users attached to a single provider can be seen as an individual
microgrid, as defined in [12], [20], [21] and recalled in the Introduction. We denote by
(si)i, with i varying between 1 and n, the i-th provider and byMi the corresponding
group of end users. The energy producers are denoted (ek)k with k varying between 1
and K. The energy producers can be associated with nuclear plants, photovoltaic park
managers, wind farm administrators, etc. In this article, we assume that the energy
producer cannot influence directly the energy he produces at each time period. This
assumption holds well if we look at renewable energy sources like a wind turbine farm
without any investment in an additional wind turbine during the study period. The
variation of the wind intensity will make vary the produced energy without any lever
for the energy producer 1.

We model the interplay between all the agents through a repeated game. At each
time period t, the following game is played:

Basic Game Description G(t)

(1) The energy producers ek communicate their unitary prices p̃k(t) > 0 to the providers.
The energy prices are fixed independently and simultaneously by each energy producer
so as to maximize his profit.

(2) The providers si place energy quantity orders to energy producers: the quantity
ordered by si to ek is denoted by qik(t). The providers si communicate their prices
pi(t) > 0 for one energy unit to their microgrid. The orders and the energy prices are
fixed independently and simultaneously by each provider so as to maximize his profit.

(3) MicrogridMi demand reaches νsi (t) energy units for the time period. It decides to

find alternatives for ai(t) energy units and buys the rest
(
νsi (t)− ai(t)

)
+

to provider si.

The quantity of alternatives is chosen so as to minimize the total cost of energy forMi.

At each time period, the production of energy producer ek reaches νek(t) energy
units. He then delivers αki(t)νek(t) energy units to provider si where αki(t) ≥ 0
denotes the proportion of his production that producer ek allocates to provider si, with
the normalization constraint:

∑
i=1,...,n

αki(t) = 1. This proportion is defined depending

on quantity orders received by ek from all providers. The sum of all quantity orders
may exceed νek(t) and so the quantity of energy received by each provider may be
inferior to his quantity order.

Penalties are undertaken by both providers and energy producers if they cannot
satisfy the entire demand of their consumers. Provider si incurs a cost γi > 0 per
missing energy unit for his microgrid, measured a posteriori. It is paid to the elec-
tricity transmission network operator. In France, the electricity transmission network
operator has defined some rules to give incentives to the agents to become balance op-
erators [23]. According to these rules, a positive energy balance is paid the spot price
and a negative balance is paid the price defined through the adjustement mechanism.
This latter is implemented by the electricity transmission operator who compensates
the negative balances to ensure the electrical network reliability. In our article, the spot

1Non-renewable energy producers like nuclear plants might be integrated into the grid. It requires to use
distributed control rules as the ones described in [11], [15].
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price is set to zero and the adjustement price is different for each provider. The price
discrimination is justified by the fact that depending on its geographic location, a neg-
ative energy balance can be easily corrected in densely interconnected areas whereas
it is much more difficult in isolated ones due to the high cost of electricity transmis-
sion. As a result, γi is higher for providers serving isolated locations than over densely
interconnected areas. Producer ek incurs a cost γ̃i > 0 per missing energy unit for
provider si, measured a posteriori. It is paid to the regulator of the capacity market that
should be implemented to balance supply and demand in the smart grid [24]. Indeed,
to guarantee the reliability of the capacity market, it might be necessary to implement
a feedback mechanism where the regulator compensates the negative energy balances
of the producers by investing himself in capacity [24]. The costs of these investments
would be recovered from the penalties imposed to the producers.

2.2 Optimization program for each agent
In this subsection, we describe the decision variables and the utilities for each category
of agents. The optimization program for each agent is presented using a mathematical
formulation.

2.2.1 Programs of the microgrids

The only decision variable for microgridMi is the quantity of energy that it decides
to get from alternative sources: ai(t). We assume that the microgrid has no lever to
influence its random demand: νsi (t).

We assume that finding alternative energy sources rather than buying it to the
provider has some cost for the microgrid. More precisely, finding ai(t) energy units
through alternatives, costs them c

(
ai(t)

)
per time period. As a result, the total cost of

energy for microgridMi is:

pi(t)
(
νsi (t)− ai(t)

)
+ c
(
ai(t)

)
(1)

We assume that the cost is quadratic in the alternatives i.e., c
(
ai(t)

)
= ai(t)

2

2 . This
assumption is not restrictive and constants or more complicated cost functions can be
introduced. The main advantage of this choice is that it is generic enough and allows
to solve a large part of the game analytically.

MircrogridMi chooses ai(t) in order to minimize its total energy cost. Therefore,
its optimization program is of the form: minai(t)≥0

{
pi(t)

(
νsi (t)−ai(t)

)
+c
(
ai(t)

)}
.

Its decision depends on the energy price pi(t) fixed by provider si.

2.2.2 Programs of the providers

The decision variables for each provider si are the unit energy price pi(t) and the
energy orders

(
qik(t)

)
k

for each energy producer ek.

Throughout the article, we will use the notation: x+ = max{x; 0} to denote the
positive part of the real number x.
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Following our description of the interplay between the agents, the utility for provider
si at time period t is:

πi(t) = pi(t)
(
νsi (t)− ai(t)

)
−

∑
k=1,...,K

qik(t)p̃k(t)− γi
(
νsi (t)− ai(t)

−
∑

k=1,...,K

αki(t)ν
e
k(t)

)
+

(2)

Provider si chooses his energy unit price and his energy orders toward energy pro-
ducers so that πi(t), as defined in Equation (2), is maximized. His optimization pro-
gram takes the form: maxpi(t)>0,(qik(t))k∈RK+

{
πi(t)

}
.

2.2.3 Programs of the energy producers

The only decision variable for each energy producer ek is the energy unit price p̃k(t)
that he proposes to the providers.

The utility of energy producer ek at time period t equals:

π̃k(t) = p̃k(t)
∑

i=1,...,n

qik(t)−
∑

i=1,...,n

γ̃i

(
qik(t)− αki(t)νek(t)

)
+

To define the sharing coefficients
(
αki(t)

)
i
, we consider a weighted proportional

allocation of resource that allows producers to discriminate energy allocation by provi-
ders. This framework is a generalization of the well-known proportional allocation [21]
to weighted energy orders with penalty coefficients as weights. Such a resource sharing
mechanism has already been introduced by Nguyen and Vojnović, in [18]. This means
that between two providers with identical energy orders, the one having the highest
penalty coefficient will receive the largest part of the producer’s available energy. In-
deed, the producer wants to minimize his overall penalty and therefore allocates larger
parts of his production to providers serving isolated areas where failure of electricity
supply may be critical. We set:

αki(t) =
γ̃iqik(t)

Ck(t)
(3)

where Ck(t) =
∑

j=1,...,n

γ̃jqjk(t). Using Equation (3), energy producer ek’s utility at

time period t can be rewritten:

π̃k(t) = p̃k(t)
∑

i=1,...,n

qik(t)−
∑

i=1,...,n

γ̃iqik(t)
(

1− γ̃i
Ck(t)

νek(t)
)
+

(4)

Energy producer ek chooses his energy unit price so that π̃k(t), as defined in Equa-
tion (4), is maximized. His optimization program is of the form: maxp̃k(t)>0

{
π̃k(t)

}
.
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3 Complete information game resolution
The game setting described in Subsection 2.1 implies that in the relation producers-
providers, producers appear as leaders whereas providers are followers. Identically, in
the relation providers-microgrids, providers appear as leaders whereas microgrids are
mere followers. Under such a setting, the game is called a Stackelberg game and, as
usual, it should be solved using backward induction [12], [16].

Additionally, we make the assumption that each energy producer receives at least
one energy order from a provider guaranteeing that the Stackelberg game admits non
trivial solutions.

3.1 Optimization of the microgrids’ decision
To minimize their total cost of energy defined by Equation (1), microgridMi has to
choose ai(t) so that the differentiate of the total cost of energy equals 0 which means:

ai(t) = pi(t) (5)

3.2 Optimization of the providers’ decisions
To find his optimal price and energy orders, provider si has to replace ai(t) by its
optimal value in πi(t), defined in Equation (2), and to differentiate the result in pi(t)
and in qik(t). This differentiation raises two cases.

Case 1: the energy production fulfills the energy demand of the microgrid
It is the case when:

νsi (t)− pi(t) <
∑

k=1,...,K

αki(t)ν
e
k(t) (6)

Then differentiating the provider’s utility in qik(t) leads to: ∂πi(t)
∂qik(t)

= −p̃k(t) which
means that si will try to minimize all his energy orders to maximize his utility. As
a result, αki(t) will tend toward zero. This implies in turn that si will tend to break
the inequality defining Case 1 in Inequality (6) and we will always fall on the frontier
between Case 1 and Case 2. The frontier between these two cases is defined by the
equation:

νsi (t)− pi(t) =
∑

k=1,...,K

αki(t)ν
e
k(t) (7)

Case 2: the energy production does not fulfill the energy demand of the micro-
grid

It is the case when νsi (t) − pi(t) ≥
∑

k=1,...,K

αki(t)ν
e
k(t). Then differentiating si’s

utility gives us:

∂πi(t)

∂pi(t)
= νsi (t) + γi − 2pi(t)

∂πi(t)

∂qik(t)
= −p̃k(t) + γiν

e
k(t)

∂αki(t)

∂qik(t)
(8)
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By using the definition of αki(t) given in Equation (3), we obtain:

∂αki(t)

∂qik(t)
= γ̃i

Ck(t)− γ̃iqik(t)

Ck(t)2

Then going back to the system of Equations (8), we conclude that the differentiates
equal 0 when:

pi(t) =
νsi (t) + γi

2
(9)

p̃k(t)Ck(t)2 = γiν
e
k(t)γ̃i

(
Ck(t)− γ̃iqik(t)

)
(10)

On the one side, we obtain directly the price for which the differentiate of πi(t) equals
0 through Equation (9). On the other side, Equation (10) can be rewritten as follows:

γ̃iqik(t) = Ck(t)− p̃k(t)Ck(t)2

νek(t)γiγ̃i
(11)

If si anticipates that the other providers will make the same optimization program,
replicating Equation (11) for the n providers and summing them all, results in the fol-
lowing equality: Ck(t) = nCk(t)− p̃k(t)Ck(t)

2

νek(t)

∑
j=1,...,n

1
γj γ̃j

by definition of Ck(t).
Then as Ck(t) is not zero because each producer ek receives at least one order of en-
ergy otherwise he would be out of the game, by dividing the previous equation byCk(t)

and reordering we obtain: Ck(t) =
νek(t)
p̃k(t)

n−1
δ where δ =

∑
j=1,...,n

1

γj γ̃j
. By replacing

Ck(t) in Equation (11), we obtain the energy orders for which the differentiates of
πi(t) equals 0:

qik(t) =
νek(t)

p̃k(t)

n− 1

δγ̃i
L(i) (12)

where we have introduced the notation L(i) = 1− n−1
δγiγ̃i

to simplify future calculations.
Presently, we have to check that the price and energy orders for which the differen-

tiates of πi(t) equal 0 satisfy the conditions of Case 2.
First, it is easy to check that the price is positive through Equation (9). However,

the energy orders defined in Equation (12) are non-negative if, and only if, 1 ≥ n−1
δγiγ̃i

which is equivalent to:

γiγ̃i ≥
n− 1

δ
(13)

This inequality means that the penalties related to si are close to the penalties related
to the other providers. Indeed, if all penalties are equal to γ, then δ = n

γ2 and Inequal-
ity (13) is true for all providers. On the contrary, if all penalties are equal to γ except
for s1 which has a penalty of γ

n−1 , then δ = (n−1)n
γ2 and Inequality (13) for s1 becomes

n ≥ (n−1)2 which is false as soon as n > 2. In this case, s1 would not buy any energy
to the producers and so would be out of the game.

Second, by replacing the energy orders, defined by Equation (12), in Equation (3),
we obtain αki(t) = L(i)∑

j=1,...,n

L(j)
= L(i) meaning that the total energy delivered to
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microgrid Mi, attached to si, is:
∑

k=1,...,K

αki(t)ν
e
k(t) = L(i)

∑
k=1,...,K

νek(t). As a

result, the price and energy orders for which the differentiates of πi(t) equal 0 verify
the inequality defining Case 2 if, and only if:

νsi (t) ≥ γi + 2L(i)
∑

k=1,...,K

νek(t) (14)

This inequality states that the total production of energy by energy producers should
not be too large compared to the demand of the microgrid. If it would not be the case,
the over provisioning situation may probably get the most expensive producer out of
the game.

If Inequalities (13) and (14) are true, the optimum for si is reached for pi(t) defined
by Equation (9) and qik(t) defined by Equation (12). If one of these inequalities is not
true, then the optimum for si is reached on the frontier defined by Equation (7).

In the rest of the article, the game parameters and random events (demands of the
microgrids, energy productions and penalties) will be chosen so that we are always in
energy shortage, in the sense that Inequality (14) will always be true, and with fair
penalties, in the sense of Inequality (13). As a result, the optimal price for si is defined
by Equation (9) and the optimal orders for si are defined by Equation (12).

3.3 Optimization of the energy producers’ decision
After substituting qik(t) and Ck(t) by the expressions found in the previous section in
energy producer ek’s utility, as defined in Equation (4), we obtain:

π̃k(t) = νek(t)
n− 1

δ

( ∑
i=1,...,n

L(i)

γ̃i
−

∑
i=1,...,n

( L(i)

p̃k(t)
(1− p̃k(t)γ̃iδ

n− 1
)+

))
The only part of this equation depending on p̃k(t) has always a negative impact on the
profit of the energy producer under the assumption of fair penalties. Indeed, in that
case, as raised in the previous section, we have: L(i) ≥ 0 for all providers (si)i. As a
result, to maximize his profit, the energy producer has to choose p̃k(t) such that the part
depending on p̃k(t) in the above equation equals 0. It implies that the term 1− p̃k(t)γ̃iδ

n−1
is inferior to 0 for all i = 1, ..., n. It is equivalent to: p̃k(t) ≥ n−1

δγ̃i
. Consequently, the

optimal price for the energy producer with fair penalties should satisfy:

p̃k(t) ≥ n− 1

δmini=1,...,n{γ̃i}

4 Distributed learning game

In this section, we assume that the microgrids demands
(
νsi (t)

)
i

and the energy pro-

ductions
(
νek(t)

)
k

are random individual sequences. As explained in the Introduction,
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this means that the underlying random processes generating the sequences do not nec-
essarily have a probabilistic structure. They can be quite erratic [3], [4].

In the previous section, we defined the optimal decisions for each agent at time
period t. We proved that these decisions do depend neither on the microgrids demands
νsi (t) nor on the energy productions νek(t) except for the providers. To guarantee the
optimal system wide operation, it is fundamental for the providers to elaborate efficient
learning strategies about the demand of the microgrids and about the productions of the
energy producers. The risk associated with this learning task will be measured by the
provider’s loss. It will be defined in Subsection 4.1.

To simplify, we will consider a common space Xe of possible values for the pro-
duction of each energy producer and a common space Xs of possible values for the
demand of a microgrid. Xe,Xs ⊆ R are supposed to be of finite dimension i.e., their
cardinals |Xe| and |Xs| are such that |Xe| < +∞ and |Xs| < +∞.

Providers should optimize their prices and ordered quantities at each time period,
having no information about the produced energy and the demands of the microgrids
at this instant. As a result, the game can be considered as having partial information
[4]. Each provider si has to forecast νsi (t) and νek(t) for all k = 1, ...,K, at each time
period, in order to optimize his decisions. We will denote by fi(X, t) the forecast of
provider si about the variable X at time period t. We will also use the simplifying
notations:

• fi(t) =
{
fi(ν

s
i , t), fi(ν

e
1 , t), ..., fi(ν

e
K , t)

}
to denote the predictions made by

provider si about microgridMi demand and about the production of each energy
producer ek, k = 1, ...,K.

• f(t) =
{
f1(t), ..., fn(t)

}
which contains the forecasts of all the providers.

• f−i(y, t) =
{
f1(t), ..., fi−1(t), y, fi+1(t), ..., fn(t)

}
which contains the fore-

casts of all the providers except si which prediction is set equal to y.

• ν(t) =
{
νs1(t), ..., νsn(t), νe1(t), ..., νeK(t)

}
which contains the microgrids’ de-

mand and the production of each energy producer ek, k = 1, ...,K.

By substitution of the forecasters in the Stackelberg game solution at equilibrium
as obtained in Section 3, we infer the optimal decisions for provider si at each time
period t: pi(t) =

fi(ν
s
i ,t)+γi
2 and qik(t) =

fi(ν
e
k,t)

p̃k(t)
L(i)
γ̃i

n−1
δ . As a result, the utility of

provider si at each time period t is:

πi(t) =
fi(ν

s
i , t) + γi

2

(
νsi (t)− fi(ν

s
i , t) + γi

2

)
− L(i)

γ̃i

n− 1

δ

∑
k=1,...,K

fi(ν
e
k, t)

− γi

(
νsi (t)− fi(ν

s
i , t) + γi

2
−

∑
k=1,...,K

fi(ν
e
k, t)L(i)∑

j=1,...,n fj(ν
e
k, t)L(j)

νek(t)
)
+

(15)

In this section, the game will be repeated over a finite time horizon 0 < T < +∞.
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4.1 Learning risk measure definition and first observations
As already mentioned, the provider’s risk, associated with the learning task, will be
measured by his resulting loss.

For any provider si, i = 1, ..., n, his loss is defined as: li
(
f(t), ν(t)

)
=
(
π0
i (t)−

πi(t)
)

where π0
i (t) corresponds to provider si’s utility evaluated in fi(νsi , t) = νsi (t)

and fi(νek, t) = νek(t) for any k = 1, ...,K. It means that π0
i (t) contains the utility that

provider si would have received if his forecasts were perfectly aligned with microgrid
Mi demand and with the production of each energy producer.

We start by upper bounding provider si’s loss as the sum of a loss function de-
pending only on provider si’s predictions and on another one relying exclusively on
the disagrement between provider si and the other providers on the predictions of pro-
ducer ek’s renewable energy production. We introduce:

dkij(t) = fi(ν
e
k, t)− fj(νek, t), i, j = 1, ..., n, k = 1, ...,K

It is a measure of the disagreement between provider si and provider sj for i 6= j, in
the prediction of producer ek’s energy production, at time period t.

Proposition 1. Provider si’s loss can be upper-bounded by the sum of two functions:
the first one, l(1)i (.), depending only on his forecasts fi(t) and the second one, l(2)i (.),
depending on his disagreement with the other providers’ predictions. We have: ∀i =

1, ..., n, li
(
f(t), ν(t)

)
≤ l(1)i

(
fi(t), ν(t)

)
+ l

(2)
i

(
(dkij(t))j,k, ν(t)

)
.

Proof of Proposition 1. The proof can be found in Appendix.
In the rest of the paper, functions l(1)i

(
y, ν(t)

)
will be denoted the partial losses

for provider si, this latter making predictions y ∈ Xs ×XKe .
We now demonstrate functional properties for provider si’s upper bounds which

lead us to the following observations concerning the provider’s strategic learning be-
havior.

Corollary 2. To minimize his loss, provider si should:

• Have no bias in his forecast of microgridMi demand

• Minimize his energy production forecasts while reducing his disagreements with
the other providers

Proof of Corollary 2. Judging by the form of function l
(1)
i (.), as obtained in

the proof of Proposition 1 which is detailed in Appendix, it is linear increasing in
fi(ν

e
k, t), ∀k = 1, ...,K since L(i) ≥ 0 as proved in Section 3.2. Therefore, to reduce

his loss, si has incentives to choose small values for fi(νek, t), ∀k = 1, ...,K.

Furthermore, the differentiate of l(1)i (.) in fi(ν
s
i , t) equals 0 when fi(ν

s
i , t) =

νsi (t). Since l(1)i (.) is a second order polynomial in fi(νsi , t) with a positive first coeffi-
cient, the minimum of l(1)i (.) is reached in νsi (t). As a result, to reduce his loss, si has
incentives to choose fi(νsi , t) = νsi (t).

Since the differentiate of l(2)i (.) in dkij(t) is always positive, l(2)i (.) increases when
the disagreement with the other providers dkij(t) increases.
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4.2 Optimal learning strategies for each provider
The external regret over the sequence of time periods 1, ..., T , is the difference between
the observed cumulative loss and the cumulative loss of the best constant prediction
i.e., pure strategy. To be more precise, for provider si, it takes the form: Ri(T ) =∑T
t=1 li

(
f(t), ν(t)

)
−miny∈Xs×XKe

∑T
t=1 li

(
f−i(y, t), ν(t)

)
. We will consider that

the learning strategy of si is optimal if asymptotically his external regret remains in
o(T ) where T is the number of time periods which have been played. It means that
with probability 1: lim supT→+∞

1
T

∑T
t=1Ri(t) = 0. Forecasters satisfying these

inequalities are said Hannan consistent [4].
In the following lemma, we prove that it is possible to construct learning strategies

for the providers which minimize their external regret asymptotically.

Lemma 3. A Hannan consistent learning strategy exists for each provider si.

Proof of Lemma 3. In our case setting, at the end of each time period, provider si
knows the energy quantity bought by the microgridMi and he can infer νsi (t) from that
quantity. si also knows the energy which has been delivered by each energy producer
ek to him. He can infer from that the energy which could have been delivered to him, if
he had ordered a different quantity qik(t), all other providers ordering the same energy
quantities. As a result, si can calculate his loss for all his possible actions. In [4], it
is proved that a Hannan consistent learning strategy always exists when the player can
compute his loss for each possible action at the end of each time period.

Having no a priori information about the dynamic evolution of the produced renew-
able energies and about the microgrids’ demand, we assume that everything happens
as if the system were in the worst case: Nature and microgrids allie together to form
a meta-player who is supposed to be the most unfavorable to the providers. It means
that the meta-player tries to maximize the sum of the providers’ losses. His loss can be
expressed as the opposite of the sum of all the providers’ losses. Therefore, it takes the
form: l

(
f(t), ν(t)

)
=
∑
i=1,...,n

(
πi(t) − π0

i (t)
)
. Similarly to providers, the meta-

player will try to keep its external regretR(t) in o(T ).
We introduce lower and upper bounds on the disagreements between provider si

and the other providers about the predictions of the energy productions:

Dss(i) = min
t=1,...,T

min
j 6=i,k

dkij(t)

and
Dss(i) = max

t=1,...,T
max
j 6=i,k

dkij(t)

They contain the extreme disagreement values between the providers, about the esti-
mated energy productions.

Lemma 4. If provider si plays according to a Hannan consistent strategy for his loss
upper bound then, there exists an upper bound for the external regret associated with
si’s partial loss which depends only on the extreme disagreement values between the
providers about the estimated energy productions, Dss(i) and Dss(i).

Proof of Lemma 4. The proof can be found in Appendix.
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4.3 Analysis of the sum of providers loss functions upper bounds
We define l̃g(.) as the sum of the providers’ partial losses:

l̃g

(
f(t), ν(t)

)
=

∑
i=1,...,n

l
(1)
i

(
fi(t), ν(t)

)
(16)

We let Fs be the set of all the predictors (i.e., discrete density function set or alterna-
tively, randomized prediction set) for each provider and Fm the set of all the predictors
for the meta-player. It will be used to properly introduce the value of the game. The
value of the game where the providers consider their partial losses as utilities is defined
as: Ṽg = min⊗i=1,...,nd(fi)∈Fns maxd(ν)∈Fm l̃

E
g

(
⊗i=1,...,n d(fi), d(ν)

)
where l̃Eg (.)

represents the expectation of function l̃g(.) as defined in Equation (16).
To simplify the analytical derivation of the following theorem, which is detailed in

the Appendix, we define the function ψ(., .) from R2 to R such that:

ψ
(
Dss(i), Dss(i)

)
= γiL(i)

∑
k=1,...,K

νek(t)
( 1

g(Dss(i))
− 1

g(Dss(i))

)
(17)

where g(x) = 1− x+

max{Xe} + (−x)+
min{Xe} .

Theorem 5. Assume that all providers play according to Hannan consistent strate-
gies for their loss upper bound then: lim supT→∞

1
T

∑T
t=1 l̃g

(
f(t), ν(t)

)
≤ Ṽg +

1
T

∑T
t=1

∑
i=1,...,n ψ

(
Dss(i), Dss(i)

)∑
k=1,...,K ν

e
k(t).

Proof of Theorem 5. The proof can be found in Appendix.

Corollary 6. Assume that the meta-player plays according to a Hannan consistent
strategy for his loss upper bound. Then: limT→∞

1
T

∑T
t=1 l̃g

(
f(t), ν(t)

)
≥ Ṽg −

1
T

∑T
t=1

∑
i=1,...,n ψ

(
Dss(i), Dss(i)

)∑
k=1,...,K ν

e
k(t).

Proof of Corollary 6. Applying Theorem 5 to the meta-player i.e, by symmetry,
considering that the meta-player’s loss upper bound is the opposite of the sum over i of
si’s loss upper bounds, and using von Neuman-Morgenstern’s minimax theorem [16]
for Ṽg , we derive the proposed inequality.

We let:

lg

(
f(t), ν(t)

)
=

∑
i=1,...,n

li

(
f(t), ν(t)

)
(18)

be the sum of the providers’ losses. Using the definitions settled in Equations (16) and
(18), we derive the following inequality:

lg

(
f(t), ν(t)

)
≤ l̃g

(
f(t), ν(t)

)
+

∑
i=1,...,n

l
(2)
i

(
(dkij(t))j,k, ν(t)

)
where j browses all the values in the set {1, ..., n} and k, all the values in the set
{1, ...,K}. By substitution in Theorem 5, we obtain the following result:
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Corollary 7. If all providers play according to a Hannan consistent strategy for their
loss upper bounds then, their average loss cannot be larger than:

Ṽg +
1

T

T∑
t=1

∑
i=1,...,n

ψ
(
Dss(i), Dss(i)

) ∑
k=1,...,K

νek(t)

+
1

T

T∑
t=1

∑
i=1,...,n

l
(2)
i

(
(dkij(t))j,k, ν(t)

)
whatever strategy is chosen by the meta-player.

4.4 Collaborative learning strategy
Collaboration takes place within coalitions. In cooperative game theory literature, a
coalition is a group of agents who have incentives to collaborate by sharing resource ac-
cess, information, etc., in the hope to increase their revenue, knowledge, social welfare
(in case of altruism), etc., compared to the case where they behave non-cooperatively
[2], [16], [21]. Adapted to our learning context, we define coalitions of agents as fol-
lows:

Definition 8. • A coalition of providers is a group of providers who collaborate to
learn the hidden energy productions

(
νek(t)

)
k
.

• The grand coalition contains all the providers involved in the learning task i.e.,
{si}i=1,...,n.

• Cooperation takes place within the coalition when its members share their infor-
mation and align their predictions on a common value.

Shared information concerns only energy productions. Indeed, each provider pre-
dict independently its microgrid demand and it has no impact on other providers.

At this stage, the objective is to identify conditions on the disagreement levels
between the providers about the forecasted energy productions such that the term at the
right of Ṽg defined in Corollary 7, remains as small as possible. Indeed, the smaller is
the term defined in Corollary 7, the smaller is the upper bound of the sum of the agents’
losses.

Such a strategy would satisfy the following relations, at any time period t:

ψ
(
Dss(i), Dss(i)

) ∑
k=1,...,K

νek(t) = 0, ∀i = 1, ..., n

⇔ Dss(i) = Dss(i), ∀i = 1, ..., n

It means that providers can decrease the upper bound of their average loss by co-
ordinating their predictions about the produced energies

(
νek(t)

)
k
, at any time period

t. Providers therefore have incentive to form a grand coalition because it might enable
them to decrease their total loss.
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By substitution in the second part of the loss upper bounds as introduced in Propo-
sition 1 and detailed analytically in Appendix, we obtain:

l
(2)
i

(
(dkij(t))j,k, ν(t)

)
|dkij(t)=0, j=1,...,n,k=1,...,K = −γiL(i)

∑
k=1,...,K

νek(t) (19)

It depends only on the provider index (i) and on time period t, but not on the providers’
forecasts.

Proposition 9. If the providers cooperate through a grand coalition and play Hannan
consistent strategies, the system average loss over time interval [1;T ] cannot be larger

than: Ṽg −
∑

i=1,...,n

γiL(i)
1

T

T∑
t=1

∑
k=1,...,K

νek(t).

Proof of Proposition 9. By definition: lg(t) =
∑
i=1,...,n li(t) ≤

∑
i=1,...,n

l
(1)
i (t)︸ ︷︷ ︸

l̃g(t)

+

∑
i=1,...,n l

(2)
i (t) = l̃g(t) − γiL(i)

∑
k=1,...,K

νek(t). Taking the average of these values

over time interval [1;T ], the proposition statement is straightforward.

5 Simulations
The aim of this section is to explain how the economic model of the hierarchical net-
work described in Section 2 can be applied in practice to take decisions in an uncertain
context and then to check that the results derived analytically in Section 4 hold, for a
smart grid which structure is defined a priori.

The rest of the section is organized as follows: Subsection 5.1 deals with payoff
function estimation for each forecast, Subsection 5.2 elaborates on the update of mixed
strategies for each forecast and we discuss in the last part the results that we have
obtained on a numerical example.

5.1 Payoff functions
At each time period, each provider has K + 1 forecasts to do: one for his microgrid
demand and one to evaluate the productions of each of the K energy producers. As
a result, each provider should define a randomized strategy on the space Xs × XKe .
We recall that a randomized strategy is the classical terminology used in game theory
to name a discrete density function defined over the considered set [16]. The size of
the set grows very fast with K and, as a result, each probability in the randomized
strategy of forecasts, is very small, which leads to rounding errors during computation.
In order to overcome this issue, we have decided to cut the providers in smaller entities,
each of them making only one forecast at each time period and to consider that these
entities are uncoupled. This trick results in K + 1 randomized strategies in the space
of forecasts Xs ×XKe for each provider.
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For a given forecast X , we derive the payoffs for each value x ∈ X (X = Xs
for energy demands and X = Xe for energy productions) of the forecast at each time
period t by using the utilities of the providers and keeping only the terms depending on
forecast X . This is summarized in the following definition:

Definition 10. The payoff function associated to forecast X , evaluated in x ∈ X ,
coincides with the utility of provider si restricted to its terms depending on forecast X
solely and evaluated in x.

For the forecasts of microgridMi demand, provider si’s payoff takes the form:

Hfi(νsi )
(x, t) =

x+ γi
2

(
νsi (t)− x+ γi

2

)
− γi

(
νsi (t)− x+ γi

2

−
∑

k=1,...,K

L(i)fi(ν
e
k, t)∑

j=1,...,n L(j)fj(νek, t)
νek(t)

)
+

Concerning the forecasts of energy producer ek’s production, provider si’s payoff
takes the form:

Hfi(νek)
(x, t) = −L(i)

γ̃i

n− 1

δ
x− γi

(
νsi (t)− fi(ν

s
i , t) + γi

2

−
∑
l 6=k

L(i)fi(ν
e
l , t)∑

j L(j)fj(νel , t)
νel (t)− L(i)x∑

j 6=i L(j)fj(νek, t) + L(i)x

νek(t)
)
+

As already stated in Section 4, we will also consider that the meta-player is non
oblivious and plays so as to minimize the sum of the utilities of the providers. As
for the providers, we uncouple νsi (t) and νek(t) to improve the computation. More
precisely the meta-player’s payoffs are:

Hνsi
(x, t) =

fi(ν
s
i , t) + γi

2

(fi(νsi , t) + γi
2

− x
)

+ γi

(
x− fi(ν

s
i , t) + γi

2

−
∑

k=1,...,K

L(i)fi(ν
e
k, t)∑

j=1,...,n L(j)fj(νek, t)
νek(t)

)
+

Hνek
(x, t) =

∑
i=1,...,n

γi

(
νsi (t)− fi(ν

s
i , t) + γi

2
−
∑
l 6=k

L(i)fi(ν
e
l , t)∑

j=1,...,n L(j)fj(νel , t)

νel (t)− L(i)fi(ν
e
k, t)∑

j=1,...,n L(j)fj(νek, t)
x
)
+

It is very straightforward to adapt the repeated learning game and payoffs consider-
ing that the providers integrate a grand coalition. The grand coalition payoffs take the
following forms:

16



HfC(νsi )
(x, t) = Hfi(νsi )

(x, t)

HfC(νek)
(x, t) = −

∑
i=1,...,n

L(i)

γ̃i

n− 1

δ
x

Whereas, the meta-player’s payoffs become:

Hνsi
(x, t) =

fi(ν
s
i , t) + γi

2

(fi(νsi , t) + γi
2

− x
)

+ γi

(
x− fi(ν

s
i , t) + γi

2

− L(i)
∑

k=1,...,K

νek(t)
)
+

Hνek
(x, t) =

∑
i=1,...,n

γi

(
νsi (t)− fi(ν

s
i , t) + γi

2
− L(i)(

∑
l 6=k

νel (t) + x)
)
+

5.2 Updates of forecasting strategies
In the rest of the paper, we consider two types of updates for the forecasting random-
ized strategies based on the exponential forecaster for signed games: one based on the
external regret and the other based on the internal regret [4]. We assume that this is
a signed game because the range of values of payoff function HX(.) might include a
neighborhood of 0.

We let: Vt =
∑t
s=1 V ar

(
HX(Xs, s))

)
=
∑t
s=1 E

[(
HX(Xs, s))− E[HX(Xs, s)]

)2]
be the sum of the variances associated

with the random variable HX(Xt, t) under the mixed strategy dt(X) which is defined
over space X . Using the exponential forecaster for signed games with external regret
means that the mixed strategy is updated according to the algorithm described below.

External Regret Learning Algorithm: Updating of the Exponential Forecaster

Initialization. For t = 0, we set: w0(x) =
1
|X| , ∀x ∈ X .

Step 1 to T . The updating rules are the following:

dt(x) =
wt(x)∑

x∈X wt(x)
, ∀x ∈ X

wt+1(x) = exp
(
ηt+1

t∑
s=1

HX(x, s)
)

= dt(x)
ηt+1
ηt exp

(
ηt+1HX(x, t)

)
, ∀x ∈ X

ηt+1 = min
{ 1

2max{|HX(.)|} ;

√
2(
√
2− 1)

e− 2

√
ln|X |
Vt

}
Vt = Vt−1 + V ar

(
HX(Xt, t)

)
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For the internal regret, it is similar but with dt(.) =
∑
i 6=j d

i→j
t (.)∆(i,j)(t) where

di→jt (.) is the modified forecasting strategy obtained when the forecaster predicts j
each time he would have predicted i and ∆(i,j)(t) =

ω(i,j)(t)∑
k 6=l ω(k,l)(t)

with:

ω(i,j)(t) = exp
(
ηt
∑t−1
s=1

∑
x∈X ds(x)HX(x, s)

)
.

We see that we need to compute the maximum of the absolute value of the pay-
off function |HX(.)| for all forecasts X to run a simulation of the game. This max-
imum is reached for x = min{X} or x = max{X} for all payoff functions except
for Hfi(νsi )

(.) because their differentiate with respect to x is never equal to 0. For
Hfi(νsi )

(.), the differentiate equals 0 if, and only if, fi(νsi , t) = νsi (t), so the maximum
of |HX(.)| is reached either for x = min{X} or x = max{X} or x = νsi (t).

5.3 Results
For our numerical illustration, we have chosen n = 3 and K = 2. We have also used
γ1 = γ2 = γ3 = 0.9 and γ̃1 = 0.5, γ̃2 = 0.4, γ̃3 = 0.6 and Xe = [1; 2], Xs = [5; 8]
which ensure that the L(i), i = 1, 2, 3 remain positive and that Inequality (14) is
always true.

In the following pictures, we compare the cumulative regret of each player to the
cumulative regret of the same player who would have forecasted the best value at each
time period in terms of payoffs. More precisely, we display:

1

t

t∑
s=1

∑
X∈F

(
HX(Xs, s)−max

x
(HX(x, s))

)
where F is the generic set of forecasts made by the provider or the meta-player or the
coalition considered.

We start by comparing the cumulative internal and external regrets in the case of
full competition between providers in Figures 2 (a) and 2 (b).

The providers are in black for s1, green for s2 and red for s3. We can see that
in all cases, the differences between regrets converge toward 0 which means that the
cumulative payoff obtained at the end of the game following the exponential forecaster
strategy is close to the best possible cumulative payoff. This is in coherence with the
theoretical result for the internal regret but is better than what we could expect for
the external regret which means that we are in a game setting which performs well
for regret based learning. We also remark that the algorithm converges faster for the
external regret compared to the internal regret.

We compare these graphs with the graphs obtained when providers integrate a grand
coalition in Figures 3 (a) and 3 (b). .

Again, we observe that the differences between the best achievable regrets and
those obtained using the learning algorithm converge toward 0. The rate of convergence
under cooperative learning seems higher than in the non-cooperative case where the
providers perform decentralized learning. In addition, we observe that after 400 time
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(a) (b)

Figure 1: Difference between the best achievable cumulative regret and the one obtained with
the internal regret minimization algorithm in (a) and with the external regret minimization algo-
rithm in (b) under full competition.

(a) (b)

Figure 2: Difference between the best achievable cumulative regret and the one obtained with
the internal regret minimization algorithm in (a) and with the external regret minimization algo-
rithm in (b) for the grand coalition of providers.
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periods the sum of differences between regrets under collaborative learning is close
to −0.2 whereas the sum of differences between regrets is close to −0.26 in the full
competition case. This is in coherence with the theory which says that collaborative
learning is better.

6 Conclusion
In this article, we studied a model of renewable energy production in which producers,
providers and microgrids are organized in a hierarchical network. Renewable energy
productions were modeled by random individual sequences which need not to have a
probabilistic structure. This extraordinarily general demand and supply structure al-
lows to take into account exogenous events. As a result, it is more robust to extreme
events and appears as particularly well suited to model quite erratic processes such as
renewable energy production. We determined analytically the energy prices enabling
the producers to avoid the penalties that the capacity market regulator threatens to apply
in case where the providers’ orders would not entirely be satisfied. All the risk was then
reported on the providers. Additionally, we proved that these latter can minimize their
average risk by sharing information and aligning their forecasts. These theoretical re-
sults were illustrated on a toy network: we observe that the rates of convergence under
collaborative learning through a grand coalition was higher than under decentralized
learning, using regret minimization as performance criterion.

An area of improvement concerns the design of the penalties paid to the regulator
who compensates the negative energy balances. Is it possible to design more generic
mechanisms? Could rules be adapted to guarantee the market opening and avoid spec-
ulations, like capacity retention or under investment in the means of production?

Appendix

Proof of Proposition 1
By definition of provider si’s loss and thanks to Equation (15), we have:

li

(
f(t), ν(t)

)
= π0

i (t)− fi(ν
s
i , t) + γi

2

(
νsi (t)− fi(ν

s
i , t) + γi

2

)
+

L(i)

γ̃i

n− 1

δ

∑
k=1,...,K

fi(ν
e
k, t) + γi

(
νsi (t)− fi(ν

s
i , t) + γi

2

−
∑

k=1,...,K

fi(ν
e
k, t)L(i)∑

j=1,...,n fj(ν
e
k, t)L(j)

νek(t)
)
+

For l = 1, ...,K + 1, the l-th component of vector y ∈ Xs × XKe will be denoted:
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y(l). If we let:

l
(1)
i

(
y, ν(t)

)
= π0

i (t)− y(1) + γi
2

(
νsi (t)− y(1) + γi

2

)
+

L(i)

γ̃i

n− 1

δ

∑
k=1,...,K

y(k + 1) + γi

(
νsi (t)− y(1) + γi

2

)
and

l
(2)
i

(
(dkij(t))j,k, ν(t)

)
= −γiL(i)

∑
k=1,...,K

νek(t)
[ ∑
j=1,...,n

L(j)
(

1

−
dkij(t)

min{Xe}
1dkij(t)≤0 −

dkij(t)

max{Xe}
1dkij(t)≥0

)]−1
Using the fact that we are in energy shortage in the sense of Inequality (14) and that
min{Xe} ≤ fi(ν

e
k, t) ≤ max{Xe}, ∀k = 1, ...,K, we can check easily that provider

si’s loss function can be upper-bounded by l(1)i
(
fi(t), ν(t)

)
+ l

(2)
i

(
(dkij(t))j,k, ν(t)

)
.

It is the sum of two functions: the first one depending only on si’s forecasts, and the
second one depending only on his disagreement with the other providers’ forecasts.

Proof of Lemma 4
Suppose that provider si plays according to a Hannan consistent strategy according to
his loss upper bound i.e., l(1)i

(
fi(t), ν(t)

)
+ l

(2)
i

(
(dkij)j,k(t), ν(t)

)
. This means that:

lim sup
T→+∞

1

T

[ T∑
t=1

l
(1)
i

(
fi(t), ν(t)

)
+

T∑
t=1

l
(2)
i

(
(dkij(t))j,k, ν(t)

)
− min
y∈Xs×XKe

( T∑
t=1

l
(1)
i

(
y, ν(t)

)
+

T∑
t=1

l
(2)
i

(
(dkij(y, t))j,k, ν(t)

))]
≤ 0 (20)

where dkij(y, t) contains the disagreement between provider si and all the other provi-
ders when si makes the prediction y at time period t without any change in the predic-
tions of the other providers.

In Section 4, we have introduced lower and upper bounds on the disagreements be-
tween provider si and the other providers about the forecasts of the energy productions,
Dss(i) and Dss(i). According to Corollary 2, l(2)i (.) being increasing in dkij(t), it is
possible to provide lower and upper bounds for the function by evaluating it in Dss(i)
and Dss(i) respectively. The lower bound is:

bl(i, t) = − γiL(i)

g
(
Dss(i)

) ∑
k=1,...,K

νek(t)
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Whereas, the upper bound takes the form:

bu(i, t) = − γiL(i)

g
(
Dss(i)

) ∑
k=1,...,K

νek(t)

If Inequality (20) is checked, then the following inequality holds:

lim sup
T→+∞

1

T

[ T∑
t=1

l
(1)
i

(
fi(t), ν(t)

)
+

T∑
t=1

bl(i, t)− min
y∈Xs×XKe

( T∑
t=1

l
(1)
i

(
y, ν(t)

)
−

T∑
t=1

bu(i, t)
)]
≤ 0

This last inequality provides an upper bound for the external regret associated with
provider si’s partial loss.

Proof of Theorem 5
With the proposed expression of ψ, the upper bound of the external regret evaluated in
provider si’s partial loss becomes:

lim sup
T→+∞

1

T

[ T∑
t=1

l
(1)
i

(
fi(t), ν(t)

)
− min
yi∈X

T∑
t=1

l
(1)
i

(
yi, ν(t)

)]
≤ 1

T
ψ
(
Dss(i), Dss(i)

) T∑
t=1

∑
k=1,...,K

νek(t) (21)

Summing Inequality (21) over all i = 1, ..., n, the external regret evaluated in the
sum of the providers’ partial losses, becomes:

lim sup
T→+∞

1

T

[ T∑
t=1

l̃g

(
f(t), ν(t)

)
−min

f(.)

T∑
t=1

l̃g

(
f(.), ν(t)

)]
≤ 1

T

∑
i=1,...,n

ψ
(
Dss(i), Dss(i)

) T∑
t=1

∑
k=1,...,K

νek(t)

In addition: minf(.)
1
T

∑T
t=1 l̃g

(
f(.), ν(t)

)
= min⊗id(fi)∈Fns

1
T

∑T
t=1 l̃

E
g

(
⊗id(fi),

ν(t)
)

where l̃Eg represents the expectation of function l̃g . We assume that each provider

makes his forecasts independently of the other providers. Then l̃Eg
(
., ν(t)

)
is linear in

⊗i=1,...,nd(fi). As a result, its minimum over the simplex of probability vectors is
reached in one of the corners of the simplex. Let: dT (z) = 1

T

∑T
t=1 1{ν(t)=z} be the

marginal empirical frequency of play evaluated in prediction z ∈ Xns × XKe . Finally,
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we obtain: min⊗id(fi)∈Fns
1
T

∑T
t=1 l̃

E
g

(
⊗i d(fi), ν(t)

)
= min⊗id(fi)∈Fns

∑
z∈Xns ×XKe

dT (z)l̃Eg

(
⊗i d(fi), z

)
= min⊗id(fi)∈Fns l̃

E
g

(
⊗i d(fi), dT (.)

)
≤ max
d(ν)∈Fm

min
⊗id(fi)∈Fns

l̃Eg

(
⊗i d(fi), d(ν)

)
︸ ︷︷ ︸

Ṽg

.
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