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Collaborative Learning is Better

Hélène Le Cadre∗ Jean-Sébastien Bedo†

July 7, 2012

Abstract

In this article, we focus on the identification of emerging economic organiza-
tions while agents are learning hidden individual sequences modeling renewable
energy production and microgrid instantaneous needs in a decentralized hierarchi-
cal network. The network is made of 3 categories of agents: producers, providers
and end users belonging to microgrids. In this uncertain context, providers are
penalized in case where they cannot satisfy the entire demand of the associated
microgrid. Identically, producers are penalized in case where they cannot deliver
the quantity of energy booked by the providers. Service providers need to make
efficient forecasts about the hidden individual sequences to optimize their deci-
sions concerning the quantities of energy to book and the prices of the energy. We
prove that there exists prices that provide to the producers a guarantee to avoid
penalties. Additionally, under external regret minimization, collaborative learning
through a grand coalition where the providers share their information and align
their forecasts, enables them to minimize their average loss. As an illustration, we
compare the convergence rates of the collaborative learning strategy with rates re-
sulting from selfish learning based on external and internal regret minimization in
a 2 producers, 3 providers network. The results confirm the theory: collaboration
is better for the providers.

Keywords: Distributed Learning; Regret; Algorithmic Game Theory; Coalition

1 Introduction
In this article, we describe and test distributed learning algorithms in the context of a
hierarchical highly connected network of agents. The main objective of this article is
to identify the economic organizations that might emerge as a result of the learning
process i.e., collaborative learning in a grand coalition or in sub-coalitions. We have
chosen to place the model in the context of the smart grid although the results that
we derive are quite generic and can be applied to any hierarchical network with a dis-
tributed access to the scarce resource and no capacity storage. Such framework is quite
common in the revenue management literature [15] and can be applied to many other
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industries like to model the interconnection relations between autonomous systems or
content providers and access providers in the telecommunications, to better understand
the relations between suppliers and retailers in the retail industry, etc.

Going back to the smart grid, we give a broad definition of it. Initially, smart grids
are networks enabling a decentralized storage of the energy and involving bidirectional
energy flows which are controlled by a complex, global and secured communication
network. The network is said to be smart because it is capable of integrating effi-
ciently each agent’s action (producers, providers and end users) in order to guarantee a
sustainable and secure supply at lower cost. The main goals of the smart grid are:

• To facilitate the integration of the decentralized and intermittent production such
as renewable energies.

• To get active the consumer within the electrical system.

• To provide the consumer with a set of signals allowing its effective steering con-
sumption.

• To significantly reduce the environmental footprint of the electrical system.

Traditional electrical networks rely on nuclear based energies. The main difficulty
in such a case is to adapt the production level so as to meet the uncertain demand
level. We have built a first model in [4] where two learning strategies based on tit
for tat and fictitious play are used to adapt the production level to meet the demand
level. In this context, the distributed learning algorithms can be utilized as distributed
control algorithms that provide strong asymptotic guarantees on the emergent global
behavior. As output, we were able to evaluate each agent’s financial gain and his bias
in the prediction process. Because of their structure, smart grids offer a substantial
opportunity for the integration of renewable energies. Renewable energies like wind,
solar, geothermal, biomass, small hydroelectric facilities, etc., are highly unpredictable
since they depend on uncontrolable exterior factors like wind, level of sunshine, etc.
They are cleaner but their production being more difficult to forecast, they are far more
difficult to integrate into the electrical network. However, the governments’ objective
is to include at least 33% of renewable energies in 2020.

The challenge associated to the understanding of such a global complex system is
double. First, it requires to develop efficient learning algorithms to predict both the end
users’ instantaneous needs, which can be highly erratic due to their new active role in
the grid, and decentralized renewable energy production. Second, it is necessary to de-
velop an economic model capturing the intrinsic motivations and complex hierarchical
relations between the involved agents. To perform this latter point, we resort to use
game theory which enables us to derive analytically the agents’ optimal decisions in
prices and traded quantities of energy.

In practice, the electrical network based on the smart grid model is composed of a
multitude of microgrids. Microgrids are modern, small-scale versions of the central-
ized electrical system. They can be either sellers in case where they have a surplus
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of power to transfer, or buyers in case where they need to buy additional power to
meet their demand. Saad et al. propose a distributed microgrid coalition formation
algorithm enabling an improvement of 31% of the average power losses relative to the
non-cooperative case, in [13]. However, their result relies on strong assumptions. In-
deed, they make the hypothesis that the consumers’ demand is random, which is quite
common in practical smart grid networks, since it depends on unpredicable factors such
as consumption level, consumption behavior, etc. [7]. Additionally, they make the sim-
plifying assumption that the power surplus which is defined as the difference between
the total power and the demand, is distributed according to a known density function.

Actually, the justification of the fitting of a specific parametric density function
requires the game designer to learn at least its parameters. In the statistical learning
literature, there are three major learning approaches, each one of them corresponding
to a particular abstract learning task. These are: supervised learning, unsupervised
learning and reinforcement learning [2], [16]. Tasks that fall within the paradigm of
reinforcement learning are control and online optimization problems, games and other
sequential decision making tasks. Learning based on regret minimization as described
in [2], belongs to this category. Additionally, we observe in [5] that the performances
resulting from learning based on regret minimization tested on real data bases, are
clearly superior to the ones obtained using supervised learning approaches. As a result,
these points have convinced us to use a learning approach based on regret minimization.
The difficulty is then to extend the already existing method to a distributed learning
framework and to clearly identify the emerging global behaviors.

The existing literature on distributed learning primarly focuses on distributed learn-
ing algorithms that are suitable for implementation in large scale engineering systems
[6], [11], [16]. The results mainly concentrate on a specific class of games, called
games of potential [14]. This class of games is of particular interest since they have
inherent properties that can provide guarantees on the convergence and stability of the
system. However, there exists some limitations to this framework. The most striking
one is that it is frequently impossible to represent the interaction framework of a given
system as a potential game [8].

The learning game studied in this paper belongs to the category of repeated uncou-
pled games since one player cannot predict the forecasts and so actions of the other
agents at a given time period. To take his decision i.e., optimal prices and traded quan-
tities of energy, each agent is aware of the history of forecasts of all the agents and
of his utility. Recent work has shown that for finite games with generic payoffs there
exists completely uncoupled learning rules i.e., rules where the agents observe only
their own prediction history and their utility, that lead to Nash equilibria that are Pareto
optimal [11]. Marden et al. exhibit a different class of learning procedures that lead
to Pareto optimal vector of actions that do not necessarily coincide with Nash equilib-
ria [8]. The capacity for a learning algorithm to converge toward a Pareto equilibrium
is particularly interesting especially for practical applications. Indeed, in many prob-
lems the Nash equilibrium is inefficient i.e., its reaching leads to outcomes that are far
less profitable for the agents than those resulting from a Pareto equilibrium. However,
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reaching the Pareto frontier is difficult since it requires the agents to bargain and share
information using complex communication mechanisms [9]. Under conditions stating
that it is not possible to divide the interacting agents into two distinct subsets that do
not mutually interact with one another, the game dynamics induce a Markov process
over the finite state space which is defined as the set of the triples containing the cho-
sen action, the resulting utility and an additional binary parameter called the agent’s
mood. Marden et al. focus on characterizing the support of the limiting stationary
distribution i.e., the stable states. In particular, they prove that any stable state maxi-
mizes the social welfare under an initial assumption on agent interdependence [8]. The
main difference with our model is that in their paper, the agents have the possibility to
control their production level. They take as an example the wind turbines which can
adapt their power to maximize the whole wind farm’s social welfare defined as the sum
of the total power produced by each turbine. On the contrary, in our game setting, the
production of the renewable energies cannot be controlled since it relies on exogeneous
events. Therefore, it requires to introduce decentralized learning approaches based on
online optimization [1] and to study the resulting economic organization using a game
theoretic approach.

The article is organized as follows. In Section 2, we introduce the economic basis
of our model, the agents and their utilities. Then the complete information Stackelberg
game is solved in Section 3 proceeding by backward induction. We derive analytically
the optimal prices and traded quantities of energy for the agents. Partial information
is introduced in Section 4 where the interacting agents learn in a distributed fashion
hidden individual sequences. Using the theoretical results obtained in the previous
sections, we explain how to simulate the smart grid behavior in Section 5 and an il-
lustration of the previously derived theoretical results is provided for a 2 producers, 3
providers network. Finally, we conclude in Section 6.

Notations
In the table below, we have listed the main notations used throughout the article.

si Service provider i
Mi Microgrid attached to service provider si
ek Energy producer k
p̃k(t) ek’s price for one unity of energy
qik(t) Quantity of energy booked by si to ek
pi(t) si’s price for one unit of energy
νsi (t) MicrogridMi energy needs
ai(t) MicrogridMi decision variable
νek(t) ek’s production in renewable energies
γ̃i Coefficient of the penalty imposed to ek by si
γi Coefficient of the penalty imposed by microgridMi to si
πi(t) si’s utility
αki(t) Proportion of its resource allocated by ek to si
Ck(t)

∑
j=1,...,n γ̃jqjk(t)

π̃k(t) ek’s utility
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δ
∑
j=1,...,n

1
γj γ̃j

(x)+ max{x; 0}
L(i) 1− n−1

δγiγ̃i

fi(ν
s
i , t) si’s forecast about the energy needs ofMi

fi(ν
e
k, t) si’s forecast about ek’s production

fi(t) Set of forecasts made by si at t
f(t) Set of forecasts made by all the providers at t

f−i(y, t) Set of forecasts of all the providers except si who predicts y at t
ν(t) Set of the energy needs of all the microgrids and of the productions

of all the producers at t
Xe Space of values for the produced energy
Xs Space of values for the consumption of the microgrids

li
(
f(t), ν(t)

)
si’s loss function

l
(
f(t), ν(t)

)
Meta-player’s loss

T Horizon of the repeated game
Ri(T ) si’s external regret
R(T ) Meta-player’s external regret
dt(X) Randomized strategy for forecast X

l
(1)
i

(
fi(t), ν(t)

)
si’s partial loss

l̃g
(
f(t), ν(t)

)
Sum of the providers’ partial losses

Ṽg Value of the game with partial losses as utilities

lg
(
f(t), ν(t)

)
Sum of the providers’ losses

HX(x, t) Payoff associated to forecast X evaluated in x at t
Fs Set of all the predictors for each service provider
Fm Set of all the predictors for the meta-player
Vt Sum of the variances associated with payoff HX(Xt, t)

fC(ν
s
i ) Grand coalition forecast about the energy needs ofMi

fC(ν
e
k) Grand coalition forecast about ek’s production

2 The model
The number of agents interacting in the smart grid is large. In this article, we model
the smart grid as a 3 layer hierarchical network which evolution depends on the inter-
actions between the agents composing each layer and also on the ability of the agents
to cope with unexpected random events resulting in renewable energy production and
microgrid energy need variations. In this section, we detail the 3 main categories of
agents and the economic relations between them. Then under complete information,
the repeated game which captures the interactions between the 3 layers of the hierar-
chical network is described. Finally, we go deeper in the agents individual character-
ization to identify the decision variables, the information available to each agent and
their utilities.
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2.1 Description of the agents
We model the smart grid through 3 types of agents: the end users, the service providers
and the energy producers.

The end users have some energy needs and fulfill them either by buying energy to
a service provider or by finding alternatives (solar panels, more efficient appliances,
etc.). Each service provider has the possibility to buy energy to all energy producers,
transport and resell it to the end users. Each energy producer produces and sells energy
to all service providers.

We assume that each end user contracts with only one service provider and does
not churn from one service provider to another during all the period of our study. This
assumption holds well if we consider local or regional utility companies for example.
In this sense, the set made of provider and attached consumers can be seen as an indi-
vidual microgrid, as defined in [12] and recalled in the Introduction. We denote by si,
with i varying between 1 and n, the service providers and by Mi the corresponding
group of end users. The energy producers are denoted ek with k varying between 1
and K. The energy producers can be associated with nuclear plants, photovoltaic park
managers, wind farm administrators, etc. The produced energy is supposed renewable.
Non-renewable energy producers like nuclear plants might be integrated into the grid.
It requires to use distributed control rules as the ones described in [4], [8]. In this
article, we consider exclusively renewable energy producers.

The economic relations between the agents in the grid is pictured in Figure 1. The
symbol $ is used to represent the directed monetary transfers between the involved
agents.

Figure 1: Economic relations between the agents in the grid.
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2.2 Repeated game setting
We model the interplay between all the agents through a repeated game. At each time
period t of the game1:

(1) The energy producers ek communicate their prices p̃k(t) > 0 for one energy
unit (i.e., Wh) to the service providers

(2) The service providers si place energy quantity orders to energy producers:
the quantity ordered by si to ek is denoted by qik(t)

(3) The service providers si communicate their prices pi(t) > 0 for one energy
unit to their end users

The end usersMi need νsi (t) energy units for the period (which could depend
on weather, cooking, etc.)

(4) The end users decide to find alternative sources of energies for ai(t) energy
units

The end users buy the rest of their needs
(
νsi (t)−ai(t)

)
+

to service provider si

Each energy producer ek produces νek(t) energy units

The energy producers distribute their production to service providers: ek delivers
αki(t)ν

e
k(t) energy units to service provider si

? The energy producers incur penalties if they did not fulfill the energy orders
placed by the service providers ?

? The service providers incur penalties if they did not fulfill the energy needs of
their end users ?

The penalties are proportional to the difference between the initial energy order and the
final energy delivery. More precisely, ek incurs the penalty γ̃i

(
qik(t)−αki(t)νek(t)

)
+

with γ̃i > 0, from service provider si, and si incurs the penalty γi
(
νsi (t) − ai(t) −∑

k αki(t)ν
e
k(t)

)
+

with γi > 0, from end usersMi. The penalties are donated to the

unbiased regulator who is supposed to control the overall energy distribution system.
Various mechanisms of transfer can then be implemented by the unbiased regulator.
The penalties can be distributed to shareholders of the energy producers or used for
social purposes.

2.3 Optimization program for each agent
In the rest of the section, we will describe for each time period t the decision variables,
the available information and finally the utilities for each category of agents.

1The cyan color is used to capture unexpected random events whereas the red one is associated to the
penalty rules.
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2.3.1 End users

The only decision variable for the end users is the quantity of energy that they decide
to get from alternative sources: ai(t). We assume that the end users have no lever to
influence their random energy needs: νsi (t).

The information available to end users is the price of an energy unit from their
service provider and their energy needs νsi (t) for the time period.

We assume that finding alternative energy sources rather than buying it to the ser-
vice provider has some cost for the end users. More precisely, finding ai(t) energy
units through alternatives costs them ai(t)

2

2 per time period. As a result, the total cost
of energy for the end usersMi is:

pi(t)
(
νsi (t)− ai(t)

)
+
ai(t)

2

2
(1)

End usersMi choose ai(t) in order to minimize their total cost of energy depending
on the energy price.

2.3.2 Service providers

The decision variables for each service provider si are the energy unit price pi(t) and
the energy orders qik(t) for each energy producer ek.

The only information available to service provider si when he makes his decision
are the energy unit prices p̃k(t) of all the energy producers. He has to forecast the
energy needs of his customers and the energy production of all the energy producers.

Following our description of the interplay between the agents, the utility for service
provider si at time period t is:

πi(t) = pi(t)
(
νsi (t)− ai(t)

)
−

∑
k=1,...,K

qik(t)p̃k(t)− γi
(
νsi (t)− ai(t)

−
∑

k=1,...,K

αki(t)ν
e
k(t)

)
+

(2)

Service provider si chooses his energy unit price and his energy orders toward energy
producers so that πi(t) is maximized.

2.3.3 Energy producers

The only decision variable for each energy producer ek is the energy unit price p̃k(t)
that he proposes to the service providers. We assume that the energy producer cannot
influence directly the energy he produces at each time period. This assumption holds
well if, for example, we look at a wind turbine farm without any investment in an
additional wind turbine during the study period. The variation of the wind intensity
will make vary the energy produced without any lever for the energy producer.
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When energy producer ek makes his decision, he has no information because he is
the first player to play in the time period as described in the game setting in Section 2.2.
He has to forecast the energy quantity that he will produce and the energy orders of all
the service providers.

To define the sharing coefficients αki(t), we consider a weighted proportional al-
location of resource that allows producers to discriminate energy allocation by provi-
ders. This framework is a generalization of the well-known proportional allocation
[13] to weighted energy orders with penalty coefficients as weights. Such a resource
sharing mechanism has already been introduced by Nguyen and Vojnović, in [10].
This means that between two providers booking the same quantity, the one having the
highest penalty coefficient will receive the largest part of the producer’s available en-
ergy. Indeed, the producer wants to minimize his overall penalty and therefore allocates
larger parts of his production to providers who appear to him as more threatening than
the others. More precisely, in the rest of the article, we will assume that:

αki(t) =
γ̃iqik(t)

Ck(t)
(3)

where Ck(t) =
∑
j=1,...,n γ̃jqjk(t).

Then the utility of energy producer ek at time period t equals:

π̃k(t) = p̃k(t)
∑

i=1,...,n

qik(t)−
∑

i=1,...,n

γ̃iqik(t)
(

1− γ̃i
Ck(t)

νek(t)
)
+

(4)

Energy producer ek chooses his energy unit price so that π̃k(t) is maximized.

3 Complete information game resolution
The game setting described in Section 2.2 implies that in the relation producers-provi-
ders, producers appear as leaders whereas providers are followers. Identically, in the
relation providers-consumers, providers appear as leaders whereas consumers are mere
followers. Under such a setting, the game is called a Stackelberg game and as usual, it
should be solved using backward induction [9].

Additionally, we make the assumption that each energy producer receives at least
one energy order from a service provider guaranteeing that the Stackelberg game ad-
mits non trivial solutions.

3.1 Optimization of the end users’ decision
To minimize their total cost of energy defined by Equation (1), end usersMi have to
choose ai(t) so that the differentiate of the total cost of energy equals 0 which means:

ai(t) = pi(t) (5)
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3.2 Optimization of the service providers’ decisions
To find his optimal price and energy orders, service provider si has to replace ai(t) by
its optimal value in πi(t) defined in Equation (2), and to differentiate the result in pi(t)
and in qik(t). This differentiation raises two cases.

3.2.1 Case 1: the energy production fulfills the energy demand of the end users

It is the case when:
νsi (t)− pi(t) ≤

∑
k=1,...,K

αki(t)ν
e
k(t) (6)

Then differentiating the service provider’s utility in qik(t) leads to:

∂πi(t)

∂qik(t)
= −p̃k(t)

which means that si will try to minimize all his energy orders to maximize his utility.
As a result, si will tend to break the inequality defining Case 1 in Inequality (6) because
αki(t) will tend toward zero. As a result the optimal decision for si will always fall
in Case 2 described below or on the frontier between Case 1 and Case 2. The frontier
between these two cases is defined by the equation:

νsi (t)− pi(t) =
∑

k=1,...,K

αki(t)ν
e
k(t) (7)

3.2.2 Case 2: the energy production does not fulfill the energy demand of the
end users

It is the case when νsi (t) − pi(t) ≥
∑
k=1,...,K αki(t)ν

e
k(t). Then differentiating si’s

utility gives us:

∂πi(t)

∂pi(t)
= νsi (t) + γi − 2pi(t)

∂πi(t)

∂qik(t)
= −p̃k(t) + γiν

e
k(t)

∂αki(t)

∂qik(t)
(8)

By using the definition of αki(t) given in Equation (3), we obtain:

∂αki(t)

∂qik(t)
= γ̃i

Ck(t)− γ̃iqik(t)

Ck(t)2

Then going back to System of equations (8), we conclude that the differentiates equal
0 when:

pi(t) =
νsi (t) + γi

2
(9)

p̃k(t)Ck(t)2 = γiν
e
k(t)γ̃i

(
Ck(t)− γ̃iqik(t)

)
(10)
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On one side, we obtain directly the price for which the differentiate of πi(t) equals 0
through Equation (9). On the other side, Equation (10) can be rewritten as follows:

γ̃iqik(t) = Ck(t)− p̃k(t)Ck(t)2

νek(t)γiγ̃i
(11)

If si anticipates that the other service providers will make the same optimization pro-
gram, replicating Equation (11) for the n service providers and summing them all,
results in the following equality:

Ck(t) = nCk(t)− p̃k(t)Ck(t)2

νek(t)

∑
j=1,...,n

1

γj γ̃j

by definition of Ck(t).

Then as Ck(t) is not zero because each producer ek receives at least one order of
energy otherwise he would be out of the game, by dividing the previous equation by
Ck(t) and reordering we obtain:

Ck(t) =
νek(t)

p̃k(t)

n− 1

δ

where δ =
∑
j=1,...,n

1
γj γ̃j

. By replacing Ck(t) in Equation (11), we obtain the energy
orders for which the differentiates of πi(t) equals 0:

qik(t) =
νek(t)

p̃k(t)

n− 1

δγ̃i
L(i) (12)

where we have introduced the notation L(i) = 1− n−1
δγiγ̃i

to simplify future calculations.

Presently, we have to check that the price and energy orders for which the differen-
tiates of πi(t) equal 0 satisfy the conditions of Case 2.

First, it is easy to check that the price is positive through Equation (9). However,
the energy orders defined in Equation (12) are non-negative if, and only if, 1 ≥ n−1

δγiγ̃i
which is equivalent to:

γiγ̃i ≥
n− 1

δ
(13)

This inequality means that the penalties related to si are close to the penalties related
to the other service providers. Indeed, if all penalties are equal to γ, then δ = n

γ2 and
Inequality (13) is true for all service providers. On the contrary, if all penalties are equal
to γ except for s1 which has a penalty of γ

n−1 , then δ = (n−1)n
γ2 and Inequality (13)

becomes n ≥ (n− 1)2 which is false as soon as n > 2.

Second, by replacing the energy orders defined by Equation (12) in Equation (3),
we obtain αki(t) = L(i)∑

j=1,...,n L(j)
= L(i) meaning that the total energy delivered to

the customers of si is
∑
k=1,...,K αki(t)ν

e
k(t) = L(i)

∑
k=1,...,K ν

e
k(t). As a result,
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the price and energy orders for which the differentiates of πi(t) equal 0 verify the
inequality defining Case 2 if, and only if:

νsi (t) ≥ γi + 2L(i)
∑

k=1,...,K

νek(t) (14)

This inequality states that the total production of energy by energy producers should
not be too large compared to the energy needs of customers.

If Inequalities (13) and (14) are true, the optimum for si is reached for pi(t) defined
by Equation (9) and qik(t) defined by Equation (12). If one of these inequalities is not
true, then the optimum for si is reached on the frontier defined by Equation (7).

In the rest of the article, the game settings (energy needs of the microgrids, energy
production and penalties) will be chosen so that we are always in energy shortage, in
the sense that Inequality (14) will always be true, and with fair penalties, in the sense
of Inequality (13). As a result, the optimal price for si is defined by Equation (9) and
the optimal orders for si are defined by Equation (12).

3.3 Optimization of the energy producers’ decision
After substituting qik(t) and Ck(t) by the expressions found in the previous section in
energy producer ek’s utility as defined in Equation (4), we obtain:

π̃k(t) = νek(t)
n− 1

δ

( ∑
i=1,...,n

L(i)

γ̃i
−

∑
i=1,...,n

( L(i)

p̃k(t)
(1− p̃k(t)γ̃iδ

n− 1
)+

))
The only part of this equation depending on p̃k(t) has always a negative impact on the
profit of the energy producer under the assumption of fair penalties. Indeed, in that
case, as raised in the previous section, we have: L(i) ≥ 0 for all service providers
si. As a result, to maximize his profit, the energy producer has to choose p̃k(t) such
that the part depending on p̃k(t) in the above equation equals 0. It implies that the
term 1 − p̃k(t)γ̃iδ

n−1 is inferior to 0 for all i = 1, ..., n. It is equivalent to: p̃k(t) ≥ n−1
δγ̃i

.
Consequently, the optimal price for the energy producer with fair penalties is defined
by:

p̃k(t) =
n− 1

δmini=1,...,n{γ̃i}
In theory, the price could be higher than this value and it would change nothing for the
utility of the energy producer. But the energy producer has an incentive to be moderate
on his price to avoid competition from other energy producers.

4 Distributed learning game
In this section, we will assume that the consumer needs νsi (t) and the energy produc-
tions νek(t) are random individual sequences. This means that the underlying random
processes generating the sequences do not necessarily have a probabilistic structure.
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They can be quite erratic. Compared with [4] and [8], the producers’ available energy
cannot be controlled and are not known by the energy producers before the end of the
time period. The reason behind this is that the energy comes from renewable sources
exclusively.

In the previous section, we have defined the optimal decisions for each agent at
time period t. We have proved that these decisions do depend neither on the consumer
needs νsi (t) nor on the energy productions νek(t) except for the service providers. To
guarantee the optimal operation of the whole system, it is fundamental for the service
providers to elaborate efficient learning strategies about consumer needs and energy
productions.

To simplify, we will consider a common space Xe of possible values for the pro-
duction of each energy producer and a common space Xs of possible values for the
consumption of each service provider’s associated microgrid. Xe,Xs ⊆ R are supposed
to be of finite dimension i.e., their cardinals |Xe| and |Xs| are such that |Xe| < +∞
and |Xs| < +∞. In the description of the generic learning algorithm,we will use the
notation X to designate indifferently Xs or Xe.

Service providers should optimize their prices and booking quantities at each time
period, having no information about the produced energy and the energy needs of the
microgrids at this instant. As a result, the game can be considered as having partial
information [2]. Each service provider si has to forecast νsi (t) and νek(t) for all k =
1, ...,K at each time period in order to optimize his decisions. We will denote by
fi(X, t) the forecast of service provider si about the variable X at time period t. We
will also use the simplifying notations:

• fi(t) =
{
fi(ν

s
i , t), fi(ν

e
1 , t), ..., fi(ν

e
K , t)

}
to denote the predictions made by

service provider si about microgridMi instantaneous needs and about the pro-
duction of each energy producer ek, k = 1, ...,K.

• f(t) =
{
f1(t), ..., fn(t)

}
which contains the forecasts of all the service providers.

• f−i(y, t) =
{
f1(t), ..., fi−1(t), y, fi+1(t), ..., fn(t)

}
which contains the fore-

casts of all the service providers except si which prediction is set equal to y.

• ν(t) =
{
νs1(t), ..., νsn(t), νe1(t), ..., νeK(t)

}
which contains the microgrid energy

needs and the production of each energy producer ek, k = 1, ...,K.

By substitution of the forecasters in the Stackelberg game solution at equilibrium
as obtained in Section 3, we infer the optimal decisions for service provider si at each
time period t:

pi(t) =
fi(ν

s
i , t) + γi

2

qik(t) =
fi(ν

e
k, t)

p̃k

L(i)

γ̃i

n− 1

δ

13



As a result, the utility of service provider si at each time period t is:

πi(t) =
fi(ν

s
i , t) + γi

2

(
νsi (t)− fi(ν

s
i , t) + γi

2

)
− L(i)

γ̃i

n− 1

δ

∑
k=1,...,K

fi(ν
e
k, t)− γi

(
νsi (t)− fi(ν

s
i , t) + γi

2

−
∑

k=1,...,K

fi(ν
e
k, t)L(i)∑

j=1,...,n fj(ν
e
k, t)L(j)

νek(t)
)
+

(15)

4.1 Loss, external regret and Hannan consistency definitions
Provider si’s loss is defined as:

li

(
f(t), ν(t)

)
=
(
π0
i (t)− πi(t)

)
where π0

i (t) corresponds to provider si’s utility evaluated in fi(νsi , t) = νsi (t) and
fi(ν

e
k, t) = νek(t), ∀k = 1, ...,K. It means that π0

i (t) contains the utility that provider
si would have received if his forecasts were perfectly aligned with microgridMi in-
stantaneous needs and with the production of each energy producer.

Having no a priori information about the dynamic evolution of the produced renew-
able energies and about the energy needs of the microgrids, we assume that everything
happens as if the system were in the worst case: Nature and consumers allie together to
form a meta-player who is supposed to be the most unfavorable to the service providers.
It means that the meta-player tries to maximize the sum of the providers’ losses. His
loss can be expressed as the opposite of the sum of all the providers’ losses. Therefore,
it takes the form:

l
(
f(t), ν(t)

)
=

∑
i=1,...,n

(
πi(t)− π0

i (t)
)

The agents’ external regret over the sequence of time periods 1, ..., T , is expressed
as the realized difference between the cumulative loss and the loss of the best prediction
i.e., pure strategy (in the sense that this prediction minimizes their cumulative loss).

To be more precise, for service provider si, it coincides with the difference between
si’s truly observed cumulative loss and the cumulative loss that would be obtained in
case where si made the best constant prediction over time interval [1;T ]. It takes the
form:

Ri(T ) =

T∑
t=1

li

(
f(t), ν(t)

)
− min
y∈Xs×XKe

T∑
t=1

li

(
f−i(y, t), ν(t)

)
Finally, for the meta-player, the regret coincides with the difference between his

cumulative loss and the loss of the constant predictions over [1;T ] about the unknown
sequences minimizing his cumulative loss or equivalently maximizing the sum of the

14



providers’ losses over the interval. We have:

R(T ) =

T∑
t=1

l
(
fs(t), ν(t)

)
− min
z∈Xns ×XKe

T∑
t=1

l
(
f(t), z

)

The service providers and the meta-player try to determine randomized strategies
such that asymptotically their external regrets remain in o(T ) where T is the number
of time periods which have been played. It means that with probability 1:

lim sup
T→+∞

1

T

T∑
t=1

Ri(t) = 0

for provider si, i = 1, ..., n and

lim sup
T→+∞

1

T

T∑
t=1

R(t) = 0

for the meta-player. Forecasters satisfying these inequalities are said Hannan consis-
tent [2].

In the following lemma, we prove that it is possible to construct learning strategies
for the service providers which minimize their external regret asymptotically.

Lemma 1. A Hannan consistent learning strategy exists for each service provider si.

Proof of Lemma 1. In our case setting, at the end of each time period, service
provider si knows the energy quantity bought by his customersMi and he can infer
νsi (t) from that quantity. si also knows the energy which has been delivered by each
energy producer ek to him. He can infer from that the energy which could have been
delivered to him, if he had ordered a different quantity qik(t), all other providers order-
ing the same energy quantities. As a result, si can calculate his loss for all his possible
actions. In [2], it is proved that a Hannan consistent learning strategy always exists
when the player can calculate his loss for each possible action at the end of each time
period.

4.2 Analysis of si’s loss function upper bounds
In this subsection, we unfold sequentially results enabling us to obtain upper bounds
on the provider si’s loss function. We will then study the upper bounds on the meta-
player’s loss in next subsection. Last subsection will cover collaborative learning
strategies.

We start by upper bounding provider si’s loss through the identification of upper
bounds in Proposition 2. This upper bound is represented as the sum of a loss function
depending only on provider si’s predictions and on another one relying exclusively
on the disagrement between provider si and the other providers on the predictions of
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producer ek’s production in renewable energy. Then properties of these upper bounds
are studied in Corollary 3.

We introduce:

dkij(t) = fi(ν
e
k, t)− fj(νek, t), i, j = 1, ..., n, k = 1, ...,K

It is a measure of the disagreement between provider si and provider sj for i 6= j, in
the prediction of ek’s energy production, at time period t.

Proposition 2. Provider si’s loss can be upper-bounded by a sum of two functions: the
first one l(1)i (.) depending only on his forecasts fi(t) and the second one l(2)i (.) depend-
ing on his disagreement with the other providers’ predictions exclusively. Formally, we
have: ∀i = 1, ..., n, li

(
f(t), ν(t)

)
≤ l(1)i

(
fi(t), ν(t)

)
+ l

(2)
i

(
(dkij(t))j,k, ν(t)

)
.

Proof of Proposition 2. The proof can be found in Appendix.

We now demonstrate functional properties for provider si’s upper bounds which
lead us to the following observations concerning the provider’s strategic learning be-
havior.

Corollary 3. To minimize his loss, provider si should:

• Forecast the exact real value of the microgridMi energy needs.

• Minimize his energy production forecasts and his disagreements with the other
providers in the energy production forecasts at the same time.

Proof of Corollary 3. Judging by the form of function l(1)i (.) as obtained in the proof
of Proposition 2 which is detailed in Appendix, it is linear increasing in fi(νek, t), ∀k =
1, ...,K since L(i) ≥ 0 as proved in Section 3.2. Therefore, to reduce his loss, si has
incentives to choose small values for fi(νek, t), ∀k = 1, ...,K.

Furthermore, the differentiate of l(1)i (.) in fi(ν
s
i , t) equals 0 when fi(ν

s
i , t) =

νsi (t). Since l(1)i (.) is a second order polynomial in fi(νsi , t) with a positive first coeffi-
cient, the minimum of l(1)i (.) is reached in νsi (t). As a result, to reduce his loss, si has
incentives to choose fi(νsi , t) = νsi (t).

Since the differentiate of l(2)i (.) in dkij(t) is always positive, l(2)i (.) increases when
the disagreement with the other providers dkij(t) increases.

In the rest of the paper, functions l(1)i
(
y, ν(t)

)
will be denoted the partial losses

for provider si, this latter making predictions y ∈ Xs × XKe while the meta-player
chooses ν(t) ∈ Xns × XKe . We start by introducing lower and upper bounds on the
disagreements between provider si and the other providers about the predictions of the
energy productions:

Dss(i) = min
t=1,...,T

min
j 6=i,k

dkij(t)
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and
Dss(i) = max

t=1,...,T
max
j 6=i,k

dkij(t)

They contain the extreme disagreement values between the providers, about the esti-
mated energy productions.

Lemma 4. If provider si plays according to a Hannan consistent strategy for his loss
upper bound then, there exists an upper bound for the external regret associated with
si’s partial loss which depends only on the extreme disagreement values between the
providers about the estimated energy productions Dss(i) and Dss(i).

Proof of Lemma 4. The proof can be found in Appendix.

4.3 Analysis of the sum of service providers loss functions upper
bounds

The repetition of the Stackelberg game introduced in Section 3 in a context of partial
information can be rewritten by introducing randomization in the strategies. We denote
by dt(fi) : Xs × XKe → [0; 1] and dt(ν) : Xns × XKe → [0; 1] the randomized
strategies for service provider si and for the meta-player respectively at time period
t. We then have to cope with a repeated learning game. At each time period t, the
repeated game timing introduced in Section 3 is updated according to the following
rules to incorporate the forecasting tasks of the providers:

(1) All the service providers si, i = 1, ..., n make their forecasts fi(νsi , t),
fi(ν

e
k, t), ∀k = 1, ...,K following distributions dt(fi) respectively.

(2) Energy producers reveal their energy prices.

(3) Service producers reveal their energy orders qik(t) and their service prices at
the same time.

(4) The meta-player chooses νsi (t) and νek(t), ∀i = 1, ..., n and ∀k = 1, ...,K
following the distribution dt(ν).

(5) Each service provider si obtains his profit πi(t), the demand ofMi and the
energy quantities offered by each service producer ek.

Service providers update their forecasting strategies dt(fi) and the meta-player
updates his forecasting strategy dt(ν) depending on the value of the expected
utilities.

The step corresponding to the generation of unexpected random events resulting in
microgrid energy needs and production variations is now controlled by the meta-player
whereas the penalty rules introduced in Section 3 remain unchanged.

We define now l̃g(.) as the sum of the providers’ partial losses:

l̃g

(
f(t), ν(t)

)
=

∑
i=1,...,n

l
(1)
i

(
fi(t), ν(t)

)
(16)
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If the repeated learning game reaches a stable state i.e., an equilibrium for the
generating density functions, the randomized strategy becomes time invariant for t
large enough:

dt(fi) → d(fi)

dt(ν) → d(ν)

We let Fs be the set of all the predictors (i.e., discrete density function set or al-
ternatively, randomized prediction set) for each service provider and Fm the set of all
the predictors for the meta-player. It will be used to properly introduce the value of
the game. The value of the game where the providers consider their partial losses as
utilities is defined as:

Ṽg = min
⊗i=1,...,nd(fi)∈Fns

max
d(ν)∈Fm

l̃Eg

(
⊗i=1,...,n d(fi), d(ν)

)
where l̃Eg (.) represents the expectation of function l̃g(.) as defined in Equation (16).

Theorem 5. Assume that all service providers play according to Hannan consistent
strategies for their loss upper bound. Then:

lim sup
T→∞

1

T

T∑
t=1

l̃g

(
f(t), ν(t)

)
≤ Ṽg +

1

T

T∑
t=1

∑
i=1,...,n

ψ
(
Dss(i), Dss(i)

)
∑

k=1,...,K

νek(t)

where we have defined the function ψ(., .) from R2 to R such that:

ψ
(
Dss(i), Dss(i)

)
= γiL(i)

∑
k=1,...,K

νek(t)
( 1

g(Dss(i))
− 1

g(Dss(i))

)
(17)

with g(x) = 1− x
max{Xe}1x≥0 −

x
min{Xe}1x≤0.

Proof of Theorem 5. The proof can be found in Appendix.

Corollary 6. Assume that the meta-player plays according to a Hannan consistent
strategy for his loss upper bound. Then:

lim
T→∞

1

T

T∑
t=1

l̃g

(
f(t), ν(t)

)
≥ Ṽg −

1

T

T∑
t=1

∑
i=1,...,n

ψ
(
Dss(i), Dss(i)

)
∑

k=1,...,K

νek(t)

Proof of Corollary 6. Applying Theorem 5 to the meta-player i.e, by symmetry,
considering that the meta-player’s loss upper bound is the opposite of the sum over i
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of si’s loss upper bounds, and using von Neuman-Morgenstern’s minimax theorem [9]
for Ṽg , we derive the proposed inequality.

We let:

lg

(
f(t), ν(t)

)
=

∑
i=1,...,n

li

(
f(t), ν(t)

)
(18)

be the sum of the providers’ losses. Using the definitions settled in Equations (16) and
(18), we derive the following inequality:

lg

(
f(t), ν(t)

)
≤ l̃g

(
f(t), ν(t)

)
+

∑
i=1,...,n

l
(2)
i

(
(dkij(t))j,k, ν(t)

)
where j browses all the values in the set {1, ..., n} and k, all the values in the set
{1, ...,K}. By substitution in Theorem 5, we obtain the following result:

Corollary 7. If all service providers play according to a Hannan consistent strategy
for their loss upper bounds then, their average loss cannot be larger than:

Ṽg +
1

T

T∑
t=1

∑
i=1,...,n

ψ
(
Dss(i), Dss(i)

) ∑
k=1,...,K

νek(t)

+
1

T

T∑
t=1

∑
i=1,...,n

l
(2)
i

(
(dkij(t))j,k, ν(t)

)
whatever strategy is chosen by the meta-player.

The objective of the next subsection is to determine which conditions to impose on
the gaps between the providers’ predictions, in order to minimize the upper bound of
the agents’ average loss.

4.4 Collaborative learning strategy
As explained in the previous sections, to optimize their decisions, the service providers
need to forecast both their associated microgrid energy needs as well as the production
of all the energy producers. Judging by the result highlighted in Corollary 7, to mini-
mize the upper bound of their average loss, providers have no choice but to collaborate
to predict the energy productions. However, the providers still predict independently
their associated microgrid instantaneous needs since there is no interaction between the
microgrids, each of them adapting independently the bought quantity of energy to the
time varying price.

Collaboration takes place within coalitions. In cooperative game theory literature, a
coalition is a group of agents who have incentives to collaborate by sharing resource ac-
cess, information, etc., in the hope to increase their revenue, knowledge, social welfare
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(in case of altruism), etc., compared to the case where they behave non-cooperatively
[9], [13]. Adapted to our hierarchical learning context, we define coalitions of agents
as follows:

Definition 8. • A coalition of agents is a group of agents who share their infor-
mation and align their predictions to a common value.

• Agents who belong to the same coalition are said to collaborate.

At this stage, the objective is to identify conditions on the disagreement levels
between the providers about the forecasted energy productions such that the term at the
right of Ṽg defined in Corollary 7, remains as small as possible. Indeed, the smaller is
the term defined in Corollary 7, the smaller is the sum of the agents’ losses.

Such a strategy would satisfy the following relations, at any time period t:

ψ
(
Dss(i), Dss(i)

) ∑
k=1,...,K

νek(t) = 0, ∀i = 1, ..., n

⇔ Dss(i) = Dss(i), ∀i = 1, ..., n

It means that service providers can decrease their total loss by aggregating their
predictions about the produced energies νek(t), ∀k = 1, ...,K, at any time period t.
Providers therefore have incentive to form a grand coalition because it might enable
them to decrease their total loss.

By substitution in the second part of the loss upper bounds as introduced in Propo-
sitions 2 and detailed analytically in Appendix, we let:

µi(t) = l
(2)
i

(
(dkij(t))j,k, ν(t)

)
|dkij(t)=0, j=1,...,n,k=1,...,K

and we obtain: µi(t) = −γiL(i)
∑
k=1,...,K ν

e
k(t) which depends only on the service

provider index (i) and on time period t, but not on the providers’ forecasts.

Proposition 9. When the providers collaborate through a grand coalition, the system
average loss over time interval [1;T ] cannot be larger than Ṽg+ 1

T

∑T
t=1

∑
i=1,...,n µi(t).

Proof of Proposition 9. By definition:

lg(t) =
∑

i=1,...,n

li(t)

≤
∑

i=1,...,n

l
(1)
i (t)︸ ︷︷ ︸

l̃g(t)

+
∑

i=1,...,n

l
(2)
i (t)

≤ l̃g(t) +
∑

i=1,...,n

µi(t).

Taking the average of these values over time interval [1;T ], the proposition statement
is straightforward.
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5 Simulations
The aim of this section is to explain how the economic model of the hierarchical net-
work described in Section 2 can be applied in practice to take decisions in an uncertain
context and then to check that the results derived analytically in Section 4 hold, for a
smart grid which structure is defined a priori.

The rest of the section is organized as follows: Subsection 5.1 deals with payoff
function estimation for each forecast, Subsection 5.2 elaborates on the update of mixed
strategies for each forecast and we discuss in the last part the results that we have
obtained on a numerical example.

5.1 Payoff functions
As detailed in Section 4, after the energy prices have been issued by the energy produc-
ers, the service providers make their forecasts and choose a quantity to order to each
producer and their optimal energy unit price according to the following system:

pi(t) =
fi(ν

s
i , t) + γi

2

qik(t) =
fi(ν

e
k, t)

p̃k

L(i)

γ̃i

n− 1

δ

By substitution in Equation (2), service provider si’s utility can then be rewritten
as:

πi(t) =
fi(ν

s
i , t) + γi

2

(
νsi (t)− fi(ν

s
i , t) + γi

2

)
− L(i)

γ̃i

n− 1

δ∑
k=1,...,K

fi(ν
e
k, t)− γi

(
νsi (t)− fi(ν

s
i , t) + γi

2

−
∑

k=1,...,K

L(i)fi(ν
e
k, t)∑

j=1,...,n L(j)fj(νek, t)
νek(t)

)
+

Interestingly, it is worth mentioning that the profit of the service provider depends on
the forecasts of the other service providers.

Each service provider has K+ 1 forecasts to do: one for his associated microgrid’s
consumption and one to evaluate the productions of each of the K energy producers.
In principle, it should be necessary to define a randomized strategy on space Xs ×XKe
for each service provider. We recall that a randomized strategy is the classical termi-
nology used in game theory to designate a discrete density function defined over the
considered set [9]. This quantity grows very fast with K and as a result each probabil-
ity in the randomized strategy of forecasts is very small which leads to rounding errors
during computation. In order to overcome this issue, we have decided to cut the ser-
vice providers in smaller entities, each of them making only one forecast at each time
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period and to consider that these entities are uncoupled. This trick results in K + 1
randomized strategies in the space of forecasts Xs ×XKe for each service provider.

For a given forecast X , we derive the payoffs for each value x ∈ X of the forecast
at each time period t by using the utilities of the service providers and keeping only the
terms depending on forecast X . This is summarized in the following definition:

Definition 10. The payoff function associated to forecast X evaluated in x ∈ X coin-
cides with the utility of service provider si restricted to its terms depending on forecast
X solely and evaluated in x.

For the forecasts of associated microgrid Mi energy needs, provider si’s payoff
takes the form:

Hfi(νsi )
(x, t) =

x+ γi
2

(
νsi (t)− x+ γi

2

)
− γi

(
νsi (t)− x+ γi

2

−
∑

k=1,...,K

L(i)fi(ν
e
k, t)∑

j=1,...,n L(j)fj(νek, t)
νek(t)

)
+

Concerning the forecasts of energy producer ek’s production, provider si’s payoff
takes the form:

Hfi(νek)
(x, t) = −L(i)

γ̃i

n− 1

δ
x− γi

(
νsi (t)− fi(ν

s
i , t) + γi

2

−
∑
l 6=k

L(i)fi(ν
e
l , t)∑

j L(j)fj(νel , t)
νel (t)− L(i)x∑

j 6=i L(j)fj(νek, t) + L(i)x

νek(t)
)
+

As already stated in Section 4, we will also consider that the meta-player is non
oblivious and plays so as to minimize the sum of the utilities of the service providers.
As for the service providers, we uncouple νsi (t) and νek(t) to improve the computation.
More precisely the meta-player’s payoffs are:

Hνsi
(x, t) =

fi(ν
s
i , t) + γi

2

(fi(νsi , t) + γi
2

− x
)

+ γi

(
x− fi(ν

s
i , t) + γi

2

−
∑

k=1,...,K

L(i)fi(ν
e
k, t)∑

j=1,...,n L(j)fj(νek, t)
νek(t)

)
+

Hνek
(x, t) =

∑
i=1,...,n

γi

(
νsi (t)− fi(ν

s
i , t) + γi

2
−
∑
l 6=k

L(i)fi(ν
e
l , t)∑

j=1,...,n L(j)fj(νel , t)

νel (t)− L(i)fi(ν
e
k, t)∑

j=1,...,n L(j)fj(νek, t)
x
)
+
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It is very straightforward to adapt the repeated learning game and payoffs consid-
ering that the service providers integrate a grand coalition. The grand coalition payoffs
take the following forms:

HfC(νsi )
(x, t) = Hfi(νsi )

(x, t)

HfC(νek)
(x, t) = −

∑
i=1,...,n

L(i)

γ̃i

n− 1

δ
x

Whereas, the meta-player’s payoffs become:

Hνsi
(x, t) =

fi(ν
s
i , t) + γi

2

(fi(νsi , t) + γi
2

− x
)

+ γi

(
x− fi(ν

s
i , t) + γi

2

− L(i)
∑

k=1,...,K

νek(t)
)
+

Hνek
(x, t) =

∑
i=1,...,n

γi

(
νsi (t)− fi(ν

s
i , t) + γi

2
− L(i)(

∑
l 6=k

νel (t) + x)
)
+

5.2 Updates of forecasting strategies
In the rest of the paper, we consider two types of updates for the forecasting randomized
strategies dt(X) at each time period based on the exponential forecaster for signed
games: one based on the external regret and the other based on the internal regret [2].
We assume that this is a signed game because the range of values of payoff function
HX(.) might include a neighborhood of 0.

We let:

Vt =

t∑
s=1

V ar
(
HX(Xs, s))

)
=

t∑
s=1

E
[(
HX(Xs, s))− E[HX(Xs, s)]

)2]
be the sum of the variances associated with the random variableHX(Xt, t) which is the
payoff for forecaster X at time period t assuming that the forecast at time period t has
been set to Xt, under the mixed strategy X which is defined over space X . Using the
exponential forecaster for signed games with external regret means that the randomized
strategy is updated according to the algorithm described below.

External Regret Learning Algorithm: Updating of the Exponential Forecaster

Initialization. For t = 0, we set: w0(x) = 1
|X | , ∀x ∈ X .
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Step 1 to T . The updating rules are the following:

dt+1(x) =
wt+1(x)∑
x∈X wt+1(x)

, ∀x ∈ X

wt+1(x) = exp
(
ηt+1

t∑
s=1

HX(x, s)
)

= dt(x)
ηt+1
ηt exp

(
ηt+1HX(x, t)

)
, ∀x ∈ X

ηt+1 = min
{ 1

2 max{|HX(.)|}
;

√
2(
√

2− 1)

e− 2

√
ln|X |
Vt

}
Vt = Vt−1 + V ar

(
HX(Xt, t)

)
For the internal regret, it is similar but with dt(.) =

∑
i 6=j d

i→j
t (.)∆(i,j)(t) where

di→jt (.) is the modified forecasting strategy obtained when the forecaster predicts j
each time he would have predicted i and ∆(i,j)(t) =

ω(i,j)(t)∑
k 6=l ω(k,l)(t)

with:

ω(i,j)(t) = exp
(
ηt
∑t−1
s=1

∑
x∈X ds(x)HX(x, s)

)
.

We see that we need to compute the maximum of the absolute value of the pay-
off function |HX(.)| for all forecasts X to run a simulation of the game. This max-
imum is reached for x = min{X} or x = max{X} for all payoff functions except
for Hfi(νsi )

(.) because their differentiate with respect to x is never equal to 0. For
Hfi(νsi )

(.), the differentiate equals 0 if, and only if, fi(νsi , t) = νsi (t), so the maximum
of |HX(.)| is reached either for x = min{X} or x = max{X} or x = νsi (t).

5.3 Results
For our numerical illustration, we have chosen n = 3 and K = 2. We have also used
γ1 = γ2 = γ3 = 0.9 and γ̃1 = 0.5, γ̃2 = 0.4, γ̃3 = 0.6 and Xe = [1; 2], Xs = [5; 8]
which ensure that the L(i), i = 1, 2, 3 remain positive and that Inequality (14) is
always true.

In the following pictures, we compare the cumulative regret of each player to the
cumulative regret of the same player who would have forecasted the best value at each
time period in terms of payoffs. More precisely, we display:

1

t

t∑
s=1

∑
X∈F

(
HX(Xs, s)−max

x
(HX(x, s))

)
where F is the generic set of forecasts made by the service provider or the meta-player
or the coalition considered.

We start by comparing the cumulative internal and external regrets in the case of
full competition between service providers in Figures 2 and 3.
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Figure 2: Difference between the best
achievable cumulative regret and the one
obtained with the internal regret minimiza-
tion algorithm under full competition.

Figure 3: Difference between the best
achievable cumulative regret and the one
obtained with the external regret minimiza-
tion algorithm under full competition.

The service providers are in black for s1, green for s2 and red for s3. We can
see that in all cases, the difference between regrets converge toward 0 which means
that the cumulative payoff obtained at the end of the game following the exponential
forecaster strategy is close to the best possible cumulative payoff. This is in coherence
with the theoretical result for the internal regret but is better than what we could expect
for the external regret which means that we are in a game setting which performs well
for regret based learning. We also remark that the algorithm converges faster for the
external regret compared to the internal regret.

We compare these graphs with the graphs obtained when service providers integrate
a grand coalition in Figures 4 and 5.

Again, we observe that the differences between the best achievable regrets and
those obtained converge toward 0. The rate of convergence under cooperative learning
seems higher than in the non-cooperative case. In addition, we observe that after 400
time periods the sum of differences between regrets under collaborative learning is
close to −0.2 whereas the sum of differences between regrets is close to −0.26 in the
full competition case. This is in coherence with the theory which says that collaborative
learning is better.

6 Conclusion
In this article, we focus on the identification of emerging economic organizations while
agents interacting through a hierarchical network, are learning to predict as accurately
as possible hidden individual sequences modeling variations in renewable energy pro-
ductions and in microgrid energy needs. Agents belong to one of the 3 categories:
producers, providers and end users. We want to prove whether collaboration between
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Figure 4: Difference between the best
achievable cumulative regret and the one
obtained with the internal regret minimiza-
tion algorithm for the coalition of service
providers.

Figure 5: Difference between the best
achievable cumulative regret and the one
obtained with the external regret minimiza-
tion algorithm for the coalition of service
providers.

the agents through the learning process, can increase the system performances. Collab-
oration can occur when coalitions are forming. Agents are said to belong to a common
coalition when they share their information and align their forecasts on a common pre-
diction.

Over each time period, we have optimized analytically the agents’ decisions in
prices and traded quantities of energy by solving a Stackelberg game in a complete
information context. However, in practice, these decisions should depend on variables
which are unobserved at the beginning of each time period such as the energy pro-
ductions and the microgrid energy needs. The behavior of these processes might be
quite erratic which explains why they might be so complex to predict. Additionally,
we make the assumption that providers are penalized in case where they cannot satisfy
the attached microgrid entire demand and that producers are penalized in case where
they cannot deliver the quantity of energy booked at the beginning of the time period
by the providers. Consequently, it is necessary for producers and providers to develop
efficient distributed learning algorithms.

We prove that there exists prices for the producers that provide them some guaran-
tees to avoid penalties. Therefore, only providers make forecasts. We demonstrate that
under external regret minimization, collaborative learning when service providers in-
tegrate a grand coalition, enables them to minimize their average loss. This theoretical
result is illustrated on a 2 producers, 3 providers smart grid. We observe that the rates
of convergence under collaborative learning based on regret minimzation is higher than
in the non-cooperative case.

In extensions, it might be interesting to determine conditions guaranteeing the sys-
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tem resilience. Resilient systems are organizations sharing the capacity to automati-
cally reconfigure themselves in case of shocks or attacks. This is of particular interest
for smart grids which are highly sensitive to attacks arising from malicious external
agents that might cause unbearable interruptions in the consumers’ services. The ca-
pacity for the system to reconfigure itself might be directly correlated with its capacity
to anticipate external threats by stabilizing itself in economic organizations enabling
the sharing of information and collaborative learning.

Appendix

Proof of Proposition 2
By definition of provider si’s loss and thanks to Equation (15), we have:

li

(
f(t), ν(t)

)
= π0

i (t)− fi(ν
s
i , t) + γi

2

(
νsi (t)− fi(ν

s
i , t) + γi

2

)
+

L(i)

γ̃i

n− 1

δ

∑
k=1,...,K

fi(ν
e
k, t) + γi

(
νsi (t)− fi(ν

s
i , t) + γi

2

−
∑

k=1,...,K

fi(ν
e
k, t)L(i)∑

j=1,...,n fj(ν
e
k, t)L(j)

νek(t)
)
+

For l = 1, ...,K + 1, the l-th component of vector y ∈ Xs × XKe will be denoted:
y(l). If we let:

l
(1)
i

(
y, ν(t)

)
= π0

i (t)− y(1) + γi
2

(
νsi (t)− y(1) + γi

2

)
+

L(i)

γ̃i

n− 1

δ

∑
k=1,...,K

y(k + 1) + γi

(
νsi (t)− y(1) + γi

2

)
and

l
(2)
i

(
(dkij(t))j,k, ν(t)

)
= −γiL(i)

∑
k=1,...,K

νek(t)
[ ∑
j=1,...,n

L(j)
(

1

−
dkij(t)

min{Xe}
1dkij(t)≤0 −

dkij(t)

max{Xe}
1dkij(t)≥0

)]−1
Using the fact that we are in energy shortage in the sense of Inequality (14) and that
min{Xe} ≤ fi(ν

e
k, t) ≤ max{Xe}, ∀k = 1, ...,K, we can check easily that provider

si’s loss function can be upper-bounded by l(1)i
(
fi(t), ν(t)

)
+ l

(2)
i

(
(dkij(t))j,k, ν(t)

)
.

It is the sum of two functions: the first one depending only on si’s forecasts, and the
second one depending only on his disagreement with the other providers’ forecasts.
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Proof of Lemma 4
Suppose that provider si plays according to a Hannan consistent strategy according to
his loss upper bound i.e., l(1)i

(
fi(t), ν(t)

)
+ l

(2)
i

(
(dkij)j,k(t), ν(t)

)
. This means that:

lim sup
T→+∞

1

T

[ T∑
t=1

l
(1)
i

(
fi(t), ν(t)

)
+

T∑
t=1

l
(2)
i

(
(dkij(t))j,k, ν(t)

)
− min
y∈Xs×XKe

( T∑
t=1

l
(1)
i

(
y, ν(t)

)
+

T∑
t=1

l
(2)
i

(
(dkij(y, t))j,k, ν(t)

))]
≤ 0 (19)

where dkij(y, t) contains the disagreement between provider si and all the other providers
when si makes the prediction y at time period t without any change in the predictions
of other providers.

In Section 4, we have introduced lower and upper bounds on the disagreements be-
tween provider si and the other providers about the forecasts of the energy productions
Dss(i) and Dss(i). According to Corollary 3, l(2)i (.) being increasing in dkij(t), it is
possible to provide lower and upper bounds for the function by evaluating it in Dss(i)
and Dss(i) respectively. The lower bound is:

bl(i, t) = − γiL(i)

g(Dss(i))

∑
k=1,...,K

νek(t)

Whereas, the upper bound takes the form:

bu(i, t) = − γiL(i)

g(Dss(i))

∑
k=1,...,K

νek(t)

If Inequality (19) is checked, then the following inequality holds:

lim sup
T→+∞

1

T

[ T∑
t=1

l
(1)
i

(
fi(t), ν(t)

)
+

T∑
t=1

bl(i, t)− min
y∈Xs×XKe

( T∑
t=1

l
(1)
i

(
y, ν(t)

)
−

T∑
t=1

bu(i, t)
)]
≤ 0

This last inequality provides an upper bound for the external regret associated with
provider si’s partial loss.

28



Proof of Theorem 5
With the proposed expression of ψ, the upper bound of the external regret evaluated in
provider si’s partial loss becomes:

lim sup
T→+∞

1

T

[ T∑
t=1

l
(1)
i

(
fi(t), ν(t)

)
− min
yi∈X

T∑
t=1

l
(1)
i

(
yi, ν(t)

)]
≤ 1

T
ψ
(
Dss(i), Dss(i)

) T∑
t=1

∑
k=1,...,K

νek(t) (20)

Summing Inequality (20) over all i = 1, ..., n, the external regret evaluated in the
sum of the providers’ partial losses, becomes:

lim sup
T→+∞

1

T

[ T∑
t=1

l̃g

(
f(t), ν(t)

)
−min

f(.)

T∑
t=1

l̃g

(
f(.), ν(t)

)]
≤ 1

T

∑
i=1,...,n

ψ
(
Dss(i), Dss(i)

) T∑
t=1

∑
k=1,...,K

νek(t)

In addition:

min
f(.)

1

T

T∑
t=1

l̃g

(
f(.), ν(t)

)
= min
⊗i=1,...,nd(fi)∈Fns

1

T

T∑
t=1

l̃Eg

(
⊗i=1,...,n d(fi), ν(t)

)
where l̃Eg represents the expectation of function l̃g .
We assume that each service provider makes his forecasts independently of the

other service providers. Then l̃Eg
(
., ν(t)

)
is linear in ⊗i=1,...,nd(fi). As a result, its

minimum over the simplex of probability vectors is reached in one of the corners of the
simplex.

Let: dT (z) = 1
T

∑T
t=1 1{ν(t)=z} be the marginal empirical frequency of play eval-

uated in prediction z ∈ Xns ×XKe .

Then:

min
⊗i=1,...,nd(fi)∈Fns

1

T

T∑
t=1

l̃Eg

(
⊗i d(fi), ν(t)

)
= min

⊗i=1,...,nd(fi)∈Fns

∑
z∈Xns ×XKe

dT (z)l̃Eg

(
⊗i d(fi), z

)
= min

⊗i=1,...,nd(fi)∈Fns
l̃Eg

(
⊗i=1,...,n d(fi), dT (.)

)
≤ max

d(ν)∈Fm
min

⊗i=1,...,nd(fi)Fns

l̃Eg

(
⊗i=1,...,n d(fi), d(ν)

)
︸ ︷︷ ︸

Ṽg
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