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Abstract

Let Γ be a graph. Under suitable geometric assumptions on Γ, we give several equiv-
alent characterizations of Sobolev and Hardy-Sobolev spaces on Γ, in terms of maximal
functionals, Haj lasz type functionals or atomic decompositions. As an application, we
study the boundedness of Riesz transforms on Hardy spaces on Γ. This gives the discrete
counterpart of the corresponding results on Riemannian manifolds.
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1(Γ) ⊂ ḢS1
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1 Introduction

1.1 The Euclidean case

Let n ∈ N∗ and 1 ≤ p ≤ +∞. Throughout the paper, if A(f) and B(f) are two quantities
depending on a function f ranging in a set E, say that A(f) . B(f) if and only if there exists
C > 0 such that, for all f ∈ E,

A(f) ≤ CB(f),

and that A(f) ∼ B(f) if and only if A(f) . B(f) and B(f) . A(f).
The classical W 1,p(Rn) space, or its homogenous version Ẇ 1,p(Rn), can be characterized in
terms of maximal functions. Namely, if f ∈ L1

loc(R
n), define, for all x ∈ R

n,

Nf(x) := sup
B∋x

1

r(B) |B|

∫

B

|f(y) − fB| dy,

where the supremum is taken over all balls B containing x and

fB :=
1

|B|

∫

B

f(y)dy

is the mean value of f over B. Here and after in this section, if B ⊂ Rn is a ball, |B| stands
for the Lebesgue measure of B and r(B) for its radius.
Then ([Cal72]), for 1 < p ≤ +∞, ∇f ∈ Lp(Rn) if and only if Nf ∈ Lp(Rn), and

‖∇f‖Lp(Rn) ∼ ‖Nf‖Lp(Rn) .

Another maximal function characterizing Sobolev spaces was introduced in [ART05]. For
f ∈ L1

loc(R
n) and x ∈ R

n, define

Mf(x) := sup

∣∣∣∣
∫

Rn

f(y)div Φ(y)dy

∣∣∣∣ ,
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where the supremum is taken over all vector fields Φ ∈ L∞(Rn,Cn), whose distributional
divergence is a bounded function in Rn, supported in a ball B ⊂ Rn containing x, with

‖Φ‖∞ + r(B) ‖div Φ‖∞ ≤ 1

|B| .

Then ([ART05]), for 1 < p ≤ +∞, ∇f ∈ Lp(Rn) if and only if Nf ∈ Lp(Rn), and

‖∇f‖Lp(Rn) ∼ ‖Nf‖Lp(Rn) .

Another description of Sobolev spaces is due to Haj lasz. For f ∈ L1
loc(R

n), 1 ≤ p ≤ +∞, say
that f ∈ Ṁ1,p(Rn) if and only if there exists g ∈ Lp(Rn) such that, for all x, y ∈ Rn,

|f(x) − f(y)| ≤ d(x, y)(g(x) + g(y)). (1.1)

Set
‖f‖Ṁ1,p(Rn) := inf ‖g‖Lp(Rn) ,

the infimum being taken over all functions g such that (1.1) holds. It was proved by Haj lasz
([Haj96]) that, for 1 < p ≤ +∞, f ∈ Ṁ1,p(Rn) if and only if ∇f ∈ Lp(Rn) and

‖f‖Ṁ1,p(Rn) ∼ ‖∇f‖Lp(Rn) . (1.2)

What happens in these results when p = 1 ? The previous results break down when p = 1, but
correct substitutes involving Hardy-Sobolev spaces can be given. More precisely (see below
in the introduction), Ṁ1,1(Rn) coincides with the space of locally integrable functions with
gradient in the H1(Rn) Hardy space.
The H1(Rn) Hardy space is well-known to be the right substitute for L1(Rn) for many questions
in harmonic analysis. Let us recall one possible definition of H1(Rn). Fix a function ϕ ∈ S(Rn)
such that

∫
Rn ϕ(x)dx = 1. For all t > 0, define ϕt(x) := t−nϕ

(
x
t

)
. Define then H1(Rn) as the

space of locally integrable functions f on R
n such that the vertical maximal function

Mf(x) := sup
t>0

|ϕt ∗ f(x)|

belongs to L1(Rn). Define
‖f‖H1(Rn) := ‖Mf‖L1(Rn) .

As for classical Sobolev spaces, let us consider the Hardy-Sobolev space H1,1(Rn) made of
functions f ∈ L1(Rn) such that ∇f ∈ H1(Rn), in the sense that, for all 1 ≤ j ≤ n, ∂f

∂xj
∈

H1(Rn). Define also Ḣ1,1(Rn) as the space of functions f ∈ L1
loc(R

n) such that ∇f ∈ H1(Rn),
equipped with the semi-norm

‖f‖Ḣ1,1(Rn) := ‖∇f‖H1(Rn) .

Various characterizations of this space (as well as its adaptations to the case of domains of
Rn) were given in the literature. It can be described in terms of a functional involving second
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order differences ([Str90]). In [Miy90], H1,1(Rn) was characterized in terms of the maximal
function Nf . Namely, for f ∈ L1

loc(R
n), ∇f ∈ H1(Rn) if and only if Nf ∈ L1(Rn) and

‖Nf‖L1(Rn) ∼ ‖∇f‖H1(Rn) :=
n∑

j=1

∥∥∥∥
∂f

∂xj

∥∥∥∥
H1(Rn)

.

It was shown in [ART05] that the functional Mf defined above characterizes Hardy-Sobolev
spaces (actually, this was the reason why this maximal function was introduced in [ART05],
since it is particularly suited to the study of Hardy-Sobolev spaces on strongly Lipschitz
domains of Rn). More precisely, ∇f ∈ H1(Rn) if and only if Mf ∈ L1(Rn) and

‖Mf‖L1(Rn) ∼ ‖∇f‖H1(Rn) .

Moreover, going back to Haj lasz’s functional, it was proved in [KS08] that f ∈ Ṁ1,1(Rn) if
and only if ∇f ∈ H1(Rn) and

‖f‖Ṁ1,1(Rn) ∼ ‖∇f‖H1(Rn) .

Finally, an atomic decomposition for Hardy-Sobolev spaces was given in [Str90]. In this paper,
an atom is a function b supported in a cube such that (−∆)1/2b satisfies suitable Lp estimates
([Str90], definition 5.1).
Another characterization of H1(Rn) states that it is exactly the space of functions f ∈ L1(Rn)
such that, for all 1 ≤ j ≤ n, ∂

∂xj
(−∆)−1/2f ∈ L1(Rn) (see [FS72]). The operators

Rj := ∂
∂xj

(−∆)−1/2f are the Riesz transforms. Thus, (−∆)−1/2 maps continuously H1(Rn)

into Ḣ1,1(Rn).

1.2 The case of Riemannian manifolds

These various characterizations can be extended to the framework of Riemannian manifolds.
Namely, let M be a complete Riemannian manifold, endowed with its Riemannian metric d
and its Riemannian measure µ. Say that M satisfies the doubling condition if there exists
C > 0 such that, for all x ∈ M and all r > 0,

µ(B(x, 2r)) ≤ Cµ(B(x, r)).

Say that M satisfies an L1 scaled Poincaré inequality on balls if there exists C > 0 such that,
for all balls B ⊂ M with radius r and all functions f ∈ C∞(B),

∫

B

|f(x) − fB| dµ(x) ≤ Cr

∫

B

|df(x)| dµ(x).

Define the Ṁ1,p spaces and the Nf functional as in the Euclidean case. Then, for 1 ≤ p <
+∞, f ∈ Ṁ1,p if and only if Nf ∈ Lp(M) ([KT07]). A version of the maximal function in
[ART05] is given in [BD11], where it is shown that it characterizes Ṁ1,1. Moreover, an atomic
decomposition for Ṁ1,1 is provided in [BD10], where it is also shown that f ∈ Ṁ1,1 if and only if
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df belongs to the Hardy space of exact differential forms H1
d(Λ1T ∗M) introduced in [AMR08].

Since d∆−1/2 is bounded from H1
d∗(Λ0T ∗M) from H1

d(Λ1T ∗M) (see [AMR08], Theorem 5.16),
if ∆ denotes the Laplace-Beltrami operator, ∆−1/2 maps continuously H1

d∗(Λ0T ∗M) into Ṁ1,1.

In the present work, we investigate Sobolev and Hardy-Sobolev spaces on graphs, and estab-
lish the discrete counterpart of the results obtained on Riemannian manifolds. Namely, we
characterize Sobolev and Hardy-Sobolev spaces in terms of maximal functions and provide an
atomic decomposition for Hardy-Sobolev spaces. We also investigate the boundedness of Riesz
transforms on Hardy spaces.

2 Description of the results

2.1 Presentation of the graph

The geometric context is the same as in [BR09], and we recall it for the sake of completeness.
Let Γ be an infinite set and µxy = µyx a symmetric weight on Γ × Γ. Say that x ∼ y if and
only if µxy > 0, and let E stand for the set of edges in Γ, defined as the set of (x, y) ∈ Γ × Γ
such that µxy > 0. For all x ∈ Γ, say that x is a vertex of Γ.
For x, y ∈ Γ, a path joining x to y is a finite sequence of vertices x0 = x, · · · , xN = y such
that, for all 0 ≤ i ≤ N − 1, xi ∼ xi+1. Say that this path has length N . Assume that Γ is
connected, which means that, for all x, y ∈ Γ, there exists a path joining x to y. The distance
between x and y, denoted d(x, y), is defined as the shortest length of a path joining x and y.
For all x ∈ Γ and all r ≥ 0, define the closed ball

B(x, r) := {y ∈ Γ; d(x, y) ≤ r}.

In the sequel, we always assume that Γ is locally uniformly finite, which means that there
exists N ∈ N∗ such that, for all x ∈ Γ,#B(x, r) ≤ N .
For any subset Ω ⊂ Γ, set

∂Ω := {x ∈ Ω; ∃y ∼ x, y /∈ Ω}
and

◦

Ω := Ω \ ∂Ω.

In other words,
◦

Ω is the set of points x ∈ Ω such that y ∈ Ω whenever x ∼ y. Denote by EΩ

the set of edges in Ω,
EΩ = {(x, y) ∈ Ω × Ω : x ∼ y, x, y ∈ Ω}.

We also define a distance on E. For γ = (x, y) and γ′ = (x′, y′) ∈ E, set

d(γ, γ′) := max (d(x, x′), d(y, y′)) .

2.1.1 The measures on Γ and E

For all x ∈ Γ, set m(x) =
∑
y∼x

µxy (recall that this sum has at most N terms). We always

assume in the sequel that m(x) > 0 for all x ∈ Γ. If Ω ⊂ Γ, define m(Ω) =
∑
x∈Ω

m(x). For all
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x ∈ Γ and r > 0, write V (x, r) instead of m(B(x, r)) and, if B is a ball, m(B) will be denoted
by V (B).
Here is a growth assumption on the volume of balls of Γ, which may be satisfied or not.

Definition 2.1 [Doubling property] Say that (Γ, d,m) satisfies the doubling property if there
exists a constant C > 0 such that for all balls B(x, r), x ∈ Γ, r > 0,

V (x, 2r) ≤ CV (x, r). (D)

This means that (Γ, d,m) is a space of homogeneous type in the sense of Coifman and Weiss
([CW77]). It is plain to check that, if Γ satisfies (D), then there exist C, s > 0 such that, for
all x ∈ Γ, all r > 0 and all θ ≥ 1,

V (x, θr) ≤ CθsV (x, r). (2.3)

Remark 2.2 Observe also that, since Γ is infinite, it is also unbounded (since it is locally
uniformly finite) so that, if (D) holds, then m(Γ) = +∞ (see [Mar01]).

For all 1 ≤ p < +∞, say that a function f : Γ → R belongs to Lp(Γ) if

‖f‖
Lp(Γ)

=

(
∑

x∈Γ

|f(x)|pm(x)

)1/p

< +∞.

Note that the L2(Γ)-norm derives from the scalar product

〈f, g〉L2(Γ) :=
∑

x∈Γ

f(x)g(x)m(x).

Say that f ∈ L∞(Γ) if
‖f‖

L∞(Γ)
= sup

x∈Γ
|f(x)| < +∞.

If B ⊂ Γ is a ball, denote by Lp
0(B) the subspace of Lp(Γ) made of functions f supported in

B and satisfying ∑

x∈B

f(x)m(x) = 0.

We also need a measure on E. For any subset A ⊂ E, define

µ(A) :=
∑

(x,y)∈A

µxy.

It is easily checked ([BR09], Section 8) that, if (D) holds, then E, equipped with the distance
d and the measure µ, is a space of homogeneous type.
Define Lp spaces on E in the following way. For 1 ≤ p < +∞, say that a function F on E
belongs to Lp(E) if and only if F is antisymmetric, which means that F (x, y) = −F (y, x) for
all (x, y) ∈ E, and

‖F‖pLp(E) :=
1

2

∑

(x,y)∈E

|F (x, y)|pµxy < +∞.
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Observe that the L2(E)−norm derives from the scalar product

〈F,G〉L2(E) :=
1

2

∑

x,y∈Γ

F (x, y)G(x, y)µxy.

Finally, say that F ∈ L∞(E) if and only if F is antisymmetric and

‖F‖L∞(E) :=
1

2
sup

(x,y)∈E

|F (x, y)| < +∞.

Define Lp(EΩ) similarly.

2.1.2 The Markov kernel

Define p(x, y) = µxy

m(x)
for all x, y ∈ Γ. Observe that p(x, y) = 0 if d(x, y) ≥ 2. Moreover, for all

x ∈ Γ, ∑

y∈Γ

p(x, y) = 1 (2.4)

and for all x, y ∈ Γ,
p(x, y)m(x) = p(y, x)m(y). (2.5)

Another assumption on (Γ, µ) which will be used in the sequel is a uniform lower bound for
p(x, y) when x ∼ y. For α > 0, say that (Γ, µ) satisfies the condition ∆(α) if, for all x, y ∈ Γ,

(x ∼ y ⇔ µxy ≥ αm(x)) and x ∼ x. (∆(α))

For all functions f on Γ and all x ∈ Γ, define

Pf(x) =
∑

y∈Γ

p(x, y)f(y).

It is easily checked ([BR09]), using (2.5), that, for all functions f on Γ,

〈(I − P )f, f〉 =
1

2

∑

x,y

p(x, y)|f(x) − f(y)|2m(x). (2.6)

Identity (2.6) leads to the definition of the operator “length of the gradient” by

∇f(x) =

(
1

2

∑

y∈Γ

p(x, y)|f(y) − f(x)|2
)1/2

,

so that, for all functions f on Γ,

〈(I − P )f, f〉L2(Γ) = ‖∇f‖2L2(Γ) . (2.7)
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2.1.3 The differential and divergence operators

We now define a discrete differential, following the definitions of [BR09] but dealing with
functions defined on subsets of Γ. Let Ω ⊂ Γ. For any function f : Ω → R and any γ =
(x, y) ∈ EΩ, define

df(γ) = f(y) − f(x). (2.8)

The function df is clearly antisymmetric on EΩ. Moreover, it is easily checked ([BR09], p.313)
that, if (∆(α)) holds, then for all p ∈ [1,+∞] and all functions f on Γ,

‖df‖Lp(E) ∼ ‖∇f‖Lp(Γ). (2.9)

We define now a divergence operator in such a way that a discrete integration by parts formula
holds (see [BR09]). Let F be any (antisymmetric) function in L2(EΩ). If f is a function on Ω
vanishing on ∂Ω such that df ∈ L2(EΩ), one has

〈df, F 〉L2(EΩ) =
1

2

∑

x,y∈Ω, x∼y

df(x, y)F (x, y)µxy

= −
∑

x,y∈Ω, x∼y

f(x)F (x, y)µxy

= −
∑

x∈
◦

Ω

f(x)

(
∑

y∼x, y∈Γ

p(x, y)F (x, y)

)
m(x),

where the second line is due to the fact that F is antisymmetric and the third one holds because

f(x) = 0 when x ∈ ∂Ω and all the neighbours of x in Γ actually belong to Ω when x ∈
◦

Ω.
Thus, if we define the divergence of F by

δF (x) :=
∑

y∼x, y∈Γ

p(x, y)F (x, y)

for all x ∈
◦

Ω, it follows that

〈df, F 〉L2(EΩ) = −〈f, δF 〉
L2(

◦

Ω)
. (2.10)

Remark 2.3 A slightly different integration by parts formula on graphs can be found in
[CGZ05], formula 2.4.

2.1.4 The Poincaré inequality on balls

Definition 2.4 [Lp Poincaré inequality on balls] Let p ∈ [1,+∞). Say that Γ satisfies an Lp

scaled Poincaré inequality on balls if there exists a constant C > 0 such that, for all functions
f on Γ and all balls B ⊂ Γ of radius r > 0,

∑

x∈B

|f(x) − fB|pm(x) ≤ Crp
∑

x∈B

|∇f(x)|pm(x), (Pp)

where

fB =
1

V (B)

∑

x∈B

f(x)m(x). (2.11)
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Remark 2.5 1. Note that, if (P1) holds, then one has an Lp Poincaré inequality for all
p ∈ [1,+∞) (see [HK00]).

2. Moreover, if (Pp) holds for some p ∈ (1,+∞), there exists q < p such that (Pq) still holds
([KZ08]).

2.2 Sobolev spaces

Let Γ be a graph as in Section 2.1. Let 1 ≤ p ≤ +∞. Say that a scalar-valued function f on
Γ belongs to the Sobolev space W 1,p(Γ) if and only if

‖f‖W 1,p(Γ) := ‖f‖Lp(Γ) + ‖∇f‖Lp(Γ) < +∞.

As in [BR09] we will also consider the homogeneous versions of Sobolev spaces. Define Ẇ 1,p(Γ)
as the space of all scalar-valued functions f on Γ such that ∇f ∈ Lp(Γ), equipped with the
semi-norm

‖f‖Ẇ 1,p(Γ) := ‖∇f‖Lp(Γ) .

If B is any ball in Γ and 1 ≤ p ≤ +∞, denote by W 1,p
0 (B) the subspace of W 1,p(Γ) made of

functions supported in
◦

B.

2.3 Characterizations of Sobolev spaces

In the present section, we give various characterizations of Sobolev spaces on graphs. The first
one is formulated in terms of Haj lasz’s functionals (see [Haj03b, HK00]):

Definition 2.6 Let 1 ≤ p ≤ +∞.

1. The inhomogeneous Sobolev space M1,p(Γ) is defined as the space of all functions f ∈
Lp(Γ) such that there exists a non-negative function g ∈ Lp(Γ) satisfying

|f(x) − f(y)| ≤ d(x, y) (g(x) + g(y)) for all x, y ∈ Γ. (2.12)

We equip M1,p(Γ) with the norm

||f ||M1,p(Γ) := ‖f‖Lp(Γ) + inf
g
||g||Lp(Γ), (2.13)

where the infimum is taken over all functions g ∈ Lp(Γ) such that (2.12) holds.

2. The homogeneous Sobolev space Ṁ1,p(Γ) is defined as the space of all functions f on Γ
such that there exists a non-negative function g ∈ Lp(Γ) satisfying (2.12). We equip
Ṁ1,p(Γ) with the semi-norm

||f ||Ṁ1,p(Γ) = inf
g
||g||Lp(Γ),

where the infimum is taken over all functions g ∈ Lp(Γ) such that (2.12) holds.
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Remark 2.7 If B ⊂ Γ is a ball, define M1,p(B) and Ṁ1,p(B), replacing Γ by B in Definition
2.6.

We will also characterize Sobolev spaces in terms of two maximal functions.
The first maximal function is modelled on the one in [Cal72]. For all functions f on Γ and all
x ∈ Γ, define Nf(x) by

Nf(x) := sup
B∋x

1

r(B)V (B)

∑

y∈B

|f(y) − fB|m(y) (2.14)

where the supremum is taken over all balls B with radius r(B) > 0 and fB denotes the mean
value of f on B defined by (2.11).

Remark 2.8 For further use, observe that, if f is a non-constant function on Γ, then Nf(x) 6=
0 for all x ∈ Γ. Indeed, if Nf(x) = 0 for some x ∈ Γ, then f(y) = fB for all balls B containing
x. Thus, f is constant on any ball containing x, therefore constant on Γ.

The second maximal function we use is inspired by [ART05] and [BD11]. Its definition involves
estimates on the (discrete) divergence of test functions. More precisely, for all function f on
Γ, define, for all x ∈ Γ,

M+(f)(x) = sup
F

∣∣∣∣∣∣∣

∑

y∈
◦

B

f(y)(δF )(y)m(y)

∣∣∣∣∣∣∣
, (2.15)

where the supremum is taken over all balls B ⊂ Γ containing x and all antisymmetric functions
F : E → R supported in EB and satisfying

||F ||L∞(EB) ≤
1

V (B)
, ||δF ||

L∞(
◦

B)
≤ 1

r(B)V (B)
. (2.16)

Define now, for 1 ≤ p ≤ +∞,

S1,p(Γ) := {f ∈ Lp(Γ);Nf ∈ Lp(Γ)} ,
equipped with the norm

‖f‖S1,p(Γ) := ‖f‖Lp(Γ) + ‖Nf‖Lp(Γ) .

Consider also the Ṡ1,p(Γ) space, made of functions f on Γ such that Nf ∈ Lp(Γ), equipped
with the semi-norm

‖f‖Ṡ1,p(Γ) := ‖Nf‖Lp(Γ) .

Define also
E1,p(Γ) :=

{
f ∈ Lp(Γ);M+f ∈ Lp(Γ)

}
,

equipped with the norm

‖f‖E1,p(Γ) := ‖f‖Lp(Γ) +
∥∥M+f

∥∥
Lp(Γ)

,

as well as its homogenous version.
Our first result is that, under (D), (∆(α)) and (Pp), the spaces W 1,p(Γ), S1,p(Γ), E1,p(Γ) and
M1,p(Γ), as well as their homogenous versions, coincide:
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Theorem 2.9 Let 1 < p ≤ +∞. Assume that Γ satisfies (D), (∆(α)) and (Pp). Then:

1. W 1,p(Γ) = S1,p(Γ) = E1,p(Γ) = M1,p(Γ),

2. Ẇ 1,p(Γ) = Ṡ1,p(Γ) = Ė1,p(Γ) = Ṁ1,p(Γ).

2.4 Characterization of Hardy-Sobolev spaces

When p = 1, as in the Euclidean case recalled in the introduction, the conclusion of Theorem
2.9 does not hold. The following example is inspired by [Haj03a], Example 3. Take Γ = Z

with its usual metric. Define, for all x ∈ Z,

f(x) :=

{ x

|x| ln |x| if |x| ≥ 2,

0 if |x| ≤ 1.

Then f ∈ Ẇ 1,1(Z). Indeed, for all x ≥ 2, the mean-value theorem yields

|f(x + 1) − f(x)| =

∣∣∣∣
1

ln x
− 1

ln(x + 1)

∣∣∣∣ ≤
1

x (ln x)2
.

As a consequence, for all x ≥ 3,

|∇f(x)| ≤ C

|x| (ln |x|)2
. (2.17)

Since f is odd, (2.17) also holds for all x ≤ −3. As a consequence,
∑

x∈Z

|∇f(x)| < +∞.

Assume now that there exists a non-negative function g ∈ L1(Z) such that |f(x) − f(y)| ≤
d(x, y) (g(x) + g(y)) for all x, y ∈ Z. Then, for all x ≥ 3,

|f(x) − f(−x)| ≤ 2x (g(x) + g(−x)) .

Since f is odd, this means that, for all x ≥ 3,

1

x
|f(x)| ≤ (g(x) + g(−x)) .

Therefore,

2
∑

|x|≥3

g(x) ≥
∑

x≥3

1

x ln x
= +∞,

which contradicts the fact that g ∈ L1(Z).
The goal of this section is to give an endpoint version of Theorem 2.9 when p = 1. We will
focus on the case of homogenous spaces. As it will turn out, asssuming (D) and (P1), one still
has Ṁ1,1(Γ) = Ṡ1,1(Γ). Two extra characterizations of Ṁ1,1(Γ) will be given: the first one is
formulated in terms of M+f , the second one is an atomic decomposition. We first introduce
these new descriptions.
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2.4.1 Maximal Hardy-Sobolev space

It turns out that, as in the Euclidean case and in the context of Riemannian manifolds (see
the introduction), Hardy-Sobolev spaces on Γ can be defined by means of the functional M+.
Let us first give a definition:

Definition 2.10 (Maximal Hardy-Sobolev space)

1. We define the Hardy-Sobolev space HS1
max(Γ) as follows:

HS1
max(Γ) = {f ∈ L1(Γ) : M+f ∈ L1(Γ)}. (2.18)

This space is equipped with the norm

||f ||HS1
max(Γ) := ‖f‖L1(Γ) +

∥∥M+f
∥∥
L1(Γ)

. (2.19)

2. The homogenous Hardy-Sobolev space ḢS1
max(Γ) is the space of all functions f on Γ such

that M+f ∈ L1(Γ). It is equipped with the semi-norm

||f ||ḢS1
max(Γ)

:=
∥∥M+f

∥∥
L1(Γ)

.

2.4.2 Atomic Hardy-Sobolev spaces

Definition 2.11 For 1 < t ≤ +∞, define t′ by 1
t

+ 1
t′

= 1. Say that a function a on Γ is a
homogeneous Hardy-Sobolev (1, t) − atom if

1. a is supported in a ball B,

2. ||∇a||t ≤ V (B)−
1
t′ ,

3.
∑

x∈Γ a(x)m(x) = 0.

If f is a function on Γ, say that f ∈ ḢS1
t,ato(Γ) if there exist a sequence (λi)i≥1 ∈ l1 and a

sequence of homogeneous Hardy-Sobolev (1, t)-atoms such that

f =
∑

i

λiai. (2.20)

This space is equipped with the semi-norm

||f ||ḢS1
t,ato(Γ)

= inf
∑

i

|λi|

where the infimum is taken over all possible decompositions.
Notice that the convergence in (2.20) is required to hold in Ẇ 1,1(Γ), which means that

lim
k→+∞

∥∥∥∥∥∇
(
f −

k∑

j=0

λjaj

)∥∥∥∥∥
L1(Γ)

= 0.

The link between convergence in (2.20) and pointwise convergence will be made explicit in
Proposition 5.2 below.
In the sequel, we will establish:
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Theorem 2.12 Assume that (D), (∆(α)) and (P1) hold. Then Ṡ1,1(Γ) = Ṁ1,1(Γ) =
ḢS1

max(Γ) = ḢS1
t,ato(Γ) for all t ∈ (1,+∞]. In particular, ḢS1

t,ato(Γ) does not depend on
t.

Remark 2.13 Assume that, in Definition 2.11, we replace condition 3 by

3′ ‖a‖Lt(B) ≤ rV (B)−
1
t′ ,

where r is the radius of B, and we define ḢS1
t,ato(Γ) as before, using this new type of atoms.

Then, as the proof of Theorem 2.12 will show (see Remark 5.5 below), we obtain exactly the
same ḢS1

t,ato(Γ) space. This remark (inspired by ideas in [BD10]) will turn out to be important
for the study of Riesz transforms.

2.5 Interpolation

As a consequence of the characterization of Hardy-Sobolev and Sobolev spaces through maxi-
mal functions, we establish an interpolation result between Hardy-Sobolev and Sobolev spaces:

Theorem 2.14 Let 1 < q ≤ +∞ and θ ∈ (0, 1). Define p such that 1
p

= (1 − θ) + θ
q
. Then,

for the complex interpolation method,

[
Ṡ1,1(Γ), Ẇ 1,q(Γ)

]
θ

= Ẇ 1,p(Γ).

2.6 Riesz transforms

The Riesz transform in our context is the operator R := d(I − P )−1/2, which maps functions
on Γ to functions on E. The equality (2.7) shows that R is L2(Γ) − L2(E) bounded. For
1 < p < +∞, the Lp-boundedness of R was investigated in [BR09] under various assumptions1.
In particular, under (D) and the Poincaré inequality (P2), R is Lp(Γ)−Lp(E) bounded for all
1 < p ≤ 2 (and even under weaker assumptions, see [Rus00]).
For p = 1, the Riesz transform is not L1(Γ) − L1(E) bounded, but an endpoint version of the
Lp-boundedness of R for 1 < p ≤ 2 was proved in [Rus01]. This endpoint version involves the
H1(Γ) atomic Hardy space on Γ, the definition of which we recall now. An atom in H1(Γ) is
a function a ∈ L2(Γ), supported in a ball B ⊂ Γ and satisfying

∑

x∈Γ

a(x)m(x) = 0 and ‖a‖L2(Γ) ≤ V (B)−1/2.

A function f on Γ is said to belong to H1(Γ) if and only if there exist a sequence (λj)j≥1 ∈ l1

and a sequence of atoms (aj)j≥1 such that

f =
∑

j

λjaj ,

1Observe that the Lp-boundedness results of [BR09] are stated for the operator ∇(I − P )−1/2, but (2.9)
shows at once that analogous conclusions hold for d(I − P )−1/2.
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where the series converges in L1(Γ). In this case, define

‖f‖H1(Γ) := inf
∑

j

|λj | ,

where, as usual, the infimum is taken over all possible decompositions of f .
Under (D) and (P2), the Riesz transform is H1(Γ) − L1(E) bounded ([Rus01]). This means
that (I − P )−1/2 is bounded from H1(Γ) to Ẇ 1,1(Γ). Here, under an extra assumption on the
volume growth of balls of Γ, we prove that (I −P )−1/2 maps continuously H1(Γ) into Ṡ1,1(Γ):

Theorem 2.15 Assume that Γ satisfies (D) and (P2). Assume furthermore that there exist
C > 0 and d ≥ 1 such that, for all x ∈ Γ and all 1 ≤ r ≤ s,

V (x, r)

V (x, s)
≤ C

(r
s

)d
. (2.21)

Then (I − P )−1/2 is bounded from H1(Γ) into Ṡ1,1(Γ).

Remark 2.16 Under (D), there exists C ′ > 0 such that, for all x ∈ Γ and all r ≥ 1,

V (x, C ′r) ≥ 2V (x, r)

(see [CG98], Lemma 2.2). This implies that (2.21) always holds with some d > 0. In Theorem
2.15, we assume furthermore that d ≥ 1. This technical assumption seems to be required by our
argument (see the proof of Theorem 2.15 in Section 6 below), and could probably be removed.
Note that assumption (2.21) is satisfied when, for instance, V (x, r) ∼ rd for some d ≥ 1, which
holds when Γ is the Cayley graph of a group with polynomial volume growth.

3 Proofs of the characterizations of Sobolev spaces

This section is devoted to the proof of Theorem 2.9. It will be convenient to use the following
observation:

Lemma 3.1 For all functions f on Γ, all x ∈ Γ and all r ≥ 0,
∣∣f(x) − fB(x,r)

∣∣ ≤ CrNf(x). (3.22)

Proof of Lemma 3.1: first, the conclusion is trivial when 0 ≤ r < 1, since in this case,
B(x, r) = {x} so that the left-hand side of (3.22) vanishes. Assume now that r ≥ 1 and
let j ∈ N be the integer such that 2j ≤ r < 2j+1. Define B := B(x, 2j+1) and, for all
−1 ≤ i ≤ j + 1, Bi = B(x, 2i), so that B = Bj+1. Since f(x) = fB(x, 12),

|f(x) − fB| ≤
j∑

i=−1

∣∣fBi
− fBi+1

∣∣

≤
j∑

i=−1

1

V (Bi)

∑

y∈Bi

|f(y) − fBi+1
|m(y)

≤ C

j∑

i=−1

r(Bi+1)

r(Bi+1)V (Bi+1)

∑

y∈Bi+1

|f(y) − fBi+1
|m(y)

≤ C2jNf(x),

(3.23)
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where the third line uses (D). Moreover, since B(x, r) ⊂ B,

∣∣fB(x,r) − fB
∣∣ ≤ 1

V (x, r)

∑

y∈B(x,r)

|f(y) − fB|m(y)

≤ C
1

V (B)

∑

y∈B

|f(y) − fB|m(y)

≤ C2jNf(x),

(3.24)

and the conjunction of (3.23) and (3.24) yields the conclusion (note that we used (D) again
in the second line).
As a corollary, one has (see also Lemma 3.6 in [HK98]):

Proposition 3.2 For all functions f on Γ and all x, y ∈ Γ,

|f(x) − f(y)| . d(x, y) (Nf(x) + Nf(y)) .

Proof: let x, y ∈ Γ with x 6= y and r := d(x, y). Lemma 3.1 yields
∣∣f(x) − fB(x,r)

∣∣ ≤ CrNf(x). (3.25)

On the other hand, since B(x, r) ⊂ B(y, 2r), using Lemma 3.1 again, one obtains

|f(y) − fB(x,r)| ≤ |f(y) − fB(y,2r)| + |fB(y,2r) − fB(x,r)|
≤ CrNf(y) +

1

V (x, r)

∑

z∈B(x,r)

∣∣f(z) − fB(y,2r)

∣∣m(z)

≤ CrNf(y) + C
1

V (y, 2r)

∑

z∈B(y,2r)

∣∣f(z) − fB(y,2r)

∣∣m(z)

≤ CrNf(y).

(3.26)

Thus, (3.25) and (3.26) yield the desired result.

To establish that Sobolev spaces can also be characterized in terms of M+f , we have to
solve the equation δF = g in L∞ spaces (see also [BD11], Proposition 5.1 and [DMRT10] for
the original ideas):

Proposition 3.3 Assume that Γ satisfies (D) and (P1). Let B a ball of Γ with r(B) ≥ 1 and

g ∈ L∞
0 (B). Then, there exists F ∈ L∞(EB) such that δF = g in

◦

B and

||F ||L∞(EB) . r(B)||g||L∞(B). (3.27)

Proof: let B be a ball and g ∈ L∞
0 (B). Consider

S = {V ∈ L1(EB) : ∃f ∈ L1(Γ) supported in
◦

B, V = df in EB}.

We consider S as subspace of L1(EB) equipped with the norm

||V ||L1(EB) =
∑

γ∈EB

|V (γ)|µγ
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(see Section 2.1.1). Define a linear functional on S by

L(V ) :=
∑

x∈B

g(x)f(x)m(x) if V = df ∈ S.

Observe that L is well defined since
∑
x∈B

g(x)m(x) = 0 and it is plain to see that, if df1 = df2 in

EB, then f1− f2 is constant on B. From (P1) and using the support condition on f , we derive

|L(V )| ≤
∑

x∈B

|g(x)| |f(x) − fB|m(x)

≤ Cr(B)||g||L∞(B)

∑

x∈B

∇f(x)m(x)

≤ Cr(B) ‖g‖L∞(B)

∑

x∈B

(
∑

y∼x

p(x, y) |f(y) − f(x)|
)
m(x)

= Cr(B) ‖g‖L∞(B)

∑

x∈B

∑

y∼x

|f(y) − f(x)|µxy

= Cr(B) ‖g‖L∞(B)

∑

x∼y, x∈B, y∈B

|f(y) − f(x)|µxy

= Cr(B)||g||L∞(B)||V ||L1(EB).

The Hahn-Banach theorem shows that L can be extended to a bounded linear functional on
L1(EB) with norm not greater than Cr(B)||g||∞. Thus, there exists F ∈ L∞(EB) such that,
for all V ∈ L1(EB),

L(V ) =
∑

γ∈EB

F (γ)V (γ)µγ.

In particular, for all f ∈ L1(B) vanishing on ∂B, (2.10) yields2

∑

x∈B

g(x)f(x)m(x) = L(df) =
∑

γ∈EB

F (γ)df(γ)µγ = −
∑

x∈
◦

B

δF (x)f(x)m(x),

which ensures that −δF = g in
◦

B with

‖F‖L∞ ≤ Cr(B)||g||∞.

A consequence of Proposition 3.3 , which will also be useful in the proof of Theorem 2.9, is:

Proposition 3.4 For all functions f on Γ:

1.
M+f ∼ Nf,

2.
∇f . Nf.

2Observe that F and df are square integrable on EB since EB is a finite set.
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Proof of M+f . Nf : let x ∈ Γ. Take F as in the definition of M+f , associated to a ball B

containing x. Then (2.10), applied with the function f equal to 1 in
◦

B and to 0 on ∂B, shows
that

∑

y∈
◦

B

(δF ) (y)m(y) = 0 so we can write

∣∣∣∣∣∣∣

∑

y∈
◦

B

f(y)(δF )(y)m(y)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

∑

y∈
◦

B

(f(y) − fB) (δF )(y)m(y)

∣∣∣∣∣∣∣
.

Thus, (2.16) yields
∣∣∣∣∣∣∣

∑

y∈
◦

B

f(y)(δF )(y)m(y)

∣∣∣∣∣∣∣
≤ 1

r(B)V (B)

∑

y∈
◦

B

|f(y) − fB|m(y)

. Nf(x).

Taking the supremum over all such F , we get

M+f(x) . Nf(x).

Proof of Nf . M+f : let x ∈ Γ and B = B(xB, r(B)) a ball containing x. We may and do
assume that rB ≥ 1, otherwise

∑

y∈B

|f(y) − fB|m(y) = 0.

Define B̃ := B(xB , r(B) + 1), so that B ⊂
◦

B̃. If g ∈ L∞
0 (B) with ||g||∞ ≤ 1, extend g by 0

outside B and solve δF = g in
◦

B̃ with F ∈ L∞
(
EB̃

)
satisfying (3.27). Extend F by 0 outside

EB̃ . Then, setting

F̃ :=
F

Cr
(
B̃
)
V (B̃)

,

one has

1

r(B)V (B)

∣∣∣∣∣
∑

y∈B

f(y)g(y)m(y)

∣∣∣∣∣ =
1

r(B)V (B)

∣∣∣∣∣∣∣

∑

y∈
◦

B̃

f(y)g(y)m(y)

∣∣∣∣∣∣∣

=
1

r(B)V (B)

∣∣∣∣∣∣∣

∑

y∈
◦

B̃

f(y)(δF )(y)m(y)

∣∣∣∣∣∣∣

= C
r(B̃)V (B̃)

r(B)V (B)

∣∣∣∣∣∣∣

∑

y∈
◦

B̃

f(y)(δF̃ )(y)m(y)

∣∣∣∣∣∣∣
≤ CM+f(x),
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where the last line follows from (D) and the fact that F̃ satisfies (2.16) . Taking the supremum
on the left hand side over all balls containing x, we get Nf(x) ≤ CM+f(x). This inequality
concludes the proof of 1.
Proof of ∇f . Nf : let x ∈ Γ. Fix y ∼ x, set B := B(x, 2) and define the function F on E
in the following way: F (x, y) = 1

m(x)
, F (y, x) = − 1

m(x)
and F (u, v) = 0 whenever (u, v) 6= (x, y)

and (u, v) 6= (y, x). Notice that δF is supported in
◦

B and

‖F‖L∞(EB) .
1

V (B)
and ‖δF‖

L∞(
◦

B)
.

1

r(B)V (B)
.

This and item 1 of Proposition 3.4 yield

|〈df, F 〉| = |〈f, δF 〉| . M+f(x) . Nf(x).

But
〈df, F 〉 = 2(f(y) − f(x))

µxy

m(x)
= 2p(x, y)(f(y)− f(x)),

which shows that
p(x, y) |f(y) − f(x)| . Nf(x)

for all y ∼ x. The definition of ∇f then yields the desired result.

Proof of Theorem 2.9: we write it for homogenous spaces, the inhomogeneous case being
an immediate consequence. First, assertion 1 in Proposition 3.4 gives at once that Ė1,p(Γ) =
Ṡ1,p(Γ).
Assume now that f ∈ Ẇ 1,p(Γ) and let x ∈ Γ. Since (Pp) holds, there exists q < p such that
(Pq) is still valid (see Remark 2.5). For all balls B ∋ x, (Pq) yields

1

V (B)

∑

y∈B

|f(y) − fB|m(y) ≤ Cr(B)

(
1

V (B)

∑

y∈B

|∇f(y)|q m(y)

) 1
q

,

so that, taking the supremum over B,

Nf(x) ≤ C (MHL |∇f |q)
1
q (x),

where MHL stands for the Hardy-Littlewood maximal function, given by

MHLf(x) := sup
B∋x

1

V (B)

∑

y∈B

|f(y)|m(y),

where, again, the supremum is taken over all balls B containing x. Since ∇f ∈ Lp(Γ) and

MHL is L
p

q (Γ)-bounded (this is because (D) holds and p
q
> 1), one has

(
∑

x∈Γ

|Nf(x)|pm(x)

) 1
p

≤ C ‖(MHL |∇f |q)‖
1
q

L
p
q (Γ)

≤ C ‖∇f‖Lp(Γ) ,
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which shows that Nf ∈ Lp(Γ). One therefore has f ∈ Ṡ1,p(Γ) and ‖f‖Ṡ1,p(Γ) ≤ C ‖f‖Ẇ 1,p(Γ).

Take now f ∈ Ṡ1,p(Γ). Since Nf ∈ Lp(Γ), Proposition 3.2 shows that f ∈ Ṁ1,p(Γ) and
‖f‖Ṁ1,p(Γ) ≤ C ‖f‖Ṡ1,p(Γ).

Assume finally that f ∈ Ṁ1,p(Γ) and let g ∈ Lp(Γ) given by (2.12) and satisfying ‖g‖Lp(Γ) ≤
2 ‖f‖Ṁ1,p(Γ). Define, for all x ∈ Γ, h(x) :=

∑
y∼x (g(y) + g(x)). Then h ∈ Lp(Γ) and ‖h‖Lp(Γ) ≤

C ‖g‖Lp(Γ). Indeed, observing that, whenever x ∼ y, m(x) ≤ Cm(y) (this is an immediate
consequence of (D)), and using the fact that any point in Γ has at most N neighbours, one
obtains ∑

x∈Γ

h(x)pm(x) ≤ C
∑

x∼y

(g(x)p + g(y)p)m(x)

≤ C
∑

x∈Γ

g(x)pm(x) + C
∑

y∈Γ

g(y)pm(y)

= C ‖g‖pLp(Γ) .

Now, let x ∈ Γ. By (2.12) and the fact that 0 ≤ p(x, y) ≤ 1 for all x, y ∈ Γ,

∇f(x) ≤ C
∑

y∼x

|f(y) − f(x)| ≤ C
∑

y∼x

(g(x) + g(y)) = Ch(x),

so that ∇f ∈ Lp(Γ) and ‖f‖Ẇ 1,p(Γ) ≤ C ‖f‖Ṁ1,p(Γ). This completes the proof.

4 The Calderón-Zygmund decomposition for Hardy-

Sobolev spaces

The present section is devoted to the proof of the Calderón-Zygmund decomposition for Hardy-
Sobolev spaces on graphs. The corresponding decomposition on Riemannian manifolds was
established in [BD10]. Recall that analogous Calderón-Zygmund decompositions for classical
Sobolev spaces were proved in [AC05] on Riemannian manifolds and [BR09] on graphs.

Proposition 4.1 [Calderón-Zygmund decomposition for Hardy-Sobolev spaces] Let Γ satisfy
(D) and (P1). Let f ∈ Ṡ1,1(Γ), s

s+1
< q < 1 and α > 0. Then one can find a collection of balls

{Bi}i∈I , functions bi ∈ W 1,1(Γ) and a function g ∈ Ẇ 1,∞(Γ) such that the following properties
hold:

f = g +
∑

i

bi,

|∇g(x)| ≤ Cα for all x ∈ Γ, (4.28)

supp bi ⊂ Bi, ‖bi‖1 ≤ CαriV (Bi), ‖∇bi‖q ≤ CαV (Bi)
1/q (4.29)

∑

i

V (Bi) ≤
C

α

∑

x∈Bi

(Nf)(x)m(x) (4.30)

and ∑

i

χBi
≤ K, (4.31)

where, for all i, ri is the radius of Bi, and C and K only depend on q, p and on the constants
in (D) and (P1).
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Proof: the proof of Proposition 4.1 follows the main lines of the one of Proposition 3.3 in
[BD10], with adaptations due to the discrete context.
Let f ∈ Ṡ1,1(Γ) and α > 0. Define

Ω :=
{
x ∈ Γ; MHL,q(Nf)(x) >

α

C

}
,

where C is the implicit constant in item 2 of Proposition 3.4 and MHL,q is defined by

MHL,q(g)(y) := (MHL |g|q))1/q . (4.32)

Let F := Γ \ Ω.
A consequence of item 2 in Proposition 3.4 is that

∇f(x) ≤ CNf(x) ≤ CMHL,q(Nf)(x) ≤ α for all x ∈ F. (4.33)

If Ω = ∅, then set
f = g and bi = 0 for all i,

so that (4.28) is satisfied by (4.33), and all the other required properties are clearly satisfied.
From now on, assume that Ω 6= ∅. First,

m(Ω) ≤ C

α

∑

x∈Γ

MHL,q(Nf)(x)m(x)

=
C

α

∑

x∈Γ

(MHL(|Nf |q)(x))
1
q m(x)

≤ C

α

∑

x∈Γ

Nf(x)m(x) < ∞,

(4.34)

where, in the last line, we used the fact the MHL is L1/q(Γ)-bounded since q < 1 and Nf ∈
L1(Γ). In particular Ω 6= Γ as m(Γ) = +∞ (see Remark 2.2).
Definition of the balls Bi: since Ω is a strict subset of Γ, let {Bi}i be a Whitney decom-
position of Ω (see [CW77]). More precisely, the Bi are pairwise disjoint, and there exist two
constants C2 > C1 > 1, only depending on the metric, such that

• Ω = ∪iBi with Bi = C1Bi, and the balls Bi have the bounded overlap property,

• ri = r(Bi) = 1
2
d(xi, F ) where xi is the center of Bi,

• each ball Bi = C2Bi intersects F (one can take C2 = 4C1).

For x ∈ Ω, define Ix := {i : x ∈ Bi}. As already seen in [BR09], there exists K such that
♯Ix ≤ K, and moreover, for all i, k ∈ Ix, 1

3
ri ≤ rk ≤ 3ri and Bi ⊂ 7Bk. The bounded overlap

property yields (4.31) and implies

∑

i

V (Bi) . m(Ω). (4.35)
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Then, (4.30) follows from (4.31) and (4.34).
The following observation will be used several times: for all i,

(
1

V (C2Bi)

∑

x∈C2Bi

|Nf(x)|qm(x)

) 1
q

≤ CαV (Bi). (4.36)

Indeed, the left-hand side of (4.36) is bounded by MHL,q(Nf)(y) for some y ∈ C2Bi ∩ F ,
which yields the result.
Definition of the functions bi: following the construction in Section 5 of [BR09], pick
up a partition of unity {χi}i of Ω subordinated to the covering {Bi}i. Each χi is a Lipschitz
function supported in Bi with 0 ≤ χi ≤ 1, ||∇χi||∞ ≤ C

ri
and

∑
i∈I

χi(x) = 1Ω for all x ∈ Γ.

Moreover, ∇χi is supported in C3Bi ⊂ Ω with C3 < 2. We set bi := (f − fBi
)χi, so that

supp bi ⊂ Bi.
Estimate of ‖bi‖L1(Γ): the Sobolev-Poincaré inequality (5.43) applied with g = Nf (recall

that Nf ∈ L1(Γ) and the pair (f,Nf) satisfies (2.12) by Proposition 3.2) and λ = C2, as well
as (4.36), yield

‖bi‖1 ≤
∑

x∈Bi

|f(x) − fBi
|m(x)

≤ Cri

(
1

V (C2Bi)

∑

x∈C2Bi

|Nf(x)|qm(x)

) 1
q

V (Bi)

≤ CriαV (Bi).

(4.37)

Proof of ∇bi ∈ L1(Γ): since

∇bi(x) = ∇ ((f − fBi
)χi) (x) ≤

(
max
y∼x

χi(y)

)
∇f(x) + |f(x) − fBi

|∇χi(x)

and χi ≤ 1 on Γ, using (4.36) again, one obtains

||∇bi||1 ≤
∑

x∈C3Bi

|f(x) − fBi
||∇χi(x)|m(x) +

∑

x∈C3Bi

|∇f(x)|m(x)

≤ CαV (Bi) +
∑

x∈C3Bi

|∇f(x)|m(x) < +∞.
(4.38)

Estimate of ‖∇bi‖Lq(Γ): using item 2 in Proposition 3.4, (5.43) with g = Nf (and Hölder)
and (4.36), we obtain:

‖∇bi‖qq ≤ C

(
∑

x∈C3Bi

|∇f(x)|qm(x) +
∑

x∈C3Bi

|f(x) − fBi
|q |∇χi(x)|qm(x)

)

≤ C
∑

x∈C2Bi

|Nf(x)|qm(x) + C
Cq

rqi
rqi

(
∑

x∈C2Bi

|Nf(x)|qm(x)

)

≤ CαqV (Bi).

(4.39)
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Thus (4.29) is proved.

Definition of g: set now g = f −∑
i

bi. Since the sum is locally finite on Ω, g is well-defined

on Γ and g = f on F .
Estimate of |∇g|: since

∑
i∈I

χi(x) = 1 for all x ∈ Ω, one has

g = fχF +
∑

i∈I

fBi
χi

where χF denotes the characteristic function of F . We will need the following lemma:

Lemma 4.2 There exists C > 0 such that, for all j ∈ I, all u ∈ F ∩ 4Bj and all v ∈ Bj,

|g(u) − g(v)| ≤ Cαd(u, v).

Let us admit the conclusion of Lemma 4.2 and complete the proof of (4.28). It is enough to
check that |g(x) − g(y)| ≤ Cα for all x ∼ y ∈ Γ. Three situations may occur:

1. Assume first that x, y ∈ Ω. Let j ∈ I such that x ∈ Bj . Since χF (x) = χF (y) = 0 and∑
i χi = 1 on Γ, it follows that

g(y) − g(x) =
∑

i∈I

(
fBi

− fBj

)
(χi(y) − χi(x)) ,

so that |g(y) − g(x)| ≤ C
∑
i∈I

|fBi
− fBj

|∇χi(x) := h(x).

We claim that |h(x)| ≤ Cα, which will end the proof in this case. Let i ∈ I be such
that ∇χi(x) 6= 0, so that d(x,Bi) ≤ 1, hence ri ≤ 3rj + 1 ≤ 4rj and Bi ⊂ 10Bj . An
application of (5.43) with g = Nf and of (4.36) yields

|fBi
− f10Bj

| ≤ 1

V (Bi)

∑

y∈Bi

|f(y) − f10Bj
|m(y)

≤ C

V (Bj)

∑

y∈10Bj

|f(y) − f10Bj
|m(y)

≤ Crj


 1

V (10Bj)

∑

y∈10Bj

|Nf(y)|qm(y)




1/q

≤ Crjα.

(4.40)

Analogously |f10Bj
− fBj

| ≤ Crjα. Hence

|h(x)| =

∣∣∣∣∣
∑

i∈I;x∈2Bi

(fBi
− fBj

)∇χi(x)

∣∣∣∣∣
≤ C

∑

i∈I;x∈2Bi

|fBi
− fBj

|r−1
i

≤ CKα.

(4.41)
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2. Assume now that x ∈
◦

F , so that y ∈ F . In this case |g(y) − g(x)| = |f(x) − f(y)| ≤
C∇f(x) ≤ Cα by (4.33).

3. Assume finally that x ∈ ∂F .

i. If y ∈ F , as already seen, |g(y)− g(x)| = |f(x)− f(y)| ≤ C∇f(x) ≤ Cα by (4.33).

ii. Assume finally that y ∈ Ω. There exists j ∈ I such that y ∈ Bj. Since x ∼ y, one
has x ∈ 4Bj, Lemma 4.2 therefore yields

|g(x) − g(y)| ≤ Cαd(x, y) ≤ Cα.

The case when x ∈ Ω and y ∈ F is contained in Case 3.ii by symmetry, since y ∈ ∂F . Thus
the proof of Proposition 4.1 is complete.

Proof of Lemma 4.2: it is analogous to the one of Lemma 5.1 in [BR09]. The only difference
is that one uses (5.43) instead of the Poincaré inequality applied in [BR09].

5 Proofs of the characterization of Hardy-Sobolev spaces

We now turn to the proof of Theorem 2.12. Let us explain the strategy. We first establish
that Ṡ1,1(Γ) = Ṁ1,1(Γ). The inclusion Ṡ1,1(Γ) ⊂ Ṁ1,1(Γ) is proved exactly in the same way as
the corresponding inclusion in Theorem 2.9. The converse is more involved, since the Hardy-
Littlewood maximal function is not L1(Γ)-bounded, and the proof relies on a Sobolev-Poincaré
inequality.
The identity Ṡ1,1(Γ) = ḢS1

max(Γ) is an immediate consequence of item 1 in Proposition 3.4.
Finally, we check that Ṡ1,1(Γ) = ḢS1

ato(Γ), using the Sobolev-Poincaré inequality again, as
well as an adapted Calderón-Zygmund decomposition.

5.1 Sharp maximal characterization of Ṁ1,1(Γ)

A straightforward consequence of Proposition 3.2 is that Ṡ1,1(Γ) ⊂ Ṁ1,1(Γ).
The proof of the converse inclusion relies, as the proof of Theorem 3 in [KT07], on a Sobolev-
Poincaré inequality ([Haj03b], theorem 8.7) :

Theorem 5.1 Let p ∈
[

s
s+1

, s
)
3, B ⊂ Γ be a ball with radius r, f ∈ Ṁ1,p(B) and g ∈ Lp(B)

such that (f, g) satisfies (2.12) in B (see Remark 2.7). Then (f, g) satisfies the following
Sobolev-Poincaré inquality: for all λ > 1, there is a constant C > 0 only depending on the
constant in (D) and λ such that

(
1

V (B)

∑

x∈B

|f(x) − fB|p
∗

m(x)

) 1
p∗

≤ Cr

(
1

V (λB)

∑

x∈λB

g(x)pm(x)

) 1
p

(5.42)

where p∗ := sp
s−p

.

3where s is given by (2.3).
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An easy consequence of Theorem 5.1 is that, for all functions f ∈ Ṁ1,1(Γ), all q ∈
[

s
s+1

, s
)
, all

balls B ⊂ Γ of radius r and all λ > 1,

1

V (B)

∑

x∈B

|f(x) − fB|m(x) ≤ Cr

(
1

V (λB)

∑

x∈λB

g(x)qm(x)

) 1
q

(5.43)

whenever (f, g) satisfies (2.12). Indeed, it is enough to observe that g ∈ L
s

s+1 (λB), apply
Theorem 5.1 with p = s

s+1
, since p∗ = 1 and use Hölder inequality.

Take now f ∈ Ṁ1,1(Γ), q ∈
[

s
s+1

, 1
)

and g such that (2.12) and (5.43) hold and ‖g‖L1(Γ) ≤
2 ‖f‖Ṁ1,1(Γ). The inequality (5.43) yields

Nf(y) . MHL,qg(y)

for all y ∈ Γ, where MHL,q was defined by (4.32). Since 1/q > 1, the Hardy-Littlewood
maximal function is L1/q(Γ)-bounded, which implies that

‖Nf‖L1(Γ) . ‖g‖L1(Γ) . ‖f‖Ṁ1,1(Γ) .

This ends the proof of the inclusion Ṁ1,1(Γ) ⊂ Ṡ1,1(Γ).

5.2 Maximal characterization

The identity Ṡ1,1(Γ) = ḢS1
max(Γ) is an immediate consequence of item 1 in Proposition 3.4.

5.3 Atomic decomposition

We prove now that ḢS1
t,ato(Γ) = Ṡ1,1(Γ) for all t ∈ (1,+∞].

5.3.1 ḢS1
t,ato(Γ) ⊂ Ṡ1

1(Γ)

For the proof of this inclusion, we have to clarify the link between convergence in ḢS1
t,ato(Γ)

and pointwise convergence:

Proposition 5.2 Let f ∈ ḢS1
t,ato(Γ) and write

f =
∑

j

λjaj ,

where
∑

j |λj | < +∞, for all j, aj is a homogeneous Hardy-Sobolev (1, t)-atom and the series

converges in Ẇ 1,1(Γ). Then, for all k, there exists ck ∈ R such that, for all x ∈ Γ,

f(x) = lim
k→+∞

k∑

j=0

λjaj(x) − ck.
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The proof follows from:

Lemma 5.3 Let (hk)k≥1 ∈ Ẇ 1,1(Γ). If limk→+∞ ‖∇hk‖L1(Γ) = 0, then, for all k ≥ 1, there
exists ck ∈ R such that

lim
k→+∞

hk(x) − ck = 0.

Proof of Lemma 5.3: assume first that there exists x0 ∈ Γ such that hk(x0) = 0 for all
k ≥ 1. Then, for all x ∈ Γ, limk→+∞ hk(x) = 0. Indeed, the very definition of ∇hk implies
that, for all x, y ∈ Γ with x ∼ y, limk→+∞(hk(x) − hk(y)) = 0. The conclusion then readily
follows for all j ≥ 1 and for all x ∈ B(x0, j) by induction on j.
In the general case, fix x0 ∈ Γ and define gk(x) := hk(x) − hk(x0) for all k ≥ 1 and all x ∈ Γ.
What we have just seen means that limk→+∞ gk(x) = 0, which yields the desired conclusion
with ck := hk(x0).
Proof of Proposition 5.2: it is an immediate consequence of Lemma 5.3 applied with
hk := f −∑k

j=0 λjaj .

Proposition 5.4 Assume that Γ satisfies (D) and (P1). Let t ∈ (1,+∞].

1. Let a be a homogeneous (1, t) atom. Then a ∈ Ṡ1
1(Γ) with ||a||S1

1
≤ C.

2. One has ḢS1
t,ato(Γ) ⊂ Ṡ1

1(Γ) and there exists C > 0 such that, for all f ∈ ḢS1
t,ato(Γ),

||f ||Ṡ1
1(Γ)

≤ C||f ||ḢS1
ato(Γ)

.

Proof: for 1, let a be a homogeneous (1, t) atom supported in ball B = B(x, r). We want
to prove that Na ∈ L1(Γ) and that ‖Na‖L1(Γ) ≤ C. For all y ∈ Γ, and all balls B′ ∋ y, (P1)
yields:

1

r(B′)V (B′)

∑

z∈B′

|a(z) − aB′ |m(z) ≤ C

V (B′)

∑

z∈B′

∇a(z)m(z)

≤ MHL(∇a)(y),

so that
Na(y) . MHL(∇a)(y). (5.44)

As a consequence,

∑

y∈B(x,4r)

Na(y)m(y) ≤ CV (x, 4r)1/t
′


 ∑

y∈B(x,4r)

(MHL(∇a)(y))tm(y)




1/t

≤ CV (x, 4r)1/t
′ ‖∇a‖Lt(Γ)

≤ C,

(5.45)

where the first line follows from Hölder and (5.44), the second one from the Lt-boundedness
of the Hardy-Littlewood maximal function and the last one from the doubling property and
the second item in Definition 2.11.
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Let k ≥ 2 and y ∈ B(x, 2k+1r) \ B(x, 2kr). Consider an arbitrary ball B′ containing y. One
has

1

r(B′)V (B′)

∑

z∈B′

|a(z) − aB′ |m(y) =
1

r(B′)V (B′)

∑

z∈B′∩B

|a(z) − aB′ |m(z)

+
1

r(B′)V (B′)

∑

z∈B′\B

|aB′ |m(z)

≤ 3

r(B′)V (B′)

∑

z∈B′∩B

|a(z)|m(z).

It is easily checked that, if B′ ∩ B 6= ∅, then r(B′) > 2k−1r and (D) yields V (x, 2k+1r) ≤
CV (B′). As a consequence of this observation and (P1) (remember that aB = 0),

Na(y) ≤ C

2k−1rV (2k+1B)

∑

z∈B

|a(z)|m(z)

≤ C

2k−1V (2k+1B)

∑

z∈B

|∇a(z)|m(z)

≤ C

2k−1V (2k+1B)
.

It follows that
∑

y/∈B(x,4r)

Na(y)m(y) =
∑

k≥2

∑

y∈B(x,2k+1r)\B(x,2kr)

Na(y)m(y)

≤
∑

k≥2

C

2k−1V (2k+1B)
V (2k+1B)

≤ C.

(5.46)

Gathering (5.45) and (5.46), one obtains ‖Na‖L1(Γ) ≤ C.

Now, for assertion 2 in Proposition 5.4, if f ∈ ḢS1
t,ato(Γ), take an atomic decomposition of f :

f =
∑
i

λiai where each ai is an atom and
∑
i

|λi| ≤ 2 ‖f‖ḢS1
t,ato(Γ)

. By Proposition 5.2, pick up

a sequence (ck)k≥1 ∈ R such that, for all x ∈ Γ,

f(x) = lim
k→+∞

k∑

j=0

λjaj(x) − ck = lim
k→+∞

fk(x) − ck

where, for all k, fk :=
∑k

j=0 λjaj .
Let x ∈ Γ and B be a ball containing x. Observe that

fB =
1

V (B)

∑

y∈B

f(y)m(y) = lim
k→+∞

1

V (B)

∑

y∈B

(fk(y) − ck)m(y) = lim
k→+∞

((fk)B − ck) .

As a consequence,

1

V (B)

∑

y∈B

|f(y) − fB|m(y) = lim
k→+∞

1

V (B)

∑

y∈B

|fk(y) − (fk)B|m(y).
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For all k ≥ 1,

∑

y∈B

|fk(y) − (fk)B|m(y) ≤
k∑

j=0

|λj|
∑

y∈B

|aj(y) − (aj)B|m(y),

so that
1

r(B)V (B)

∑

y∈B

|f(y) − fB|m(y) ≤
+∞∑

j=0

|λj |Naj(x).

Since ‖Naj‖L1(Γ) ≤ C and
∑

j |λj | ≤ 2 ‖f‖ḢS1
t,ato(Γ)

, Proposition 5.4 is proved.

Remark 5.5 Observe that, in the above argument, if condition 3 in Definition 2.11 is replaced
by condition 3′ in Remark 2.13, then the previous computation is still valid, since one has, using
Hölder,

Na(y) ≤ C

2k−1rV (2k+1B)

∑

z∈B

|a(z)|m(z)

≤ C

2k−1rV (2k+1B)
‖a‖Lt(B) V (B)1/t

′

≤ C

2k−1V (2k+1B)
.

5.3.2 Ṡ1
1(Γ) ⊂ ḢS1

q∗,ato(Γ)

The proof of the inclusion Ṡ1,1(Γ) ⊂ ḢS1
ato(Γ) relies on the Calderón-Zygmund decomposition

for functions in Ṡ1,1(Γ) given by Proposition 4.1:

Proposition 5.6 Let Γ satisfying (D) and (P1). Let f ∈ Ṡ1,1(Γ). Then for all s
s+1

< q <
1, q∗ = sq

s−q
, there is a sequence of (1, q∗) Hardy-Sobolev atoms {aj}j, and a sequence of scalars

{λj}j ∈ l1 such that

f =
∑

j

λjaj in Ẇ 1,1(Γ), and
∑

|λj| ≤ Cq||f ||Ṡ1,1(Γ).

Consequently, Ṡ1,1(Γ) ⊂ ḢS1
q∗,ato(Γ) with ||f ||ḢS1

q∗,ato
(Γ) ≤ Cq||f ||Ṡ1,1(Γ).

Proof: the proof is analogous to the one of Proposition 3.4 in [BD10], which deals with the
case of Riemannian manifolds, and is also inspired by the proof of the atomic decomposition
for Hardy spaces in [Ste93], section III.2.3. We may and do assume that f is not constant on
Γ, otherwise one can take aj = 0 for all j.
Let f ∈ Ṡ1,1(Γ). For every j ∈ Z∗, we take the Calderón-Zygmund decomposition for f at
level α = 2j given by Proposition 4.1. Then

f = gj +
∑

i

bji
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with bji , g
j satisfying the properties of Proposition 4.1. We first claim

f =
∞∑

−∞

(gj+1 − gj), (5.47)

where the series converges in Ẇ 1,1(Γ).
To see this, observe first that gj → f in Ẇ 1,1(Γ) as j → +∞. Indeed, since the sum is locally
finite we can write, using (4.38), (4.35) and the facts that C3B

j
i ⊂ Ω and that the C3B

j
i have

the bounded overlap property,

∥∥∇(gj − f)
∥∥
L1(Γ)

=

∥∥∥∥∥∇
(
∑

i

bji

)∥∥∥∥∥
L1(Γ)

≤
∑

i

∥∥∇bji
∥∥
L1(Γ)

≤ C2jm(Ωj) + C
∑

x∈Ωj

|∇f(x)|m(x)

:= Ij + IIj,

(5.48)

where Ωj :=
{
x ∈ Γ,MHL,q(Nf)(x) > 2j

C

}
. Observe that Ωj+1 ⊂ Ωj for all j ∈ Z.

Observe that

∑

j∈Z

2jm(Ωj) .

∫ +∞

0

m ({x ∈ Γ; MHL,q(Nf)(x) > t}) dt = ‖MHL,q(Nf)‖L1(Γ) < +∞.

(5.49)
This implies that, when j → +∞, Ij → 0. Since ∇f ∈ L1(Γ) and m(Ωj) → 0 when j → +∞,
one has IIj → 0 when j → +∞. Thus, (5.48) shows that

lim
j→+∞

gj = f in Ẇ 1,1(Γ).

Next, when j → −∞, we want to show ‖∇gj‖L1(Γ) → 0. If F j := Γ \ Ωj , an immediate
consequence of Remark 2.8 is that, since f is not constant on Γ,

⋂

j∈Z

F j = ∅. (5.50)

Write ∥∥∇gj
∥∥
L1(Γ)

.
∑

x∼y, x,y∈F j

∣∣gj(x) − gj(y)
∣∣m(x)

+
∑

x∼y, x,y∈Ωj

∣∣gj(x) − gj(y)
∣∣m(x)

+
∑

x∼y, x∈F j , y∈Ωj

∣∣gj(x) − gj(y)
∣∣m(x)

:= Aj + Bj + Cj.

If x ∼ y with x ∈ F j and y ∈ F j, |gj(x) − gj(y)| = |f(x) − f(y)|, so that

Aj .
∑

x∈F j

∇f(x)m(x),
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which implies that Aj → 0 when j → −∞, since ∇f ∈ L1(Γ) and (5.50) holds.
Moreover,

Bj .
∑

x∈Ωj

∇gj(x)m(x) . 2jm(Ωj),

and this quantity goes to 0 when j → −∞ by (5.49).
Finally, if x ∼ y with x ∈ F j and y ∈ Ωj , |gj(x) − gj(y)| . ∇gj(y) and, since m(x) and m(y)
are comparable when x ∼ y, one has

Cj .
∑

y∈Ωj

∇gj(y)m(y)

which goes to 0 when j → −∞. This ends the proof of (5.47).

Introduce a partition of unity (χj
k)k subordinated to balls Bj

k corresponding to Ωj as in the
proof of Proposition 4.1. We will need two observations:

Lemma 5.7 1. For all j, k, l, if there exist x ∈ Bj
k and y ∈ Bj+1

l with x ∼ y, then

rj+1
l ≤ 4rjk. (5.51)

2. There exists C > 0 such that, for all j,
∑

k

12Bj

k
≤ C. (5.52)

We postpone the proof of Lemma 5.7 and end up the proof of the atomic decomposition of f .

Set gj+1 − gj := lj and decompose lj as lj =
∑

k

ljk with

ljk := (f − djk)χ
j
k −

∑

l

(f − dj+1
l )χj+1

l χj
k +

∑

l

cjk,lχ
j+1
l , (5.53)

where, for all j, k,

djk :=
1∑

y χ
j
k(y)m(y)

∑

y

f(y)χj
k(y)m(y),

and

cjk,l :=
1∑

y∈Bj+1
l

χj+1
l (y)m(y)

∑

x∈Bj+1
l

(
f(x) − dj+1

l

)
χj+1
l (x)χj

k(x)m(x).

First, the identity lj =
∑

k

ljk holds by definition of gj and gj+1 and since
∑
k

χj
k = 1 on the

support of χj+1
l and, for all l,

∑

k

cjk,l = 0.

We now claim that, up to a constant, 2−jV (Bj
k)−1ljk is a homogeneous Hardy-Sobolev (1, q∗)

atom. Indeed, the cancellation condition
∑

x∈Γ

ljk(x)m(x) = 0
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for all k follows from the fact that
∑

x∈Γ

(
f(x) − djk

)
χj
k(x)m(x) = 0 and the definition of cjk,l,

which immediately gives, for all l,
∑

x∈Γ

((
f(x) − dj+1

l

)
χj+1
l (x)χj

k(x) − cjk,lχ
j+1
l (x)

)
m(x) = 0. A

consequence of (5.51) is that ljk is supported in the ball 9Bj
k, therefore ∇ljk is supported in

18Bj
k.

Let us now prove that ∥∥∇ljk
∥∥
Lq∗ (Γ)

. 2jV (Bj
k)1/q

∗

. (5.54)

Let x, y ∈ Γ such that x ∼ y. Write

ljk(y) − ljk(x) =

(
(f(y) − f(x))χj

k(y) −
∑

l

(f(y) − f(x))χj+1
l (y)χj

k(y)

)

+
(
f(x) − djk

) (
χj
k(y) − χj

k(x)
)

−
∑

l

(
f(x) − dj+1

l

) (
χj+1
l (y)χj

k(y) − χj+1
l (x)χj

k(x)
)

+
∑

l

ck,l
(
χj+1
l (y) − χj+1

l (x)
)

:= ∆1(x, y) + ∆2(x, y) + ∆3(x, y) + ∆4(x, y).

(5.55)

Let us estimate ∆i(x, y) for 1 ≤ i ≤ 4.
Estimate of ∆1: compute

∆1(x, y) = (f(y) − f(x))χj
k(y) (1 − 1Ωj+1(y)) .

As a consequence, if ∆1(x, y) 6= 0, one has y ∈ Bj
k ∩ (Ωj \ Ωj+1), so that x ∈ 2Bj

k. By item 2
in Proposition 3.4, one has ∇f(y) ≤ C2j, so that |f(y) − f(x)| ≤ C2j. As a consequence, for
all x ∈ Γ, ∑

y∼x

|∆1(x, y)|q∗ ≤ C2jq∗.

Therefore, by (D), ∑

x∈2Bj

k

∑

y∼x

|∆1(x, y)|q∗ m(x) ≤ C2jq∗V (Bj
k). (5.56)

Estimate of ∆2: observe first that if ∆2(x, y) 6= 0, then y ∈ Bj
k or x ∈ Bj

k, so that x ∈ 2Bj
k.

Since ∇χj
k ≤ C

rj
k

on Γ, one has, for all x ∈ Γ,

∑

y∼x

|∆2(x, y)|q∗ ≤ C
(
rjk
)q∗
∣∣f(x) − djk

∣∣q∗ .

As a consequence,

∑

x∈2Bj

k

∑

y∼x

|∆2(x, y)|q∗ m(x) ≤ C
(
rjk
)q∗

∑

x∈2Bj

k

∣∣f(x) − djk
∣∣q∗ m(x).
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But ∥∥f − djk
∥∥
Lq∗ (2Bj

k
)
≤
∥∥∥f − fBj

k

∥∥∥
Lq∗(2Bj

k
)

+
∣∣∣djk − fBj

k

∣∣∣V 1/q∗(2Bj
k),

and

V 1/q∗(2Bj
k)
∣∣∣djk − fBj

k

∣∣∣ = V 1/q∗(2Bj
k)

∣∣∣∣∣
1∑

y χ
j
k(y)m(y)

∑

z

(
f(z) − fBj

k

)
χj
k(z)m(z)

∣∣∣∣∣

≤ C


 V (Bj

k)∑
y χ

j
k(y)m(y)

∑

z∈Bj

k

∣∣∣f(z) − fBj

k

∣∣∣
q∗

m(z)




1/q∗

≤ C


∑

z∈Bj

k

∣∣∣f(z) − fBj

k

∣∣∣
q∗

m(z)




1/q∗

.

Thus, ∑

x∈2Bj

k

∣∣f(x) − djk
∣∣q∗ m(x) ≤ C

∑

z∈2Bj

k

∣∣∣f(z) − fBj

k

∣∣∣
q∗

m(z). (5.57)

Therefore, by Theorem 5.1 and (4.36),

∑

x∈2Bj

k

∑

y∼x

|∆2(x, y)|q∗ m(x) ≤ C
(
rjk
)q∗

∑

x∈2Bj

k

∣∣∣f(x) − fBj

k

∣∣∣
q∗

m(x)

≤ CV (Bj
k)


 1

V (4C2B
j
k)

∑

x∈4C2B
j

k

Nf(x)qm(x)




q∗

q

≤ CV (Bj
k)2jq∗.

Estimate of ∆3(x, y): first,

−∆3(x, y) =
∑

l

(
f(x) − fBj+1

l

)
χj
k(y)

(
χj+1
l (y) − χj+1

l (x)
)

+
∑

l

(
f(x) − fBj+1

l

)
χj+1
l (x)

(
χj
k(y) − χj

k(x)
)

= ∆1
3(x, y) + ∆2

3(x, y).

For ∆1
3(x, y), notice that the sum may be computed over the l ∈ Ij(x), where

Ij(x) :=
{
l; there exists y ∼ x such that y ∈ Bj

k and x or y belong to Bj+1
l

}
.

For l ∈ Ij(x), x ∈ 2Bj
k∩2Bj+1

l and rj+1
l ≤ 4rjk by Lemma 5.7. Since

∣∣χj+1
l (y) − χj+1

l (x)
∣∣ ≤ C

rj+1
l

,

one has, for all x ∈ Γ,

∑

y∼x

∣∣∆1
3(x, y)

∣∣q∗ ≤
∑

l∈Ij(x)

C
(
rj+1
l

)q∗
∣∣∣f(x) − fBj+1

l

∣∣∣
q∗

.
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Notice that, by item 2 in Lemma 5.7, ♯Ij(x) ≤ C. It follows that

∑

x∈2Bj

k
∩2Bj+1

l

∑

y∼x

∣∣∆1
3(x, y)

∣∣q∗ m(x) ≤
∑

x∈2Bj

k
∩2Bj+1

l

∑

l∈Ij(x)

C
(
rj+1
l

)q∗
∣∣∣f(x) − fBj+1

l

∣∣∣
q∗

m(x)

= C
∑

l

1
(
rj+1
l

)q∗
∑

x∈2Bj

k
∩2Bj+1

l
, l∈Ij(x)

∣∣∣f(x) − fBj+1
l

∣∣∣
q∗

m(x)

≤ C
∑

l; Bj+1
l

⊂CBj

k

V (CBj+1
l )


 1

V (4CBj+1
l )

∑

x∈4CBj+1
l

Nf(x)qm(x)




q∗

q

≤ C
∑

l; Bj+1
l

⊂CBj

k
)

V (CBj+1
l )2(j+1)q∗

≤ CV (CBj
k)2jq∗.

In this computation, we used the fact that, for l ∈ Ij(x), one has rj+1
l ≤ 4rjk and, since

2Bj+1
l ∩ 2Bj

k 6= ∅, Bj+1
l ⊂ CBj

k.
For ∆2

3(x, y), arguing similarly, the sum may be restricted to the l ∈ J j(x) where

J j(x) :=
{
l; x ∈ Bj+1

l and there exists y ∼ x such that y ∈ Bj
k or x ∈ Bj

k

}
.

For l ∈ J j(x), x ∈ Bj+1
l ∩ 2Bj

k and rj+1
l ≤ 4rjk. Again, ♯J j(x) ≤ C. Arguing as before, one

obtains ∑

y∼x

∣∣∆2
3(x, y)

∣∣q∗ ≤
∑

l∈Jj(x)

C
(
rjk
)q∗
∣∣∣f(x) − fBj+1

l

∣∣∣
q∗

.

As a consequence,

∑

x∈2Bj

k
∩Bj+1

l

∑

y∼x

∣∣∆2
3(x, y)

∣∣q∗ m(x) ≤
∑

x∈2Bj

k
∩Bj+1

l

∑

l∈Jj(x)

C
(
rjk
)q∗
∣∣∣f(x) − fBj+1

l

∣∣∣
q∗

m(x)

≤
∑

x∈2Bj

k
∩Bj+1

l

∑

l∈Jj(x)

C
(
rj+1
l

)q∗
∣∣∣f(x) − fBj+1

l

∣∣∣
q∗

m(x)

≤ C
∑

l; Bj+1
l

⊂CBj

k

V (CBj+1
l )


 1

V (4CBj+1
l )

∑

x∈4CBj+1
l

Nf(x)qm(x)




q∗

q

≤ C
∑

l; Bj+1
l

⊂CBj

k

V (CBj+1
l )2(j+1)q∗

≤ CV (CBj
k)2

jq∗.

.

Estimate of ∆4: note first that cjk,l = 0 when Bj
k ∩Bj+1

l = ∅ and |cjk,l| ≤ C2jrj+1
l thanks to

(4.37). As a consequence,
∣∣cjk,l

(
χj+1
l (y) − χj+1

l (x)
)∣∣ ≤ C2j for every l. It follows that, for all

x, ∑

l

∑

y∼x

∣∣cjk,l
∣∣ ∣∣χj+1

l (y) − χj+1
l (x)

∣∣ ≤ C2j .
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Therefore, ∑

x∈CBj

k

∑

y∼x

|∆4(x, y)|q∗ m(x) ≤ C2(j+1)q∗V (Bj
k).

Gathering the estimates on ∆i, 1 ≤ i ≤ 4, we obtain (5.54).

We now set ajk = C−12−jV
(
Bj

k

)−1
ljk and λj,k = C2jV

(
Bj

k

)
. Then f =

∑
j,k λj,ka

j
k, with ajk

being (1, q∗) homogeneous Hardy-Sobolev atoms and

∑

j,k

|λj,k| = C
∑

j,k

2jV
(
Bj

k

)

≤ C
∑

j,k

2jV (Bj
k)

≤ C
∑

j

2jV
(
{x : Mq(Nf)(x) > 2j}

)

≤ C
∑

x∈Γ

Mq(Nf)(x)m(x)

≤ Cq ‖Nf‖L1(Γ) ∼ ‖f‖Ṡ1,1(Γ) ,

where we used the fact that the Bj
k are pairwise disjoint.

Proof of Lemma 5.7: let x ∈ Bj
k and y ∈ Bj+1

l such that x ∼ y. Denote by xj
k (resp. xj+1

l )
the center of Bj

k (resp. Bj+1
l ). Then

d(xj
k, x

j+1
l ) ≤ d(xj

k, x) + d(x, y) + d(y, xj+1
l ) ≤ rjk + rj+1

l + 1.

Thus, since F j ⊂ F j+1,

rj+1
l = 1

2
d
(
xj+1
l , F j+1

)

≤ 1
2
d
(
xj+1
l , xj

k

)
+ 1

2
d(xj

k, F
j+1)

≤ 1
2

(
rjk + rj+1

l + 1
)

+ 1
2
d(xj

k, F
j),

from which we deduce

rj+1
l ≤ rjk + 1 + d(xj

k, F
j) = rjk + 1 + 2rjk ≤ 4rjk,

as claimed. The proof of 2 is classical. .

5.4 Comparison between different atomic spaces

In the present section, we show that ḢS1
t,ato(Γ) = ḢS1

t′,ato(Γ) for all t, t′ ∈ (1,+∞], following
ideas from [BB10]. We will need:

Lemma 5.8 Assume that Γ satisfies (D).

1. Let

Mcf(x) := sup
r>0

1

V (x, r)

∑

B(x,r)

|f(y)|m(y)
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be the centered maximal function of f . Observe that if x ∈ B(y, r) then B(y, r) ⊂
B(x, 2r). It follows that

Mcf ≤ MHLf ≤ CMcf

where C only depends on the constant of the doubling property.

2. Let f be an L1 function supported in B0 = B(x0, r0). Then there is C1 depending on the
doubling constant such that

Ωα := {x ∈ Γ : MHL(f)(x) > α} ⊂ B(x0, 2r0)

whenever α > C1

V (B0)

∑
x∈B0

|f(x)|m(x)

Proof: it is obvious that Mcf ≤ MHLf everywhere on Γ. Moreover, let x ∈ Γ et B =
B(x0, r) ∋ x be a ball. Then B ⊂ B(x, 2r) ⊂ B(x0, 3r), so that

1

V (B)

∑

y∈B

|f(y)|m(y) ≤ 1

V (x, 2r)

V (x, 2r)

V (B)

∑

y∈B(x,2r)

|f(y)|m(y) ≤ CMcf(x),

and the result follows by taking the supremum over all balls B containing x.
For the second assertion, assume that x /∈ B(x0, 2r0) and let B = B(x, r) ∋ x be a ball centered
at x. Then

1

V (B)

∑

y∈B

|f(y)|m(y) =
1

V (B)

∑

y∈B∩B(x0,r0)

|f(y)|m(y).

If B ∩B(x0, r0) = ∅, then this quantity is 0. Otherwise, 2r0 < d(x, x0) ≤ r+ r0, so that r0 < r
and B0 ⊂ B(x, 2r). It follows that

1

V (B)

∑

y∈B

|f(y)|m(y) ≤ 1

V (B0)

V (B0)

V (B)

∑

y∈B0

|f(y)|m(y) ≤ C

V (B0)

∑

y∈B0

|f(y)|m(y),

which yields the conclusion by part 1., provided that C1 is big enough.
Let us now prove:

Proposition 5.9 Let Γ satisfying (D) and the Poincaré inquality (P1). Then HS1
t,ato ⊂

HS1
∞,ato for every t > 1 and therefore HS1

t1,ato
= HS1

t2,ato
for every 1 < t1, t2 ≤ +∞.

Proof: let t > 1. It is enough to prove that there exists C > 0 such that, for every (1, t)−atom
a, a belongs to ḢS1

∞,ato(Γ) with
‖a‖ḢS1

∞,ato(Γ)
≤ C.

In the sequel, set M1
HL := MHL and Mn+1

HL = Mn
HL◦MHL for all n ∈ N. Let a be (1, t)−atom

supported in a ball B0. Set b = V (B0)a.
We claim that there exist K,α, C,N > 0 only depending on t and the geometric constants
with the following property: for all l ∈ N∗, there exists a collection of balls (Bjl)jl∈Nl such that
for every n ≥ 1

b = CN
n−1∑

l=1

(Kα)l+1
∑

jl∈Nl

V (Bjl)ajl +
∑

jn∈Nn

hjn (5.58)
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and, for all n ∈ N
∗,

ajl is an (1,∞)-atom supported in Bjl, 1 ≤ l ≤ n− 1, (5.59)

⋃

jn∈Nn

Bjn ⊂ Ωl :=

{
x ∈ Γ;Ml+1

HL(|∇b|)(x) > K
αl

2

}
, (5.60)

∑

jl

1Bjl
≤ N l, (5.61)

supp hjl ⊂ Bjl,
∑

x∈Bjl

hjl(x)m(x) = 0, (5.62)

|∇hjl(x)| ≤ C
(
(αK)lχjl + Ml

HL(|∇b|)
)

(x) for all x ∈ Γ, (5.63)

1

V (Bjl)
‖∇hjl‖L1(Γ) ≤ C(Kα)l, (5.64)

where χjn stands for the characteristic function of Bjn.

Let us assume that this construction is done. We claim that

a =
∞∑

l=1

CN(Kα)l+1
∑

jl∈Nl

V (Bjl)

V (B0)
ajl, (5.65)

where the series converges in Ẇ 1,1(Γ) and

N

V (B0)

∞∑

l=1

(Kα)l+1
∑

jl∈Nl

V (Bjl) ≤ C (5.66)

where C is independent of a.
Let us first check (5.66). Indeed, it follows from (5.59), (5.61) and the Lt(Γ)-boundedness of
MHL that

∑

jl

V (Bjl) ≤ CN lm

(
⋃

jl

Bjl

)
≤ CN lm(Ωl) ≤ CN l

(
2

Kαl

)t

‖∇b‖tLt(Γ).

As a consequence,

∞∑

l=0

(Kα)l
∑

jl∈Nl

V (Bjl) ≤ C2t

∞∑

n=0

(Kα)lN l(Kαl)−t‖∇b‖tLt(Γ)

≤ C2tK−t

∞∑

l=0

(NKα(1−t))l‖∇b‖tLt(Γ)

and, since ‖∇b‖tLt(Γ) ≤ CV (B0), we obtain (5.66) with C only depending on t,K, α and N ,

provided that α is chosen such that NK
αt−1 < 1.
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We now focus on (5.65). By (5.64), one has

1

V (B0)

∥∥∥∥∥
∑

jn∈Nn

hjn

∥∥∥∥∥
Ẇ 1,1(Γ)

≤ 1

V (B0)

∑

jn∈Nn

‖∇hjn‖L1(Γ)

≤ C(Kα)n
∑

jn∈Nn

V (Bjn)

V (B0)

and, by (5.66), this quantity converges to 0 when n → +∞, which yields (5.65).

Let us now turn the the construction, which will be done by induction on l, starting with l = 1.
Set

Ω̃1 = {x ∈ Γ : MHL(∇b)(x) > Kα},
where K,α will be chosen such that Kα > C1 and C1 is given by Lemma 5.8. Hence, Ω̃1 ⊂ 2B0.
Moreover,

m
(

Ω̃1

)
≤ 1

(Kα)t
‖MHL(∇b)‖tLt(Γ) ≤

C

(Kα)t
‖(∇b)‖tLt(Γ) < +∞.

If Ω̃1 = ∅, then b
NCKαV (B0)

is a (1,∞) atom and we are done. Assume now that Ω̃1 6= ∅ and
define the balls Bi and the functions χi as in the proof of Proposition 4.1. Set also

hi := (b− ci)χi,

where

ci :=
1∑

x∈Bi
χi(x)m(x)

∑

x∈Bi

b(x)χi(x)m(x).

Clearly, supp hi ⊂ Bi. Moreover,

∑

x∈Bi

hi(x)m(x) = 0. (5.67)

We now claim:
‖∇hi‖L1(Γ) ≤ CαV (Bi). (5.68)

Indeed, arguing as in the proof of Proposition 5.6, one has, for all x ∼ y ∈ Γ,

bi(y) − bi(x) = ((b(y) − b(x))χi(y) + (b(x) − ci)(χi(y) − χi(x))
= A(x, y) + B(x, y).

On the one hand, using the support condition on χi,

∑

x∼y

|A(x, y)|m(x) ≤
∑

x∈2Bi

|∇b(x)|m(x) ≤ CV (Bi)Kα. (5.69)

On the other hand, ∑

x∼y

|B(x, y)|m(x) ≤ C

ri

∑

x∈2Bi

|b(x) − ci|m(x).
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But
‖b− ci‖L1(2Bi)

≤ ‖b− bBi
‖L1(2Bi)

+ CV (Bi) |bBi
− ci| ,

and, arguing as in the proof of Proposition 5.6 and using (P1), one obtains

∑

x∼y

|B(x, y)|m(x) ≤
∑

x∈2Bi

|∇b(x)|m(x) ≤ CV (Bi)Kα. (5.70)

Thus, (5.69) and (5.70) yield (5.68).

Define now the functions g (denoted by g0 in the sequel) and h as in the proof of Proposition
4.1, so that

b =
∑

j

hj + g0. (5.71)

Observe that the series in (5.71) converges in Ẇ 1,1(Γ). Indeed, by (5.68),

∑

j

‖∇hj‖L1(Γ) =
∑

j

‖∇hj‖L1(2Bj)

≤ C
∑

j

V (Bj)
1−1/t ‖∇hj‖Lt(2Bj)

≤ CKα
∑

j

V (Bj)

≤ C(Kα)1−t ‖∇b‖tLt(Γ)

≤ C(Kα)1−tV (B0).

Moreover, since
∑

b(x)m(x) = 0 and
∑

hj(x)m(x) = 0 for all j, one also has
∑

g0(x)m(x) = 0.
Arguing as in the proof of Proposition 4.1, one establishes that

‖∇g0‖L∞(Γ) ≤ CKα.

It follows that a0 = g0
NCKαV (B0)

is a (1,∞)-atom, and (5.71) yields

b = NCKαV (B0)a0 +
∑

j∈N

hj

Thus, properties (5.59), (5.60), (5.61) and (5.62) hold. Property (5.64) has already been
checked in (5.68). Moreover,

|∇hj(x)| ≤ |b(x) − cj||∇χj(x)| + (max
y∼x

χj(y))|∇b(x)|
= I + II.

We estimate I as follows:

I ≤ C

rj
|b(x) − cj |.
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But, following the proof of Theorem 0.1 in [BB10], if lj ∈ Z is such that 2lj ≤ rj < 2lj+1, one
has, using (P1),

|b(x) − cj| ≤
−1∑

k=−(lj+1)

∣∣bB(x,2krj) − bB(x,2k+1rj)

∣∣ +
∣∣bB(x,rj) − cj

∣∣

≤
−1∑

k=−(lj+1)

1

V (x, 2krj)

∑

z∈B(x,2krj)

∣∣b(z) − bB(x,2k+1rj)

∣∣m(z) +
∣∣bB(x,rj) − b2Bj

∣∣

+

∣∣∣∣∣∣
1∑

z∈Bj
χj(z)m(z)

∑

z∈Bj


b(z) − 1

V (2Bj)

∑

w∈2Bj

b(w)m(w)


χj(z)m(z)

∣∣∣∣∣∣

≤ C
−1∑

k=−(lj+1)

1

V (x, 2k+1rj)

∑

z∈B(x,2k+1rj)

∣∣b(z) − bB(x,2k+1rj)

∣∣m(z) +
∣∣bB(x,rj) − b2Bj

∣∣

+

∣∣∣∣∣∣
1∑

z∈Bj
χj(z)m(z)

∑

z∈Bj


b(z) − 1

V (2Bj)

∑

w∈2Bj

b(w)m(w)


χj(z)m(z)

∣∣∣∣∣∣

≤ C

−1∑

k=−(lj+1)

2k+1rjMHL(|∇b|)(x) +
1

V (2Bj)

∑

z∈2Bj

∣∣b(z) − b2Bj

∣∣m(z)

+
1∑

z∈Bj
χj(z)m(z)

∑

z∈2Bj

∣∣∣∣∣∣
b(z) − 1

V (2Bj)

∑

w∈2Bj

b(w)m(w)

∣∣∣∣∣∣
|χj(z)|m(z)

≤ Crj (MHL(|∇b|)(x) + Kα) .

Moreover, II ≤ |∇b(x)| ≤ MHL(|∇b|)(x). Finally, (5.63) is satisfied. The construction for
l = 1 is therefore complete.

Assuming now that the construction is done for l, the construction for l + 1 is performed by
arguments analogous to the previous one (see also the proof of Theorem 0.1 in [BB10]). This
ends the proof of Proposition 5.9.

5.5 Interpolation between Hardy-Sobolev and Sobolev spaces

To establish Theorem 2.14, observe that, by Theorems 2.9 and 2.12, f ∈ Ṡ1,1(Γ) (resp. f ∈
Ẇ 1,p(Γ) if p > 1) if and only if M+f ∈ L1(Γ) (resp. M+f ∈ Lp(Γ). Therefore, Theorem 2.14
follows from the classical linearization method of maximal operators (see [SW71], Chapter 5).

6 Boundedness of Riesz transforms

6.1 The boundedness of Riesz transforms on Hardy-Sobolev spaces

This section is devoted to the proof of Theorem 2.15. We first establish:
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Proposition 6.1 There exists C > 0 such that, for all atom a ∈ H1(Γ), (I−P )−1/2a ∈ Ṡ1,1(Γ)
and ∥∥(I − P )−1/2a

∥∥
Ṡ1,1(Γ)

≤ C. (6.72)

The proof relies on some estimates for the iterates of p, taken from [Rus00, Rus01]. Define

p0(x, y) :=

{
1 if x = y,
0 if x 6= y,

and, for all k ∈ N and all x, y ∈ Γ,

pk+1(x, y) =
∑

z∈Γ

p(x, z)pk(z, y).

By (2.5), one has
pk(x, y)m(x) = pk(y, x)m(y)

for all k ∈ N and all x, y ∈ Γ.
Let y0 ∈ Γ. For all k ∈ N and all x ∈ Γ, define

qk(x, y) :=
pk(y, x) − pk(y0, x)

m(x)
.

Recall the following bounds on pk and qk ([Rus00], Lemmata 2 and 4 and [Rus01], Lemmata
28 and 29):

Lemma 6.2 There exist C, α > 0 such that, for all y ∈ Γ,

1. ∑

x∈Γ

|∇xpk(x, y)|2 exp

(
α
d2(x, y)

k

)
m(x) ≤ C

V (y,
√
k)

m2(y),

2. ∑

x∈Γ

|∇xpk(x, y)|2 exp

(
α
d2(x, y)

k

)
m(x) ≤ C

kV (y,
√
k)

m2(y).

Lemma 6.3 There exist C, h, α > 0 such that, for all y0, y ∈ Γ and all k ≥ 1 such that
d(y, y0) ≤

√
k,

1.
∑

x∈Γ

|qk(x, y)|2 exp

(
α
d2(x, y)

k

)
m(x) ≤ C

V (y,
√
k)

(
d(y, y0)√

k

)h

,

2.
∑

x∈Γ

|∇xqk(x, y)|2 exp

(
α
d2(x, y)

k

)
m(x) ≤ C

kV (y,
√
k)

(
d(y, y0)√

k

)h

.
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Proof of Proposition 6.1: let a be an atom supported in B = B(y0, r). Pick up a sequence
of functions (χj)j≥0 such that

supp χ0 ∈ 4B, supp χj ⊂ 2j+2B \ 2j−1B, ‖dχj‖∞ ≤ C

2jr

and ∑

j≥0

χj = 1 on Γ.

For all j ≥ 0, all x ∈ Γ and all y ∼ x, one has

χj(y)(I − P )−1/2a(y) − χj(x)(I − P )−1/2a(x) = χj(y)
(
(I − P )−1/2a(y) − (I − P )−1/2a(x)

)

+ (I − P )−1/2a(x) (χj(y) − χj(x)) .

It follows that, if ∇
(
χj(I − P )−1/2a

)
(x) 6= 0, then either χj(x) 6= 0, or there exists y ∼ x

such that χj(y) 6= 0. As a consequence, supp ∇
(
χj(I − P )−1/2a

)
⊂ Cj(B) := 2j+3B \ 2j−2B

if j ≥ 3 and supp ∇
(
χj(I − P )−1/2a

)
⊂ Cj(B) := 2j+3B if j ≤ 2. Decompose (I − P )−1/2a

as

(I − P )−1/2a =
∑

j≥0

χj(I − P )−1/2a

=
∑

j≥0

V 1/2(2j+3B)
∥∥∇
(
χj(I − P )−1/2a

)∥∥
L2(Γ)

χj(I − P )−1/2a

V 1/2(2j+3B) ‖∇ (χj(I − P )−1/2a)‖L2(Γ)

:=
∑

j≥0

V 1/2(2j+3B)
∥∥∇
(
χj(I − P )−1/2a

)∥∥
L2(Γ)

bj .

We first check that, for all j ≥ 0, up to a constant only depending on the constants of the
graph Γ, bj is an atom in ḢS1

2,ato(Γ) if, in Definition 2.11, condition 3 is replaced by condition
3′ in Remark 2.13. Indeed, since (D) and (P1) hold, there exists C > 0 such that, for all balls
B of radius r and all functions f ∈ W 1,2

0 (B),

‖f‖L2(B) ≤ Cr ‖∇f‖L2(B) (6.73)

(see [BR09], inequality (8.2)). Then, for all j, since χj is supported in 2j+2B, (6.73) yields

∥∥χj(I − P )−1/2a
∥∥
L2(2j+2B)

≤ C2j+2r
∥∥∇
(
χj(I − P )−1/2a

)∥∥
L2(Γ)

,

which shows that
‖bj‖L2(2j+2B) ≤ C2j+2rV −1/2(2j+2B),

as claimed.
The estimate (6.72) will therefore be a consequence of

∑

j≥0

V 1/2(2j+3B)
∥∥∇
(
χj(I − P )−1/2a

)∥∥
L2(Γ)

≤ C. (6.74)
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Write
∥∥∇
(
χj(I − P )−1/2a

)∥∥
L2(Γ)

≤
∥∥∇(I − P )−1/2a

∥∥
L2(Cj(B))

+ ‖∇χj‖∞
∥∥(I − P )−1/2a

∥∥
L2(Cj(B))

:= Sj + Tj .

Let us first focus on Tj . As in [BR09], we use the expansion

(I − P )−1/2a =

+∞∑

k=0

akP
ka

=

r2∑

k=0

akP
ka +

+∞∑

k=r2+1

akP
ka

:= f1 + f2,

where the ak’s are defined by

(1 − x)−1/2 =

+∞∑

k=0

akx
k

for all x ∈ (−1, 1). Recall that, when k → +∞,

ak ∼
1√
kπ

. (6.75)

For f1,

‖f1‖L2(Cj(B)) ≤
r2∑

k=0

ak
∥∥P ka

∥∥
L2(Cj (B))

. (6.76)

For k = 0, P ka = a so that ∥∥P ka
∥∥
L2(Γ)

≤ V (B)−1/2.

Let h ∈ L2(Cj(B)) with ‖h‖L2 ≤ 1. For all 1 ≤ k ≤ r2, Lemma 6.2 yields

∣∣∣∣∣∣

∑

x∈Cj(B)

P ka(x)h(x)m(x)

∣∣∣∣∣∣
≤

∑

x∈Cj(B)

|h(x)|
(
∑

y∈Γ

pk(x, y) |a(y)|
)
m(x)

=
∑

y∈Γ

|a(y)|


 ∑

x∈Cj(B)

pk(x, y) exp

(
αd2(x, y)

2k

)
exp

(
−αd2(x, y)

2k

)

|h(x)|m(x))

≤ e−c 22jr2

k

∑

y∈Γ

|a(y)|
(
∑

x∈2j+3B

|pk(x, y)|2 exp

(
αd2(x, y)

k

)
m(x)

)1/2

‖h‖L2(Cj(B))

≤ Ce−c 22jr2

k

∑

y∈B

|a(y)|
V 1/2(y,

√
k)

m(y).

(6.77)
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But, for all y ∈ B, (D) shows that

1

V (y,
√
k)

=
1

V (y0,
√
k)

V (y0,
√
k)

V (y,
√
k)

≤ 1

V (y0,
√
k)

V (y,
√
k + r)

V (y,
√
k)

≤ 1

V (y0,
√
k)

(
1 +

r√
k

)D

≤ 1

V (2j+3B)

V (2j+3B)

V (y0,
√
k)

(
1 +

r√
k

)D

≤ 1

V (2j+3B)

(
1 +

2j+3r√
k

)2D

.

(6.78)

Therefore, it follows from (6.77) and the fact that ‖a‖1 ≤ 1 that

∥∥P ka
∥∥
L2(Cj(B))

≤ C

V 1/2(2j+3B)
exp

(
−c′

22jr2

k

)
.

Since, when j ≥ 3 and k = 0, P ka = a and Cj(B) are disjoint, one obtains

‖f1‖L2(Cj (B)) ≤
C

V 1/2(2j+3B)

(
r2∑

k=1

1√
k

exp

(
c′

22jr2

k

)
+ cj

)
, (6.79)

with cj = 1 if j ≤ 2 and cj = 0 if j ≥ 3.
For f2,

‖f2‖L2(Cj(B)) ≤
∞∑

k=r2+1

ak

∥∥∥∥∥
∑

y∈Γ

qk(·, y)a(y)m(y)

∥∥∥∥∥
L2(Cj(B))

.

Pick up a function h ∈ L2(Cj(B)) with ‖h‖L2 ≤ 1 again. For all k ≥ r2 + 1, Lemma 6.3 yields
∣∣∣∣∣∣

∑

x∈Cj(B)

P ka(x)h(x)m(x)

∣∣∣∣∣∣
≤

∑

x∈Cj(B)

|h(x)|
(
∑

y∈Γ

qk(x, y) |a(y)|m(y)

)
m(x)

=
∑

y∈Γ

|a(y)|


 ∑

x∈Cj(B)

qk(x, y) exp

(
αd2(x, y)

2k

)
exp

(
−αd2(x, y)

2k

)

|h(x)|m(x))m(y)

≤ e−c 22jr2

k

∑

y∈Γ

|a(y)|


 ∑

x∈Cj(B)

|qk(x, y)|2 exp

(
αd2(x, y)

k

)
m(x)




1/2

× ‖h‖L2(Cj(B)) m(y)

≤ Ce−c 22jr2

k

(
r√
k

)h/2∑

y∈B

|a(y)|
V 1/2(y,

√
k)

m(y)

≤ C

V 1/2(y0,
√
k)

e−c 22jr2

k

(
r√
k

)h/2

.

(6.80)
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Arguing as before and using (2.21), one therefore obtains

‖f2‖L2(Cj (B)) ≤
+∞∑

k=r2+1

C√
kV 1/2(y0,

√
k)

e−c 22jr2

k

(
r√
k

)h/2

=
C

V 1/2(2j+3B)

+∞∑

k=r2+1

1√
k

V 1/2(2j+3B)

V 1/2(y0,
√
k)

e−c 22jr2

k

(
r√
k

)h/2

≤ C

V 1/2(2j+3B)

+∞∑

k=r2+1

1√
k
f

(
2j+3r√

k

)
e−c 22jr2

k

(
r√
k

)h/2

,

(6.81)

where

f(u) =

{
uD/2 if u > 1,
ud/2 if u ≤ 1.

Gathering (6.79) and (6.81), one therefore obtains

Tj ≤
C

2jrV 1/2(2j+3B)

(
cj +

r2∑

k=1

1√
k
e−c 22jr2

k +

+∞∑

k=r2+1

1√
k
e−c 22jr2

k f

(
2j+3r√

k

)(
r√
k

)h/2
)
.

Thus,

V 1/2(2j+3B)Tj ≤ C

2jr

(
cj +

r2∑

k=1

1√
k
e−c 22jr2

k +

+∞∑

k=r2+1

1√
k
e−c 22jr2

k f

(
2j+3r√

k

)(
r√
k

)h/2
)

≤ C

2jr

∫ 2r2

0

e−c 22jr2

t
dt√
t

+

∫ +∞

r2
e−c 22jr2

t f

(
2j+3r√

t

)(
r√
t

)h/2
dt

t

= C

∫ +∞

22j−1

e−cu du

u3/2
+ C

∫ 22j

0

e−cuf(8
√
u)

(√
u

2j

)h/2
du

u3/2

≤ C2−jh/2.

Note that we used the fact that d ≥ 1 in the last inequality (this is the only place where this
assumption is used). Finally,

+∞∑

j=0

V 1/2(2j+3B)Tj ≤ C. (6.82)

Let us now focus on Sj . For j ≤ 2, the L2-boundedness of ∇(I − P )−1/2 yields
∥∥∇(I − P )−1/2a

∥∥
L2(Cj (B))

≤
∥∥∇(I − P )−1/2a

∥∥
L2(Γ)

≤ CV (B)−1/2.

Take now j ≥ 3. As before, one has

∇(I − P )−1/2a ≤
+∞∑

k=0

ak∇P ka

=

r2∑

k=0

ak∇P ka +

+∞∑

k=r2+1

ak∇P ka

:= g1 + g2.
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We estimate the L2-norms of g1 and g2. For g1,

‖g1‖L2(Cj (B)) ≤
r2∑

k=0

ak
∥∥∇P ka

∥∥
L2(Cj(B))

. (6.83)

Notice that, when k = 0, ∇P ka = ∇a is supported in 2B, which is disjoint from Cj(B) since
j ≥ 3. Let h ∈ L2(Cj(B)) with ‖h‖L2 ≤ 1. For all 1 ≤ k ≤ r2, Lemma 6.2 yields

∣∣∣∣∣∣

∑

x∈Cj(B)

∇P ka(x)g(x)m(x)

∣∣∣∣∣∣
≤

∑

x∈Cj(B)

|h(x)|
(
∑

y∈Γ

∇xpk(x, y) |a(y)|
)
m(x)

=
∑

y∈Γ

|a(y)|


 ∑

x∈Cj(B)

∇xpk(x, y) exp

(
αd2(x, y)

2k

)
exp

(
−αd2(x, y)

2k

)

|h(x)|m(x))

≤ e−c 22jr2

k

∑

y∈Γ

|a(y)|


 ∑

x∈Cj(B)

|∇xpk(x, y)|2 exp

(
αd2(x, y)

k

)
m(x)




1/2

‖h‖L2(Cj (B))

≤ C√
k
e−c 22jr2

k

∑

y∈B

|a(y)|
V 1/2(y,

√
k)

m(y).

(6.84)
Thus, it follows from (6.78), (6.84) and the fact that ‖a‖1 ≤ 1 that

∥∥∇P ka
∥∥
L2(Cj(B))

≤ C√
kV 1/2(2j+3B)

exp

(
−c′

22jr2

k

)
.

As a consequence of (6.75) and (6.83), one therefore has

‖g1‖L2(Cj(B)) ≤
C

V 1/2(2j+3B)

(
cj +

r2∑

k=1

1

k
exp

(
c′

22jr2

k

))
, (6.85)

where, again, cj = 1 if j ≤ 2 and cj = 0 if j ≥ 3.
For g2, observe that, for all x ∈ Γ, since

∑
y∈Γ a(y)m(y) = 0,

P ka(x) =
∑

y∈Γ

pk(x, y)

m(y)
a(y)m(y)

=
∑

y∈Γ

(
pk(x, y)

m(y)
− pk(x, y0)

m(y0)

)
a(y)m(y)

=
1

m(x)

∑

y∈Γ

(pk(y, x) − pk(y0, x)) a(y)m(y)

=
∑

y∈Γ

qk(x, y)a(y)m(y).
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As a consequence,

‖g2‖L2(Cj (B)) ≤
∞∑

k=r2+1

ak

∥∥∥∥∥
∑

y∈Γ

∇xqk(·, y)a(y)m(y)

∥∥∥∥∥
L2(2j+3B)

.

Pick up a function h ∈ L2(Cj(B)) with ‖h‖L2 ≤ 1 again. For all k ≥ r2 + 1, Lemma 6.3 yields

∣∣∣∣∣∣

∑

x∈Cj(B)

∇P ka(x)h(x)m(x)

∣∣∣∣∣∣
≤

∑

x∈Cj(B)

|h(x)|
(
∑

y∈Γ

∇xqk(x, y) |a(y)|m(y)

)
m(x)

=
∑

y∈Γ

|a(y)|


 ∑

x∈Cj(B)

∇xqk(x, y) exp

(
αd2(x, y)

2k

)
exp

(
−αd2(x, y)

2k

)

|h(x)|m(x))m(y)

≤ e−c 22jr2

k

∑

y∈Γ

|a(y)|


 ∑

x∈Cj(B)

|∇xqk(x, y)|2 exp

(
αd2(x, y)

k

)
m(x)




1/2

× ‖h‖L2(Cj(B)) m(y)

≤ C√
k
e−c 22jr2

k

(
r√
k

)h/2∑

y∈B

|a(y)|
V 1/2(y,

√
k)

m(y)

≤ C√
kV 1/2(y0,

√
k)

e−c 22jr2

k

(
r√
k

)h/2

.

(6.86)
Using (6.75) again, as well as (D) and (2.21), one therefore obtains

‖g2‖L2(Cj(B)) ≤
+∞∑

k=r2+1

C

kV 1/2(y0,
√
k)

e−c 22jr2

k

(
r√
k

)h/2

=
C

V 1/2(2j+3B)

+∞∑

k=r2+1

1

k

V 1/2(2j+3B)

V 1/2(y0,
√
k)

e−c 22jr2

k

(
r√
k

)h/2

≤ C

V 1/2(2j+3B)

+∞∑

k=r2+1

1

k
f

(
2j+3r√

k

)
e−c 22jr2

k

(
r√
k

)h/2

,

(6.87)

Gathering (6.85) and (6.87), one therefore obtains

Sj ≤
C

V 1/2(2j+3B)

(
cj +

r2∑

k=1

1

k
e−c 22jr2

k +

+∞∑

k=r2+1

1

k
e−c 22jr2

k f

(
2j+3r√

k

)(
r√
k

)h/2
)
.
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Thus,

V 1/2(2j+3B)Sj ≤ C

(
cj +

r2∑

k=1

1

k
e−c 22jr2

k +

+∞∑

k=r2+1

1

k
e−c 22jr2

k f

(
2j+3r√

k

)(
r√
k

)h/2
)

≤ C

∫ 2r2

0

e−c 22jr2

t
dt

t
+ C

∫ +∞

r2
e−c 22jr2

t f

(
2j+3r√

t

)(
r√
k

)h/2
dt

t

= C

∫ +∞

22j−1

e−cudu

u
+ C

∫ 22j

0

e−cuf(8
√
u)

(√
u

2j

)h/2
du

u
≤ C2−jh/2,

which proves that
+∞∑

j=0

V 1/2(2j+3B)Sj ≤ C. (6.88)

Finally, (6.88) and (6.82) yield (6.74) and the proof of Proposition 6.1 is complete.
Let us now derive Theorem 2.15 from Proposition 6.1. Take f ∈ H1(Γ) and decompose

f =

+∞∑

j=0

λjaj

with
∑+∞

j=0 |λj | ≤ 2 ‖f‖H1(Γ). For all J ≥ 0, define

fJ :=
J∑

j=0

λjaj,

so that fJ → f in H1(Γ). For all j1 < j2,

(I − P )−1/2fj2 − (I − P )−1/2fj1 =
∑

j1<j≤j2

λj(I − P )−1/2aj ,

which entails, by Proposition 6.72,
∥∥(I − P )−1/2fj2 − (I − P )−1/2fj1

∥∥
Ṡ1,1(Γ)

≤
∑

j1<j≤j2

|λj|
∥∥(I − P )−1/2aj

∥∥
Ṡ1,1(Γ)

≤ C
∑

j1<j≤j2

|λj| .

This shows that ((I − P )−1/2fj)j≥0 is a Cauchy sequence in Ṡ1,1(Γ), and therefore converges
to some function g ∈ Ṡ1,1(Γ). Moreover, using Proposition 6.1 again,

‖g‖Ṡ1,1(Γ) = lim
J→+∞

∥∥(I − P )−1/2fJ
∥∥
Ṡ1,1(Γ)

≤ C

J∑

j=0

|λj| ≤ 2C ‖f‖H1(Γ) .

Furthermore, since fJ → f in H1(Γ), d(I − P )−1/2fJ → d(I − P )−1/2f in L1(E) (see [Rus01],
Theorem 2.1). Since d(I − P )−1/2fJ → dg in L1(E) by what we have just proved, d(I −
P )−1/2f = dg. As a consequence, g = (I − P )−1/2f ∈ Ṡ1,1(Γ) and

∥∥(I − P )−1/2f
∥∥
Ṡ1,1(Γ)

≤ 2C ‖f‖H1(Γ) ,

which concludes the proof of Theorem 2.15.
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6.2 Riesz transforms and Hardy spaces on edges

Apart from Theorem 2.15, it is also possible to establish that the Riesz transform maps H1(Γ)
into a Hardy space on E, under assumptions (D) and (P1), without assuming (2.21).
Indeed, since E, endowed with its distance d and its measure µ, is also a space of homogeneous
type (see Section 2.1.1), we can define an atomic Hardy space on E. More precisely, an atom
is a function A ∈ L2(E, µ) (recall that A is antisymmetric), supported in a ball B ⊂ E and
satisfying ∑

(x,y)∈B

A(x, y)µxy = 0 and ‖A‖L2(E) ≤ µ(B)−1/2.

Define then H1(E) by the same procedure as for H1(Γ).
Our result is:

Theorem 6.4 Assume that Γ satisfies (D) and (P1). Then d(I − P )−1/2 maps continuously
H1(Γ) into H1(E).

The proof goes through a duality argument. Let us introduce the BMO(E) space. A function
Φ on E belongs to BMO(E) if, and only if, Φ is antisymmetric and

‖Φ‖BMO(E) :=


sup

B⊂E

1

µ(B)

∑

(x,y)∈B

|Φ(x, y) − ΦB |2 dµxy




1/2

< +∞,

where the supremum is taken over all balls B ⊂ E and, as usual,

ΦB :=
1

µ(B)

∑

(x,y)∈B

Φ(x, y)µxy.

Define also CMO(E) as the closure in BMO(E) of the space of antisymmetric functions on
E with bounded support. Since E is a space of homogeneous type, one has ([CW77]):

Theorem 6.5 1. The dual of H1(E) is BMO(E).

2. The dual of CMO(E) is H1(E).

As in the proof of Theorem 2.15, Theorem 6.4 will be a consequence of:

Proposition 6.6 Assume (D) and (P1). Then there exists C > 0 such that, for all atom
a ∈ H1(Γ), ∥∥d(I − P )−1/2a

∥∥
H1(E)

≤ C.

Proof of Proposition 6.6: we argue similarly to the proof of [AT98], Chapter 4, Lemma
11 (see also Theorem 1 in [MR03]), and will therefore be very sketchy. Let a be an atom in
H1(Γ) supported in a ball B. By assertion 2 in Theorem 6.5, it is enough to prove that, for
all antisymmetric function Φ on E with bounded support,

∣∣∣∣∣∣

∑

(x,y)∈E

d(I − P )−1/2a(x, y)Φ(x, y)µxy

∣∣∣∣∣∣
≤ C ‖Φ‖BMO(E) . (6.89)
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Since d(I − P )−1/2a ∈ L1(E) and
∑

(x,y)∈E

d(I − P )−1/2a(x, y)µxy = 0,

one has
∑

(x,y)∈E

d(I − P )−1/2a(x, y)Φ(x, y)µxy =
∑

(x,y)∈E

d(I − P )−1/2a(x, y) (Φ(x, y) − Φ2B)µxy, (6.90)

and (6.89) is derived from (6.90) as in the proof of Lemma 11 in Chapter 4 of [AT98].

Here is another result about the boundedness of Riesz transforms on Hardy spaces. A function
u : Γ → R is said to be harmonic on Γ if and only if (I − P )u(x) = 0 for all x ∈ Γ. Then:

Theorem 6.7 Let u : Γ → R be a harmonic function on Γ. Assume that there exist x0 ∈ Γ
and C > 0 such that, for all x ∈ Γ,

|u(x)| ≤ C(1 + d(x0, x)).

Define, for all functions f on Γ and all x ∈ Γ,

Ru(f)(x) =
∑

y∈Γ

d(I − P )−1/2f(x, y)du(x, y)µxy.

Then Ru is H1(Γ) bounded.

Theorem 6.7 is a discrete counterpart of Theorem 1 in [MR03] and the proof goes through
a duality argument, as in the proof of Theorem 1 in [MR03]. Indeed, the H1(Γ) − L1(E)
boundedness of f 7→ d(I − P )−1/2f yields that Ru is H1(Γ) − L1(Γ) bounded. Then, if
f ∈ H1(Γ), one checks that ∑

x∈Γ

Ruf(x)m(x) = 0. (6.91)

Indeed,
∑

x∈Γ

Ruf(x)m(x) =
∑

x∈Γ

m(x)
∑

y∼x

d(I − P )−1/2f(x, y)du(x, y)p(x, y)

=
∑

y∈Γ

(
∑

x∈Γ

d(I − P )−1/2f(x, y)du(x, y)p(x, y)m(x)

)

=
∑

x,y

d(I − P )−1/2f(x, y)du(x, y)µxy

= 〈d(I − P )−1/2f, du〉L2(E)

= 〈(I − P )−1/2f, δdu〉L2(E)

= 0,

since δdu = 0. Then, using (6.91), one proves, arguing as in [MR03], that, if a is an atom in
H1(Γ), then, for all functions ϕ with bounded support on Γ,

∣∣∣∣∣
∑

x∈Γ

Ruf(x)ϕ(x)m(x)

∣∣∣∣∣ . ‖ϕ‖BMO(Γ) .
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The fact that H1(Γ) is the dual space of CMO(Γ) then shows that

‖Rua‖H1(Γ) ≤ C,

and one concludes using the atomic decomposition for functions in H1(Γ).

Let us make a few comments on Theorems 6.4 and 6.7. The conclusion of Theorem 6.4 says
that, if f ∈ H1(Γ), then d(I − P )−1/2f has an atomic decomposition of the form

d(I − P )−1/2f =
∑

k∈N

λkAk

where
∑

k |λk| ≤ C ‖f‖H1(Γ) and the Ak’s are atoms in H1(E). However, one does not claim

that each Ak is equal to dak where ak is an atom in Ṡ1,1(Γ). In this sense, the conclusion of
Theorem 6.4 is weaker than the one of Theorem 2.15. On the other hand, assumption (2.21)
is not required in Theorem 6.4. Finally, Theorem 6.7 says that a scalar version of the Riesz
transform is H1(Γ)-bounded and does not require assumption (2.21) either.

Acknowledgements: the authors would like to thank G. Dafni and E. M. Ouhabaz for
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