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Abstract

Let I' be a graph. Under suitable geometric assumptions on I', we give several equiv-
alent characterizations of Sobolev and Hardy-Sobolev spaces on I'; in terms of maximal
functionals, Hajlasz type functionals or atomic decompositions. As an application, we
study the boundedness of Riesz transforms on Hardy spaces on I'. This gives the discrete
counterpart of the corresponding results on Riemannian manifolds.
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1 Introduction

1.1 The Euclidean case

Let n € N* and 1 < p < +oo. Throughout the paper, if A(f) and B(f) are two quantities
depending on a function f ranging in a set F, say that A(f) < B(f) if and only if there exists
C > 0 such that, for all f € F,

A(f) < CB(f),

and that A(f) ~ B(f) if and only if A(f) < B(f) and B(f) S A(f).
The classical W!P(R™) space, or its homogenous version W!P(R™), can be characterized in
terms of maximal functions. Namely, if f € L (R™), define, for all z € R™,

loc

Baz T

NS (@) = s =z [ 150 = foldo

where the supremum is taken over all balls B containing x and

1
5= — d

is the mean value of f over B. Here and after in this section, if B C R" is a ball, |B| stands
for the Lebesgue measure of B and r(B) for its radius.

Then ([Cal72)), for 1 < p < +o0, Vf € LP(R") if and only if Nf € LP(R™), and

||Vf||LP(]Rn) ~ ||Nf||LP(R") :

Another maximal function characterizing Sobolev spaces was introduced in [ART05]. For
fe L} (R") and x € R", define

loc

M f(z) := sup nf(y)div P(y)dy|,




where the supremum is taken over all vector fields ® € L*>(R"™, C"), whose distributional
divergence is a bounded function in R", supported in a ball B C R" containing x, with

[l +7(B) [|div @, < =
| B

Then ([ARTO05]), for 1 < p < +oo, Vf € LP(R™) if and only if Nf € LP(R"), and

||Vf||LP(]Rn) ~ ||Nf||LP(R") .

Another description of Sobolev spaces is due to Hajtasz. For f € L] (R"), 1 < p < +oo, say

loc

that f € M'P(R") if and only if there exists g € LP(R") such that, for all z,y € R,

[f(2) = f(y)] < d(z,y)(9(x) + 9(y))- (1.1)

Set
1 Lo ey 2= LGl Lo gy »

the infimum being taken over all functions g such that (1.1) holds. It was proved by Hajtasz
([Haj96]) that, for 1 < p < +oo, f € M¥(R") if and only if Vf € LP(R") and

||f||M1,P(]Rn) ~ ||Vf||LP(]Rn) : (1.2)

What happens in these results when p = 1 7 The previous results break down when p = 1, but
correct substitutes involving Hardy-Sobolev spaces can be given. More precisely (see below
in the introduction), M>'(R") coincides with the space of locally integrable functions with
gradient in the H'(R™) Hardy space.

The H'(R™) Hardy space is well-known to be the right substitute for L!(R") for many questions
in harmonic analysis. Let us recall one possible definition of H!(R"). Fix a function ¢ € S(R")
such that [, ¢(z)dz = 1. For all t > 0, define p;(z) := ¢t "¢ (£). Define then H'(R") as the
space of locally integrable functions f on R™ such that the vertical maximal function

Mf(x) = Sup lpr * f(2)]

belongs to L!'(R"). Define
Hf”Hl(Rn) = HMfHLl(R”) :

As for classical Sobolev spaces, let us consider the Hardy-Sobolev space H'!(R™) made of
functions f € L'(R") such that Vf € H'(R"), in the sense that, for all 1 < j < n, 2L ¢

> Oz

H'(R"). Define also H"“'(R") as the space of functions f € L. (R") such that Vf € H*(R"),
equipped with the semi-norm

1A gy = WVl gy -

Various characterizations of this space (as well as its adaptations to the case of domains of
R™) were given in the literature. It can be described in terms of a functional involving second



order differences ([Str90]). In [Miy90], H*'(R") was characterized in terms of the maximal
function N f. Namely, for f € L} (R"), Vf € H'(R") if and only if Nf € L'(R") and

loc

n

INFllp ey ~ IV gy = >

j=1

of
8.’,13']‘

HI(R”).

It was shown in [ARTO5] that the functional M f defined above characterizes Hardy-Sobolev
spaces (actually, this was the reason why this maximal function was introduced in [ART05],
since it is particularly suited to the study of Hardy-Sobolev spaces on strongly Lipschitz

domains of R™). More precisely, Vf € H'(R") if and only if M f € L'(R") and
HMfHLl(Rn) ~ vaHHl(R") :

Moreover, going back to Hajlasz’s functional, it was proved in [KSO08] that f € M LY R™) if
and only if Vf € H'(R") and

A vy ~ IV Fll gy -

Finally, an atomic decomposition for Hardy-Sobolev spaces was given in [Str90]. In this paper,
an atom is a function b supported in a cube such that (—A)'/2b satisfies suitable L? estimates
([Str90], definition 5.1).

Another characterization of H'(R™) states that it is exactly the space of functions f € L'(R")
such that, for all 1 < j < n, %(—A)*lﬂf € L'(R") (see [FST72]). The operators
R; = %(—A)*I/Qf are the Riesz transforms. Thus, (—A)~2 maps continuously H'(R")

into HV1(R").

1.2 The case of Riemannian manifolds

These various characterizations can be extended to the framework of Riemannian manifolds.
Namely, let M be a complete Riemannian manifold, endowed with its Riemannian metric d
and its Riemannian measure p. Say that M satisfies the doubling condition if there exists
C > 0 such that, for all z € M and all r > 0,

w(B(x,2r)) < Cu(Bla,r)).

Say that M satisfies an L! scaled Poincaré inequality on balls if there exists C' > 0 such that,
for all balls B C M with radius r and all functions f € C*(B),

/B (@) — fal du(z) < Or / df ()| dp(a).

Define the M'? spaces and the N f functional as in the Euclidean case. Then, for 1 < p <
+o00, f € M" if and only if Nf € LP(M) ([KT07]). A version of the maximal function in
[ARTO5] is given in [BD11], where it is shown that it characterizes M"!. Moreover, an atomic
decomposition for M1 is provided in [BD10], where it is also shown that f € M*1 if and only if
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df belongs to the Hardy space of exact differential forms H}(A'T*M) introduced in [AMROS].
Since dA™/? is bounded from Hj. (A°T*M) from Hj(A'T*M) (see [AMROS8], Theorem 5.16),
if A denotes the Laplace-Beltrami operator, A~'/2 maps continuously HL (A°T*M) into M"!.

In the present work, we investigate Sobolev and Hardy-Sobolev spaces on graphs, and estab-
lish the discrete counterpart of the results obtained on Riemannian manifolds. Namely, we
characterize Sobolev and Hardy-Sobolev spaces in terms of maximal functions and provide an
atomic decomposition for Hardy-Sobolev spaces. We also investigate the boundedness of Riesz
transforms on Hardy spaces.

2 Description of the results

2.1 Presentation of the graph

The geometric context is the same as in [BR09], and we recall it for the sake of completeness.
Let I' be an infinite set and pigy = pty, a symmetric weight on I' x I'. Say that z ~ y if and
only if i, > 0, and let E stand for the set of edges in I', defined as the set of (z,y) € I' x I’
such that p,, > 0. For all x € I, say that x is a vertex of I'.

For x,y € T', a path joining x to y is a finite sequence of vertices zo = x,--- ,xny = y such
that, for all 0 < ¢ < N — 1,2; ~ x;.1. Say that this path has length N. Assume that I' is
connected, which means that, for all x,y € T, there exists a path joining = to y. The distance
between x and y, denoted d(z,y), is defined as the shortest length of a path joining x and y.
For all x € I" and all » > 0, define the closed ball

B(z,r) :={y e I'id(z,y) <r}.

In the sequel, we always assume that I' is locally uniformly finite, which means that there
exists NV € N* such that, for all z € I', #B(z,r) < N.
For any subset Q C I, set
0N :={reQ;Iy~uzyd¢}
and

Q =0\ 0.

In other words, (2 is the set of points x € €2 such that y € {2 whenever x ~ y. Denote by Eq
the set of edges in €2,
Eqg={(z,y) e A xQ:x~y,z,yec}

We also define a distance on E. For v = (z,y) and 7/ = (2/,y) € E, set
d(v,7) := max (d(x,2'),d(y,y)) .

2.1.1 The measures on I' and £

For all z € I', set m(x) = ) fizy (recall that this sum has at most N terms). We always
Yy~x

assume in the sequel that m(x) > 0 for all z € I'. If Q@ C I, define m(2) = > m(x). For all
zeQ



x € T"and r > 0, write V (z,r) instead of m(B(z,r)) and, if B is a ball, m(B) will be denoted
by V(B).
Here is a growth assumption on the volume of balls of I", which may be satisfied or not.

Definition 2.1 [Doubling property] Say that (I',d,m) satisfies the doubling property if there
exists a constant C' > 0 such that for all balls B(xz,r),z € I';r > 0,

Viz,2r) < CV(x,r). (D)

This means that (I',d, m) is a space of homogeneous type in the sense of Coifman and Weiss
([CWTT]). It is plain to check that, if I satisfies (D), then there exist C, s > 0 such that, for
allz €' allr > 0 and all 6 > 1,

V(z,0r) < CO°V(x,r). (2.3)
Remark 2.2 Observe also that, since I' is infinite, it is also unbounded (since it is locally
uniformly finite) so that, if (D) holds, then m(T") = o0 (see [Mar01]).

For all 1 < p < +o0, say that a function f : ' — R belongs to LP(T") if

1/p
Hf”LP(F) (Z ‘f ‘pm ) < 400.

zel

Note that the L?(T')-norm derives from the scalar product

(f,9) 2 Zf
zel
Say that f € L>(T) if
||f||Loo(1—~) - 5161? |f($)| < 400.

If B C T is a ball, denote by L5(B) the subspace of LP(I') made of functions f supported in

B and satisfying
S faymia) -
zeB

We also need a measure on F. For any subset A C E, define

= D oy

(z,y)EA

It is easily checked ([BR09], Section 8) that, if (D) holds, then E, equipped with the distance
d and the measure p, is a space of homogeneous type.

Define LP spaces on E in the following way. For 1 < p < +o0, say that a function F on E
belongs to LP(F) if and only if F' is antisymmetric, which means that F(x,y) = —F(y,z) for

all (z,y) € E, and
1

||F||I£p(E) =3 Z | (@, y) [P ey < +o0.
(z,y)eE
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Observe that the L?(E)—norm derives from the scalar product

1
<F7 G>L2(E') = 5 Z F(:L’,y)G’(a:,y)umy

z,yel’

Finally, say that F' € L*(F) if and only if F is antisymmetric and

1
||| Lo () = 3 sup |F(z,y)| < +o0.
(z,y)EE

Define LP(Eq) similarly.

2.1.2 The Markov kernel

Define p(z,y) = m“af) for all x,y € I'. Observe that p(x,y) = 0 if d(z,y) > 2. Moreover, for all
rel,

S pla,y) =1 (2.4)
and for all z,y € T,
p(z,y)m(z) = p(y, )m(y). (2.5)

Another assumption on (I, x) which will be used in the sequel is a uniform lower bound for
p(z,y) when z ~ y. For a > 0, say that (I, u) satisfies the condition A(«) if, for all z,y € T,

(x ~y & gy > am(z)) and z ~ . (A(a))

For all functions f on I' and all x € I', define

Pf(x)=> plz,y)f(y).

yel

It is easily checked ([BR09)]), using (2.5), that, for all functions f on T',
1
(I =P)f. 1) =5 py)f() = Fy)m(). (2.6)

Identity (2.6) leads to the definition of the operator “length of the gradient” by

1/2
Vf(z) = (% > play)lfy) - f(l“)l2> ,

yel

so that, for all functions f on T,

(I =P)f, Preay = IV Fll oy (2.7)



2.1.3 The differential and divergence operators

We now define a discrete differential, following the definitions of [BR09] but dealing with
functions defined on subsets of I'. Let 2 C I". For any function f : 2 — R and any v =
(x,y) € Eq, define

df (v) = f(y) = f(x). (2.8)
The function df is clearly antisymmetric on Fq. Moreover, it is easily checked ([BR09], p.313)
that, if (A(«)) holds, then for all p € [1, +o0] and all functions f on T,

1df ey ~ IV Fllo ). (2.9)

We define now a divergence operator in such a way that a discrete integration by parts formula
holds (see [BR09]). Let F be any (antisymmetric) function in L?(Eq). If f is a function on {2
vanishing on 9Q such that df € L*(Eg), one has

W Py = 5 3 A0 F )y

z,yeQ, x~y

= = > F@F(,y)

_ .y f(:c)( > p(x,yw:c,y)) m(e),

where the second line is due to the fact that F'is antisymmetric and the third one holds because

f(x) = 0 when z € 022 and all the neighbours of z in I' actually belong to 2 when = € (OZ
Thus, if we define the divergence of I’ by

0F(x) ==Y plz,y)F(z,y)
y~x, yel’
for all x € (OZ, it follows that

<df7 F>L2(EQ) = _<f7 OF (2'1())

Remark 2.3 A slightly different integration by parts formula on graphs can be found in
[CGZ05], formula 2.4.

>L2<5>'

2.1.4 The Poincaré inequality on balls

Definition 2.4 [LP Poincaré inequality on balls] Let p € [1,400). Say that I' satisfies an LP
scaled Poincaré inequality on balls if there exists a constant C > 0 such that, for all functions
f onT and all balls B C T of radius r > 0,

D f(@) = falPmlz) < Oy |V f(a)[ m(x), (F)

where

1
fr = 7157 & @ma). (2.11)



Remark 2.5 1. Note that, if (Py) holds, then one has an LP Poincaré inequality for all
p € [1,+00) (see [HK0O)]).

2. Moreover, if (P,) holds for some p € (1,4+00), there exists ¢ < p such that (P,) still holds
([K208]).

2.2 Sobolev spaces

Let I be a graph as in Section 2.1. Let 1 < p < 4-00. Say that a scalar-valued function f on
I" belongs to the Sobolev space WP(T') if and only if

1 ey = If oy + IVl oy < +o0.

As in [BR09] we will also consider the homogeneous versions of Sobolev spaces. Define TW(T")
as the space of all scalar-valued functions f on I' such that Vf € LP(T"), equipped with the
semi-norm

1A oy = IV Flloqry
If Bis any ball in T and 1 < p < +o00, denote by W, ?(B) the subspace of W'?(I') made of

functions supported in B.

2.3 Characterizations of Sobolev spaces

In the present section, we give various characterizations of Sobolev spaces on graphs. The first
one is formulated in terms of Hajlasz’s functionals (see [Hajo3b, HK00]):

Definition 2.6 Let 1 < p < +o0.

1. The inhomogeneous Sobolev space MYP(T') is defined as the space of all functions f €
LP(T') such that there exists a non-negative function g € LP(T') satisfying

[f(z) = f(y)l < d(z,y) (9(x) + 9(y)) for all z,y € T. (2.12)

We equip M'P(T') with the norm
1/ areey = N oy + it {lgllze), (2.13)

where the infimum is taken over all functions g € LP(I') such that (2.12) holds.

2. The homogeneous Sobolev space M”’(F) is defined as the space of all functions f on I’
such that there exists a non-negative function g € LP(T') satisfying (2.12). We equip
M*YP(T) with the semi-norm

1 srway = ir’}f gllze(ry,

where the infimum is taken over all functions g € LP(I') such that (2.12) holds.



Remark 2.7 If B C I is a ball, define M“(B) and M"'?(B), replacing ' by B in Definition
2.6.

We will also characterize Sobolev spaces in terms of two maximal functions.
The first maximal function is modelled on the one in [Cal72]. For all functions f on I" and all
x €T, define N f(x) b

N (@) = sup iy Z £ (y) — fBlm(y) (2.14)
S5z T yEB

where the supremum is taken over all balls B with radius 7(B) > 0 and fg denotes the mean
value of f on B defined by (2.11).

Remark 2.8 For further use, observe that, if f is a non-constant function onT', then N f(x) #
0 for allx € T'. Indeed, if N f(x) =0 for somex € T, then f(y) = fg for all balls B containing
x. Thus, f is constant on any ball containing x, therefore constant on I'.

The second maximal function we use is inspired by [ART05] and [BD11]. Its definition involves
estimates on the (discrete) divergence of test functions. More precisely, for all function f on
I, define, for all x € T,

M (f)(z) = sup > FWOF)y)mly)|, (2.15)

where the supremum is taken over all balls B C I" containing = and all antisymmetric functions
F: F — R supported in Fg and satisfying

1
1Pl < s, 6P, 5 < (2.16)

—V(B) ~ r(B)V(B)
Define now, for 1 < p < +o0,
SY(IT) = {f € L"(I); Nf € L"(I)},
equipped with the norm
||f||sl’p(r) = ||f||LP(F) + ||Nf||LP(F)

Consider also the S™P(I") space, made of functions f on I' such that Nf € L?(T), equipped
with the semi-norm

1l groy = 1N Fllpor
Define also

E'(D):={feL’(T);M"feL()},
equipped with the norm

1 oy = I loy + M oy

as well as its homogenous version.
Our first result is that, under (D), (A(«)) and (B,), the spaces WP(T'), St*(T), E*?(T") and

MU P(T), as well as their homogenous versions, coincide:

10



Theorem 2.9 Let 1 < p < +o00. Assume that I satisfies (D), (A(«)) and (P,). Then:
1. WhP(T') = S*P(T') = EY?(T) = MYP(T),
2. WW(T') = §'(T') = E'»(T) = M (T).

2.4 Characterization of Hardy-Sobolev spaces

When p = 1, as in the Euclidean case recalled in the introduction, the conclusion of Theorem
2.9 does not hold. The following example is inspired by [Haj03a|, Example 3. Take I' = Z
with its usual metric. Define, for all x € Z,

T
T a2,
f(z) =< |z|In]|z]
0 if |z] <1.
Then f € WHY(Z). Indeed, for all > 2, the mean-value theorem yields

1 1 1
_ < =
Inz In(z+1) ’ z (Inx)

[f(z+1) = fz)| =

As a consequence, for all x > 3,

V@) € 217

(Infz])*

Since f is odd, (2.17) also holds for all z < —3. As a consequence,

D V()] < +o0.

TEZ

Assume now that there exists a non-negative function g € L'(Z) such that |f(z) — f(y)| <
d(z,y) (9(x) + g(y)) for all x,y € Z. Then, for all x > 3,

|f(x) = f(=2)] <2z (g(z) + g(—2)).
Since f is odd, this means that, for all z > 3,

7@ < (9(a) + g(-2)).

Therefore,

1
2 ) > = +o00,
|x22:39( ) ; rinz
which contradicts the fact that g € L*(Z).

The goal of this section is to give an endpoint version of Theorem 2.9 when p = 1. We will
focus on the case of homogenous spaces. As it will turn out, asssuming (D) and (P;), one still
has MY(T') = SH1(T). Two extra characterizations of M (I") will be given: the first one is
formulated in terms of M™ f, the second one is an atomic decomposition. We first introduce
these new descriptions.

11



2.4.1 Maximal Hardy-Sobolev space

It turns out that, as in the Euclidean case and in the context of Riemannian manifolds (see
the introduction), Hardy-Sobolev spaces on I' can be defined by means of the functional M™.
Let us first give a definition:

Definition 2.10 (Mazimal Hardy-Sobolev space)
1. We define the Hardy-Sobolev space HSL  (T') as follows:
HSL (D) ={feL}T): M*feL'T)}. (2.18)

This space is equipped with the norm

Hf”HS}nax(F) = Hf”Ll(F) + HMJerLl(F) : (2.19)

L ox (D) is the space of all functions f on T such
that M* f € LY (T). It is equipped with the semi-norm

1 llzsy oy = MOl -

2. The homogenous Hardy-Sobolev space HS!

2.4.2 Atomic Hardy-Sobolev spaces

Definition 2.11 For 1 <t < +o0, define t' by % +tl, = 1. Say that a function a on T is a
homogeneous Hardy-Sobolev (1,t) — atom if

1. a is supported in a ball B,

1
i

2. [|Vall, <V(B)"*,

3. > seralz)m(x) = 0.

If f is a function on T, say that f € HS;MO(F) if there exist a sequence (\;);>1 € I and a
sequence of homogeneous Hardy-Sobolev (1,¢)-atoms such that

f= Z it (2.20)

This space is equipped with the semi-norm

Lo = mE Y[

11l zs;

where the infimum is taken over all possible decompositions.
Notice that the convergence in (2.20) is required to hold in W!(T'), which means that

k
\% (f -y Aj%)
=0

The link between convergence in (2.20) and pointwise convergence will be made explicit in
Proposition 5.2 below.
In the sequel, we will establish:

= 0.
LY(D)

lim
k—4o00

12



Theorem 2.12 Assume that (D), (A(a)) and (Py) hold. Then SYY(T') = MY I) =
HS} . (T) = HS} ,,(T) for all t € (1,400]. In particular, HS} (') does not depend on

t.

Remark 2.13 Assume that, in Definition 2.11, we replace condition 3 by

1

3 Ha”Lt(B) <rV(B) v,

where r is the radius of B, and we define HStl’ato(F) as before, using this new type of atoms.
Then, as the proof of Theorem 2.12 will show (see Remark 5.5 below), we obtain exactly the
same HS;MO(F) space. This remark (inspired by ideas in [BD10]) will turn out to be important
for the study of Riesz transforms.

2.5 Interpolation

As a consequence of the characterization of Hardy-Sobolev and Sobolev spaces through maxi-
mal functions, we establish an interpolation result between Hardy-Sobolev and Sobolev spaces:

Theorem 2.14 Let 1 < g < 400 and 0 € (0,1). Define p such that % =(1-6)+ g. Then,
for the complex interpolation method,

[Slvl(r), W) = ).

2.6 Riesz transforms

The Riesz transform in our context is the operator R := d(I — P)’l/ 2 which maps functions

on I' to functions on E. The equality (2.7) shows that R is L?(T') — L*(F) bounded. For
1 < p < +00, the LP-boundedness of R was investigated in [BR09] under various assumptions!.
In particular, under (D) and the Poincaré inequality (FP2), R is LP(I") — LP(E) bounded for all
1 < p <2 (and even under weaker assumptions, see [Rus00]).

For p = 1, the Riesz transform is not L'(T") — L*(E) bounded, but an endpoint version of the
LP-boundedness of R for 1 < p < 2 was proved in [Rus01]. This endpoint version involves the
H!(T') atomic Hardy space on T, the definition of which we recall now. An atom in H'(T) is
a function a € L*(T"), supported in a ball B C I" and satisfying

S al@)m(@) =0 and [al zry < V(B) 2.

zel

A function f on I is said to belong to H'(T') if and only if there exist a sequence ()\;);>1 € I*
and a sequence of atoms (a;);>1 such that

[ = Z )\jaja
J

!Observe that the LP-boundedness results of [BR09] are stated for the operator V(I — P)~/2, but (2.9)
shows at once that analogous conclusions hold for d(I — P)~1/2.
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where the series converges in L'(T'). In this case, define
||f||H1(F) = infz Al
J

where, as usual, the infimum is taken over all possible decompositions of f.

Under (D) and (P,), the Riesz transform is H'(T') — L'(E) bounded ([Rus01]). This means
that (I — P)~'/? is bounded from H'(T) to W!(T'). Here, under an extra assumption on the
volume growth of balls of ', we prove that (I — P)~/2 maps continuously H'(T) into S (T'):

Theorem 2.15 Assume that I' satisfies (D) and (P,). Assume furthermore that there exist
C >0 andd>1 such that, for all x € T and all 1 <1 < s,

e e (o) o

Then (I — P)~Y/2 is bounded from H'(T) into SV1(I).

Remark 2.16 Under (D), there exists C' > 0 such that, for allx € ' and all r > 1,
V(x,C'r) > 2V (z,r)

(see [CGI8], Lemma 2.2). This implies that (2.21) always holds with some d > 0. In Theorem
2.15, we assume furthermore that d > 1. This technical assumption seems to be required by our
arqgument (see the proof of Theorem 2.15 in Section 6 below), and could probably be removed.
Note that assumption (2.21) is satisfied when, for instance, V (x,r) ~ r? for some d > 1, which
holds when T is the Cayley graph of a group with polynomaial volume growth.

3 Proofs of the characterizations of Sobolev spaces

This section is devoted to the proof of Theorem 2.9. It will be convenient to use the following
observation:

Lemma 3.1 For all functions f on T, allx € T" and all r > 0,
|f(x) = [n| < OrNf(2). (3.22)

Proof of Lemma 3.1: first, the conclusion is trivial when 0 < r < 1, since in this case,
B(z,r) = {z} so that the left-hand side of (3.22) vanishes. Assume now that » > 1 and
let 7 € N be the integer such that 27 < r < 2/t1. Define B := B(x,2/"!) and, for all
—-1<i<j+1, B;= B(x,2"), so that B = Bj;. Since f(z) = fB<x’%),

|f(z) = fe] < Z‘fB fB,+1

2—71

< v y%; 1f(y) = [ Im(y) (3.23)
C 4 H—l )

= iz_:l (Bz-i-l Bi1) y§+1|f "Il

< C2Nf(x),

14



where the third line uses (D). Moreover, since B(z,r) C B,

foen = Il < g X 1) = falm(y
’1 yEB(z,r) 594
< Cm;\f(y)—fza\m(y) (3:24)
< C2Nf(x),

and the conjunction of (3.23) and (3.24) yields the conclusion (note that we used (D) again
in the second line). -
As a corollary, one has (see also Lemma 3.6 in [HK98]):

Proposition 3.2 For all functions f on T and all x,y € T,

[f(@) = f)] S d@,y) (Nf(z) + Nf(y))-
Proof: let z,y € I" with  # y and r := d(z,y). Lemma 3.1 yields

|f(x) = fB@m| < CrNf(2). (3.25)

On the other hand, since B(x,r) C B(y, 2r), using Lemma 3.1 again, one obtains

A

1f() = fBan] < |f(W) = fBwen| + 1 fBwer — [B@w

S CTNf<y)+ V(SL’ 7,) Z ‘f(Z) _fB(yQT)‘m(’Z)
o 2eBEn) (3.26)
< COrNf(y) +CV(y > Z | £(2) = fB@an| m(2)
’ z€B(y,2r)
< CrNf(y).

Thus, (3.25) and (3.26) yield the desired result. -

To establish that Sobolev spaces can also be characterized in terms of M™ f, we have to
solve the equation 6F = g in L™ spaces (see also [BD11], Proposition 5.1 and [DMRT10] for
the original ideas):

Proposition 3.3 Assume that T' satisfies (D) and (Py). Let B a ball of T' with r(B) > 1 and
g € L°(B). Then, there exists F € L*(Ep) such that 0F = g in B and

E sy S (B9l L= (s)- (3.27)
Proof: let B be a ball and g € Li°(B). Consider
S ={V € L*(Ep) : 3f € L*(T) supported in 1?3, V =df in Ep}.

We consider S as subspace of L'(Ep) equipped with the norm

IVllzes = > V)l

YE€EEB
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(see Section 2.1.1). Define a linear functional on S by
=> glx Yif V=df eS.
zeB
Observe that L is well defined since > g(z)m(x) = 0 and it is plain to see that, if df; = dfs in

zeB
Ep, then f; — f5 is constant on B. From (P;) and using the support condition on f, we derive

L) < Y lg@)[f(z) — folm(z)

< 0r<B>||g||Loo<B>ZVf@:)m(a:)
< Cr(B) gl s Z(pryu <>|> m(z)
= Cr(B ”g”Loo ZZ|f )| pay

= CrB)lglpeimy D>, W) = f(@)] thay

z~y, TEB, yeB

= Cr(Bllglle=mIV Iz

The Hahn-Banach theorem shows that L can be extended to a bounded linear functional on
L'(Ep) with norm not greater than Cr(B)||g||s. Thus, there exists F' € L*(Ep) such that,
for all V € L*(Ep),

L(V) =) FV)y-

YeEB
In particular, for all f € L'(B) vanishing on 9B, (2.10) yields?

> g(@) L{df) = Y F()df (Vg = =Y 6F (z) f(x)m(x),

reB yeEgB

which ensures that —0F = g in B with

1E] e < Cr(B)llglloe:

A consequence of Proposition 3.3 , which will also be useful in the proof of Theorem 2.9, is:
Proposition 3.4 For all functions f on T':

1.
MTf~NF,

VfSNS.

20bserve that F and df are square integrable on Ep since Ep is a finite set.
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Proof of MTf < Nf: let x € I'. Take F as in the definition of M™ f, associated to a ball B

containing z. Then (2.10), applied with the function f equal to 1 in £O3 and to 0 on 0B, shows
that > (0F) (y)m(y) = 0 so we can write

o
yeB

o

yeB

S WP wmy)| = > (Fw) — f5) OF)(y)m(y)|.

Thus, (2.16) yields

> FWOF)(y)m(y) Z 1f(y) — f5l m(y)

yeB yEB
S Nf(x).
Taking the supremum over all such F, we get
M7 f(x) S Nf(@).

Proof of Nf < M*f: let x € T and B = B(xp,r(B)) a ball containing z. We may and do
assume that rg > 1, otherwise

| /\

Z|f — fBlm(y) = 0.

yeB

Define B := B(zp,r(B) + 1), so that B C B. If g € L¥(B) with ||g||osc < 1, extend g by 0

outside B and solve 6 F = g in B with F € L*® (Eg) satisfying (3.27). Extend F' by 0 outside
E5 . Then, setting

one has

A
Q
<

+
=



where the last line follows from (D) and the fact that F satisfies (2.16) . Taking the supremum
on the left hand side over all balls containing x, we get N f(x) < CM™ f(z). This inequality
concludes the proof of 1.

Proof of Vf < Nf: let z € I'. Fix y ~ x, set B := B(z,2) and define the function F on £
in the following way: F(z,y) = ——, F(y,z) = ——= and F(u,v) = 0 whenever (u,v) # (z,y)

~ m(z)’ (x)

and (u,v) # (y,x). Notice that JF is supported in B and

1

1
<= <t
and ||5F||LOO(B) S BWVB)

This and item 1 of Proposition 3.4 yield
[{df, F)| = [{f,0F)| S M f(z) S Nf(z).

But

(df, F) = 2(f(y) — ()L = 2p(z,9)(f(y) — f(x)),

m(x)
which shows that
p(@,y) |f(y) — f(@)] S Nf(z)
for all y ~ x. The definition of V f then yields the desired result. -

Proof of Theorem 2.9: we write it for homogenous spaces, the inhomogeneous case being
an immediate consequence. First, assertion 1 in Proposition 3.4 gives at once that E'?(T") =
SLP(T).

Assume now that f € W'?(T') and let # € I". Since (P,) holds, there exists ¢ < p such that
(P,) is still valid (see Remark 2.5). For all balls B 3 z, (F,) yields

5 L)~ falm) < Cr(B) (ﬁ > \W(y)lqm(y)) g

yeB yeB

so that, taking the supremum over B,

Q=

Nf(x) < CMur V1) (2),

where My, stands for the Hardy-Littlewood maximal function, given by

M () = s0p 522z 3 1) o)

where, again, the supremum is taken over all balls B containing z. Since Vf € LP(I") and
My is Lg(T)—bounded (this is because (D) holds and £ > 1), one has

(Z |Nf<w>|”m(w)> < CNMur VI < CI ingry

zel
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which shows that N f € LP(I'). One therefore has f € S'?(T') and 1 lgromy < C I linwmy:-
Take now f € SP(T'). Since Nf € LP(T'), Proposition 3.2 shows that f € M"P(T') and
7 linoey < C 1oy

Assume finally that f € M'P(T') and let g € LP(T) given by (2.12) and satisfying 9] oy <
2| fll yyro(ry- Define, forallz € T, h(z) := -, (9(y) + g(x)). Then h € LP(T) and [|h|| 1) <
C'llgll o). Indeed, observing that, whenever z ~ y, m(z) < Cm(y) (this is an immediate
consequence of (D)), and using the fact that any point in I' has at most N neighbours, one

obtains
> hym(z) < CY (g()” + g(y)?) m(x)
< O gl@Pm(z) +CY gly)Pmly)
= Clgl- y

Now, let x € I'. By (2.12) and the fact that 0 < p(z,y) <1 for all z,y € T,
Vi) <CY Ify) = f@)] < CY (9(x) + g(y)) = Ch(x),

y~zx y~zx

so that Vf € LP(I) and || fllyyrory) < C | f |l g0y This completes the proof. -

4 The Calderén-Zygmund decomposition for Hardy-
Sobolev spaces

The present section is devoted to the proof of the Calderén-Zygmund decomposition for Hardy-
Sobolev spaces on graphs. The corresponding decomposition on Riemannian manifolds was
established in [BD10]. Recall that analogous Calderén-Zygmund decompositions for classical
Sobolev spaces were proved in [AC05] on Riemannian manifolds and [BR09] on graphs.

Proposition 4.1 [Calderdn-Zygmund decomposition for Hardy-Sobolev spaces| Let T satisfy

(D) and (Py). Let f € SHY(I), +7 <q<1anda>0. Then one can find a collection of balls

{B;}icr, functions b; € WYY(T) and a function g € WH(T') such that the following properties

hold:
|IVg(z)| < Ca forallz €T, (4.28)
C
D V(B < - > (Nf)(@)m(z) (4.30)
A reB;
and
> xs <K, (4.31)

where, for all i, r; is the radius of B;, and C and K only depend on q,p and on the constants
in (D) and (Py).
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Proof: the proof of Proposition 4.1 follows the main lines of the one of Proposition 3.3 in
[BD10], with adaptations due to the discrete context.
Let f € SY(T) and o > 0. Define

Q= {oeTs M (N)(@) > =},

where C' is the implicit constant in item 2 of Proposition 3.4 and My, 4 is defined by

Miurg(9)(y) == (Mur lg1))"". (4.32)

Let FF:=T\Q.
A consequence of item 2 in Proposition 3.4 is that

Vi(x) <CNf(z) < CMpp(Nf)(z) < aforal x e F. (4.33)

If Q =0, then set
f =g and b; =0 for all 4,

so that (4.28) is satisfied by (4.33), and all the other required properties are clearly satisfied.
From now on, assume that € # (). First,

m©) < O3 M y(N)(@)m(z)
= O3 (MusN@)E mz) (1.30)

where, in the last line, we used the fact the My is L'9(I")-bounded since ¢ < 1 and Nf €
LY(T). In particular Q # T as m(T") = +o00 (see Remark 2.2).

Definition of the balls B;: since Q is a strict subset of I', let {B;}; be a Whitney decom-
position of Q (see [CWT7]). More precisely, the B; are pairwise disjoint, and there exist two
constants Cy > C; > 1, only depending on the metric, such that

e () =U;B; with B; = (1 B;, and the balls B; have the bounded overlap property,
e r; =1(B;) = 3d(z;, F) where z; is the center of B;,
e cach ball B; = C,B; intersects F' (one can take Cy = 4CY).

For x € Q, define I, := {i : * € B;}. As already seen in [BR09], there exists K such that
#I, < K, and moreover, for all i,k € I, %Ti <rp < 3r; and B; C 7B;. The bounded overlap
property yields (4.31) and implies

Z V(B;) <m(9). (4.35)
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Then, (4.30) follows from (4.31) and (4.34).
The following observation will be used several times: for all i,

(@ > |Nf(f€)|qm(:c)>q < CaV(By). (4.36)

z€C2B;

Indeed, the left-hand side of (4.36) is bounded by My (N f)(y) for some y € CoB; N F,

which yields the result.

Definition of the functions b;: following the construction in Section 5 of [BR09], pick

up a partition of unity {x;}; of Q subordinated to the covering {B;};. Each y; is a Lipschitz

function supported in B; with 0 < x; < 1, [|[Vxil]oo < % and ) x;(x) = 1q for all z € T
el

Moreover, Vy; is supported in C3B; C Q with C5 < 2. We set b; := (f — fg,)xi, so that

supp b; C B;.

Estimate of ||b;[| ;1 the Sobolev-Poincaré inequality (5.43) applied with g = N f (recall

that Nf € L(T") and the pair (f, Nf) satisfies (2.12) by Proposition 3.2) and A = C5, as well

as (4.36), yield

ol < > 1f(@) = frlm(x)
reB;
1 . . (4.37)
< Cr; (@ xE;QBi |Nf(z)] m(x)) V(B)
Proof of Vb, € L}(T): since
V(o) =V ((f = f ) (o) < (max i) VS +17(6) — fn )
and y; < 1 on I', using (4.36) again, one obtains
IVbille < > 1f(@) = fel V@) m(@) + > [Vf(@)|m(z)
zcCsB; z€C3B;
(4.38)
< CaV(B)+ Y |Vf(z)|m(z) < +oo.
zeC3B;

Estimate of ||V, using item 2 in Proposition 3.4, (5.43) with g = N f (and Hélder)
and (4.36), we obtain:

IVoill7 < C( Y V@) ma) + ) If(fv)—fBinIin(x)lqm($)>

x€C3B; zeC3B;
oo (4.39)
< C ) \Nf(ﬂf)\qm(ﬂf)JrCﬁ’f’?( > INf($)|qm(x)>
zeC2B; i zeC2B;
< Ca'V(By).
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Thus (4.29) is proved.
Definition of g: set now g = f — > b;. Since the sum is locally finite on 2, ¢ is well-defined

onI'and g = f on F.

Estimate of |Vg|: since > y;(z) =1 for all x € Q, one has
i€l

9= fXF+ZfBiXi
iel
where yr denotes the characteristic function of F'. We will need the following lemma:

Lemma 4.2 There exists C' > 0 such that, for all j € I, allu € F N4B; and all v € By,
9(u) = g(v)| < Cad(u,v).

Let us admit the conclusion of Lemma 4.2 and complete the proof of (4.28). It is enough to
check that |g(z) — g(y)| < Ca for all x ~ y € I'. Three situations may occur:

1. Assume first that z,y € Q. Let j € I such that x € B;. Since xp(z) = xr(y) = 0 and
Y.:.xi =1onT, it follows that

9(y) —g(z) = Z (fBi - fBj) (xi(y) — xi(x)),
i€l
so that |g(y) = g(2)] < €2 |fs, = f5,[Vxil) := h(z).
1€
We claim that |h(z)| < Ca, which will end the proof in this case. Let ¢ € I be such
that Vy;(z) # 0, so that d(x, B;) < 1, hence r; < 3r; +1 < 4r; and B; C 10B;. An
application of (5.43) with g = N f and of (4.36) yields

|fB, — fuoB;| <

y) — flij Im(y)

< — fioB;Im(y)
yelOB
Ve (4.40)
< . )|
y €10B;
< era.

Analogously |fios, — [5,| < Crja. Hence

@] = | > (s~ f5)Vxilo)

i€l;z€2B;

_ 4.41
< C Y Afe— Iyl (4.41)
iclze2B;
< CKa.
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2. Assume now that = € lg’, so that y € F. In this case |g(y) — g(z)| = |f(z) — f(y)| <
CV f(z) < Ca by (4.33).

3. Assume finally that x € OF.
i. If y € F, as already seen, |g(y) — g(z)| = | f(z) — f(y)| < CV f(x) < Ca by (4.33).

ii. Assume finally that y € 2. There exists j € I such that y € B;. Since x ~ y, one
has x € 4B;, Lemma 4.2 therefore yields

9(z) — g(y)| < Cad(z,y) < Ca.

The case when x € 2 and y € F is contained in Case 3.ii by symmetry, since y € dF. Thus
the proof of Proposition 4.1 is complete.

Proof of Lemma 4.2: it is analogous to the one of Lemma 5.1 in [BR09]. The only difference
is that one uses (5.43) instead of the Poincaré inequality applied in [BR09].

5 Proofs of the characterization of Hardy-Sobolev spaces

We now turn to the proof of Theorem 2.12. Let us explain the strategy. We first establish
that SH1(T') = MY, The inclusion S1(T') € M) is proved exactly in the same way as
the corresponding inclusion in Theorem 2.9. The converse is more involved, since the Hardy-
Littlewood maximal function is not L'(I")-bounded, and the proof relies on a Sobolev-Poincaré
inequality.

The identity SY1(T') = HSL (I) is an immediate consequence of item 1 in Proposition 3.4.
Finally, we check that S'(I') = HSL (T), using the Sobolev-Poincaré inequality again, as
well as an adapted Calderén-Zygmund decomposition.

5.1 Sharp maximal characterization of M"!(T)

A straightforward consequence of Proposition 3.2 is that S1(I') ¢ M (T).

The proof of the converse inclusion relies, as the proof of Theorem 3 in [KT07], on a Sobolev-
Poincaré inequality ([HajO3b], theorem 8.7) :

Theorem 5.1 Let p € [-%5,5)°, B C T be a ball with radius r, f € M7 (B) and g € L?(B)
such that (f,q) satisfies (2.12) in B (see Remark 2.7). Then (f,g) satisfies the following
Sobolev-Poincaré inquality: for all A > 1, there is a constant C' > 0 only depending on the
constant in (D) and X\ such that

(g S - rn) <o (i Totwrne) o

where p* = i

3where s is given by (2.3).
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An easy consequence of Theorem 5.1 is that, for all functions f € M LHT), all ¢ € [
balls B C I' of radius r and all A > 1,

. 5), all

O > 17(e) = folmie) < Cr (V(i 3 g<x>qm<x>) q (543)

TEAB

whenever (f,g) satisﬁes (2.12). Indeed, it is enough to observe that g € Lﬁ()\B), apply

Theorem 5.1 with p = %5, since p* =1 and use Holder inequality.

Take now f e M), q € [ o 1) and g such that (2.12) and (5.43) hold and gl gy <

2|/l g1y The inequality (5.43) yields

Nf(y) S Murqa9(y)

for all y € T, where My, was defined by (4.32). Since 1/¢ > 1, the Hardy-Littlewood
maximal function is L'/9(TI")-bounded, which implies that

HNfHLl(r) S HQHLl(r) S ”fHMLl(r)

This ends the proof of the inclusion M"'(T") ¢ SVY(T). -

5.2 Maximal characterization
The identity S¥1(T') = HS!}

max

(T') is an immediate consequence of item 1 in Proposition 3.4.

5.3 Atomic decomposition

We prove now that HS},,,(I') = SY4(T') for all ¢ € (1, +oc].

531 HStlato( )CSI(F)

For the proof of this inclusion, we have to clarify the link between convergence in H St ato(T)
and pointwise convergence:

Proposition 5.2 Let f € HS},,,(I') and write

= Z )\jCL]’,
J

where 3 |Aj| < 400, for all j, a; is a homogeneous Hardy-Sobolev (1,t)-atom and the series
converges in Wl’l(T). Then, for all k, there exists ¢, € R such that, for all x € T,

ato

= lim g ANjai(x) — cx.
k——+o00
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The proof follows from:

Lemma 5.3 Let (hx)iz1 € WD), If limy s yoo [|VAkl| oy = O, then, for all k > 1, there
exists ¢, € R such that
lim hg(x) — ¢, = 0.

k——o00
Proof of Lemma 5.3: assume first that there exists xy € I" such that hg(zg) = 0 for all
k > 1. Then, for all z € T, limg_, 1o hx(x) = 0. Indeed, the very definition of Vhy implies
that, for all z,y € I' with x ~ y, limy, ;o (hx(z) — hx(y)) = 0. The conclusion then readily
follows for all j > 1 and for all z € B(xy,j) by induction on j.
In the general case, fix 2o € I' and define gi(x) := h(z) — hg(zo) for all £ > 1 and all x € T.
What we have just seen means that limg_, . gx(z) = 0, which yields the desired conclusion
with Cp ‘= hk(ﬂfo) -
Proof of Proposition 5.2: it is an immediate consequence of Lemma 5.3 applied with
hi = f — 35 o Njay. _
Proposition 5.4 Assume that ' satisfies (D) and (Py). Let t € (1,400].

1. Let a be a homogeneous (1,t) atom. Then a € SHT') with lallsy < C.

2. One has HS}

t,ato

() € SHT') and there exists C > 0 such that, for all f € HS},,(I),

2y < Cllf s, y-

Proof: for 1, let a be a homogeneous (1,¢) atom supported in ball B = B(x,r). We want
to prove that Na € L'(T") and that [Nall iy < C. Forall y € T', and all balls B' 5 y, (P)

yields:
1 C
BB > la(z) = aplm(z) < i) > Va(z)m(z)
zEB’ zEB'
< Mpyr(Va)(y),
so that
Na(y) S Mur(Va)(y). (5.44)
AS a consequence,
1/t
S Nam(y) < OV A [>T (Mun(Va)(y) m(y)
yEB(z,4r) yEB(z,4r) (545)
< CV(%‘”’)M/ ”V“”Lt(r)
< C,

where the first line follows from Hélder and (5.44), the second one from the Lf-boundedness
of the Hardy-Littlewood maximal function and the last one from the doubling property and
the second item in Definition 2.11.

25



Let k > 2 and y € B(z,2*"r) \ B(x,2%r). Consider an arbitrary ball B’ containing y. One

has
1

(BB ZEZB,\a ) —ap|m(y) = WZE;B\a(z)—aB/|m(z)
1
" v 2,
3
(B (B ZG;B |a(z)|m(z).

It is easily checked that, if B’ N B # (), then r(B’) > 281y and (D) yields V(x, 2% 1r) <
CV(B'). As a consequence of this observation and (P;) (remember that ag = 0),

C
Nuly) < gy & M

C
D — E
< ¢
- 2k71V<2k+lB) '

It follows that

S Naymy) = Y > Na(y)m(y)

y¢B(z,4r) k>2 ye B(x,28+ 1)\ B(z,2Fr)
c k+1 5.46
< D gy 2B) (5.46)
k>2
< C.

Gathering (5.45) and (5.46), one obtains HNaHLl(F <C.

Now, for assertion 2 in Proposition 5.4, if f € H Stato(T'), take an atomic decomposition of f
f= Z Aia; where each a; is an atom and Z I\ <2 HfHHSl (r)- By Proposition 5.2, pick up

a sequence (ck)k>1 € R such that, for all = E I,

= lim Z Ajaj(x) — ¢ = kETm fr(x) — e

k——+o00

where, for all k, f;, := Z?:o A\ja;.
Let z € I' and B be a ball containing z. Observe that

i 2 Sm) =l o S () =) m(y) = lim () — ).

k—>+oo V(B) k—+
yEB yeB
As a consequence,
1
m;|f(y)—f3|m(y)—k_>+ V Z\fk )Blm(y).
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For all £ > 1,

D ly Z MY lai(y) = (a5) Bl m(y),

yeB yeB

so that
Z|f — fBlm(y <Z|)‘|N%
yEB

Since [[Naj|[ 1y < C and 32, [Aj] <2 HfHHSl () Propos1t10n 5.4 is proved. -

Remark 5.5 Observe that, in the above argument, if condition 3 in Definition 2.11 is replaced
by condition 3’ in Remark 2.13, then the previous computation is still valid, since one has, using
Holder,

Na) < g > lo(2)m(2)
C

1/t
219_17"@2]“'18) Ha’”Lt(B) V<B)

< -
— 2k—1v(2k+1B)
5.3.2 SHI) C HSL 4,(T)

The proof of the inclusion S™(T') ¢ HSL, (T) relies on the Calderén-Zygmund decomposition

for functions in S*1(I") given by Proposition 4.1:

Proposition 5.6 Let T satisfying (D) and (P)). Let f € SYYT). Then for all a7 <aq<
1, ¢ q there is a sequence of (1,q*) Hardy-Sobolev atoms {a;};, and a sequence of scalars

{\ }J e 1 such that
F=Y Na; inW(I), and >IN < Cyll fllgary
J

Consequently, S"'(T') C HSy. 44,(T") with sy, o) < Call Fllsnam

Proof: the proof is analogous to the one of Proposition 3.4 in [BD10], which deals with the
case of Riemannian manifolds, and is also inspired by the proof of the atomic decomposition
for Hardy spaces in [Ste93], section I11.2.3. We may and do assume that f is not constant on
I', otherwise one can take a; = 0 for all j.

Let f e S LYT). For every j € Z*, we take the Calderén-Zygmund decomposition for f at
level o = 27 given by Proposition 4.1. Then

f=¢+) b
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with b{ , ¢’ satisfying the properties of Proposition 4.1. We first claim
=Y (@ =9, (5.47)

where the series converges in Wh(I). .
To see this, observe first that ¢/ — f in WHHT) as j — +oo. Indeed, since the sum is locally
finite we can write, using (4.38), (4.35) and the facts that C3B; C  and that the C5B; have

the bounded overlap property,
V6 - Dl = |7 (S4)| < S I
1 Y1) A

< CUm(@)+C Y V(@)m(a) (5.48)

:BEQJ'

= Ij +IIj,

where (V= {;1: €I Mup (N f)(x) > %} Observe that Q1 C OV for all j € Z.
Observe that

+oo
S 2m@) S [ m({e € Muna(NA@) > 1) dt = [Mursal NP ey < 6.
JEL 0
(5.49)

This implies that, when j — 400, I; = 0. Since Vf € L}(T') and m(€;) — 0 when j — 400,
one has I1; — 0 when j — +o00. Thus, (5.48) shows that

lim ¢’ = f in WHH(D).

J—+oo
Next, when j — —oo, we want to show [[Vg;|| i — 0. If FV := T'\ (¥, an immediate
consequence of Remark 2.8 is that, since f is not constant on T,

N F =0. (5.50)

JEZ
Write ‘ } ‘
HijHLl(F) S Z |9’ (z) = ¢’ (y)| m()
z~y, x,yeFI ' '
+ ) |F@ - w)|m)
z~vy, x,yedd

+ Z | 9 (z) — ¢ ()| m(z)

= AJ+B]+CJ
If 2 ~ y with z € F7 and y € I, |¢’(z) — gj(y)| = | f(z) — f(y)], so that

A S ) Vi@)m(a),

zeFJi
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which implies that A; — 0 when j — —oo, since Vf € L}(T") and (5.50) holds.
Moreover,

By S Y V§(2)m(z) S 2m(),

:BEQJ'

and this quantity goes to 0 when j — —oo by (5.49).
Finally, if x ~ y with x € F/ and y € ¥, |¢7(z) — ¢/ (y)| < V¢’ (y) and, since m(z) and m(y)
are comparable when x ~ gy, one has

which goes to 0 when 7 — —oo. This ends the proof of (5.47).

Introduce a partition of unity (Xi)k subordinated to balls B,Z corresponding to (¥ as in the
proof of Proposition 4.1. We will need two observations:

Lemma 5.7 1. For all j,k, 1, if there exist x € Bi and y € B{Jrl with © ~ vy, then

rth < 4l (5.51)
2. There exists C' > 0 such that, for all 7,

D 1, <C (5.52)
k

We postpone the proof of Lemma 5.7 and end up the proof of the atomic decomposition of f.
Set ¢’*! — ¢/ ;= I and decompose [; as I/ = Zl{C with
k

W= (f—dxd =Y _(F—dl™0d ™+ dad™, (5.53)
l !

where, for all j, k,

j._ 1 i (\m
d, : nyi(y)m@);f(y)xk(y) (v),

and
1

Cj:: - x—j+1 j+1x J.Tm.r
M ) 2, U D

First, the identity I/ = Zl{C holds by definition of ¢/ and ¢/*! and since 3. xJ = 1 on the
k k
support of X{H and, for all [, Zc,’” =0.
K

We now claim that, up to a constant, 27V (B})~'l is a homogeneous Hardy-Sobolev (1, ¢*)
atom. Indeed, the cancellation condition

> H(z)m(x) =0

zel
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for all k follows from the fact that Z (f(z) — di) x4 (z)m(x) = 0 and the definition of c,i’l,

zel

which immediately gives, for all [, Z ((f(z) - d{“) I ()i () — c,ilxgﬂ(x)) m(z) =0. A
zel
consequence of (5.51) is that I is supported in the ball 9B, therefore VI; is supported in
18B].
Let us now prove that ' ' .
VGl L oy S 2V (B (5.54)

Let z,y € I' such that x ~ y. Write
B(y) = li(z) = ((f(y) — f@)xiy) =D (fly) - f(fv))xfﬂ(y)xi(y))
l

)
— D> (f@) =d™) T wxd ) — X @) () (5.55)
+ Y e (4w - (@)

l
= Al('ray) + A2<x7y) + Ag(ﬂf,y) + A4<.§U,y)

—~

Let us estimate A;(x,y) for 1 <7 < 4.
Estimate of A;: compute

Ar(z,y) = (f(y) = f(@)xz(y) (1 = 1 (y)) -

As a consequence, if Aj(x,y) # 0, one has y € B, N (7 \ @), so that = € 2B]. By item 2
in Proposition 3.4, one has Vf(y) < C27, so that |f(y) — f(z)] < C27. As a consequence, for
all z € T,

>yl < 027

y~zT
Therefore, by (D),
> Y 1A y)|” mia) < CPTV(BY). (5.50)

:1:€2Bi y~z

Estimate of A,: observe first that if Ay(z,y) # 0, then y € Bl or x € B}, so that « € 2B].
Since V3. < S onT, one has, for all z € T,

J
Tk

. C g
D As(z, )| < |f(a) —di|" .

y~z (Ti)q*

As a consequence,

SO S e g) ) < o S |f(a) — ] ).

. (1) v ,
$EQB£ y~T k erBi
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But

. e e
Hf_ d?cHLq*(zBi) < Hf - fB;' Lo (2B)) - fB;' Vi (2B}),
and
; » ; 1 .
VYT @B |d — f| = VYIB! . 2) — fri ) xo(2)m(z
(2B]) |d], - f5 (2)) 5 Xi(y)m@) )3 (£() = £5) X (2)m(2)
1/q*
q*
<c Z > ) = fy| ml2)
Xk 2€B]
1/q
q*
<oy )f(z) — Iy m2)
zEBi
Thus,
" q*
S @) —dl] m@) <€ 3|1 — | miz). (5.57)
x€2B] 2€2B]
Therefore, by Theorem 5.1 and (4.36),
p C 7
S Y@l ma@) £ e S [f@) = Sy | mi)
:1:€2B£ y~z (Tk) :1:€2B£
1 q
< CV(Bi Nf(x)im(x
B\ vy X M)
E4CQB£
< CV(B])2i
Estimate of As(x,y): first,
~As(wy) = (@) = Sy ) ) O ) =0 @)
]
+ 3 (@) = Sy ) @) () = ¥ @)
1
= Aj(zy) + Af(x,y).
For Al(z,y), notice that the sum may be computed over the [ € I’(z), where
I (z) := {l; there exists y ~ x such that y € B! and z or y belong to B]H}

Forl € I’(z), z € 2BJN2B/*" and /™" < 41/ by Lemma 5.7. Since }XJH (y) — x] (= )} < -,

one has, for all x € T,

* C
Z}Aé(l‘,y)‘q < Z TN

y~z le1i (z) (7“1 )

q*

f($) - fBle
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Notice that, by item 2 in Lemma 5.7, #I7(x) < C. It follows that

> DM@y me) < > Y )

x€2Bin2B) Tt Y~ x€2B]n2B] T el (x)

1
SO s D SRR VC R AT

! (l ) z€2B]M2BJ 1, 1eli(z)

c Y VBT | ——r Y Nf@)m()

. m(z)

) - fBlf‘H

*

m(z)

q

= V(4CBI™)
l; B/*'ceBl b/ zeacBit?
< C ) V(CBThutr

G .
I; Bl ceBl)

< CV(CBL)27.

In this computation, we used the fact that, for [ € I’(z), one has rl+ < 47“k and, since
2B/ n2B] #0, BT c CBJ.
For A%(z,y), arguing similarly, the sum may be restricted to the [ € J/(x) where

Ji(z) = ={l ze B/ and there exists y ~ x such that y € B] or x € Bi}
For | € Ji(z), x € B/"' N2B] and /™" < 4r]. Again, tJ7(z) < C. Arguing as before, one
obtains
2 7 c ¢
St < 5 o) - e

yra leJi(z) (Tk)q

As a consequence,

> S Menf e <Y EZ-———\ — g

ze2BinB] Tt Yy~ ze2BINBI T €SI (x)

" m(z)

q*
< X Z—\ 2) = fagni| mia)
ze2BinBj T 1e]i(z)
A 1 !
< C V(B | ———— Nf(z)'m(x
<0 3 VOB Gepry 2 M@
l; BT cCBj z€4CB]

< C ) V(CBTH20te
I; Bjt'ccB]

< CV(CB})27.

Estimate of A,: note first that c] 1., = 0 when BN B/ =( and |czcl| < C277]*! thanks to
(4.37). As a consequence, }07 j+1(y) X7 z))| < C2 for every I. It follows that, for all

ZE?
EZE:%%HMH* — it ()| < 2.

y~z
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Therefore,

3 S A )" mlz) < C29V(BY).

:vECBi y~x
Gathering the estimates on A;, 1 <i < 4, we obtain (5.54).
We now set ai = C 127V (Bi)i1 li and \;, = C27V (ch) . Then f = Ej,k )\j,kai, with ai
being (1, ¢*) homogeneous Hardy-Sobolev atoms and
D ikl = > 2V (B))
ik jk ‘
< CY 2V(B)
ik o
CY 2V ({z: My(Nf)(z) > 27})
J
O M(Nf)(w)m(z)

zel

< G HNfHLl(I‘) ~ HfHSI,l(r) )

IN

IN

Proof of Lemma 5.7: let x EE{% and y € B/ such that = ~ 5. Denote by 7, (resp. =] ')
the center of B} (resp. B/*'). Then

where we used the fact that the Bi are pairwise disjoint.

d(wl, x]™) < d(af, 0) +d(w,y) +dly, o] ™) < 40T 4L

Thus, since F/ C Fi*!,

AN = Ld (et
< gd (o™ 2f) + jd(a], P4
< s (A" 4 1)+ gd(ag, F),

from which we deduce
le+1 < Ti +1+ d(:pi,Fj) = ri +1+ 27“% < 4ri,

as claimed. The proof of 2 is classical. M.

5.4 Comparison between different atomic spaces

In the present section, we show that H S}

tato(1) = HS#MO(F) for all ¢, € (1, +o00], following
ideas from [BB10]. We will need:

Lemma 5.8 Assume that I' satisfies (D).

1. Let

—_

M. f(x) = S )
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be the centered mazximal function of f. Observe that if © € B(y,r) then B(y,r) C
B(z,2r). It follows that
M f < Mpyrf <CM.f

where C' only depends on the constant of the doubling property.

2. Let f be an L' function supported in By = B(xg,70). Then there is Cy depending on the
doubling constant such that

Qp ={x el : Myr(f)(z) > a} C Bz, 2ro)
(z)|m(z)

Proof: it is obvious that M.f < My f everywhere on I'. Moreover, let z € I' et B =
B(zg,r) > x be a ball. Then B C B(z,2r) C B(x,3r), so that

) S Wm0 < 7o T X Uwint) < CM (@),

y€B(x,2r)

and the result follows by taking the supremum over all balls B containing .
For the second assertion, assume that = ¢ B(x,2rg) and let B = B(z,7) 5 x be a ball centered

at z. Then .

yEB yGBﬂB(:Bo,TQ)

If BN B(xg,70) = 0, then this quantity is 0. Otherwise, 2ry < d(x,x¢) < r+7g, so that ro < r
and By C B(x,2r). It follows that

%);|f(y) m(y

which yields the conclusion by part 1., provided that C' is big enough. -
Let us now prove:

yeBo yEBo

Proposition 5.9 Let T' satisfying (D) and the Poincaré inquality (P1). Then HS},, C
HS! for every t > 1 and therefore HS = HS}! . for every 1 < ti,ty < +00.

oo,ato t1 ato — to,ato

Proof: lett > 1. It is enough to prove that there exists C' > 0 such that, for every (1,¢)—atom
a, a belongs to HSY ,,(I") with
||a||Hsgoyato(r) <C.

In the sequel, set MY, == My and M = M, 0o My, for alln € N. Let a be (1,t)—atom
supported in a ball By. Set b = V(By)a.

We claim that there exist K,«,C, N > 0 only depending on t and the geometric constants
with the following property: for all I € N*, there exists a collection of balls (5;,);,en such that

for every n > 1
b=CN Z (Ka)*' Y " V(Bj)aj, + Y by, (5.58)

]leNl Jn€N"T
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and, for all n € N*,

is an (1, 00)-atom supported in B;

i1 <1<n-—1,

aj,

l
U B, CQ = {x e I; M(IVD))(2) > K%} ,
Jn€NT
Z 1sz < Nl’
Ji

Supp hjl C lev Z hjz (x)m(x) =0,
xijl
\Vh;(z)] < C ((OéK)lle + M%L(|Vb|)) (x) for all z € T,
1

l
V(B;) IV || 2y < C(Ka),
where x;, stands for the characteristic function of B;,.

Let us assume that this construction is done. We claim that

a = iCN<KOé)H1 Z V(BJ )CL
=1

Ju
ra VBo)
where the series converges in W(I') and
N < I+1
=1 j1ENL

where C' is independent of a.

(5.59)

(5.60)

(5.61)

(5.62)

(5.63)

(5.64)

(5.65)

(5.66)

Let us first check (5.66). Indeed, it follows from (5.59), (5.61) and the L!(T')-boundedness of

MHL that

2
Ji Ji

As a consequence,

S (Ea)' > V(By) < C2Y) (Ka)'N'(Ka') ™| Vbt
=0 j1ENL n=0

< C2EY (NKa" )|V

=0

t
ZV<BJZ> < CN'm (U sz) < CN'm(Q) < CN' <@) IVOl[ ey

and, since ||Vb[|} < CV(Bp), we obtain (5.66) with C' only depending on ¢, K, o and N,

provided that « is chosen such that % < 1.
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We now focus on (5.65). By (5.64), one has

1
0 Jjn€NT ir1,1 ] eNn
< C(Ka)® —in)
= e Z V(B)

and, by (5.66), this quantity converges to 0 when n — +oo, which yields (5.65).

Let us now turn the the construction, which will be done by induction on [, starting with [ = 1.
Set
N ={zel: My(Vb)(x) > Ka},

where K, a will be chosen such that Ka > C and (Y is given by Lemma 5.8. Hence, @1 C 2By.
Moreover,

~ 1 t
m <Q1> < Ka) [Mer(VO) ||y <

= Koy H(Vb)HtLt(r) < +00.

If Q) = (), then W‘/(BO) is a (1,00) atom and we are done. Assume now that 0 # () and

define the balls B; and the functions y; as in the proof of Proposition 4.1. Set also
hi == (b — ¢i)Xi,

where

i = b 7
¢ erB Xz Z X )

J:EB

Clearly, supp h; C B;. Moreover,
> hi(z)m(x) = 0. (5.67)
rEB;

We now claim:

Indeed, arguing as in the proof of Proposition 5.6, one has, for all x ~ y € T,

bi(y) —bi(z) = ((b(y) — b(z))xi(y) + (b(x) — ci)(xi(y) — xi(7))
= A(z,y) + B(z,y).

On the one hand, using the support condition on y;,

> A y) m(z) < > |Vb() ) < CV(B)K (5.69)

Ty x€2B;
On the other hand,

> B)mi) < 3 ) — ).

Ty Ti r€2B;
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But

1o — Ci”L1(2BZ~) < [|b— s, 1@2B) t CV(B) |bg, — cil ,

and, arguing as in the proof of Proposition 5.6 and using (P;), one obtains

Y [Blx,y)m(z) < Y |[Vb(a)|m(z) < OV(B)Ka. (5.70)

Ty z€2B;

Thus, (5.69) and (5.70) yield (5.68).

Define now the functions g (denoted by go in the sequel) and h as in the proof of Proposition
4.1, so that

J
Observe that the series in (5.71) converges in W (T"). Indeed, by (5.68),
Z Hth”Ll(F) - Z HthHLl(QBj)
j j
C Y VB) NV o,
J
CKa) V(B))

J
C(Ka)'™* ||Vb||tLt(I‘)
C(Ka)" "'V (By).

IN

IN

IA A

Moreover, since ) b(z)m(x) = 0 and ) hj(x)m(z) = 0 for all j, one also has > go(z)m(x) = 0.
Arguing as in the proof of Proposition 4.1, one establishes that

||v.gO||L°°(F) < CKa.

It follows that ag = W‘)V(BO) is a (1, 00)-atom, and (5.71) yields
b= NCKaV(Bo)ag+ Y _ h;
jeN

Thus, properties (5.59), (5.60), (5.61) and (5.62) hold. Property (5.64) has already been
checked in (5.68). Moreover,

[Vhi(z)] < |b(z) — ¢l |Vx;(2)| + (1535 X;(y))|Vb(z)]
= I+11I.
We estimate I as follows:

I< g\b(az) — ¢
T
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But, following the proof of Theorem 0.1 in [BB10], if ; € Z is such that 25 < r; < 2+ one
has, using (P),

-1

b@) =l < Y |bswar) — bpwarin | + by — il
k=—(;+1)
—1

1
Z W Z ’b(z) - bB(x,Qkﬂrj)} m(z) + ’bB(a:mj) — szj’

k=—(1;+1) z€B(z,2kr;)

1 1
i EzeB Xj(Z)m(z) 2 | b=~ V(2B)) > bwym(w) | x;(z)m(z)

ZEB UJEQBJ'

C Z 2k+17“ ) Z ’b(Z) - bB($,2k+1rj)’ m(z) + }bB(:B,T‘j) - bQBj}

k=—(1;4+1) z€B(z,2k+1r;)

1 1
TS ) 2 |- V(QBj) > blwym(w) | x;(z)m(z)

IA

IN

ZGB]' wGQB'
—1
<0 Y MV () 23 > |b(z) = bag, | m(2)
k=—(1;+1) 2628

1 1
+ Ezij x;(2)m(z) Z b(@‘m Z b(w)m(w)| |x;(2)] m(z)

2€2B; 77 we2B;

< Cry Mur(|Vh])(z) + Ka).

Moreover, IT < |Vb(z)| < My (|Vb|)(z). Finally, (5.63) is satisfied. The construction for
[ =1 is therefore complete.

Assuming now that the construction is done for [, the construction for [ + 1 is performed by
arguments analogous to the previous one (see also the proof of Theorem 0.1 in [BB10]). This
ends the proof of Proposition 5.9. -

5.5 Interpolation between Hardy-Sobolev and Sobolev spaces

To establish Theorem 2.14, observe that, by Theorems 2.9 and 2.12, f € Sl’l(T) (resp. [ €
Whr(T) if p > 1) if and only if MTf € LY(T') (resp. M*f € LP(T'). Therefore, Theorem 2.14
follows from the classical linearization method of maximal operators (see [SW71], Chapter 5).

6 Boundedness of Riesz transforms

6.1 The boundedness of Riesz transforms on Hardy-Sobolev spaces

This section is devoted to the proof of Theorem 2.15. We first establish:
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Proposition 6.1 There exists C > 0 such that, for all atom a € HT), (I—P) *?a € SYY(T")
and

|(1 = P)~'/2 < C (6.72)

aHs’lvl(F

The proof relies on some estimates for the iterates of p, taken from [Rus00, Rus01]. Define
1 ifx =y,
Po(@,y) := { 0 ifz#y,
and, for all k € N and all z,y € T,
pr(,y) = > ple, 2)pi(z,y).

zel

By (2.5), one has

pe(x,y)m(z) = pip(y, 2)m(y)
for all k € N and all z,y € I.
Let yo € I'. For all k € N and all x € T, define

ey, ) — pr(yo, 7)
m(x) '

a(z,y) =

Recall the following bounds on p; and ¢ ([Rus00], Lemmata 2 and 4 and [Rus01], Lemmata
28 and 29):

Lemma 6.2 There exist C,a > 0 such that, for all y € T,

1.
2 dQ(xay) C 2
Z \Vapk(z, y)|" exp <04T> m(z) < mm (y),

zel

S 1V exp (02 ) o) < )

zel

Lemma 6.3 There exist C,h,a > 0 such that, for all yo,y € T and all k > 1 such that
d(yv yO) S \/E7

1.

S utoPesp (20 ) i) < o (ALY

zel’

zel

39



Proof of Proposition 6.1: let a be an atom supported in B = B(yo, ). Pick up a sequence
of functions (x;);>o such that

C

supp Xo € 4B, supp x; C 2B\ 2B, |l < o5~

and

ijzlonf.

Jj=0

For all j > 0, all z € I" and all y ~ x, one has

Xi (W) = P)"aly) — x;j(2)(I = P)"a(z) = x;(y) (I = P)"aly) — (I - P)""?a(x))
+ (I = P)"a(z) (x;(y) — x,(2)).

It follows that, if V (x;(I — P)""2a) (z) # 0, then either y;(z) # 0, or there exists y ~
such that x;(y) # 0. As a consequence, supp V (y;(I — P)~"?a) C C;(B) := 22"3B\ 2272B
if j >3 and supp V (x;(I — P)~"/2a) C C;(B) :=2/"3B if j < 2. Decompose (I — P)~"/%a
as

(I-P)ya = Sy - Py

720
. _ (] — P)—l/Za
= V22183 B) |V (x;(I — P)"Y2a)]| , Xl
j; ( ) H (XJ( ) a)HL () V1/2(2i+3B) ||V (x, (I — P>71/2Q>HL2(F)
= Y V@BV (x;(I = P) ) || o by
Jj=0

We first check that, for all 7 > 0, up to a constant only depending on the constants of the
graph I', b; is an atom in H52 ato(L) if, in Definition 2.11, condition 3 is replaced by condition
3 in Remark 2.13. Indeed, since (D) and (P;) hold, there exists C' > 0 such that, for all balls
B of radius r and all functions f € W,*(B),

Hf”L?(B) <Cr vaHLQ(B) (6.73)
(see [BRO9], inequality (8.2)). Then, for all j, since y; is supported in 272B, (6.73) yields

(T = Py 20| aggsay < C22r [V (i1 = PY20) || oy

(20+2B)

which shows that | |
1651l 1205425y < CT Y2 (2142,

as claimed.
The estimate (6.72) will therefore be a consequence of

> VEB) ||V (x;(I - P)7V2a)

Jj=0

<C. (6.74)

(o
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Write

HV O - P)_l/Qa)Hm(r) = HV(I_ P)il/QaHB(cj(B)) +1Vxill H(I - P)il/QaHB(cj(B))

= SJ—FE

Let us first focus on T;. As in [BR09], we use the expansion

+oo
(I—P)2a = ZakPka
k=0

r2 —+00
= ZakPka—i— Z apP*a
k=0

k=r2+1
= fl + f27
where the a;’s are defined by
+o0o
(1—2z)"Y2 = Z apx”
k=0
for all z € (—1,1). Recall that, when k — +o0,
1
ap ~ ——.
"V

For fi,

2

||f1||L2(Cj(B)) < Zak HpkaHB(cj(B)) :
k=0

For k = 0, P*a = a so that

1P¥all 2y < V(B)H2

Let h € L*(C;(B)) with ||h]|;» < 1. For all 1 < k < r?, Lemma 6.2 yields

Z Pra(x)h(z)m(z)| < Z |h(z)| (Zpk(fcay) \a(y)|) m(z)

zeC;(B) z€C;(B) yerl

= D la@)l{ > pele,y)exp (W) eXp<

yel’ :L‘ECJ'(B)
|h(x)| m(x))
7022jr2
< e R Zla(yﬂ( > \pk(w,y)IQGXp(
yel re2i+3B

11l 22 )

e lal)]
o y;vvz(y,\/@ v

IN
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(6.75)

(6.76)

_ad(z,y)

)
) m<x>> N

(6.77)



But, for all y € B, (D) shows that

1 1 V (Yo, \/E)

V(y, Vk) V(yo, V) V(y, Vk)
1 V(y, VE + T)

: V(?/Oa \/E) V(yv \/E)D

< 1 (1 + L) (6.78)
— Viwo, \/E) } vk b

M ML T

— V(ZFB)V(yo, V) vk

1 2743\ 2P
< — 1+ — .
= v<2ﬂ+38>< ’ JE)

Therefore, it follows from (6.77) and the fact that ||a|; <1 that

o ._ ¢ 1222
I aHLQ(Cj(B)) = V12(2543 ) P\ )

Since, when j > 3 and k = 0, P*a = a and C}(B) are disjoint, one obtains

||f || < C (i 1 ,22jr2 N (6 79)
HILz(c;(B) = y/1/2(95+3 T eXP | € G| .
VIR@TB) \ & Vk k
with¢; =11if j <2 and ¢; =0if j > 3.
For fs,
Hf2HL2(Cj(B)) < Z Ak qu(-,y)a(y)m(y)
k=r24+1 yel

L2(C5(B))
Pick up a function h € L*(C;(B)) with ||h]|;» < 1 again. For all k > r? + 1, Lemma 6.3 yields

S Pra@h@m(@)| < S |h(a) <qu<x,y>|a<y>|m<y>> m(x)

zeC;(B) z€C;(B) yer

yer z€C;(B)

|h(z)| m(z)) m(y)

Tl | X e Per (5 )i

yel z€C;(B)
X ||h||L2(Cj(B)) m(y)

L (o \ )]
o (75) 2 gy, "

IN

IN

C e_cﬁ <L) h/2
V12(yo, VE) vk

IN

(6.80)
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Arguing as before and using (2.21), one therefore obtains

C e [ \ M2
||f2||L2(Cj(B)) < Z VEV2(y, \/_)6 ’ (ﬁ)

2+1
C f L VI2(25B) e < r )W
V1/2(23+3B) Ny \/EV1/2@07 \/E)

7 (6.81)

C =1 23PN\ e%,2 (o h/2
< __C v, et ("
VI/2(21+3B) vVE T\ VE Vk

k=r241

where
uP’? ifu>1

Ju) = { u??  ifu < 1.
Gathering (6.79) and (6.81), one therefore obtains

2
C " 1 CQQJ 2 22] 2 2j+37’
T; < 2irV1/2(2i+3) (CJ +; Z < Vi ) <

k= r2+1

=

) h/2>
Thus,

. C r2 1 22] ) 223 2j+3r r h/2
V2083 < | ¢, E E - -
( )J N 2]T<Cj+k (\/E)(\/E)

2+1

_Copr e dt . oo _CQQJTzf(zﬁ?)r) < r )W dt

- e e t [ _

- 2r J Vi 2 Vit » Vit t
teo du o Vu\"? du

< 02*23"1/2.

Note that we used the fact that d > 1 in the last inequality (this is the only place where this
assumption is used). Finally,

+oo
d VBT < C. (6.82)
=0
Let us now focus on S;. For j < 2, the L*-boundedness of V(I — P)~%/2 yields
V(I —P) '

< ||V - Py~ < CV(B)T2

a’HLQ(Cj(B)) aHB(r)

Take now j > 3. As before, one has

V(I —-P) % < Zakvpka

= ZakVPka+ Z a,V P*a

=r241
= 91 + g2.
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We estimate the L?-norms of g; and g,. For g,

2

HngLQ(Cj(B)) < Zak HVPRQHLQ(CJ(B)) :
k=0

(6.83)

Notice that, when k = 0, VP*a = Va is supported in 2B, which is disjoint from C;(B) since

j > 3. Let h € L*(C;(B)) with [|h]|,» < 1. For all 1 <k < r? Lemma 6.2 yields

S vPra@gemz) < 3 |h<x>|(2vxpk<x,y> |a<y>|) m(z)
z€Cj(B) z€Cj(B) yel’
= Sl | T Vesrlw g exp (%ky)
yel’ xe€Cj(B)
W)l m(x))
< Y awl | 2 |vmpk<x,y>\2exp(
yel ze€Cj(B)
Wil
< _e—c%z ‘a’<y)‘ m<y)

\/E yeB V1/2 (y7 \/E)
Thus, it follows from (6.78), (6.84) and the fact that ||a||, <1 that

|V P*

< C 2% 2
aHLQ(CJ(B)) ~ VEV1/2(2i+3B) P\ T, :

As a consequence of (6.75) and (6.83), one therefore has

) A
C 3! 25072
"91"L2(0j(3)) < V1/2(2/+33) (Cj g P (C k ’
V k=1

where, again, ¢; = 1if j <2 and ¢; =01if 7 > 3.
For ga, observe that, for all x € I, since 3 - a(y)m(y) =0,

Pra@) = 3209 000

= my)
B pe(@,y) (@, 40) alv)m
_ yezr( ) 50) ) (y)m(y)
— %Z(pk(y,x)—pk(?/oax))a(?/)m(y)
= Y al(zy)aly)m(y).
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L

(6.84)

(6.85)



As a consequence,

lgsll 2 my < D an || D Vet (- y)aly)m(y)
k=r2+1 yel

L2(20+3B)

Pick up a function h € L*(C;(B)) with ||h]|;» < 1 again. For all k > r? + 1, Lemma 6.3 yields

Z VPra(x)h(z)m(z)| < Z (vaqu y) la(y)| m(y )) m(z)
z€Cj(B) xe€Cj(B) yel’
ad?(z,y) ad?(z,y)
= 3 Ja) Vaan(z, o) exp 2 o (- 2L(2:0)
yzg; y $E§B) ai(z,y p( o ) p( o )
) () m(y) .
< > Vet esn (“HE ) m)

yel’ z€Cj(B)
X HhHm(cj(B)) m(y)

IA

C e (N Jaly)
Vi <¢%> 2 ey, i)"Y

C i o h/2
- —eas? <_) _
- \/EV1/2<ZJ07\/E) \/E

(6.86)
Using (6.75) again, as well as (D) and (2.21), one therefore obtains
—+00 h/2
C 2272 r
2C < ——————e “ & | —=
1921l 1, (C;(B)) k;l KV /2y, \/E) <\/E)
C X 1VIB) e (o \MP
- 1/2(9j+3 Z I : )ech <—) (6.87)
VIR(%3B) | £ V12 (yo, vE) vk

+00 ) ; h/2
< # Z lf i 676# o ,
VIR(29B) = k' \ VE Vk

r241

Gathering (6.85) and (6.87), one therefore obtains

¢ e (208 o \IP
Sj—Vuz 2i+3B) ( +Zk k;I_e ' (ﬂ)(ﬁ) '

22] 2
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Thus,

} Pl w1 e (2N [ r \?
V28BS, < O ¢ I S —
@TB)S; = Grt2ope T I )\

L k=1 I:_:T’Q—f—l ) 2
T g% dt o0 52,2 23 +3y r dt
<of e 7”4; o f(ﬁm(_k) 0
- C/%OO Ll M (2—{) du
< 022;712 ' ' ’
which proves that
io VI2(213B)S; < C. (6.88)
§=0

Finally, (6.88) and (6.82) yield (6.74) and the proof of Proposition 6.1 is complete. -
Let us now derive Theorem 2.15 from Proposition 6.1. Take f € H'(T') and decompose

“+oo
=D N
g

with Y% | < 2 [/ |72 r)- For all J > 0, define

fJ = Z )\ja]‘,
7=0

so that f; — f in HY(T). For all j; < js,
(I—=P) " Pf,—(I=P)Pf = > NI —P)

J1<j<J2
which entails, by Proposition 6.72,

I =P) 2 = (U= PY P llgiay < D T =P Pa]| gy

J1<i<g2

< C >

J1<§<j2
This shows that ((I — P)~"/2f;);50 is a Cauchy sequence in S“(T"), and therefore converges
to some function g € S (T"). Moreover, using Proposition 6.1 again,

J
ol = Jim [ = PY 25 ey < C 0N < 2C Ul

J=0

Furthermore, since f; — f in HY(T'), d(I — P)~Y2f; = d(I — P)~*2f in L'(E) (see [Rus01],
Theorem 2.1). Since d(I — P)™Y2f; — dg in L'(E) by what we have just proved, d(I —
P)~Y2f = dg. As a consequence, g = (I — P)~Y/2f ¢ SYY(T) and

1= Py fl oy < 2C 1Ly
which concludes the proof of Theorem 2.15. -
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6.2 Riesz transforms and Hardy spaces on edges

Apart from Theorem 2.15, it is also possible to establish that the Riesz transform maps H!(T")
into a Hardy space on E, under assumptions (D) and (P;), without assuming (2.21).
Indeed, since F, endowed with its distance d and its measure p, is also a space of homogeneous
type (see Section 2.1.1), we can define an atomic Hardy space on E. More precisely, an atom
is a function A € L?(E,u) (recall that A is antisymmetric), supported in a ball B C E and
satisfying
D A, Y)pay = 0 and [|Al| 2 < p(B)7V2
(z,y)eB
Define then H'(FE) by the same procedure as for H!(T).
Our result is:

Theorem 6.4 Assume that T' satisfies (D) and (P.). Then d(I — P)™Y2 maps continuously
HY(T) into H'(E).

The proof goes through a duality argument. Let us introduce the BMO(FE) space. A function
® on FE belongs to BMO(FE) if, and only if, ® is antisymmetric and

1/2
1

1@l aroge) = Sup " (B) > 1Pz, y) — Ppl dpsay < o0,
= (z,y)€B

where the supremum is taken over all balls B C E and, as usual,

QB:“%T D O,y

p (z,y)€B

Define also CMO(FE) as the closure in BMO(FE) of the space of antisymmetric functions on
E with bounded support. Since E is a space of homogeneous type, one has ([CW77]):

Theorem 6.5 1. The dual of H(FE) is BMO(E).
2. The dual of CMO(E) is H'(E).
As in the proof of Theorem 2.15, Theorem 6.4 will be a consequence of:

Proposition 6.6 Assume (D) and (Py). Then there exists C > 0 such that, for all atom
a€ HYT),
|d(1 — P)"?al|,,, ., < C

(B) =

Proof of Proposition 6.6: we argue similarly to the proof of [AT98], Chapter 4, Lemma
11 (see also Theorem 1 in [MRO03]), and will therefore be very sketchy. Let a be an atom in
HY(T) supported in a ball B. By assertion 2 in Theorem 6.5, it is enough to prove that, for
all antisymmetric function ® on F with bounded support,

S d(l - P)a(z, )8, y)itay| < C 18] paropm - (6.89)

(z,y)EE
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Since d(I — P)~%a € L}(F) and
> dl = P) a(w ), =0
(z,y)eE
one has
ST A= ) Va(, ) gy = 3 d(I = P) V() (82, y) — Bap) preys (6.90)
(z.y)eE (z,9)EE
and (6.89) is derived from (6.90) as in the proof of Lemma 11 in Chapter 4 of [AT98]. .

Here is another result about the boundedness of Riesz transforms on Hardy spaces. A function
u: ' — R is said to be harmonic on I' if and only if (I — P)u(z) = 0 for all x € I'. Then:

Theorem 6.7 Let u : I' — R be a harmonic function on I'. Assume that there exist xy € T’
and C' > 0 such that, for all xz € T,
lu(z)| < C(1 + d(zo, x)).
Define, for all functions f on T and all x € T,
R(f)(x) = _d(I —P)""f(z,y)du(z,y) ey

yel’
Then R, is H'(T') bounded.

Theorem 6.7 is a discrete counterpart of Theorem 1 in [MRO03] and the proof goes through
a duality argument, as in the proof of Theorem 1 in [MRO03]. Indeed, the H*(T") — L'(E)
boundedness of f + d(I — P)~'/2f yields that R, is H'(I') — LY(I") bounded. Then, if
f € HY(T), one checks that

> Ry f(z)m(x) =0. (6.91)

Indeed,
S Rf@m(z) = > mla) Y d(l = Py f(w,y)du(z,y)p(e,y)
= > (Y du-p) f(:c,y)du(:v,y)p(x,y)m(fc)>
= Y d(I = P)7\2f(,y)du(z, y)ia,

= (d(I = P)""*f, du) 12z

= ((I = P)72f,8du) 12()

= O’
since ddu = 0. Then, using (6.91), one proves, arguing as in [MRO03], that, if a is an atom in
HY(T), then, for all functions ¢ with bounded support on T,

> Ruf(@)p(x)m(x)

zel

S HSOHBMO(F)-
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The fact that H'(T) is the dual space of CMO(T) then shows that
[Ruall gy < C,

and one concludes using the atomic decomposition for functions in H'(T').

Let us make a few comments on Theorems 6.4 and 6.7. The conclusion of Theorem 6.4 says
that, if f € HY(T'), then d(I — P)~'/2f has an atomic decomposition of the form

d(I - P)7V2f =Y N,

keN

where 37, [Ae| < C[[f]l g1y and the Ay’s are atoms in H'(FE). However, one does not claim
that each Ay is equal to da, where a4 is an atom in Slvl(F). In this sense, the conclusion of
Theorem 6.4 is weaker than the one of Theorem 2.15. On the other hand, assumption (2.21)
is not required in Theorem 6.4. Finally, Theorem 6.7 says that a scalar version of the Riesz
transform is H'(T')-bounded and does not require assumption (2.21) either.

Acknowledgements: the authors would like to thank G. Dafni and E. M. Ouhabaz for
useful remarks on this manuscript.
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