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Abstract

Motivated by problems of uncertainty propagation and robust estimation we
are interested in computing a polynomial sublevel set of fixed degree and minimum
volume that contains a given semialgebraic set K. At this level of generality this
problem is not tractable, even though it becomes convex e.g. when restricted to
nonnegative homogeneous polynomials. Our contribution is to describe and justify
a tractable L1-norm or trace heuristic for this problem, relying upon hierarchies of
linear matrix inequality (LMI) relaxations when K is semialgebraic, and simplifying
to linear programming (LP) when K is a collection of samples, a discrete union of
points.

1 Introduction

In this paper, we consider the problem of computing reliable approximations of a given
set K ⊂ Rn. The set K is assumed to have a complicated shape (e.g. nonconvex, non-
connected), expressed in terms of semialgebraic conditions, and we seek for approxima-
tions which should i) be easy computable and ii) have a simple description.

The problem of deriving reliable approximations of overly complicated sets by means of
simpler geometrical shapes has a long history, and it arises in many research fields related
to optimization, system identification and control.

In particular, outer bounding sets, i.e. approximations that are guaranteed to contain
the set K, are widespread in the technical literature, and they find several applications
in robust control and filtering. For instance, set-theoretic state estimators for uncer-
tain discrete-time nonlinear dynamic systems have been proposed in [1, 7, 9, 23]. These
strategies adopt a set-membership approach [8, 22], and construct compact sets that are
guaranteed to bound the systems states which are consistent with the measured output
and the norm-bounded uncertainty. Outer approximation also arise in the context of
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robust fault detection problems (e.g., see [14]) and of reachability analysis of nonlinear
and/or hybrid systems [13, 16].

Similarly, inner approximations are employed in nonlinear programming [21], in the so-
lution of design centering problems [24] and for fixed-order controller design [12].

Recently, the authors of [5] have proposed an approach based on randomization, which
constructs convex approximations of generic nonconvex sets which are neither inner nor
outer, but they enjoy some specific probabilistic properties. In this context, an approxima-
tion is considered to be reliable if it contains “most” of the points in K with prescribed
high probability. The key tool in this framework is the generation of random samples
inside K, and the construction of a convex set containing these samples.

In all the approaches listed above, several geometric figures have been adopted as ap-
proximating sets. The application of ellipsoidal sets to the state estimation problem has
been introduced in the pioneering work [22] and used by many different authors from then
on; see, for example, [7, 9]. The use of polyhedrons was proposed in [15] to obtain an
increased estimation accuracy, while zonotopes have been also recently studied in [1, 10].

More recent works, like for instance [4, 12, 19], employ sets defined by semialgebraic
conditions. In particular, in [19] the authors use polynomial sum-of-squares (SOS) pro-
gramming, a particular class of SDP, to address the problem of fitting given data with a
convex polynomial, seen as a natural extension of quadratic polynomials and ellipsoids.
Convexity of the polynomial is ensured by enforcing that its Hessian is matrix SOS, and
volume minimisation is indirectly enforced by increasing the curvature of the polynomial.
In [4] the authors propose moment relaxations for the separation and covering problems
with semialgebraic sets, thereby also extending the classical ellipsoidal sets used in data
fitting problems.

Our contribution is to extend further these works to cope with volume minimization of
arbitrary (e.g. non-convex, non-connected, higher degree) semialgebraic sets containing
a given semialgebraic set (e.g. a union of points). Since there is no analytic formula for
the volume of a semialgebraic set, in terms of the coefficients of the polynomials defining
the set, we have no hope to solve this optimization problem globally. Instead, we describe
and justify analytically and geometrically a computationally tractable heuristic based on
L1-norm or trace minimization.

2 Problem statement

Given a compact basic semialgebraic set

K := {x ∈ Rn : gi(x) ≥ 0, i = 1, 2, . . . ,m}

where gi(x) are real multivariate polynomials, we want to compute a polynomial sublevel
set

V(q) := {x ∈ Rn : q(x) ≤ 1} ⊃ K

of minimum volume that contains K. Set V(q) is modeled by a polynomial q belonging
to Pd, the vector space of multivariate real polynomials of degree less than or equal to d.
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In other words, we want to solve the following optimization problem:

infq∈Pd
vol V(q)

s.t. K ⊂ V(q).
(1)

In the above problem

vol V(q) :=

∫
V(q)

dx =

∫
Rn

IV(q)(x)dx

is the volume or Lebesgue measure of set V(q) and IX(x) is the indicator function, equal
to one when x ∈ X and zero otherwise.

Note that, typically, the set K has a complicated description in terms of polynomials gi
(e.g. coming from physical measurements and/or estimations) and set V(q) has a simple
description (in the sense that the degree of q is small, say less than 10). Minimization of
the volume of V(q) means that we want V(q) to capture most of the geometric features
of K.

If K is convex and q is quadratic, then the infimum of problem (1) is attained, and there is
a unique (convex) ellipsoid V(q) of minimum volume that contains K, called Löwner-John
ellipsoid. It can be computed by convex optimization, see e.g. [3, §4.9].

In general, without convexity assumptions on K, a solution to problem (1) is not unique.
There is also no guarantee that the computed set V(q) is convex. Optimization problem
(1) is nonlinear and semi-infinite, in the sense that we optimize over the finite-dimensional
vector space Pd but subject to an infinite number of constraints (to cope with set inclu-
sions).

If we denote by πd(x) a (column vector) basis of monomials of degree up to d, we can write
q(x) = πTd (x)q where q is a vector of coefficients of given size. In vector space Pd, the set
Q := {q : πTd (x)q ≤ 1} is by definition the polar of the bounded set {πd(x) : ‖x‖ ≤ R}
where R > 0 is a constant chosen sufficiently large so that all vectors x ∈ V(q) have norm
less than R. As the polar of a compact set whose interior contains the origin, set Q is
compact, see e.g. [18]. It follows that the feasible set of problem (1) is compact, and since
the objective function is continuous, the infimum in problem (1) is attained.

3 Convex conic formulation

In this section it is assumed that q is a nonnegative homogeneous polynomial, or form, of
even degree d = 2δ in n variables. Under this restriction, in [17, Lemma 2.4] it is proved
that the volume function

q 7→ vol V(q)

is convex in q. The proof of this statement relies on the striking observation [20] that

vol V(q) = Cd

∫
Rn

e−q(x)dx

where Cd is a constant depending only on d. Note also that boundedness of V(q) implies
that q is nonnegative, since if there is a point x0 ∈ Rn such that q(x0) < 0, and hence
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x0 ∈ V(q), then by homogeneity of q it follows that q(λx0) = λ2δq(x0) < 0 for all λ and
hence λx0 ∈ V(q) for all λ which contradicts boundedness of V(q). This implies that
problem (1), once restricted to nonnegative forms, is a convex optimization problem.

In [17, Lemma 2.4] explicit expressions are given for the first and second order derivatives
of the volume function, in terms of the moments∫

Rn

xαe−q(x)dx (2)

for α ∈ Nn, |α| ≤ 2d. In an iterative algorithm solving convex problem (1), one should
then be able to compute repeatedly and quickly integrals of this kind, arguably a difficult
task.

When q is not homogeneous, we do not know under which conditions on q the volume
function V(q) is convex in q.

Motivated by these considerations, in the remainder of the paper we propose a simpler
approach to solving problem (1) which is not restricted to forms, and which does not
require the potentially intricate numerical computation of moments (2). Our approach
is however only a heuristic, in the sense that we do not provide guarantees of solving
problem (1) globally.

4 L1-norm minimization

Let us write V(q) as a polynomial superlevel set

U(p) := V(q) = {x ∈ Rn : p(x) := 2− q(x) ≥ 1}.

with polynomial
p(x) = πTδ (x)Pπδ(x) (3)

expressed as a quadratic form in a given (column vector) basis πδ(x) of monomials of
degree up to δ := dd

2
e, with symmetric Gram matrix P . Then, optimization problem (1)

reads
v∗d := minp∈Pd

vol U(p)
s.t. K ⊂ U(p).

(4)

Note that in problem (4) we can indifferently optimize over coefficients of p or coefficients
of matrix P , since they are related linearly via constraint (3).

Since K is compact by assumption and U(p) is compact for problem (4) to have a finite
minimum, we suppose that we are given a compact semialgebraic set

B := {x ∈ Rn : bi(x) ≥ 0, i = 1, 2, . . . ,mb}

such that U(p) ⊂ B and hence

U(p) = {x ∈ B : p(x) ≥ 1}.

The particular choice of polynomials bi will be specified later on. Now, observe that by
definition

p(x) ≥ IU(p)(x) on Rn
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and hence, integrating both sides we get∫
B

p(x)dx ≥
∫
B

IU(p)(x)dx = vol U(p),

an inequality known as Chebyshev’s inequality, widely used in probability, see e.g. [2,
§2.4.9]. If polynomial p is nonnegative on B then the above left-hand side is the L1-norm
of p, and the inequality becomes

‖p‖1 ≥ vol U(p). (5)

Now consider the following L1-norm minimization problem:

w∗d := minp∈Pd
‖p‖1

s.t. p ≥ 0 on B
p ≥ 1 on K.

(6)

Lemma 1 The minimum of problem (6) monotonically converges from above to the min-
imum of problem (4), i.e. w∗d−1 ≥ w∗d ≥ v∗d for all d, and limd→∞w

∗
d = limd→∞ v

∗
d.

Proof: The graph of polynomial p lies above IK, the indicator function of set K, while
being nonnegative on B, so minimizing the L1-norm of p on B yields an upper approx-
imation of IK. Monotonicity of the sequence w∗d follows immediately since polynomials
of degree d + 1 include polynomials of degree d. When its degree increases, p converges
in L1-norm to IK, hence ‖p‖1 converges to vol K. The convergence is pointwise almost
everywhere, and almost uniform, but not uniform since IK is discontinuous on B. �

Note that this L1-norm minimization approach was originally proposed in [11] to compute
numerically the volume and moments of a semialgebraic set.

5 Trace minimization

In this section we give a geometric interpretation of problem (6). First note that the
objective function reads

‖p‖1 =

∫
B

p(x)dx =

∫
B

πTδ (x)Pπδ(x)dx

= trace

(
P

∫
B

πδ(x)πTδ (x)dx

)
= trace PM

where

M :=

∫
B

πδ(x)πTδ (x)dx

is the matrix of moments of the Lebesgue measure on B in basis πδ(x). In equation (3) if
the basis is chosen such that its entries are orthonormal w.r.t. the (scalar product induced
by the) Lebesgue measure on B, then M is the identity matrix and inequality (5) becomes

trace P ≥ vol U(p) (7)
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which indicates that, under the above constraints, minimizing the trace of the Gram
matrix P entails minimizing the volume of U(p).

The choice of polynomials bi in the definition of the bounding set B should be such that
the objective function in problem (6) is easy to compute. If

p(x) = πTd (x)p =
∑
α

pα[πd(x)]α

then ∫
B

p(x)dx =
∑
α

pα

∫
B

[πd(x)]αdx =
∑
α

pαyα

and we should be able to compute easily the moments

yα :=

∫
B

[πd(x)]αdx

of the Lebesgue measure on B w.r.t. basis πd(x). This is the case e.g. if B is a box.

Remark 1 (Minimum trace heuristic for ellipsoids) Note that, in the case of quadratic
polynomials, i.e. d = 2, we retrieve the classical trace heuristic used for volume mini-
mization, see e.g. [6]. If B = [−1, 1]n then the basis π1(x) =

√
6
2
x is orthonormal w.r.t.

the Lebesgue measure on B and ‖p‖1 = 3
2
traceP . The constraint that p is nonnegative on

B implies that the curvature of the boundary of U(p) is nonnegative, hence that U(p) is
convex.

In [19], the authors restricted the search to convex polynomial sublevels U(p) = V(q) =
{x : q(x) ≤ 1} by enforcing positive semidefiniteness of the Gram matrix of the quadratic
Hessian form of q. They proposed to maximize (the logarithm of) the determinant of
the Gram matrix, justifying this choice by explaining that this increases the curvature
of the polynomial sublevel set along all directions, and hence minimizes the volume.
Supported by Lemma 1 and the above discussion, we came to the consistent conclusion
that minimizing the trace of the Gram matrix of p, that is, maximizing the trace of the
Gram matrix of q, is a relevant heuristic for volume minimization. Note however that in
our approach we do not enforce convexity of U(p).

6 Handling constraints

If K = {x : gi(x) ≥ 0, i = 1, 2, . . . ,m} is a general semialgebraic set then we must
ensure that polynomial p − 1 is nonegative on K, and for this we can use Putinar’s
Positivstellensatz and a hierarchy of finite-dimensional convex LMI relaxations which are
linear in the coefficients of p. More specifically, we write p − 1 = r0 +

∑
i rigi where

r0, r1, . . . , rm are polynomial sum-of-squares of given degree, to be found. For each fixed
degree, the problem of finding such polynomials is an LMI, see e.g. [17, Section 3.2]. The
constraint that p is nonnegative on B can be ensured similarly.

A particularly interesting case is when K is a discrete set, i.e. a union of points xi ∈ Rn,
i = 1, . . . , N . Indeed, in this case the inclusion constraint K ⊂ U(p) is equivalent to a
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finite number of inequalities p(xi) ≥ 1, i = 1, . . . , N which are linear in the coefficients
of p. Similarly, the constraint that p is nonnegative on B can be handled by linear
inequalities p(xj) ≥ 0 enforced at a dense grid of points xj ∈ B, j = 1, . . . ,M , for M
sufficiently large. Note that, with this pure linear programming (LP) approach, it is not
guaranteed that p is nonnegative on B, but what matters primarily is that K ⊂ U(p),
which is indeed guaranteed. This purely LP formulation allows to deal with problems
with rather large N .

7 Examples

We illustrate the proposed approach for the case when K is a discrete set, a union of points
of Rn. For our numerical examples, we have used the YALMIP interface for Matlab to
model the LMI optimization problem (1), and the SDP solver SeDuMi to solve numerically
the problem. Since the degrees of the semialgebraic sets we compute are typically low (say
less than 20), we did not attempt to use appropriate polynomial bases (e.g. Chebyshev
polynomials) to improve the quality and resolution of the optimization problems, see
however [11] for a discussion on these numerical matters.

7.1 Line (n = 1)

To illustrate the behavior of the proposed optimization procedure, we first consider B =
[−1, 1] and K = {−1

2
, 0, 1

4
}. On Figure 1 we represent the solutions p of degrees 2, 7,

17 and 26 of minimization problem (6). We observe that the superlevel set U(p) = {x ∈
B : p(x) ≥ 1} is simply connected for degree 2, doubly connected for degree 7, and triply
connected for degrees 17 and 26. Note that, as the degree increases of p, the length of the
intervals for which p(x) > 1 tends to zero. This is consistent with the fact that the volume
of a finite set is zero. We also observe that polynomial p shows increasing oscillations for
increasing degrees, a typical feature of such discontinuous function approximations.

7.2 Plane (n = 2)

In B = [−1, 1]2 we consider two clouds of 50 points each, i.e. N = 100. On Figure 2 we
represent the solutions p of degrees 2, 5, 9 and 14 of minimization problem (6). Here too
we observe that increasing the degree of p allows to disconnect set U(p). The side effects
near the border of B on the top right figure can be removed by enlarging the bounding
set B.

7.3 Space (n = 3)

In B = [−1, 1]3 we consider N = 10 points. The solutions p of degrees 4, 10, and 14 of
minimization problem (6) is depicted in Figure 3. Here too we observe that increasing
the degree of p allows to capture point clusters in distinct connected components.

It should be pointed out that all the semialgebraic sets in the previous examples were
computed in a few seconds of CPU time on a standard PC.
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Figure 1: Minimum L1-norm polynomials p (red) such that p ≥ 0 on [−1, 1] and p ≥ 1
at the 3 points (black), for degree 2 (upper left), 7 (upper right), 17 (lower left) and 26
(lower right).

8 Conclusion

In this paper, we proposed a simple technique for approximating a given set of compli-
cated shape by means of the polynomial sub level set of minimal size that contains it.
The proposed approximation has been shown to be convex in the case the polynomial
is assumed to be homogeneous. Then, a tractable relaxation based on Chebychev’s in-
equality has been introduced. Interestingly, this relaxation reduces to the classical trace
minimization heuristic in the case of quadratic polynomials, thus indirectly providing an
intuitive explanation to this widely used criterion.

Ongoing research is devoted to utilize the proposed approximation to construct new classes
of set-theoretic filters, in the spirit of the works [1, 9].
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Figure 2: Minimum L1-norm polynomials p (red) and low surface semialgebraic sets
(yellow) such that p ≥ 0 on [−1, 1]2 and p ≥ 1 at 100 points (black), for degree 2 (upper
left), 5 (upper right), 9 (lower left) and 14 (lower right).

Figure 3: Including the same 10 space points (black) in low volume semialgebraic sets
(yellow) of degree 4 (left), 10 (center), 14 (right).
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