
HAL Id: hal-00740787
https://hal.science/hal-00740787

Submitted on 11 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Track-To-Track Association Method for Automotive
Perception Systems

Adam Houenou, Philippe Bonnifait, Véronique Cherfaoui

To cite this version:
Adam Houenou, Philippe Bonnifait, Véronique Cherfaoui. A Track-To-Track Association Method for
Automotive Perception Systems. IEEE Intelligent Vehicle Symposium (IV 2012), Jun 2012, Alcala de
Henares, Spain. pp. 704-710, �10.1109/IVS.2012.6232261�. �hal-00740787�

https://hal.science/hal-00740787
https://hal.archives-ouvertes.fr

A Track-To-Track Association Method for
Automotive Perception Systems

Adam Houenou∗+, Philippe Bonnifait∗, Veronique Cherfaoui∗, Jean-François Boissou+

Abstract—Recent and future driver assistance systems use
more and more sensors, that have individual tracking modules.
For target tracking, it becomes necessary to find techniques
to manage as simply as possible the use of a great number
of independent and heterogeneous sensors, at the different
stages of the process. This paper presents a modular high-
level track-fusion architecture for a multisensor environment.
This architecture allows the variation of the number and
the types of the used sensors with no major change in the
tracking algorithm. The paper also tackles the multisensor
track-to-track association issue with a new algorithm based on
a particular track-to-track distance computation. An example
of target tracking method is shown to make use of the proposed
architecture and the track-to-track association algorithm.

Index Terms—Multisensor track-to-track association, track
level fusion, target tracking, processing architecture.

I. INTRODUCTION

Target tracking is a basic task for a number of Advanced
Driver Assistance Systems (ADAS). It allows the system to
get a representation of the vehicle’s environment, containing
potential obstacles with their kinematic parameters. This
dynamic representation can then be used by different decision
modules, depending on the considered functionality. Recent
ADAS use more and more sensors (Fig 1) in order to increase
confidence in detections, to enlarge their field of view (f.o.v.)
and to get more complementary information. Many sensors
are now equipped with an individual processing module that
performs a local tracking task and reports a list of targets
identified through time. Target tracking for a system that uses
such sensors consists in fusing the received sensor-tracks in
order to get upper level tracks, called system-tracks in this
paper. It is a track-level data fusion. A discussion of the
advantages and disadvantages of this architecture is presented
in chapter 9 of [5]. The sensors work independently and the
high level of abstraction of the data they provide allow the
implementation of a tracking process that is not affected by
the use of heterogeneous sensors.

In a monosensor target tracking process, the data associ-
ation step is usually the first one; It consists in matching
the new reported observations to the current tracks. In a
multisensor environment, one must match the sensor reports
that correspond to the same target in order to estimate the
target’s state by merging the different sensor reports. There

∗Heudiasyc UMR CNRS 7253 - Université de Technologie de
Compiègne, adam.houenou@hds.utc.fr
+PSA Peugeot Citroën

Figure 1. Vehicles are equipped with more and more sensors

are many data association algorithms such as Nearest Neigh-
bor (NN), Probabilistic Data Association, Multi-Hypothesis
Tracking (MHT) and their variants (see [5]) but most of them
are only known for the two-data-classe (current tracks and
reported observations) association cases. The cases with more
data classes considered simultaneously are less frequently
encountered. Data association errors can generate a number
of problems such as ghost track, target loss and track ID
permutation. Errors usually occur when the targets are close
to each other (causing ambiguities) or because of sensors’
lack of accuracy.

This paper aims at presenting a track-to-track association
algorithm that can be used for as many sensors as wanted.
This algorithm is used in a multisensor tracking system
presented thereafter. The processing architecture that has
been used makes it possible to vary the number and the
types of the sensors with little modification in the structure
of the tracking system. In section II, we present the tracking
architecture and the internal tasks of the tracking system. In
section III, we discuss the data synchronization issue in a
multisensor environment. In section IV, the data association
algorithm is described in details and in section V, we show
some simulation results.

II. GLOBAL ARCHITECTURE OF THE TRACKING SYSTEM

This system is intended to be used in vehicles that may
have different types and different number of sensor devices
(lidars, radars, cameras). So it has been designed to be
as sensor-independent as possible. The global processing
architecture (Fig. 2) is inspired from the one used in [6]
for the vehicle that won the 2007 Darpa Urban Challenge.
It separates the tasks into two main layers, a Sensor Layer
(SL) and a Fusion Layer (FL). The common idea is to

2012 Intelligent Vehicles Symposium
Alcalá de Henares, Spain, June 3-7, 2012

978-1-4673-2118-1/$31.00 ©2012 IEEE 704

Figure 2. Processing architecture

perform the sensor-specific tasks in the SL and to provide
the FL with sensor-independent data so that there would
be no modification in the tracking algorithm even if the
number and the types of the sensors were modified (because
of sensor failure, addition or removal). In our case, there are
less interactions between the layers and the internal tasks of
the layers are different.

The SL has the role of collecting sensor-specific data from
each physical sensor and converting them into a common
sensor-independent data type. These data are then sent to the
FL that performs the target tracking.

A. Sensor Layer

The perception of the environment is done by means of
several sensors that work independently and provide their
reports at different rates. Since each sensor has its own
internal tracking module the reports are lists of target tracks
identified through time. We assume that a track is defined
by a timestamp, an identification number, a target state
estimate and its error covariance matrix. The target state is
composed of different parameters depending on the sensor
specifications. In this paper, we will focus only on the
tracking of the position and velocity which are usually the
minimal reported parameters. A sensor report is relative to
the sensor’s individual mobile coordinate system and time
base. In order to make a global tracking on the reunion of
the individual f.o.v., it is necessary to convert the collected
sensor data to a common mobile coordinate system and a
common time base. These conversions are respectively the
spatial alignment and the temporal alignment. Sensors that
have the same data types are managed by the same Sensor
Processing Module that can be run in parallel instances as
new sensor reports are being received (see Fig2). If a sensor
with a new data type is added, it will be necessary to add
a new Sensor Processing Module. The Sensor Processing
Modules perform the following tasks:

– Feature extraction: Sensors reports are usually received
in many packages that first need be reassembled in order
to form utilizable data structure. The reassembling rule

is specific to each sensor. One must check the sensor’s
documentation.

– Spatial alignment: For automotive applications, it is
generally sufficient to have a 2D positioning since one
can assume that the road is locally plane all around
the vehicle and that there is no flying or underground
object. Therfore, the sensors’ measures are supposed to
be made in a plane considered to be the road plane.
The common coordinate system is also defined in that
plane. A rigid planar transformation can then be used to
convert measures from an individual sensor coordinate
system to the common coordinate system. Indeed, the
relative position of the common coordinate system’s
origin and orientation in each sensor coordinate system
is supposed to be known (sensor configuration and
physical mounting point).

– Temporal alignment: The timestamp given to a report
by a given sensor originates from the sensor’s internal
clock. In practice, the sensor clocks have different times
(due to unknown sensor booting time) but it is possible
to estimate the relative offset between them by using
the global time (coming from the FL’s clock). The
individual timestamps can then be converted into global
time. Because of clock drifts, the temporal alignment is
periodically repeated. .

– Data validation: Invalid data are not transmitted to
the FL. The validity can be checked by known sensor
properties (validity flag or check-sum value).

– Sensor meta-data: In complement of the sensors esti-
mates, other information are useful at the FL level. For
instance, the identification of the sensors is used for data
association and data synchronization, the f.o.v. are used
to check overlapping areas for data association.

Here is an example of sensor-independent data for a given
track: {Timestamp, Sensor meta-data, Track ID, State es-
timate (position and velocity), Estimation error covariance
matrix}.

B. Fusion Layer

The target tracking task itself is performed in the FL. The
sensor tracks are asynchronously received from the SL and
fused to form system tracks. The fusion process works as
follows: First, a software synchronization of the received
data is implemented and a fusion rate is defined so that at
each fusion time, the system has a report from each sensor.
We discuss this choice in section III. The fusion operation
consists in associating the reported tracks so that each cluster
is composed of tracks originating from the same target. For
that, we use a novel Track-To-Track Association (TTTA)
algorithm. Often, data association algorithms are used to
match track state predictions with sensor observations. In
[1] a multisensor TTTA technique based on the computation
of degrees of membership was described but the number
of clusters (equivalent to the number of targets) has to be
known in advance. The TTTA algorithm here, is based on
a specific Track-To-Track Distance (TTTD) computation,

705

Figure 3. Track merging architecture.

using buffered past track states. We present it in details in
section IV. After the TTTA stage, each cluster stands for one
detected target. Depending on the overlapping of the f.o.v.
of the sensors, and on their detections, there is one or more
reported tracks per cluster. The tracks in each cluster are
simultaneously merged to form a meta-track. The merging is
done by forming pairs of tracks that are hierarchically merged
as explained in Figure 3. Two tracks (X1, P1) and (X2, P2)
are merged using equations (1) and (2).

X = P2 · (P1 + P2)
−1 ·X1 + P1 · (P1 + P2)

−1 ·X2 (1)

P = P2 · (P1 + P2)
−1

P1 (2)

This formula (derived from the Kalman filter gain in [10])
is optimal at minimizing the trace of the resulting covariance,
under the assumption of uncorrelated measurement noise.
Since it is also a commutative and associative fusion operator,
fusion can be done in any order. As explained by Bar-
Shalom in [2], there may be an inter-sensor correlation due
to the temporal correlation of the filters. In our problem, it is
difficult to determine this inter-sensor correlation because in
practice the characteristics of the filtering performed by each
sensor is generally unknown. In [4] a formula was proposed
to approximate it, but only in the case of Kalman filters.

The meta-tracks are then associated to the current system-
tracks state predictions using the Global Nearest Neighbor
algorithm [8]. The prediction is done by using a linear and
constant velocity prediction model (described in [3]). The
non-associated meta-tracks are used to initialize new system-
tracks. The non-associated system-tracks are predicted at
each iteration until they match with a meta-track or until
they are deleted after a lap of time where the correspondent
target is supposed to be definitely lost. The system-tracks that
match with meta-tracks are updated by the meta-track’s state
with no extra filtering.

III. DATA SYNCHRONIZATION AND BUFFER
MANAGEMENT

In order to perform a correct data fusion, it is crucial not
only to keep coherence on the data chronology but also to
fuse data only if they are relative to the exact same instant.
Incoherence on data chronology is usually caused by sensors’
latency; indeed, because of internal sensor processing time
and data transfer time, it may happen that a data is received
by the system after others that are more recent yet. This
case is called out-of-sequence. Many solutions have been
suggested to answer the out-of-sequence issue ([5], [7],
[11]). Most of them recommend the use of buffers. The
one suggested in [11] consists in fusing the data as they are

a)

b)

Figure 4. Data synchronization. a) Asynchronous fusion. b) Software
synchronization

being received (regardless of the fusion technique used) and
keeping them in a buffer for a limited lap of time. When an
out-of-sequence case is detected, the buffer is used to go back
into the past and redo the fusion, with the right chronology,
up to present time.

The fusion of many data at a given instant is non sense
if these data are not relative to the same time. Thus, in a
multisensor environment where data are received at different
rates, there are two possibilities: either an update of the
system-tracks is performed every time a new sensor data
is received (Fig 4.a) either, a fusion rate is defined, then,
at each fusion time an estimate of each sensor’s data is
computed and a system update is performed with all the
estimates (Fig 4.b). In the first case, the quality of the update
(amount of information gained) depends on the accuracy and
the type of information provided by the sensor whose data
has just been used. To explain this, let’s say that one of
the sensors used does not make an estimate of the lateral
velocity of targets; after the fusion of its reports, there won’t
be an update of the tracks lateral velocity. We opted for the
second case, where we have steadier updates at steady time.
Our solution works as follows: each sensor has a dedicated
Sensor Buffer where only its last report is saved, meaning
that a new report overwrites the previous one. The fusion
module works at the same rate as the fastest sensor, meaning
that a fusion task is performed every time a report from
this sensor is received. When the fastest sensor sends a
new report, a state prediction is made for the other sensors’
tracks, using their (buffered) last report. The prediction is
performed assuming that the targets have a linear trajectory
with a constant velocity between two sensor reports. So, we
obtain an apparent synchronization of the sensors. The state
predictions and the fastest sensor report are saved in a History
Buffer at each fusion time. When an out-of-sequence report
is detected, the History Buffer is used to insert that report
at ”the right moment in the past”. Then successive fusion
operations are made to catch up the present time, using the
following saved reports in the buffer. In order not to use
an excessive amount of memory, the History Buffer’s size is
limited.

IV. TRACK-TO-TRACK ASSOCIATION

TTTA consists in clustering all the currents sensor tracks
so that the tracks of a same cluster should be state estimates

706

Figure 5. The use of track history for a better TTTA

of the same target. For our multisensor TTTA algorithm, two
important and logic assumptions have to be made:

1) in each cluster there is at most one track of each sensor
2) a given track can not be in two different clusters.

This means that we assume a sensor won’t generate more
than one report per target and that two or more targets won’t
be reported as a single one; which is the ideal case. In
practice, that may not be true, due to filtering errors but this
algorithm will precisely allow the detection of ghost reports.
Indeed, in areas covered by more than one sensor, the ghost
reports will be isolated in their cluster. The algorithm is a
generalization of the Nearest-Neighbor algorithm to more
than two data classes. However it is based on computations
of two-by-two distances between tracks.

A. Track-To-Track Distance computation

A track corresponds to the state estimate of a single target
identified through time. We can then introduce the notion of
track history. Figure 5 is the representation of three tracks
from instant k − n to instant k. The state estimate here
is limited to the Cartesian position (x, y) (for the sake of
representation). At instant k Track C is closer to Track A
than Track B. But considering all the known history (past
states) of the three tracks, it is clear that Track B is more
similar to Track A than Track C. The idea is to use the
track histories in order to make better association. We use a
similar formula (Eq 3) as the one shown in [9] to compute
the ”distance” between two tracks, using their past estimates.

D
(a,b)
k =

1

n

n−1∑
i=0

d
(a,b)
k−i (3)

with n being the history size (number of past reports
considered) and

d
(a,b)
k =

(
Xa

k −Xb
k

)T · (P a
k + P b

k

)−1 ·
(
Xa

k −Xb
k

)
+ ln

(∣∣P a
k + P b

k

∣∣)
where a and b are two tracks and Xk and Pk are respec-

tively the state estimate and the error covariance matrix of the
corresponding state estimate at instant k. The value assigned
to n is equivalent to a lap of time that must not be greater
than the more recent track’s age.

With this formula, the resulting distance between Track C
and Track A will be bigger than the distance between Track
B and Track A and the association error will be avoided at
instant k.

Algorithm 1 Multisensor Track-To-Track Association
1) Collect the tracks of all the sensors
2) Assign a number from 1 to N to each track, N being

the total number of tracks.
3) Create a N×N array for the TTTDs between the tracks

a) Set cells over the diagonal to a defined maximal
value (MaxV al) in order not to compute twice
the distance between two same tracks.

b) Set cells corresponding to two tracks of the same
sensor to MaxV al, in order not to associate two
tracks of a same sensor.

c) Set the remaining cells to the distance between
the corresponding two tracks.

d) Set cells where the distance is greater than a
defined threshold to MaxV al. The threshold
symbolizes a gate out of which we assume that the
two tracks cannot originate from the same target.

4) Loop: Determine the minimal value (MinV al) of the
array and its position (lin, col) in the array. While
MinV al is smaller than MaxV al

a) If none of the corresponding two tracks has not
been inserted in a cluster yet, then put both of
them in a new cluster.

b) If only one has already been inserted in a cluster,
then add the second to that cluster.

c) If both have already been inserted in a cluster (the
same or not), then do nothing.

d) Set to MaxV al cells in the line lin and the
ones in the column col, that correspond to tracks
reported by the two concerned sensors.

5) Each track that has not been inserted in a cluster forms
a new cluster (singletons).

B. Multisensor Track-To-Track Association algorithm

The multisensor TTTA process is described in algorithm
1.

Iteratively finding the minimal distance guaranties that
every new association made is the best possible at each
iteration and that the first associations are better than the
followings. That is why, at stage 4, if both tracks already
have a cluster, nothing is changed. The value given to the
threshold (stage 3.e) depends on the sensors’ accuracy. When
the sensors are accurate, their reports are close to each other
because they are close to the actual target state. In that case,
the threshold can be defined as small as possible. If they
are inaccurate, reports about a same target may be far from
each other, so the threshold needs to be enlarge. The size of
the history in the Track-To-Track Distance (TTTD) formula
(Eq. 3) is the second parameter of the algorithm. When it
is defined big, there are less chances for association errors
because more past track states are taken into account but the
computational requirement becomes bigger.

If at stage 4 there is a multiple minimum value (which
should be rare), each hypothesis, in accordance with the first
considered cell, must be evaluated; then if the results are

707

Table I
SENSOR ACCURACY SETTINGS USED DURING THE SIMULATION

different, the chosen hypothesis is the one where the sum of
the TTTD of tracks in the same clusters is the smallest.

An example of execution of the algorithm is shown in
Appendix.

V. SIMULATION RESULTS

In order to evaluate the performance of this tracking
method in various situations, we designed a simulator. Real
automotive scenarios can be simulated and we obtain the
position and the velocity of the vehicles (targets and host)
during the simulation, with a chosen sample rate, in a fixed
global Cartesian coordinate system. These are considered as
reference data. Sensor measurements are also elaborated. It
is possible to simulate several kinds of sensors by adding
to the reference data a uniform white noise with a variable
amplitude w.r.t. the sensor’s basic accuracy and the target’s
range. Target visibility is simulated by checking sensors’
f.o.v. and alignment of objects w.r.t. the sensor’s position.
Then, the tracking module of each sensor is simulated, by
performing a Kalman filter with a linear and constant velocity
prediction model (see [3]). A virtual sensor’s report at time t
is a timestamped list of its tracks. For simplification purpose,
the global tracking is done in a fixed Cartesian coordinate
system.

We created an urban driving context with four target
cars, containing straight road parts, a roundabout and an
intersection. The host vehicle is equipped with three sensors,
S1, S2 and S3, all in front view sensing. The sensors’ f.o.v.
are made quite redundant in order to evaluate the performance
of the TTTA algorithm in various situations and to compare
the global tracking to the individual sensor trackings. The
simulation has been run several times with different sensor
accuracies as reported in table I. The values in the table are
the maximal measurement error rates, expressed in percent-
age, for each state parameter, for a target at 100m range.
When the target is closer, the maximal measurement error
rate is smaller. The actual measurement error is a random
value in the correspondent interval. One can see that from
setting 1 to setting 3 sensor S1 does not change while sensors
S2 and S3 are more and more degraded. These settings are
used to evaluate the TTTA algorithm. Setting 4 is used to
evaluate the result of the global tracking.

A. TTTA Algorithm

The algorithm has two parameters that need to be tuned:
the gating threshold (see stage 3.e of the algorithm) and the
size of the history considered for the TTTD computation (see
eq. 3). We study here the impact of each parameter on the

a) b)

c)

Figure 6. Association errors. Targets are represented in black and sensor
reports in color. a) Cluster permutation b) More clusters than targets c) Less
clusters than targets

result in terms of erroneous associations. The simulation has
been run 5 times per sensor setting per parameter and per
chosen parameter value. For a complete execution of the
scenario, the TTTA algorithm is run about 400 times (at each
sample time). The association errors were of two types:

1) Some tracks permuted their clusters: This can happen
when the correspondent targets evolve very closely
from each other for a lap of time greater than the
defined history size (see Fig. 6a). The advantage of
TTTD is to help distinguishing between tracks that are
close only for a moment and the ones that have always
been quite close because they probably originate from
the same target. If the track history is not long enough,
target that move closely for a long time may be
mistaken due to measurement noise. A solution is to
enlarge the history size but a trade-off has to be made
between this issue and the computational requirement.
Indeed adding one unit to the history size (equivalent
to the simulation period) increases the execution time
by approximately 1% in our case (three sensors and
four targets). It gets worse if the numbers of sensors
and targets are greater.

2) There were more clusters than actual targets: it happens
when a sensor reports ghost target or when we have
erroneous target state estimates that fall out of the
association gate (see Fig. 6b). The solution is to en-
large the threshold but that increases the computational
requirement and can lead to associating tracks that are
not similar at all.

A third possible type of errors, that did not occur during
the tests is to have less clusters than real targets. If the gating
threshold is defined too large and in case of miss detections,
reports originating from 2 different targets may be clustered

708

Table II
PERCENTAGE OF ERRONEOUS ASSOCIATIONS W.R.T. SENSOR
ACCURACIES AND A) GATING THRESHOLD B)HISTORY SIZE

together (see Fig. 6c). However, this case should be rare
because it needs each sensor to have a miss detection; indeed
if at least one does not miss a detection, the number of cluster
will be at least equal to the number of targets.

Table II.a reports the percentage of erroneous results w.r.t.
the threshold value. The history size is fixed to 10 here. One
can notice that the more inaccurate sensors are (as shown by
settings 2 and 3) the larger the threshold should be chosen to
have a good result. An expression of the relationship between
the sensor accuracies and the required threshold cannot be
clearly defined because the statistical distribution followed by
the TTTD (Eq. 3) is not known. The right threshold should
be chosen experimentally.

Table II.b reports the percentage of erroneous results as
a function of the history size. The gating threshold is fixed
to 30. One can notice that taking into account more past
sensor reports helps to solve ambiguous situations caused
by temporary closeness of some targets and leads to less
erroneous associations.

Whatever the sensor accuracies, it is possible to
parametrize the algorithm so that it performs well.

B. Fusion result

The efficiency of the global tracking has also been evalu-
ated. Here we use setting 4 described in Table I, for the sensor
accuracies. S1 is accurate for target velocity estimation, S3
for target localization and S2 is less accurate for both. The
gating threshold is set to 30 and the the history size equals
10. Figure 7 shows the longitudinal position and speed errors
for the tracking of a chosen target. The colored curves are the
result for each sensor tracking and the black curve is for the
global tracking. One can notice that for each state parameter
the global tracking result is always close to the estimate
provided by the best sensor even if it is not always better
than it. This is because in the merging formula (equations
1 and 2), sensors with a large error covariance matrix have
a low (but not null) weight. Nevertheless, globally speaking
(for all state parameters), the global tracking is better than
each sensor’s tracking.

VI. CONCLUSION AND FUTURE WORK

In this article, track-level multisensor target tracking has
been studied for automotive applications. We have proposed a
processing architecture that is robust to the addition, removal
or failure of sensors. The use of many sensors has a lot
of advantages but one can take benefit on it only if correct
associations between the reported sensor tracks is made. For
this we have proposed a multisensor TTTA method that uses
track histories. This approach has several advantages like

Figure 7. Global tracking errors versus sensor tracking errors

the ability to reduce ambiguities and to partially cover the
lack of accuracy of sensors. We have also reminded a buffer
management that solves the out-of-sequence and the data
synchronization issues.

We focused only on the position and the velocity tracking
but future work include other attributes such as object di-
mensions and classification. We are also working on global
track existence probability management.

REFERENCES

[1] A. M. Aziz. Fuzzy track-to-track association and track fusion approach
in distributed multisensor multitarget multiple-attribute environment.
Electrical Eng. Dpt., Military Technical College, Cairo, Egypt, 2006.

[2] Y. Bar-Shalom. On the track-to-track correlation problem. IEEE Trans.
on Automatic Control, 26:571 – 572, 1981.

[3] Y. Bar-Shalom, M. K. Kalandros, L. Trailovuc, and L. Y. Pao. Tutorial
on multisensor management and fusion algorithms for target tracking.
Proc. of the 2004 American Control, pages 4737–4751, 2004.

[4] Y. Bar-Shalom and X. R. Li. Multitarget multisensor tracking:
principles and techniques. IEEE AES Systems Magazine, pages 41
– 44, Feb. 1996.

[5] S. S. Blackman and R. Popoli. Design and analysis of modern tracking
systems. ArtechHouse, Incorporated, 1999.

[6] M. S. Darms, P. E. Rybski, C. Baker, and C. Urmson. Obstacle
detection and tracking for the urban challenge. IEEE Trans. on ITS,
10, Sep 2009.

[7] N. Kaempchen and K. Dietmayer. Data synchronization strategies for
multi-sensor fusion. Proc. of the 10th World Congress on ITS and
Services, 2003.

[8] P. Konstantinova, A. Udvarev, and T. Semerdjiev. A study of target
tracking algorithm using global nearest neighbor approach. Interna-
tional conference on computer systems and technologies - CompSys
Tech’, 2003.

[9] D. Müller, J. Pauli, M. Meuter, L. Ghosh, and S. Müller-Schneiders.
A generic video and radar data fusion system for improved target
selection. IEEE Intelligent Vehicles Symposiun, Germany, Jun 2011.

[10] R. C. Smith and P. Cheeseman. On the representation and estimation
of spatial uncertainty. The International Journal of Robotics Research,
5(4):56–68, 1986.

[11] C. Tessier. Système de localisation basé sur une strategie de percep-
tion cognitive appliqué a la navigation autonome d’un robot mobile.
Master’s thesis, Universite Blaise Pascal - Clermont II, 2007.

APPENDIX

Let’s consider a host vehicle with four sensors, tracking
four target vehicles in their overlapped f.o.v. Figure 8 depicts
an example of sensor reports where Tij are the positions

709

Figure 8. Example of TTTA. Tij are sensor reported positions. Red dots
are the actual positions of the targets. Red ellipses are correct track clusters

of a reported track, with i being the number of the sensor
and j the number of the track. The red dots represent
the actual positions of the targets and the red ellipses are
clusters containing targets that originate from the same target.
Hereafter we depict the evolution of the TTTD array and the
obtained clusters from stage 3 to the end of the algorithm.

Stage 3

Stage 4: Loop

Stage 5
Clusters: {T13, T32, T24} , {T11, T23, T31, T41} ,
{T12, T22} , {T21}

This is the expected result.

710

