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Abstract: We propose here to combine sideband holography with

stroboscopic illumination synchronized with the vibration of an object.

By sweeping the optical frequency of the reference beam such a way the

holographic detection is tuned on the successive sideband harmonic ranks,

we are able to image the instantaneous velocities of the object. Since the

stroboscopic illumination is made with an electronic device, the method is

compatible with fast (up to several MHz) vibration motions. The method is

demonstrated with a vibrating clarinet reed excited sinusoidally at 2 kHz,

and a stroboscopic illumination with cyclic ratio 0.15. Harmonic rank up

to n = ±100 are detected, and a movie of the instantaneous velocities is

reported.

© 2012 Optical Society of America
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1. Introduction

There is a big demand for full field vibration measurements, in particular in industry. Different

holographic techniques are able to image and analyse such vibrations. Double pulse holography

[1, 2] records a double-exposure hologram with time separation in the 1...1000 µs range, and

measures the instantaneous velocity of a vibrating object from the phase difference. The method

requires a quite costly double pulse ruby laser system, whose repetition rate is low. Multi pulse

holography [3] is able to analyse transient motions, but the setup is still heavier (4 pulses laser,

three cameras).

The development of fast CMOS camera makes possible to analyse vibration efficiently by

triggering the camera on the motion in order to record a sequence of holograms that allows to

track the vibration of the object as a function of the time [4, 5]. The assessment analysis of the

motion can be done by phase difference or by Fourier analysis in the time domain. The method

requires a CMOS camera, which can be costly. It is also limited to low frequency vibrations,

since a complete analysis of the motion requires a camera frame rate higher than the vibration

frequency, because the bandwidth ∆ν of the holographic signal, which is sampled at the camera

frame rate νCCD, must be lower than the Nyquist-Shannon frequency limit ∆ν < νCCD/2. For a

periodic motion of frequency νA, the bandwidth ∆ν ≃ 0 is much smaller than νA, and νA can

overcome this limit: νA > νCCD/2. The exposure time must remains nevertheless lower that

the vibration period, in order to avoid to wash out the signal, whose phase may vary during

exposure. This limits the duty cycle and the thus SNR (Signal to Noise Ratio).



Powell and Stetson [6] have shown that the time averaged hologram of an harmonically vi-

brating object yields yields alternate dark and bright fringes. The dark fringes correspond to

the zeros of the Bessel function J0(z), where z is proportional to the vibration amplitude. One

gets then a direct mapping of this amplitude. Picard et al. [7] has simplified the processing of

the data by performing time averaged holography with a digital CCD camera. Time averaged

holography has no limit in vibration frequency and do not involve costly laser system, nor an

expensive CMOS fast camera. These advantages yield numerous recent developments of the

technique [8–18]. Although the time averaged method gives a way to determine the amplitude

of vibration [19], quantitative measurement remain quite difficult, especially for high vibration

amplitudes. To solve this problem, Borza proposed high-resolution time-average speckle inter-

ferometry and digital holography techniques, which allow subpixel resolution (optical) phase

recovery by inverting the Bessel function on its monotonic intervals and works well with larger

vibration amplitudes [20–22].

Joud et al. [23] extended the time averaged technique to the detection of the optical signal

at the vibration sideband frequency νn, where n is the harmonic rank. It was demonstrated

that the signal amplitude of rank n is then proportional to the Bessel function Jn(z). As in the

seminal work of Aleksoff [24], in Sideband holography the reference beam frequency is tuned

in order to select the sideband of rank n. This tuning is made by the heterodyne holography

technique [25]: the frequency of the illumination and reference beams are shifted by acousto

optic modulators (AOMs) so that the reference versus illumination frequency offset can be

finely adjusted. Sideband holography, which is able to detect MHz frequency vibrations [26],

is able on the other hand to image sidebands up to rank n = ±1000 [27], and by the way to

analyse vibration of large amplitude, which can be studied by time averaged technique at the

price of inverse methods [22].

Since both time averaged and sideband holography record the holographic signal over a large

number a vibration periods, these two techniques are not sensitive to the phase of the vibration,

and are thus unable to measure the instantaneous velocities of the object. To respond this prob-

lem, Leval et al. [28] combine time averaged holography with stroboscopic illumination, but,

since Leval uses a mechanical stroboscopic device, the Leval technique suffer of a quite low

duty cycle (1/144), and is limited in low vibration frequencies (νA < 5 kHz).

We propose here to combine Sideband Digital Holography (SDH) with stroboscopic illumi-

nation synchronized with the vibration. To perform the stroboscopic illumination, we make use

of two AOMs to control both the frequencies and the amplitudes of the illumination and refer-

ence beams. This is done by switching electronically on and off the Radio Frequency signals

(≃ 80 MHz) that drive the two AOMs.

If the amplitude of vibration is high, the light scattered by the vibrating object exhibit many

sideband components. By sweeping the reference frequency such a way the holographic detec-

tion is tuned on the successive sideband harmonic ranks n, stroboscopic sideband holography

is then able to detect, for any stroboscopic time delay, all the harmonic ranks generated by

Doppler effect. One can then reconstruct the instantaneous velocity map of the vibrating ob-

ject. The mechanical phase, which is related to the sign of the velocity is obtained by the way.

Note that since the stroboscopic illumination is made by AOMs that are electronically driven,

there is no practical limitation in the stroboscopic frequency and duty cycle.

In the following we will describe the principle of the method, and our optical and electronic

setup. A test experiment is made with a clarinet reed excited sinusoidally at νA = 2 kHz. The

amplitude of vibration is such that we get sideband signal up to rank n=±100. By sweeping the

stroboscopic time delay, and by recording holograms for all harmonic ranks n, we can retrieve

images of the reed instantaneous velocity.



Fig. 1. Distribution on the sidebands energy |An,x,δ x|
2 as a function of the sideband har-

monic n without (a) and with (b-d) stroboscopic illumination. Curves are plotted for differ-

ent stroboscopic illumination time t = xTA with x = 0.25 0.35, 0.45, 0.55 , 0.65 and 0.75,

and different stroboscopic illumination duration ∆t = δxTA with δx = 1 (a), 0.2 (b), 0.1 (c)

and 0.05 (d). The vibration amplitude is Φ = 50.

2. Stroboscopic SDH principle

2.1. Periodic sinusoidal motion

Consider a point of the object in vibrating sinusoidal at frequency νA and amplitude zmax. Its

displacement z(t) is:

z(t) = zmax cos(2πνAt) (1)

In backscattering geometry, this corresponds to a phase modulation:

ϕ(t) = 4πz(t)/λ = Φcos(2πνAt) (2)

where λ is the optical wavelength and Φ = 4πzmax/λ . The scattered field is then

E(t) = E e j2πν0t+ jϕ(t) (3)

= E

∞

∑
n=−∞

Jn(Φ)e j2π(ν0+nνA)t



where E is the complex amplitude of the field, ν0 the frequency of the illumination optical

field EI , and Jn the nth order Bessel function of the first kind. The scattered field is a sum of

components of frequency νn:

νn = ν0 + nνA (4)

where n is the harmonic rank of the sideband (n = 0 for the carrier). Equation 3 means that the

weight of the field component of frequency νn is E Jn(Φ). Figure 1 (a) shows how the energy

of the sideband |E |2|Jn(Φ)|2 varies with n, assuming Φ = 50 rad.

To interpret the spectrum of Fig. 1 (a), one can reverse Eq.4, considering n as a continuous

variable related to the frequency ν ≡ νn of the corresponding sideband component:

n(ν) = (ν −ν0)/νA (5)

Here, n is the Doppler frequency shift ν −ν0 in νA units. This shift is, by definition, related to

the distribution of the out-of-plane velocity V = dz/dt of the object:

ν −ν0 = nνA = 2V/λ (6)

where λ is the optical wavelength. The shift of harmonic rank n is confined between the values

±Φ that correspond to the maximum velocities ±Vmax with Vmax = 2πνAzmax. The discrete

spectrum |Jn(φ = 50)|2 of Fig. 1 (a) remains thus mostly confined between ±Φ, and drops

abruptly from a maximum reached close to n =±Φ to almost zero [27].

In order to reconstruct the object velocity map at given time of the vibration motion, we have

considered a stroboscopic illumination. The field E(t) is thus multiplied by the rectangular

function Hx,δx(t) of period TA = 1/νA

Hx,δx(t) = 0 for t/TA < x− δx/2 (7)

= 1 for x− δx/2 < t/TA < x+ δx/2

= 0 for x+ δx/2 < t/TA

where xTA and δxTA are the illumination time and illumination duration. The scattered field

becomes thus:

E(t) = E Hx,δx(t) e j2πν0t+ jϕ(t) (8)

= E ∑
n

An,x,δx(Φ)e j2πνnt

where E An,x,δx is the amplitude of the nth sideband component.

We have calculated An,x,δx from Eq.8 by numerical Fast Fourier Transform, and we have

plotted on Fig. 1 (b-d) the energy |An,x,δx|
2 as a function of n for different illumination phase

delays xTA and and different illumination durations δxTA. The energy |An,x,δx|
2 is centered on

the Doppler shift n corresponding to the instantaneous velocity V at time xTA:

nνA = 2
v(xTA)

λ
=−2

Vmax

λ
sin(2πx) (9)

For Φ = 50 and x = 0.25 0.35, 0.45, 0.55 , 0.65 and 0.75, we get n = -50, -40.4, -15.4, +15.4

+40.4 and +50 respectively, in good agrement with the curves plotted of Fig. 1 (b-d). As ex-

pected, the shape of the energy spectrum |An,x,δx|
2 strongly depends on the illumination duration

δxTA.



Fig. 2. Distribution on the sidebands energy |An,x,δ x|
2 as a function of the sideband har-

monic n without (a) and with (b-d) stroboscopic illumination for the triangular motion

defined by Eq.10. Curves are plotted for different stroboscopic illumination time t = xTA,

and different stroboscopic illumination duration ∆t = δxTA with δx = 1 (a), 0.2 (b), 0.1 (c)

and 0.05 (d). The vibration maximum amplitude corresponds to Φ = 50.

For short illumination duration (i.e. δx = 0.05 on Fig. 1 (d) ), we get a wide distribution of

the energy along n, whose shape do not depends on illumination time xTA. This is expected

since the illumination duration is to short to define the Doppler shift frequency precisely. One

is limited here by a δ t × δν ∼ 1 ”Fourier uncertainty principle”, where δ t = δxTA is the width

in time and δν = δnνA the width in frequency (δn being the width in harmonic rank).

For longer illumination duration (i.e. δx = 0.2 on Fig. 1 (b) ), the shape of the energy spec-

trum |An,x,δx|
2 strongly depends on illumination time xTA. It can be narrow (for x = 0.25 and

0.75) or wide (for x = 0.45 and 0.55), since the Doppler shift may vary slowly (x = 0.25 and

0.75) or fast (x = 0.45 and 0.55) during the illumination pulse. The best result (i.e. the narrower

distribution of n around n) is obtained for intermediate value of the illumination duration (i.e.

for δx = 0.1 on Fig. 1 (c) ).

2.2. Example of non sinusoidal motion: triangular motion

In the more general case of a non sinusoidal but periodic motion of z (period TA = 1/νA), the

calculation of the distribution of energy |An|
2 along the harmonic ranks n can be made similarly.

To illustrate the method, we have considered a triangular motion of period TA: the displacement

z increases from z = −zmax at t = 0 to z = +zmax at t = TA/2, and decreases from z = +zmax at

t = TA/2 to z =−zmax at t = TA.

Equation 8 remains still valid for that motion, and can be used to calculate An,x,δx by FFT as

done for the sinusoidal motion. Nevertheless, the phase ϕ(t) = 4πz(t)/λ is no more sinusoidal,



but is given by:

ϕ(t) = (−1+ 4t/TA)Φ (10)

ϕ(t +TA/2) = (+1− 4t/TA)Φ

where 0 < t < TA/2 and Φ = 4πzmax/λ .

We have calculated by FFT An,x,δx from Eq.8 and Eq.10. We have plotted the energy dis-

tribution |An,x,δx|
2 without stroboscopic illumination on Fig. 2 (a), and with stroboscopic illu-

mination on Fig. 2 (b-d). We have plotted |An,x,δx|
2 for different illumination phase delays xTA

and and different illumination durations δxTA. The distributions of the energy |An,x,δx|
2 plotted

here on Fig. 2 are very different than for the sinusoidal motion of same maximum amplitude

±zmax plotted on Fig. 1.

For 0.5 < x < 1.0, the displacement z decreases at constant velocity, and the shape of the

energy distribution |An,x,δx|
2, which is shifted to the negative harmonic rank n < 0, not depends

on the illumination time x. For 0 < x < 0.5 a similar result is obtained: the shape do not change,

but the shift is positive: n > 0 since z increases. These results are expected for a triangular

motion.

The analysis of distribution of energy |An,x,δx|
2 as a function of harmonic rank n, illumination

time xTA and illumination duration δxTA yields detailed informations on the motion and on its

non harmonic components.

3. Experimental setup

The sideband holography setups presented in previous publications does not allow to recon-

struct the object at a given time of the vibration motion. To circumvent this problem, we have

realized a stroboscopic illumination synchronized on the vibration motion. Figure 3 (a) shows

the optical part of our setup, which is similar to the setups previously described [23,27]. Figure

3 (b) shows the electronic, which drives the acousto optics modulators AOM1 and AOM2, and

which has been modified to add amplitude modulation abilities. This electronic is based on 3

direct digital synthesizer signal generators (SG1, 2 and 3), which are locked on the same 10

MHz time base. SG1 excites the loudspeaker, which makes the reed vibrate at νA = 2143 Hz.

SG2 generates a frequency tunable sinusoidal signal at νSG2 ≃ 20 MHz, and a reference fixed

frequency 10 MHz signal, which is doubled by a frequency doubler (FD2: Mini Circuit Lab

Inc.). SG3 generates a rectangular gate of duration 0.15× TA = 70 µs at frequency νA. This

gate (SG3) is synchronized with respect to the reed excitation (SG1) with an electronically

adjustable phase delay xTA.

To realize the stroboscopic illumination, two NAND Logical Gates LG, driven by the SG3

gate, switch on and off the adjustable and the fixed 20 MHz frequency signals. The two 20 MHz

gated signals obtained by the way are mixed with the signal of a 100 MHz quartz oscillator by

two doubled balanced mixer (ZAD-1H: Mini Circuit Lab Inc.). We get thus two gated signals

that exhibit two frequency components ≃ 100 MHz ± 20 MHz. The signals at νAOM1 = 80

MHz and νAOM2 ≃ 80 MHz that drive the acousto optic modulators AOM1 and AOM2, are

thus obtained by filtering the ≃ 100 MHz ± 20 MHz signals with two 80 MHz LC resonant

amplifiers.

Figure 4 illustrates the synchronization of the various signals. Out of the gate, the νAOM2 and

νAOM2 signals are off, and one get no optical signals on the grating orders +1 of the acousto

optic modulators AOM1 and AOM2. The illumination and reference beams are then off. Our

stroboscopic gate acts thus both on illumination, and on holographic reference (i.e. on holo-

graphic detection efficiency).

The data acquisition is made by a computer that drive the three signal generators SG1, SG2

and SG3. For every value of the stroboscopic delay xTA, the harmonic rank of detection is



Fig. 3. Optical setup (a), and electronic (b) that drives the acousto optic modulator and the

loudspeeker. (a) L: laser; AOM1,2: accousto optic modulators driven at frequency νAOM1,2;

M: mirrors; BS: beam splitter; BE: beam expander; LS: loudspeaker exciting the clarinet

reed at frequency νA/2; CCD: CCD camera. (b) SG1,2,3: direct digital synthesizer (DDS)

signal generators;; Quartz: 100 MHz quartz oscillator; LG: NAND logical gate; DBM:

double balanced mixer; Ampl: 20 MHz and 80 MHz LC resonant amplifiers.

swept from n = −100 to n = +100, i.e., for each n, the computer drives SG2 such a way the

frequencies of the acousto-optics modulators signals verify:

νAOM1 −νAOM2 = nνA +νCCD/4 (11)

Four-phase heterodyne holography is then performed [25], i.e., a sequence of 4 images I0, ..., I3

is recorded yielding the complex hologram:

H = (I0 − I2)+ j(I0 − I2) (12)

The optical field image of the reed E(x,y) is reconstructed from H(x,y) with the standard

one FFT (Fast Fourier Transform) method [29, 30], where x and y are the coordinates of the

1024×1024 calculation matrix. The reconstructed images intensity I = |E|2 of rank n is stored

in a 3D 1024× 1024× 201 cube of data with axes x, y and n. To the end, an image of the reed

velocities is extracted from the cube.

For each stroboscopic delay xTA the operations are repeated: the rank n is swept; for each

n the holograms are recorded, reconstructed and stored within the cube of data. Images of the

velocities are then obtained.



Fig. 4. Chronogram of the signals: (a) SG1 sinusoidal signal of period TA = 1/νA exciting

the reed; (b) SG3 rectangular gate and (c) ≃80 MHz gated signals driving the accousto-

optical modulators AOM1 and AOM2.

4. Experimental results

Figure 5 shows nine reconstructed images of the reed with stroboscopic delay xTA with x =
0, 0.3 and 0.7 (respectively from top to bottom), and for n = −60, 0 and +60 (respectively

from left to right). Each image of Fig. 5 represents thus one component n of the instantaneous

Doppler spectrum. Since the hologram are recorded off axis, the read images are off axis too. To

center the images of the reed, the 1024×1024 reconstructed images are truncated to 1024×512

on Fig. 5. One recognize the reed on Fig. 5 (b) to (h), and the reed + mouthpiece on Fig. 5 (b,e

and h). The right part of reed is clamped on the mouthpiece, while the tip, whose motion is free,

is on the left.

On each image, we get signal on the zone (x,y) of the reed where the instantaneous Doppler

shift 2V (x,y,xTA)/λ is close to nνA. This point is illustrated by Fig. 6 that show as a function

of the longitudinal axis y the reed displacement z(y,xTA) and the reed velocity V (y,xTA) at

illumination time t = xTA. The size, shape and brightness of the zone with signal depend on the

time of illumination xTA (i), on the illumination duration δxTA (ii), and on the harmonic rank n

(iii).

For delay time xTA = 0, we observe signal on a narrow bright zone of the reed for n = 60

(Fig. 5(c) ), no signal for n=−60 (Fig. 5(a) ) and some signal for n= 0 (Fig. 5(b) ). This means

that the reed is illuminated when it moves towards the detector, and only the n > 0 harmonic

are generated, and detected. The narrow bright zone of Fig. 5(c) corresponds to the points of



Fig. 5. Reconstruction images of the reed at time xTA = 0 (a,b,c), 0.3 TA (d,e,f) and 0.7 TA

(g,h,i) for n = −60 (a,d,g), 0 (b,e,h) and +60.0 (c,f,i). The images are displayed in loga-

rithmic scale for the field intensity |E|2.

Fig. 6. Reed displacement z(y,xTA) and the reed velocity V (y,xTA) at illumination time

t = xTA. The holographic signal on sideband of rank n is obtained if V (y,xTA) is close to

V (n) = nλνA.



Fig. 7. Successive positions of the reed on a period TA. These images are obtained by

taking the section in the x = 268 (horizontal white dashed line of Fig. 5 (e) ) of the stack

of reconstructed images for n = −100 to +100. The images are displayed in logarithmic

scale for the optical field intensity |E|2.

the reed where the instantaneous velocity at time xTA = 0 is close to

Vn=60 = 60νAc/ν0 ≃ 8× 10−2 m.s−1 (13)

For time 0.3TA, we observe a uniform signal on the reed for n = 0 (Fig. 5(e)) and no signal

for n = ±60 (Fig. 5 (d,f) ). This means that the reed is in a position of maximal amplitude of

oscillation, with a velocity near zero.

For time 0.7TA, the reed goes away from the detector. The results are similar to the ones

obtained at time xTA = 0. We observe a narrow bright zone for n = −60 (Fig. 5(g) ), no signal

for n =+60 (Fig. 5 (i) ), and some signal for n = 0 (Fig. 5 (h) ).

To image the reed instantaneous velocities during vibration motion, we have swept the il-

lumination time xTA from 0 to TA by step of 0.1 TA. For each time xTA, we have recorded the

hologram for n = −100 to +100, and we have stored the 201 reconstructed images in a 3D

cube of data with axes x, y and n. The n axis corresponds to the Doppler shift, i.e. to the reed

velocity. We have performed cuts of the 3D data in order to extract 2D images along axis x

and n (y being fixed). Figure 7 displays the cuts obtained for y = 256 , which correspond to the

horizontal white dashed line in Fig. 5 (e) ).

We actually obtain on Fig. 7 a direct visualization of the shape of the reed instantaneous

velocity, which varies with the illumination time xTA. Since the motion is a sine function of



time, the images of the instantaneous velocities of Fig. 7 are similar to images of the reed itself,

shifted in phase by π/2. A movie, made with the 10 images of Fig. 7, is provided in supple-

mentary material (Media1.avi). Another movie, with 20 images per period, is also provided

(Media2.avi). The movie shows the evolution of the reed velocities, or the reed motion (if one

neglects the shift of phase).

We must notice that the images of Fig. 7 (or the supplementary material movie) correspond to

a huge amount of data, since it is necessary to record, for every time xTA, 4 images by harmonic

rank n with n = −100 to +100. We record thus 10× 4× 201 = 8040 images. The frequency

of acquisition of the camera being of 12.5 Hz, the total recording time is approximately 12

minutes. It is necessary to add the time necessary for the calculation of reconstruction of holo-

grams as well as the time needed to control, during acquisition, the change of frequency of the

synthesized signal generators SG2 and SG3. To get the 10 images of Fig. 7, the total time is

thus about one hour.

5. Conclusion

This experiment demonstrates that it is possible to reconstruct a map of the instantaneous ve-

locities of a vibrating object by combining sideband holography and stroboscopic illumination

synchronized with the vibration motion. Although the amount of generated data is huge, its ac-

quisition is quite simple, since it is fully automatized by using a computer that drives, through

signal generators (SGs) and acousto optics modulators (AOMs), both the stroboscopic illumina-

tion, and the tuning of the sideband detection. The computer then performs both data acquisition

and image reconstruction.

The technique is demonstrated here in the case of a simple sinusoidal oscillation. It can be

extended to more complex periodic motions. One must notice that the technique is sensitive to

the direction of the instantaneous velocity (sign of n). The technique can thus be used to get the

geometrical shape of a vibration mode in order to remove any ambiguity.


