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Abstract—A trust-based intrusion detection scheme for hybrid
cloud computing is proposed. We consider a trust metric based
on honesty, cooperation and efficiency for detecting malicious
machines. We use Perron-Frobenius theorem to detect intrusion
based on trust and observations.

By statistically analyzing peer-to-peer trust distributed results, we
apply trust-based intrusion detection to assess the trustworthiness
and maliciousness.

An analytical model and simulation for performance are devel-
oped. We analyze the sensitivity of false alarms with respect to
the minimum trust threshold below where a node is considered
malicious.

Results confirm that our proposal is flexible enough to detect
malicious behaviours in various context of executing application
in hybrid cloud. With this work, we can guide future execution
in the cloud resource.

Index Terms—trust management, intrusion detection, Perron
Frobenius, cloud computing, hybrid execution, false alarms,
security scores.

I. INTRODUCTION

The concept of the cloud computing has rapidly emerged
as an efficient method for service delivery. There are three
major cloud service models: infrastructure-as-service (laaS),
software-as-a-service  (SaaS), and platform-as-a-service
(PaaS). IaaS is the model that we consider in this paper.
Cloud computing is usually deployed for one of three
scenarios: Private clouds built for the exclusive use of one
client, providing the utmost control over data, security, and
quality of service. Public clouds run by third parties, and
applications from different customers are likely to be mixed
together on the cloud’s servers, storage systems, and networks.
Hybrid clouds that combine both public and private cloud
models can help to provide on-demand, externally provisioned
scale. In a Cloud Security Survey [5], 32% of enterprise are
studying the opportunity of moving applications in hybrid
clouds (10% in production, 21% in implementation and 24%
piloting). However, the hybrid cloud is the most critical in
terms of identity management, open client, location awareness,
metering, management and governance. Applications like
PSAs(A Parameter Survey Application) need hybrid methods.
laaS systems offer infrastructures for applications shared by
multiple tenants. These tenants are with different security
domains. Therefore, our work focuses on the possibility of
using the laaS model shared with private cloud and still
guaranteeing a certain degree of security, trust and prevention .

The issue of security in clouds has been addressed in
many publications [2], [3] and [4]. Clearly, this new model
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is exposed to many attacks. We can classify threats in cloud
computing based on relative location of attacks. Attacks can
be located at the user side, at the network or at the service
provider side. An attacker can listen to network traffic, in-
sert malicious traffic, probe cloud structure and launch DoS
(Denial of Service), DDos (Distributed Denial of Service),
ARP spoofing and IP spoofing. With clouds, we are also
more exposed to the risk of identity theft and the loss of
personal data. Attack methods such as phishing, fraud, brute
force dictionaries and exploitation of software vulnerabilities
can be used with more dramatic results. On the other hand,
the implementation characteristics of IaaS, such as multi-
tenancy, sharing of virtual servers, virtualization, elasticity and
programmable APIs bring new attack vectors

In this paper, we aim to detect possible attacks in different
locations : at the user side and laaS cloud. Enterprises
should not trust their applications to laaS providers and
rely on the security processes put in place by providers.
Commercial offers don’t give visibility to IaaS users of
advanced security primitives such as Intrusion Detection and
Prevention (IDS/IPS). For this, we need to adopt a pair trust
evaluation model based on three parameters: cooperativeness,
honesty and efficiency. we don’t use the trust directly to
identify malicious machines but to feed a novel algorithm
that detects intrusions rapidly and with more efficiency than
other means. Our proposal is evaluated via simulation with
exhaustive scenarios. The evaluation considers several attack
scenarios such as grouped attacks, non-cooperation in trust
management and falsification of trust results. Our algorithm
shows that we can reach minimum false alarms for different
proposed methods that ca be used in different cases.

The rest of the paper is organized as follows. Section II
details some contributions on trust and intrusion detection.
In Section III, the system model and the evaluation of pair
trust score are described . Section IV presents the proposed
intrusion detection system and Section V shows some simula-
tion results and analysis. Finally, the paper concludes and lists
some possible extensions for future work.

II. TRUST MODELS AND INTRUSION DETECTION

In this section, we briefly enumerate some contributions on
trust models and protocols. We also introduce some principles
in intrusion detection and trust management.

@cohﬁEEuter
psoaety



A. Trust Protocols

Trust can be seen as the general confidence in a person or
an object. Generally, it is evaluated by values on a scale from
zero to one. Several trust management protocols [6], [7] and
[8] have been proposed for network security, data integrity,
and secure routing in different fields. In [8] a group-based trust
management scheme for clustered Wireless Sensor Networks
was proposed. This protocol reduced the use of memory for
storing trust scores and minimizes the cost associated with
trust evaluation of distant nodes compared to other works.
Marsh was one of the first authors to introduce a computational
model for trust [9]. He examined the concepts of trust,
mistrust, and distrust. He also covered many points related
to the concept of trust but this work needs more refinement.
Fuzzy logic was introduced to trust models in [10] focusing
on the trustworthy of sensor nodes. It was used to send trusted
data between sources and destinations but didn’t consider the
overhead due to trust in sensor networks.

B. Intrusion Detection

Intrusion detection research lacks firm scientific bases as

it is mainly relying on progressive knowledge of protocol
flaws and system weaknesses. We still try to enumerate some
contributions that have helped us in designing the proposed
algorithm.
Using replicated services, a preliminary work has been pro-
posed via Byzantine Fault Tolerance techniques (BFT) [11] to
detect malicious behaviors. This work imposed an agreement
protocol and limited by high overhead. Intrusion detection sys-
tems for grid can be based on host, network, data, knowledge
and behavior. Host-based Intrusion Detection System(HIDS)
[12] consists of an agent that identifies intrusions by analyzing
activities on the host and its current state. An adapted version
of this system will be used in our detection algorithm. In [13],
the intrusion detection in the cloud computing is considered.
In [14], a detection system is proposed to reduce the impact
of DoS attacks.

C. Trust Management for Intrusion Detection

In the literature, few contributions combine trust and intru-
sion detection together. Wang et al. [15] proposed an intrusion
detection mechanism based on trust (IDMTM). Their work
considered both evidence chain (main malicious behavior
forms) and trust fluctuation. They provided more accurate
decision with low false alarms. Ebinger et al. [16] introduced
a cooperative intrusion detection method for MANETS based
on trust evaluation and reputation exchange. The reputation
and confidence are combined with trustworthiness to improve
intrusion detection. The contribution didn’t however consider
dynamic MANET environments. In [17], FBao et al.(2011)
proposed a scheme for hierarchical trust management consid-
ering honesty, cooperativeness and energy. This model suits
our requirements. Hence, it will be adapted to the first part of
our work (building pair trust scores).
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III. SYSTEM DESCRIPTION AND TRUST

In this section, we first describe our network architecture
for cloud and application processing. Then, we briefly present
the trust model that we adapt to calculate the pair trust scores.

A. Network Architecture and Assumptions

Datasource

Scheduler
(execution len)

laas Cloud
Entreprise private cloud

Figure 1. System overview

Applications like PSAs(A Parameter Survey Applications)
need hybrid execution mechanism utilizing both local comput-
ing resources with a batch scheduler and an IaaS Cloud. We
start from the assumption that cloud is used to execute some
tasks of this application remotely. The scheduler organizes the
application’s execution. The model (in fig. 1) distinguishes
between two types of equipment: devices that are local and
other in the laaS.
The local machines are supposed to be in a trusted and
protected location (but they can launch internal attacks).
TaaS ones are supposed to be in different domains so different
security assets, that are not necessarily well protected. Let us
assume there are N+M machines in the system:

« N constitutes a finite set of local machines having a task
to execute for the application.

e M represents machines allocated from the IaaS cloud
computing having also tasks to accomplish for the same
application.

In our system, we use both private computing resources with
a portal and an IaaS Cloud as shown in Fig. 1. The user sub-
mits the application and fixes the deadlines and execution time
with the portal (a trusted node in the system). The executer
in the system can have two behaviors: The honest executer
never cheats whereas the malicious one may cheat during the
execution. The probability to have local and malicious is less
than to have cloud and malicious. Each machine can decide
to cooperate in the evaluation of trust or not to cooperate (this
is part of the attack strategy).

B. The Trust Model and the Peer-to-peer Trust Score

After the interaction between machines, each machine that
chooses a check strategy will give a trust value to the checked
machines . Our model considers the effect of cooperativeness,
honesty and efficiency( it can be task completion capability).
The honesty trust component is measured through evidences of



dishonesty such as false selfreporting, trust fluctuation and ab-
normal trust recommendations. A compromised node usually
manifests itself as being uncooperative. Malicious machines
give wrong values without respecting the trust model. We
adapted the trust model cited previously in [17]: We added
new parameter: efficiency and we change the definition of
honesty. Based on the previous indicators, the trustworthiness
of machines can be estimated based on local observations
of their behaviours. So, we use the peer-to-peer trust score
T;;(t)as an evaluation of machine i to machine j at time ¢. It
is represented as a real number in the range of [0, 1] where
1 indicates complete trust, 0.5 ignorance, and O distrust. The
trust value is the weighted average of trust values related to
honesty T}, cooperativeness 7. and efficiency 7T,

Tij = wi T3 () + we. T (t) + we. T (£)(1)

wp + we +we =1

w., w. and wy are the weights associated with each
component. We will explain each term of the equation (1)
where we evaluate the trust value T;;(¢). We will start with
the update of the honesty term:

T (1) = ph.TZJL- (t—5t)+(1—ph).Ti‘§" (t), if i checks j;
i T} (t—ov), else.
®))

pp: the weight associated with the previous evaluation of the
honesty.

ot: update period,

T (t):this is the belief of machine i that machine j is honest
based on machine iSs direct observations toward machine j.
This refers to the peer to peer verifications and monitoring. It is
updated through verifications like challenge sent periodically:
it represents the fraction of positive results when machine i
verifies machine j. For example after verifications between
machine 1 and machine 2 (machine 1 verifies machine 2) with
5 positive results and 4 negative results, the pair trust score is
5/4+5=0.55. So, Tg"(t) = 0.55. The weight associated with
this component is 1 — py,.

The following explains the update of the cooperativeness term
T.:

1oty = { P TS (t—0ty+(1-pe). T (t), if i checks j;
K Tf] (t—av), else.
3)

p.: The weight associated with the previous evaluation of
the cooperativeness.
Ti’éeg (t): refers to the degree of cooperation seen by machine

i when verifying machine j at time t. Malicious machine can
manifest itself as being uncooperative to avoid detection. The
weight associated with this component is 1 — p,.

T (1) = pe- T (t=00+(1-pe). T3/ (t), if i checks j;
v Tz-tj (t—at), else.
“4)

pe: The weight associated to the previous evaluation of the
efficiency.

Tfjf f (t): refers to the efficiency evaluated by i (after executing
verification and the application task). The weight associated
to this component is 1 — pe.

The result of the trust evaluation process is a matrix
containing peer-to-peer trust values between nodes.

IV. PROPOSED DETECTION SYSTEM

In this section, we describe the proposed algorithms that
calculate security scores for current and future execution in
hybrid cloud. We base our intrusion detection methods on the
Perron Frobenius theorem.

“Perron Frobenius theorem asserts that a real square matrix
with positive entries has a unique largest real eigenvalue
and that the corresponding eigenvector has strictly positive
components.”

Our algorithm using the PerronFrobenius theorem gives dy-
namic evaluation: with each successive iteration, we ask if the
security score remains stable or will be different. Notice that
this approach was also used to compute the PageRank of web
documents [18].

A. Intrusion Detection Methods Description
1) The First Method: Let us first introduce some notations.

e T: In order to obtain the global view of the trust
management, we construct a matrix 7" of the pair trust
score. This matrix is initialized to be 0.5 (ignorance).
Hence, T;; = depends on time and represents how much
a node i trusts a nodes j.

o m: We define the security score vector sized N+M. This
objective security score is initialized as m = (0.5, 0.5, 0.5

w.)

Given some approximate values of the security scores,
the idea is to get a better estimation of m; using these

approximate values. This can be done through the formula:

> (Tijomi)
T L
J IR

In other words, for each machine j, the new security score
is obtained by combining the trust values 7;;. If a node 7 has a
high security score, then it is natural to give more importance
to the trust values that it assigns to other nodes.



The general form of the iterative formula is given by: 7 <
T 7
IEJIE!

Since we can assume that 7' is the real square matrix
with positive entries, then we know that by a repetitive
application of the previous iterative formula, the vector 7
will converge to the unique eigenvector associated with the
largest eigenvalue Ay,0:(7%) = Apas(T). Notice that we
will get lIm||1 = Aaa(T). The convergence is guaranteed if
the starting point (the first approximated score vector) is not
orthogonal to the eigenvector. This is clearly satisfied by the
positive vector m = (0.5,0.5,0.5...) since the eigenvector is
also positive by the Perron-Frobenius theorem.

2) The Second Method: This method is a refinement of the
first method. In fact some nodes might have a good security
score, while they are not really able to give a good estimation
of the security of the other nodes. In this case, it is important
to assign less importance to their judgment.

Let us add some parameters:

« d: is a vector representing the ability to evaluate correctly
the security score of machines (d; corresponds to node
7).

B: is the privilege matrix (where the portal gives
different weights to machines in the system). To estimate
whether a node is really a good trust evaluator, it may
be important to focus on what it said about some special
nodes. This is expressed through this privilege matrix by
putting a value in the diagonal decided by the portal.

More precisely, starting from an estimation of the security
vector, one can estimate the ability of nodes to evaluate the
trust using the following forplula:
diagonal matrix where the i*" term is given by the norm of the
i line of 7' multiplied by B?. In fact, the ability of node i can
be seen as the inner product of B.7 and B.T;'. The diagonal
matrix and the division by ||B.7||2 allow to normalize this
inner product.

The resulting vector d, gives an estimation of the ability
values of each machines. Given these abilities, it is now natural
to estimatf: the scores using the formula :

4= it

An iterative algorithm where both formulas are repetitively
and alternatively used to estimate the ability and the security
score will converge. In fact, this holds if we assume that the
matrix T¢T BB is positive (which is true here). The Perron-
Frobenius can again be used in the same way as before to
ensure the convergence of the algorithm.

3) The Third Method: In this method, we add the vector h
and the value v. v: is the security score for trusted machines
This method does not use the Perron theorem. We assume
that the portal has a knowledge of some trusted nodes from
previous executions for example. It does not update their
trust score from external calculations. The rest of nodes
that are unknown to it have their trust calculated as before.
Hence, the initial security score is presented as a vector h:

where diag(m) is a
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h=(0.5,0.5,0.5,0.9,0.5,0.9,0.5) as an example. We adopt zeros
in the diagonal of B to the untrusted machines and a value
different to zero to the trusted machines.

We assume that the value 0.9 is given to the local machines.

; 1 T.B'.B.h

d < diag (e, ) o
T".d
T Led
Tl

Here, 7 is obtained in one step.

4) The Fourth Method: In this method, the portal uses the
recursive convergence method (Perron). It maintains however
unchanged, the security scores for machines that it trusts, in
each step. With this method, we can benefit from the trusted
machines by fixing the initial security scores. Also, we affect at
the end the modified security score according to the knowledge
that the portal have.

me: is the security vector with trusted machines values.

t
d « dia 1 T.B*.B.7.
IO BT B
Tt.d

T 4—

5) Gel@de‘lrlal Algorithm for intrusion detection: We describe

in this section the steps needed to obtain the security score
value of each machine in the hybrid cloud. The algorithm
switches between the four methods described before based on
intervals of .
In the beginning, as we don’t have any precise knowledge
of this value, we start with the first method. When this
parameter is relatively high, we consider that the nodes are
quite trusted and we adopt hence the third or fourth methods.
When however, we have doubts about the trustiness of the node
(values between .4 and .6) and we can put privilege in some
machines after some observations(network behavior), we use
the method number two. We will see after in the simulation
section why we are choosing this algorithm.

1) At t=ty+5t execute 4,3, 2 then 1;

2) Each machine reports its peer-to-peer trust evaluation of
other machines in the matrix T to the portal;

3) Execute Method 1;

4) Calculate 7,

if m; > 0.7 then update B and h and execute Method 3 else
if 0.6 < m; < 0.7 then update B and execute Method 4 else
if 0.4 < m; < 0.6 then update B and execute Method 2 else
still execute method 1;
end
end
end
5) After dt, return to trust evaluation(1);

V. SIMULATION ANALYSIS

In this section, we first evaluate robustness of each method
against attacks and we evaluate positive/false alarms. The
simulation experiments are implemented using MATLAB. We
consider first an hybrid execution with 20 machines in an



Table 1
FALSE ALARMS FOR DIFFERENT METHODS

Maliciousness | 0.1 | 0.2 | 0.32 | 045 | 0.55 | 0.77
False Alarms 1 0 0 0 0 0.54 | 0.77
False Alarms 2 0 0 0 043 | 0.55 | 0.77
False Alarms 3 0 0 0 0.08 | 0.55 | 0.77
False Alarms 4 0 0 0 0.08 | 0.55 | 0.77

IaaS cloud and 80 machines running on local resources. We
consider also 80% of cooperation in the verification process.
Machines can hence be from either side: normal or attacker.
The selection of machines strategy is chosen randomly. For
trust model parameter, we choose to weight more the honesty
with 0.8. For the others, we put 0.15 for cooperation and
0.05 for efficiency. Once security score obtained is lower than
a threshold (e.g 0.5 for our simulation), the corresponding
machine can be detected and considered as malicious. Un-
less previous works, we account for malicious collaborations
among nodes that create coalitions for misreputation. Due to
paper size restrictions, we focus on :

« the possible attacks and numerical results,

o positive/false alarm probability when we vary the mali-
cious machines density,

« the effect of machine’s ability (30% of maliciousness).

A. Attacks Analysis

¢ Coalition of nodes with the same objective

We consider that malicious nodes select one attacker of
the coalition. They assign to this attacker the total trust
(1). The attacker evaluates nodes with correct peer-to-
peer trust scores: 1 for the honest and O for the malicious
(to increase the ability and not to be detected).

We implement the attack with 30% of malicious nodes
and we analyze the best method to discover it. As the
attacker is hidden, it is difficult to detect it. We have
tested the four methods. Our results show the following:

4 3 2 1
Sa,tta,clcer < Satta_cker < Sattacker < Sattacker < 0.44. )
(Shttacker: security score for the supposed attacker in
method 1)

So, we can detect the attacker with all the methods but
especially with the method 4 (making trusted machines).

o Attack between malicious nodes
Malicious — malicious | 1
Malicious — honest 1
Honest — malicious 0
Honest — honest 1

We obtain the result represented below (the malicious
nodes percentage is varied):

In this attack, table I shows that 15! method can perform

better than the others. We can say here that we can’t

detect malicious nodes in all methods with 45% of ma-

licious machines and more because malicious machines

evaluate honest machines with 1 and they obtain good d;.
« Attack against honest nodes
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Malicious — malicious | 0
Malicious — honest 0
In this case, the malicious nodes have ability "0" (in the
three last methods). This is due to the malicious machines
that evaluate privileged and trusted machines with zero. In
this attack, all methods don’t send false alarms (even with
70% maliciousness).

B. False Alarm Probability

1.4
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Figure 2. False alarm probability

In Fig. 2, we show that the misdetection ratio in the third
and the fourth methods is O in the beginning and it increases
only 48% of malicious machines for the third method and
52% for the fourth method. The first method sends false
alarms after only 32% of maliciousness (only 36% for the
second method).

C. Ability Evaluation

First, we consider method one and method two and we
compare them in the same simulation conditions as explained
before.
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Figure 3. The benefit of ability calculation

In Fig. 3, we show that the detection and the global
estimation of the machines’strategies are more clear with
methods considering the calculation of machines’ability(red



points) than the others(green ones).

Second, we analyze the evolution of ability affected to
machines. We notice that in all cases (considering less than

40% of malicious machines) D3,,. > D& =~ > D2 —and
2 4 3 i . i
D5vin < Diin < Diin (D34 /- Min/max ability values

in the method i). The third method has hence the best
performance owing to the consideration of security score of
trusted machines and the value assigned in B matrix.

VI. CONCLUSION

In this paper, we designed a new algorithm based on Perron
theorem to detect malicious machines in the context of hybrid
cloud. We considered a composite trust derived from honesty,
cooperativeness and efficiency as a peer-to-peer evaluation.
Our system uses four methods in different contexts to detect
malicious machines considering different parameters (trust,
privilege and ability). We claim that ability calculation and
privilege parameters have many benefits. We show that many
collective attacks can be detected. We analyzed the false alarm
probabilities with respect to a detection threshold. Compro-
mised nodes can be detected clearly with high accuracy and
low false alarm probability. we show that by using privileges
we can improve the detection process. The algorithm results
help in making decision on whether to purchase execution
resources from a supplier or not.

For future research directions, an appropriate optimization
for effective detection is a challenging problem for prevention.
Hence, a dynamic system using game theory and learning
mechanism needs to be employed to detect attacks while
minimizing the consumption of resources of defender nodes.
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