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Abstract. This report is devoted to the study and to the comparison of methods
for estimation of the local error and for adaptive step-size control when solving the
generalised nonlinear Schrodinger equation (GNLSE) in optics by the Interaction
Picture (IP) method or by the Symmetric Split-Step (S3F) method. Namely, we
propose and study the use of an embedded Runge-Kutta method to solve the
nonlinear problem involved in the IP or S3F method and to deliver a local error
estimate at each step of the discretisation grid for the purpose of an adaptive step-
size control. This method preserves the advantages of the RK4 method exploited
in the IP or S3F methods and do not add any extra computational cost. We
compare this method to other standard methods for estimating the local error
such as the “step doubling method” or energy conservation based methods.
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1. Introduction

The propagation of pulses in optical fibres is described by the generalised nonlinear
Schrodinger equation (GNLSE), which takes into account fiber losses, nonlinear effects,
and higher-order chromatic dispersion [1]. The GNLSE is a partial differential
equation not amenable to analytical solution; the use of numerical approximation
techniques is therefore mandatory. At present time, numerical methods based on
split-step Fourier transform approaches are the most widely used for simulating wave
propagation in optical fibres [1–5]. Recently a “fourth-order Runge-Kutta method in
the interaction picture method” (RK4-IP method) has been proposed [6] as a very
promising alternative to the split step methods for solving the GNLSE. When solving
the GNLSE in the context of optics by the Symmetric Split-Step Fourier method
(S3F method) or by the Interaction Picture method (IP method), the nonlinear
ordinary differential equation (ODE) resulting from the splitting is mostly solved by
the standard fourth order Runge-Kutta (RK4) scheme [7,8] for mainly 2 reasons. First
of all, this RK4 scheme offers a good compromise between accuracy and cost of the
computations. Moreover, this RK4 scheme exhibits nice properties of symmetry that
can be capitalised to reduce the cost of the whole computational process, mainly by
diminishing the number of Fourier transforms to be computed. A precise comparison
between the RK4-IP method and the Symmetric Split-Step Fourier method with
fourth-order Runge-Kutta method (S3F-RK4 method) has been achieved in [9]. It
is shown that the RK4-IP method has a cost similar to the S3F-RK4 method due
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Some step-size control strategies for solving the GNLSE by the RK4-IP method 3

to a computational approach very similar to the one involved in the Split-Step
methods but exhibits a convergence rate proportional to h4 where h denotes the
spatial discretisation step whereas the S3F-RK4 method is limited by the second order
accuracy of the Strang symmetric splitting formula [4,5,10] and exhibits a convergence
rate proportional to h2.

However, any numerical method for solving the GNLSE will perform poorly if the
approximate solution is computed on a mesh grid with a constant step h. Ideally the
step-size between 2 successive grid points should be selected automatically to maintain
the error lower than a given value in order to achieve both reliability and efficiency
of the computations. There are several ways to estimate the local error in each point
of the RK4 mesh grid and to select a value for the size of the next step. The most
common and general way to estimate the local error is by a process known as “step
doubling” [11]. To estimate the local error, this method requires for each step the
computation of a coarse solution and a fine solution (usually obtained by dividing by
2 the step-size used for the coarse solution). This way for estimating the local error
is accountable for an over computational cost of around 50% more than the same
method without local error estimate for the same accuracy of the computations. A
cheaper adaptive step-size method dedicated to the GNLSE is propound in [12]. It is
based on the conservation of a physical quantity termed “the optical photon number”
during the propagation of an electromagnetic field along a fibre when loss in the fibre
is neglected. It is therefore possible to calculate the “photon number error”, which is
related to a certain local error, at each grid point to retrieve information about the
numerical error over one computational step of the IP method applied to GNLSE. The
interest of this approach, specific to GNLSE for lose-less fibres, is that the computation
of the photon number error can be done at a very cheap numerical cost. In [12] it
is stated that the method can be extend to the GNLSE for loss fibres and a formula
where the loss over each computational step is estimated by linear interpolation is
proposed.

In this document we present another way to estimate the local error based on an
embedded Runge-Kutta method [7,8]. This method is very general and do not require
the assumption of negligible fiber losses. Moreover it preserves the advantages of the
RK4 method exploited in the IP method and do not add any extra computational
cost. We also compare the efficiency of these 4 approaches for estimating the local
error in the context of adaptive step-size approach for the GNLSE.

The document is organised as follows. In section 2 we present the physical
framework for the GNLSE in the context of optical pulse propagation in fibers and
a description of the IP method is given. In section 3 we recall the main features of
the Runge-Kutta methods emphasising on the notion of local and global errors. The
use of a fourth order Runge-Kutta method is then presented in conjunction with the
IP method to solve the GNLSE. Section 4 is devoted to the presentation of the above
mentioned methods to estimate the local error in the RK4-IP method in order to carry
out adaptive step computations in the RK4-IP method. We study the existence of an
embedded Runge-Kutta method that preserves the very nice computational features
of the RK4-IP method and at the same time deliver a local error estimate at no
extra cost. In section 5 a detailed numerical algorithm is presented for the embedded
fourth order Runge-Kutta method in the Interaction picture (ERK4-IP) and numerical
results are given.

Technical Report - CNRS UMR 6082 FOTON - http://foton.cnrs.fr



Some step-size control strategies for solving the GNLSE by the RK4-IP method 4

2. The generalised nonlinear Schrodinger equation

2.1. Physical framework

Wave propagation into an optical fibre with group index ng is governed by the
generalised nonlinear Schrödinger equation (GNLSE). This particular form of the
Schrödinger equation is obtained from the general set of Maxwell equations taking
advantage of a certain number of assumptions made possible from the very specific
characteristics of (quasi-)monochromatic wave propagation at pulsation ω0 in a
medium such as a fibre [1]. One of the major assumption, referred as the slowly
varying envelope approximation, concerns the expression of the electric field in the
optical fibre. It assumes that the electric field E is linearly polarised along a direction
ex transverse to the direction of propagation ez defined by the fibre and can be
represented as a function of time t and position r = (x, y, z) as

E(r, τ) = A(z, t)F (x, y) e−i(ω0τ−kz) ex (1)

where A(z, t) represents the slowly varying electric pulse envelope, F (x, y) is the
electric wave transverse representation, k is the wave number and t the local time of
the moving frame travelling along with the pulse at the group velocity vg = c/ng. The
relationship between τ and the group velocity vg is : t = τ − z

vg
. The expression of the

electric wave transverse representation F can most of the time be computed explicitly
using the classical method of separation of variables for PDE [1]. For instance, for
circular constant transverse section fibres, it is expressed in terms of Bessel functions.

In this paper we consider the case where the evolution of the slowly varying pulse
envelope A is governed by the following form of the GNLSE

∂

∂z
A(z, t) = −α

2
A(z, t) +

(
nmax∑

n=2

in+1βn

n!

∂n

∂tn
A(z, t)

)

+ iγ

(
Id +

i

ω0

∂

∂t

)
·
[
A(z, t)

(
(1 − fR) |A(z, t)|2 + fR

∫ ∞

0

hR(τ)|A(z, t− τ)|2dτ
)]

(2)
where α is the coefficient of linear attenuation, βn, n > 2 are the linear dispersion
coefficients, γ is the nonlinear parameter and Id stands for the identity operator. In
equation (2) non linear dispersion is taken into account through the simplified optical
shock parameter τshock = 1/ω0. Instantaneous Kerr effect manifests itself through

the term (1− fR) |A|2. The delayed Raman contribution in the time domain is taken

into account through the convolution product between the instantaneous power |A|2
and the Raman time response function for silica-core fibres hR (an analytical form is
proposed in [1]). The constant fR represents the fractional contribution of the delayed
Raman response to nonlinear polarisation. The partial differential equation (2) is
considered together with the following boundary condition for z = 0

∀t ∈ R A(0, t) = a0(t) (3)

where a0 is a given function in the Hilbert space L2(R,C).

2.2. Mathematical framework

A precise mathematical framework for the IP method applied to the GNLSE (2),
including existence and uniqueness results in appropriate functional spaces and
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regularity results is at present time under study. Therefore our presentation remains
somehow formal from a mathematical point of view. We denote by D the unbounded
linear operator

D : A ∈ E 7−→ −1

2
αA−

nmax∑

n=2

βn
in−1

n!
∂n

t A (4)

and we introduce the nonlinear operator

N : A ∈ E 7−→ iγ Tt

[
(1− fr)A|A|2 + frA (hR ⋆t |A|2)

]
(5)

where ⋆t stands for the convolution operator with respect to the time variable and Tt

refers to the differential operator Id + 1
ω0

∂
∂t . We want to point out that although the

computation of the quantity N (A)(z, t) may appear to be cumbersome, it’s nothing
of the sort. It can be achieved in an efficient way by using the properties of the
Fourier transform with respect to derivation and convolution, see section 5.3 and [13]
for details.

2.2.1. Splitting approaches We are interested in solving the following PDE problem
for the unknown A

(P)





∂

∂z
A(z, t) = DA(z, t) +N (A)(z, t) ∀z ∈ [0, L] ∀t ∈ R

A(0, t) = a0(t) ∀t ∈ R

(6)

where the operators D and N do not commute with each other. This PDE problem
is not amenable to analytical solution and the use of numerical approximation
techniques is required. It could be solved by general approximation methods for
PDE such as the Finite Difference Time Domain (FDTD) method or the Finite
Element Method (FEM) but the particular structure of the PDE (2) enables more
efficient numerical approaches. Moreover, both the FDTD and the FEM suffer from
CFL restrictions between time step and spatial step in order to satisfy stability.
Classical numerical methods for solving (6) are based on a Split-Step Fourier transform
approach and among them the Symmetric Split-Step Fourier method (S3F method)
is the most widely used [1–5]. Recently a “fourth-order Runge-Kutta method in
the interaction picture method” (RK4-IP method) has been proposed [6] as a very
promising alternative to Split-Step methods for solving the GNLSE. Both methods
(S3F and IP) exhibit a computational inner structure very similar and therefore a
computational cost very comparable even if the IP method has a convergence rate
proportional to h4 whereas the S3F method is limited by the second order accuracy
of Strang splitting formula and has a convergence rate proportional to h2 [9].

For numerical purposes, the interval [0, L] corresponding to the fiber length
is divided into K sub-intervals where the spatial grid points are denoted by zk,
k = {0, . . . ,K} such that ]0, L] = ∪K−1

k=0 ]zk, zk+1] where 0 = z0 < z1 < · · · < zK−1 <
zK = L. For all k ∈ {0, . . . ,K− 1} the step length between zk and zk+1 is denoted hk

and we also set zk+ 1
2

= zk + hk

2 . The IP method for problem (6) consists in solving

over each sub-interval [zk, zk+1] the following 3 nested problems [9, 13]





∂

∂z
Ak(z, t) = DAk(z, t) ∀z ∈ [zk, zk+ 1

2
] ∀t ∈ R

Ak(zk, t) = Ak−1(zk, t) ∀t ∈ R

(7)
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where for k > 1 the mapping t ∈ R 7→ Ak−1(zk, t) represents the solution at grid point
zk computed during step k − 1 and for k = 0 we have A−1(z0, t) = a0(t) ∀t ∈ R,





∂

∂z
Aip

k (z, t) = Gk(z, t, Aip
k ) ∀z ∈ [zk, zk+1] ∀t ∈ R

Aip
k (zk, t) = Ak(zk+ 1

2
, t) ∀t ∈ R

(8)

where t ∈ R 7→ Ak(zk+ 1
2
, t) represents the solution to problem (7) at point zk+ 1

2
and





∂

∂z
Ak(z, t) = DAk(z, t) ∀z ∈ [zk+ 1

2
, zk+1] ∀t ∈ R

Ak(zk, t) = Aip
k (zk+1, t) ∀t ∈ R

(9)

where t 7→ Aip
k (zk+1, t) represents the solution to problem (8) at grid point zk+1. In

problem (8) we have set

Gk(z, t, ·) = exp(−(z − zk+ 1
2
)D) ◦ N ◦ exp((z − zk+ 1

2
)D)

where the exponential terms have to be understood in the sense of the continuous
group generated by the unbounded linear operator D [14]. For all k ∈ {0, . . . ,K − 1}
the mapping t 7→ Ak(zk+1) coincides with the solution A to problem (6) at grid point
zk+1.

As mentioned before, IP method and S3F method are rather similar in their
inner structure since with the S3F method we solve over each sub-interval [zk, zk+1]
the following 3 connected problems :





∂

∂z
Ak(z, t) = DAk(z, t) ∀z ∈ [zk, zk+ 1

2
] ∀t ∈ R

Ak(zk, t) = Ak−1(zk, t) ∀t ∈ R

(10)

where for k > 1 the mapping t ∈ R 7→ Ak−1(zk, t) represents the solution at grid point
zk computed during step k − 1 and for k = 0 we have A−1(z0, t) = a0(t) ∀t ∈ R,





∂

∂z
Bk(z, t) = N (Bk)(z, t) ∀z ∈ [zk, zk+1] ∀t ∈ R

Bk(zk, t) = Ak(zk+ 1
2
, t) ∀t ∈ R

(11)

where t 7→ Ak(zk+ 1
2
, t) represents the solution to problem (P1

k) at point zk+ 1
2





∂

∂z
Ak(z, t) = DAk(z, t) ∀z ∈ [zk + hk

2 , zk+1] ∀t ∈ R

Ak(zk, t) = Bk(zk+1, t) ∀t ∈ R

(12)

where t 7→ Bk(zk+1, t) represents the solution to problem (11) at node zk+1. Here, for
all k ∈ {0, . . . ,K − 1} the mapping t 7→ Ak(zk+1) coincides with an approximation of
the solution A to problem (6) at grid point zk+1. One can notice that problems (8)
and (10) are the same as well as problems (9) and (12). The difference between the 2
computational approaches involved in the IP and S3F methods lies in the nonlinear
problems (11) and (8).
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The main difference between the 2 splitting formulations can be explained as
follows, see [9] for details. The splitting (7)–(9) is exact since it originates from the
following change of unknown over each sub-interval [zk, zk+1]

Aip
k : (z, t) ∈ [zk, zk+1]× R 7−→ exp(−(z − zk+ 1

2
)D) ·Ak(z, t) (13)

whereas the splitting (10)–(12) results from the symmetric Strang formula [10] and
corresponds to a second order approximation of the original problem over each sub-
interval [zk, zk+1]. In this case the splitting error is due to the non-commutativity of
the operators N and D in accordance with the celebrated Baker-Campbell-Hausdorf
formula [5, 15].

From now we will only consider the IP method but all the forthcoming discussion
also applies to the S3F method.

2.2.2. Formal solutions to the linear problems by Fourier transform The solution to
the linear PDE problem (10) at node zk+ 1

2
can formally be written as

∀t ∈ R Ak(zk+ 1
2
, t) = exp(hk

2 D) ·Ak(zk, t) (14)

where the exponential term as to be understood in the sense of the continuous group
generated by the unbounded linear operatorD [14]. The mapping t ∈ R 7→ Ak(zk+ 1

2
, t)

can be computed very efficiently by the mean of the Fourier transform as follows

∀t ∈ R exp(hk

2 Dt) · Ak(zk, t) = F−1
[
ν 7→ Âk(zk, ν) e

bdν
hk

2
]
(t) (15)

where Âk(zk, ·) denotes the Fourier transform of Ak(zk, ·), d̂ν = − 1
2α +

i
∑nmax

n=2
βn

n! (2πν)
n and F−1 denotes the inverse Fourier transform operator. Thus,

for all t ∈ R the quantity exp(hk

2 D) · Ak(zk, t) can be computed by multiplying the

Fourier transform of the mapping t 7→ Ak(zk, t) by the mapping ν 7→ e
bdν

hk

2 and then
applying the inverse Fourier transform to the result. The solution to the linear PDE
problem (9) at node zk+1 can be obtained in a very similar way.

2.2.3. Computation of the nonlinear terms In the IP method or in the S3F method
for the GNLS equation (2) one need to compute for various mapping f the nonlinear
terms N (f) where ∀t ∈ R ∀z ∈ [0, L]

N (f)(z, t) = iγ
[
Id +

1

ω0

∂

∂t

]
·
(
(1− fr)f(z, t)|f(z, t)|2

+ frf(z, t) (hR(t) ⋆ |f(z, t)|2)
)
.

(16)

One efficient way of computing this quantity is by mean of the Fourier transform.
Indeed, time derivation of functions is reduced to multiplying the Fourier transform
of the function by a factor −2iπν. Namely, we have

N̂ (f)(z, ν) = iγ
(
1− 2iπν

ω0

)
×F [t 7→(1− fr)f(z, t)|f(z, t)|2

+ frf(z, t) (hR ⋆t |f(z, t)|2)](ν).
(17)
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To compute hR(t) ⋆ |f(z, t)|2, we use the properties of the Fourier transform with
respect to convolution:

hR(t) ⋆ |f(z, t)|2 = F−1[ν 7→ ĥR(ν)× ̂|f(z, .)|2(ν)](t). (18)

Thus, computation of N (f)(z, t) for all t ∈ R and z ∈ R+ consists in the following
steps:

• compute the Fourier transforms ĥR and ̂|f(z, .)|2 of hR and t 7→ |f(z, t)|2
respectively

• multiply these 2 mappings and compute the inverse Fourier transform of the result
to obtain the mapping (z, t) 7→ hR(t) ⋆ |f(z, t)|2
• compute the Fourier transform of the mapping
t 7→ (1 − fr)f(z, t)|f(z, t)|2 + frf(z, t) (hR ⋆ |f(z, t)|2)
• multiply the result by the mapping ν 7→ iγ

(
1− 2iπν

ω0

)

• compute the inverse Fourier transform of this last product.

We now focus on the nonlinear problem (8). The major interest of the Interaction
Picture approach is that on the contrary to problem (6), problem (8) doesn’t anymore
involve explicitly partial derivation with respect to the time variable t. Therefore, it
can be numerically solved using a standard quadrature scheme for ordinary differential
equations (ODE) such as the “standard” fourth-order Runge-Kutta (RK4) scheme.

3. Interaction Picture method with the standard RK4 scheme

3.1. Overview of the standard RK4 scheme

3.1.1. Main features of RK schemes Let us recall the main features of Runge-Kutta
(RK) schemes for solving an initial value problem specified as follows

{
y′(z) = f(z, y(z)) ∀z ∈ [0, L]

y(0) = y0
. (19)

We refer to [7, 8, 16, 17] for a more detailed presentation and for proof of the results.
Given a subdivision (zk)k=0,...,K of [0, L], the so-called “standard” fourth order Runge-
Kutta (RK4) scheme for this problem consists in approaching the exact solution y at
grid point zk by the value yk computed iteratively through the formula

yk+1 = yk +
hk

6
(α1 + 2α2 + 2α3 + α4) (20)

where hk = zk+1 − zk and

α1 = f(zk, yk)

α2 = f(zk + hk

2 , yk + hk

2 α1)

α3 = f(zk + hk

2 , yk + hk

2 α2)

α4 = f(zk + hk, yk + hkα3)

(21)
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Each RK method can be described in a very concise manner by putting its coefficients
in an array called a Butcher tableau [7]. Butcher tableau for the RK4 method defined
by (20)-(21) is

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

1
3

1
3

1
6

(22)

A presentation of other RK4 methods can be found e.g. in [7], section 322.
Due to the need to compute the 4 terms α1, . . . , α4 given by (21) to obtain the

value of yk+1 from yk, the RK4 method defined in (20)-(21) is called a 4 stages RK
method. In the literature on RK methods, the coefficients b1 = 1

6 , b2 = 1
3 , b3 = 1

3 and
b4 = 1

6 in front of the values of α1, . . . , α4 in (20) are known as the weights of the RK
scheme. One can recast relation (20) in the following way

yk+1 = yk + hk Φ(zk, yk;hk) where Φ(zk, yk;hk) =
1

6
(α1 + 2α2 + 2α3 + α4) (23)

and the dependence in the variables zk, yk and hk of the αi terms is given by (21).
We recall that more generally any RK method can be defined through a Butcher

tableau in the form
c A

b⊤

where A is a q by q matrix with real entries and b and c are 2 real vectors in Rq. The
corresponding RK approximation scheme for problem (19) consists in computing the
solution at grid point zk+1 from the value computed at grid point zk by the integral
relation

y(zk+1) = y(zk) +

∫ zk+1

zk

y′(z) dz = y(zk) +

∫ zk+1

zk

f(z, y(z)) dz

= y(zk) + hk

∫ 1

0

f (hkζ + zk, y(hkζ + zk)) dζ

≈ y(zk) + hk

q∑

i=1

bi f (zk,i, y(zk,i)) with zk,i = zk + hkci

where the approximation in the last line corresponds to the use of the quadrature
formula ∫ 1

0

Ψ(ζ) dζ ≈
q∑

i=1

bi Ψ(ci) (24)

and ∀i ∈ {1, . . . , q} the solution at quadrature node zk,i is given by

y(zk,i) = y(zk) +

∫ zk,i

zk

f(z, y(z)) dz = y(zk) + hk

∫ ci

0

f (hkζ + zk, y(hkζ + zk)) dζ

≈ y(zk) + hk

q∑

j=1

aijf (zk,j , y(zk,j))
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where the approximation now corresponds to the quadrature formula

∫ ci

0

Ψ(ζ) dζ ≈
q∑

j=1

aij Ψ(cj). (25)

For instance the classical RK4 method (22) results in the use of Simpson quadrature
rule.

It is customary for RK method to impose the condition A
(
1 . . . 1

)⊤
= c, i.e.

∀i ∈ {1, . . . , q} ci =

q∑

j=1

aij . (26)

This condition amounts to assuming that the quadrature formula (25) integrate exactly
at least polynomials of degree 0. The same requirment for the quadrature formula (24)
implies that

q∑

i=1

bi = 1. (27)

Condition (27) is known to ensure the consistency of the RK method; it is also the
condition equation for a RK method to be of order 1 at least (see below).

3.1.2. Local error for RK schemes For a numerical method such as the RK4
method (22), it is usually required that the truncation error (also known as the
discretisation error), i.e. the error involved by the approximation of y(zk+1), where y
denotes the solution to problem (19), by the value yk+1 given by (23), can be made
as small as desired by using a sufficiently small step-size hk provided the mapping f
is sufficiently regular. A method satisfying this requirement is said to be convergent.
When studying RK methods, one also introduces the concept of consistency. A method
designed to solve the initial value problem (19) is said to be consistent with the initial
value problem when

∀k ∈ {0, . . . ,K} Φ(zk, yk; 0) = f(zk, yk). (28)

It is well known that for a RK method, a necessary and sufficient condition for
consistency is that the sum of the Runge-Kutta weights bi is equal to 1. The RK4
method (22) is consistent since

∑4
i=1 bi = 1

6 + 1
3 + 1

3 + 1
6 = 1. (This property can

also be checked from definition (28) by considering the expression of Φ and α1, . . . , α4

given by (21) when hk = 0.) The interest of consistency is that it is a necessary
and sufficient condition for convergence of RK methods. Thus RK4 method (22) is
convergent.

In the study of numerical methods for solving initial value problems, the two
notions of local error and global error are used simultaneously. The local error ℓk+1 at
grid point zk+1 is defined as the error made by using relation (23) as an approximation
at grid point zk+1 to the solution of the initial value problem

{
y′(z) = f(z, y(z)) ∀z ∈ [zk, zk+1]

y(zk) = yk

. (29)
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It can be interpreted as the error of the approximation method made over the
computational step form zk to zk+1 when assuming that the value of the solution
at grid point zk was exact. According to (23), the local error ℓk+1 is given by

ℓk+1 = y(zk+1)− yk+1 = y(zk+1)− y(zk)− hk Φ(zk, y(zk);hk). (30)

Thus the local error ℓk+1 can be seen as a measure of the way the exact solution of
the initial value problem satisfies the approximation formula (23).

The local error is used to define the convergence order of a numerical method
used to solve an initial value problem. A method is said to have convergence order p
where p ∈ N∗ if

∀k ∈ {0, . . . ,K − 1} ℓk+1 = O(hp+1) (31)

where h = maxk∈{0,...,K−1} hk. The RK4 method (22) is known to have convergence
order 4 when f is sufficiently smooth [7, 17]. More precisely, one can write the local
error for the RK4 method as

ℓk+1 = ψ5(zk, yk)h5 +O(h6) (32)

where ψ5 is a function of the elementary differentials of order 5 of the function f
involved in the definition of the initial value problem (19) (see section 318 of [7] for a
precise expression of ψ5), evaluated here in yk. The term ψ(zk, yk)h5 is known as the
principal local truncation error.

Of course, when solving an initial value problem by a numerical method, it is the
global error that we are interested in, i.e. the difference between the exact solution
and its numerical approximation in each grid point. Namely, the global error ek+1 at
grid point zk+1 is defined as

ek+1 = yk+1 − y(zk+1) (33)

where y(zk+1) denotes the exact solution and yk+1 the approximate solution at the
grid point zk+1. Whereas the local error refers to the error made in the current
computational step of the method assuming that the initial data used for this
step are exact, the global error takes into account the fact that the data comes
from computations made in the previous steps and therefore suffers from the error
accumulated over these steps. The reason why the local error plays a central role in the
study of numerical methods for initial value problem is that it is generally not possible
to precisely know the global error. Most of the time the only available information on
the global error are bounds which are too large to accurately estimate it. Moreover, it
can be shown that under some reasonable assumptions on the function f , the global
error can be related to the local error in a simple manner [7, 16].

To be comprehensive about numerical approximation in the RK4 method we
have to emphasis the fact the definition of local and global errors assume that exact
arithmetic is used. Of course, numerical softwares for solving initial value problems
on computer work under floating-point arithmetic. The consequence is that round-off
error needs as well to be taken into account in the discussion. However, since round-
off error depends on the computer in which the numerical method is implemented it
is generally not considered in the numerical analysis of a method. One major effect
of round-off error is that it increases in proportion to the number of floating-point
operations achieved. In practise, it prevents the local or global errors to tend to zero
when the step-size h decreases toward zero as suggested by (32).
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To conclude this section on RK4 methods, we may point out one of the reason
why fourth-order RK methods are so popular: they involve exactly 4 computational
stages (the numbers α1, . . . , α4 given by (21) in the case considered here) whereas
RK methods of higher order p (p > 5) necessarily involve at least 1 stage more than
their order (e.g. a fifth order RK method involves at least 6 stages) [18]. This is
of importance since usually the cost of the method is proportional to the number of
evaluations of the function f and one evaluation is required in each stage of the RK
scheme.

3.2. The fourth order Runge-Kutta Interaction Picture method

In the fourth order Runge-Kutta Interaction Picture (RK4-IP) method, one step of
the RK4 scheme (22) is used to approach the solution to problem (8) as follows:

∀t ∈ R Aip
k (zk+1, t) ≈ uip

k+1(t) (34)

where

uip
k+1(t) = Aip

k (zk, t) +
hk

6
(α1 + 2α2 + 2α3 + α4) (35)

and

α1 = Gk(zk, t, A
ip
k (zk, t)) = exp(hk

2 D) · N (exp(−hk

2 D) ·Aip
k (zk, t))

α2 = Gk(zk + hk

2 , t, A
ip
k (zk, t) + hk

2 α1) = N (Aip
k (zk, t) + hk

2 α1)

α3 = Gk(zk + hk

2 , t, A
ip
k (zk, t) + hk

2 α2) = N (Aip
k (zk, t) + hk

2 α2)

α4 = Gk(zk + hk, t, A
ip
k (zk, t) + hkα3) = exp(−hk

2 D) · N (exp(hk

2 D) · [Aip
k (zk, t) + hkα3])

The mapping t 7→ Aip
k (zk, t) is obtained by solving problem (8) and it can be

expressed as Aip
k (zk, t) = exp(hk

2 D) ·Ak−1(zk, t). By using the change of unknown (13)
we deduce that the mapping t 7→ Ak(zk+1, t) solution to problem (6) at grid point zk+1

can be approximated by uk+1 where ∀t ∈ R

uk+1(t) = exp(h
2D)·uip

k+1(t) = exp(h
2D)·

(
Aip

k (zk, t)+
h
6 (α1 + 2α2 + 2α3 + α4)

)
. (36)

Actually we are only interested in computing uk+1 for all k ∈ {0, . . . ,K − 1}
to obtain an approximate solution to problem (6). The use of the new unknown

Aip
k and his approximation uip

k+1 is a go-between in the computational approach.
We can therefore recast the above computational procedure as follows to reduce the
computational cost of the method. We denote by t 7→ uk(t) the approximation of
t 7→ A(zk, t) the solution at grid point zk and we successively compute

uip
k (t) = exp(hk

2 D) · uk(t)

α1 = exp(hk

2 D) · N (uk(t))

α2 = N (uip
k (t) + hk

2 α1)

α3 = N (uip
k (t) + hk

2 α2)

α′
4 = N (exp(hk

2 D) · [uip
k (t) + hkα3])

uk+1(t) = exp(hk

2 D) ·
(
uip

k (t) + hk

6 (α1 + 2α2 + 2α3)
)

+ hk

6 α
′
4.

(37)
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Computation of the exp(hk

2 D) operator is done according to the computational
procedure presented in section 2.2.2. An important point to be mentioned here
concerns the choice of the coefficients c1 = 0, c2 = 1

2 , c3 = 1
2 and c4 = 1 of

the RK4 method in the efficiency of the RK4-IP computational procedure given
by (37). Indeed, in conjunction with the choice of z′k = zk + hk

2 in the change of
unknown (13), these particular values of the ci coefficients enables the cancellation of 4
exponential operator terms in the reformulation (37) compared to other RK4 methods
and therefore save up computational time. Moreover this choice of the coefficients ci
values implies that every exponential operator term has precisely the same arguments
with only the function upon which the operator acts varying. This permits a more
efficient implementation compared to other choices. The cost of the computational
procedure (37) actually lies in the evaluations of the N operator defined by (5). As
detailed latter, each evaluation requires 4 calls to the Fast Fourier Transform.

4. Adaptive step-size strategies

First of all one must mention that it doesn’t really exist “one” method of reference
for local error estimation. Indeed assume the asymptotic behavior of the local error
is given by (see relation (32))

ℓk+1 = ψ5(zk, yk)h5
k + ψ6(zk, yk)h6

k +O(h7
k) (38)

and that an estimator of the leading term ψ5(zk, yk)h5 in expression (38) of the local
error is available. It may occur under certain circumstances during the adaptive step-
size control process, especially when h is not too small, that the leading term is small
compared to the other terms in the expression (38). In such a case the value of the
estimator does not represent an accurate approximation of the local error and adaptive
step-size control may fail.

4.1. Local error estimate by step doubling

The idea behind the step doubling method (also known as Richardson extrapolation
method) for estimation of the local error is the following [11]. The local error for the
RK4 method (22) at grid point zk+1 satisfies the following expansion deduced from
relation (32)

∀t ∈ R ℓk+1(t) = ψ5(t, zk, uk)h5
k +O(h6

k). (39)

Let uk+1 be the solution at grid point zk+1 computed from grid point zk using one
step of size hk, and let ũk+1 be the solution at grid point zk+1 computed from grid
point zk using two steps of size hk/2, in both cases assuming the solution at grid point
zk to be exact (since we are interested in the local error). Moreover assume that the
local error after 2 steps is twice the local error after one step (which is actually true
only when h tends to 0 since in this reasoning the initial data for the second half-step
is actually the approximate solution computed after the first half-step and not the
exact one). Then, ∀t ∈ R

A(zk+1, t)− uk+1(t) = ψ5(t, zk, uk)h5
k +O(h6

k)

A(zk+1, t)− ũk+1(t) = 2ψ5(t, zk, uk)

(
hk

2

)5

+O(h6
k)

(40)
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and therefore by difference between these 2 relations

ũk+1(t)− uk+1(t) = ψ5(t, zk, uk)h5
k

(
1− 1

24

)
+O(h6

k). (41)

Thus the local error at grid point zk+1 and time t can approximated, with an error
behaviour in O(h6

k), in the following way

ℓk+1(t) ≈ ψ5(t, zk, uk)h5
k ≈

24 − 1

24
(ũk+1(t)− uk+1(t)). (42)

The L2-local error at grid point zk+1 is defined as

Lk+1 = ‖ℓk+1‖L2(R,C) ≈
24 − 1

24

(∫

R

|ũk+1(t)− uk+1(t)|2 dt

) 1
2

. (43)

We have to point out that relation (42) gives an approximation of the local error
corresponding to the solution computed over the coarse grid. However, the fine mesh
grid solution is a better approximation of the solution than the coarse mesh grid
solution and is thus kept as the approximate solution. The cost of estimating the
local error is then the cost of the computation of the coarse mesh grid solution and
this cost is approximately half the cost of the computation of the fine mesh grid
solution since the step-size is twice larger. Thus, estimating the local error using the
step doubling approach is liable of an extra computational cost of 50% more than the
cost of the computation of the approximate solution itself. In fact, the additional cost
is slightly less than 50% since some computations are shared by each of the 2 methods,
and needs to be carried out only once.

Actually, relation (42) gives an approximation of the principal part of the Taylor
expansion (40) of the local error. The principal local truncation error is usually large
in comparison with the other terms involved in the expression of the local truncation
error, which justifies the use of the principal local truncation error to set the step
length. However, one must be aware that under special circumstances this can not
be the case and the other terms in the expression of the local truncation error can
overwhelm the principal local truncation error [16].

Another approach for estimating the error made over one computational step
relies on the concept of energy conservation. We detail it now.

4.2. Local error estimate by the Conservation Quantity Error method

In [19] it is shown that when loss in the fiber is neglected (i.e. in the case when α = 0
in eq. (2)) the following quantity, referred as the “Optical Photon Number” (OPN),
is conserved for the GNLSE

P (z) =

∫

R

neff Aeff

ω
|Â(z, ω)|2 dω (44)

where Aeff is known as the effective mode area is defined from the modal distribution
F (see relation (1)) as

Aeff =

(∫∫
R2 |F (x, y)|2 dxdy

)2

∫∫
R2 |F (x, y)|4 dx dy
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and integration in (44) hold over the entire spectrum of the optical wave amplitude
assumed to have a bandwidth less than ω0

3 . Moreover as justified in [19], in a low-
loss fiber waveguide, the frequency dependence of the coefficient neff Aeff is extremely
weak and, to a good approximation, this dependence can be neglected and the term
assumed to be a constant.

In [12] it is made use of the conservation of the OPN to propose a cheap numerical
method, termed the Conservation Quantity Error (CQE) method, to estimate the local
error in order to set an adaptive step-size control strategy. The justification of the
method is the following. The OPN error is defined as

δP (zk+1) = P (zk+1)− P̃ (zk+1) =

∫

R

neff Aeff

ω

(
|Â(zk+1, ω)|2 − |ûk+1(ω)|2

)
dω (45)

where P (zk+1) denotes the OPN computed from (44) by using the exact expression

of the electric filed amplitude A and P̃ (zk+1) denotes the approximation of the OPN
computed from (44) by using the approximate solution uk given by (37). On the one
hand, if we defined the “local intensity error” as

ℓint
k+1(ω) = |Â(zk+1, ω)|2 − |ûk+1(ω)|2

then the OPN error is related to the local intensity error as

δP (zk+1) =

∫

R

neff Aeff

ω
ℓint
k+1(ω) dω. (46)

Thus the Photon Number error is the weighted integral of the local intensity error
integrated over all the frequency window for the weight s(ω) = neff Aeff

ω .
On the other hand, since the OPN is assumed to be a conserved quantity

P (zk+1) = P (zk) and we have

δP (zk+1) = P (zk+1)− P̃ (zk+1) = P (zk)− P̃ (zk+1)

=

∫

R

neff Aeff

ω

(
|Â(zk, ω)|2 − |ûk+1(ω)|2

)
dω.

(47)

Since we are interested by a measure of the local error over the interval [zk, zk+1],

it is assumed that A(zk, ·) = uk and therefore Â(zk, ·) = ûk (see section 3.1). As a
consequence we have

δP (zk+1) =

∫

R

neff Aeff

ω

(
|ûk(ω)|2 − |ûk+1(ω)|2

)
dω. (48)

Thus, from a computational point of view the OPN error can be obtained by evaluating
the weighted integral of the difference of the square modulus of the Fourier transform
of the approximated electric field amplitude between zk and zk+1. Finally, from (46)
and (48) the weighted integral of the local intensity error ℓint

k+1 can be computed from
the Fourier transform of the electric field amplitude computed at grid point zk and
zk+1 as

Lint
k+1 =

∫

R

1

ω
ℓint
k+1(ω) dω =

1

neff Aeff
δP (zk+1)

=

∫

R

1

ω

(
|ûk(ω)|2 − |ûk+1(ω)|2

)
dω.

(49)
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The point now is to relate the local intensity error ℓint
k+1 to the local error ℓk+1

defined in (30). The local error satisfies, see (32),

∀t ∈ R ℓk+1(t) = A(zk+1, t)− uk+1(t) = ψ5(t, zk, uk)h5
k +O(h6

k)

and by Fourier transform we obtain

∀t ∈ R ℓ̂k+1(ω) = Â(zk+1, ω)− ûk+1(ω) = ψ̂5(ω, zk, ûk)h5
k +O(h6

k).

Therefore we have

ℓint
k+1(ω) = |Â(zk+1, ω)|2 − |ûk+1(ω)|2 = |ûk+1(ω) + ℓ̂k+1(ω)|2 − |ûk+1(ω)|2

= 4Re
(
ûk+1(ω) ℓ̂k+1(ω)

)
+ |ℓ̂k+1(ω)|2.

(50)

In particular, we deduce the following asymptotic behaviour for the local intensity
error

ℓint
k+1(ω) = φ(ω, zk, ûk)h5

k +O(h6
k).

Local intensity error ℓint
k+1 and local error ℓk+1 have the same asymptotic behaviour

and are connected through relation (50).
In [12] it is proposed to extend the CQE method to linear loss fibers by using the

following approximation formula deduced from a first order Taylor formula expansion

δP (zk+1) = P (zk+1)− P̃ (zk+1) = P (zk)− P̃ (zk+1) + hk
∂P

∂z
(zk) +O(h2

k) (51)

where the OPN change in the presence of linear loss is expressed as

∂P

∂z
(zk) = −

∫

R

α(ω)
neff Aeff

ω
|Â(zk, ω)|2 dω.

Thus, in order to take into account fiber losses relation (48) is modified in

δP (zk+1) ≈
∫

R

neff Aeff

ω

(
(1− hk α(ω))|ûk(ω)|2 − |ûk+1(ω)|2

)
dω (52)

and from (51) the approximation is first order accurate. Finally, the weighted integral
of the local intensity error ℓint

k+1 is computed from the Fourier transform of the electric
field amplitude computed at grid point zk and zk+1 as

Lint
k+1 =

∫

R

1

ω
ℓint
k+1(ω) dω =

∫

R

1

ω

(
(1 − hk α(ω))|ûk(ω)|2 − |ûk+1(ω)|2

)
dω. (53)

4.3. Local error estimate by the Modified Conservation Quantity Error method

In equation (2), energy losses are mainly related to the term αA where A is the
coefficient of linear attenuation. An alternate method for estimating the fiber losses
consists in considering the following simplified equation coming from (2) when only
the linear losses are taken into account:

∂

∂z
A(z, t) = −α

2
A(z, t). (54)
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This ODE equation with t as a parameter is considered over one grid interval [zk, zk+1].
The solution at grid point zk+1 can be expressed from its values at grid point zk as

∀t ∈ R A(zk+1, t) = A(zk, t) e−
α
2
(zk+1−zk). (55)

From (44) we deduce that

P (zk+1) =

∫

R

neff Aeff

ω
|Â(zk+1, ω)|2 dω = e−α(zk+1−zk)P (zk). (56)

Now, from (45) we have

δP (zk+1) =

∫

R

neff Aeff

ω

(
e−αhk |ûk(ω)|2 − |ûk+1(ω)|2

)
dω (57)

Of course, by using the first order Taylor expansion ex = 1 + x + O0(x
2), we obtain

from (57) the approximation (52) used in the CQE method. Thus with the Modified
Conservation Quantity Error (MCQE) method, the weighted integral of the local
intensity error ℓint

k+1 is computed from the Fourier transform of the electric field
amplitude computed at grid point zk and zk+1 as

Lint
k+1 =

∫

R

1

ω
ℓint
k+1(ω) dω =

∫

R

1

ω

(
e−αhk |ûk(ω)|2 − |ûk+1(ω)|2

)
dω. (58)

4.4. Local error estimate by using an embedded Runge-Kutta method

4.4.1. Overview of embedded Runge-Kutta methods Embedded Runge-Kutta
(ERK) methods are special Runge-Kutta (RK) methods designed to deliver two
approximations of the solution of the initial value problem under consideration,
corresponding to 2 RK schemes of different convergence orders p and q such that
q > p. These 2 approximations of the solution can be considered as an accurate
approximate solution (the one computed with the numerical scheme of higher order)
and a coarse approximate solution (the one computed with the one of lower order).

Assuming that the solution value at grid point zk is regarded as exact (because we
are concerned by an estimation of the local error, see section 3.1), we denote by uk+1

(resp. ũk+1) the coarse (resp. accurate) approximate solution found at the current
grid point zk+1. The local errors for each of the 2 methods are respectively given by

ℓ
[p]
k+1 = A(zk+1, t)− uk+1(t) = ψp(t, zk, uk)hp+1

k +O(hp+2
k )

ℓ
[q]
k+1 = A(zk, t)− ũk+1(t) = ψq(t, zk, uk)hq+1

k +O(hq+2
k )

(59)

where ψp (resp. ψq) is a function of the elementary differentials of order p (resp.
q) [7, 8]. By difference of these 2 relations we obtain

ũk+1(t)− uk+1(t) = ψp(t, zk, uk)hp+1
k +O(hp+2

k ). (60)

Since q > p the quantity ψq(t, zk)hq+1 +O(hq+2) is considered through the remainder
O(hp+2). Thus the local error for the RK method of lower order at grid point zk can
be approximated, with an error O(hp+2), in the following way

∀t ∈ R ℓ
[p]
k+1(t) ≈ ψp(t, zk, uk)hp+1 +O(hp+2

k ) ≈ ũk+1(t)− uk+1(t). (61)
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In general, ERK methods are constructed with q = p+1. One of the most famous
ERK method is the Fehlberg 4(5) pair [7,20]. It has 6 stages and delivers a RK method
of order 4 with an error estimate computed from a fifth order RK method.

We have to mention here that even if the local error estimate (61) holds only
for the lower order method it is customary in practise to use values given by the
higher order method as the approximation of the solution at grid point zk. This is
sometimes interpreted as local extrapolation in the sense that one can consider that
the error estimate is added to the approximate solution as a correction according to
the relation

ũk+1(t) = A(t, zk+1) +O(hp+2
k ) = uk+1(t) + ψp(t, zk, uk)hp+1

k +O(hp+2
k )

= uk+1(t) + ℓ
[p]
k+1(t) +O(hp+2

k ).
(62)

While in such a case relation (61) is still used for step-size control purposes it is no
longer related asymptotically to the local error. One can report that there exists some
ERK methods such as the method of Dormand and Prince [21] that are designed to
minimise the local error of the higher order solution.

To conclude with this overview of ERK methods, one has to point out that the
main idea behind the concept of ERK pairs is of course to have a large part of the
internal computations of the 2 RK scheme in common in order to have a computational
cost much lower than the one required when using 2 arbitrary RK methods of order p
and q.

4.4.2. Embedded Runge-Kutta methods for the IP method When looking for an ERK
method for using in conjunction with the Interaction Picture method, 2 different
approaches can be explored.

• the first one would be to look for a fourth order RK method embedded in a fifth
order RK method in order to design an adaptive step-size strategy based on the
estimation of the local error of the fourth order RK method.

• the second one would be to look for a third order RK method embedded in a
fourth order RK method and to use the local extrapolation idea to propagate the
solution computed with the fourth order RK method.

As mentioned before the main drawback of the first approach lies in the number of
stages required by a fifth order RK method which is at least 6 stages. Even if part of
the stages are in common between the 2 embedded methods, this approach implies a
significant extra cost of at least 2 stages. In the situation considered here, each stage
of the RK method requires one evaluation of the operator N and accounts for 4 Fast
Fourier Transform calls. The excess is therefore of 8 Fast Fourier Transform calls per
step which can be considered as prohibitive. For this reason, we will consider here
the second above approach. There is an infinite number of third order RK method
embedded in a fourth order RK method and requiring 4 computational stages, see
e.g [7] section 333. Now, we have to keep in mind that the efficiency of the RK4-
IP algorithm is partially due to the values of the ci coefficients of the RK4 scheme
(c1 = 0, c2 = 1/2, c3 = 1/2 and c4 = 1). These values are capitalised to reduce
the number of exponential operator terms to be computed. Other choices for the
values of the coefficients ci would lead to a larger number of exponential operator
terms involved and therefore to an increase of the computational cost. We have to
look for an embedded Runge-Kutta method with this constrain in mind. As well we

Technical Report - CNRS UMR 6082 FOTON - http://foton.cnrs.fr



Some step-size control strategies for solving the GNLSE by the RK4-IP method 19

will only consider here explicit Runge-Kutta methods because there is no reason why
using implicit Runge-Kutta methods designed mainly for stiff ordinary differential
equations, and because they are much expensive. Additionally, we will assume the
weight coefficients bi, i = 1, . . . , 4 are nonnegative real numbers which corresponds
to an usual simplification assumption in the study of RK method. in order to avoid
round off error issues for the method.

4.4.3. First attempt for a 4 stages embedded RK4 method Our search of an embedded
Runge-Kutta method to be used in conjunction with the IP method starts with a
Butcher tableau of the following form for the higher order method

0
1
2 a21

1
2 a31 a32

1 a41 a42 a43

b1 b2 b3 b4

(63)

We recall that the coefficients c1 = 0, c2 = 1/2, c3 = 1/2 and c4 = 1 are imposed
in order to preserve the efficiency of the numerical implementation of the interaction
picture method.

The conditions for this Butcher tableau to define a fourth order RK method are
the following [7, 8, 17]. The condition for first order accuracy of the RK method (63)
reads

b1 + b2 + b3 + b4 = 1. (64)

The condition for the second order accuracy of the RK method (63) reads

1

2
b2 +

1

2
b3 + b4 =

1

2
. (65)

There are 2 conditions for the RK method (63) to be at least of the third order :

1

4
b2 +

1

4
b3 + b4 =

1

3
(66)

1

2
a32b3 +

1

2
a42b4 +

1

2
a43b4 =

1

6
(67)

If we consider the set formed by the 3 first conditions, we easily obtain by solving the
linear system formed by the 3 equations (64)-(65)-(66) that we must necessarily have

b1 =
1

6
, b4 =

1

6
and b2 + b3 =

2

3
. (68)

There are 4 conditions for a RK method to be at least of the fourth order. In the case of
the RK method (63) with the specific case corresponding to the values given by (68)
they reduce to the following 3 conditions (one of the 4 conditions is automatically
satisfied)

1

4
a32b3 +

1

12
a42 +

1

12
a43 =

1

8
1

4
a32b3 +

1

24
a42 +

1

24
a43 =

1

12
1

12
a43a32 =

1

24

(69)
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From condition (26) we deduce that 4th order RK methods with c =(
0 1/2 1/2 1

)⊤
all have Butcher tableaux in the form

0
1
2

1
2

1
2

1
2 − 1

6λ
1
6λ

1 0 1− 3λ 3λ

1
6

2
3 − λ λ 1

6

(70)

The standard RK method corresponds to the value λ = 1
3 .

Now in order to have a third order RK method embedded in the fourth order RK
method defined by the Butcher tableau (63) we have 2 possibilities. The first one is
to look for a third order RK method with a Butcher tableau of the following form

0
1
2 a21

1
2 a31 a32

1 a41 a42 a43

b′1 b′2 b′3 b′4

(71)

This third order RK method would have 4 stages in common with the fourth order
RK method (63). The alternative would be to look for a third order RK method with
a Butcher tableau of the following form

0
1
2 a21

1
2 a31 a32

b′′1 b′′2 b′′3

(72)

Let us examine the first possibility. For the method to be of order 3, we must
have by analogy with (67) and (68),

b′1 =
1

6
, b′4 =

1

6
and b′2 + b′3 =

2

3
(73)

and
1

2
a32b

′
3 +

1

12
a42 +

1

12
a43 =

1

6
. (74)

From (67) we must also have

1

2
a32b3 +

1

12
a42 +

1

12
a43 =

1

6
. (75)

It follows that, unless a32 = 0, we necessarily have b′3 = b3 and as a consequence
b′2 = b2. This means that the third order method we are looking for would actually
coincide with the fourth order method it is embedded in and therefore it has no use
for local error estimate. We must therefore impose a32 = 0. But with this choice, the
fourth order conditions are satisfied by the 2 RK method (63) and (71) and therefore
again the 2 methods can not be used for local error estimate purposes. We conclude
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that we can not find a third order method defined by Butcher tableau (71) when the
method defined by Butcher tableau (63) is of order 4.

Let us now consider the existence of a third order method defined by Butcher
tableau (72). The conditions for the method to be at least of order 2 read

b′′1 + b′′2 + b′′3 = 1

1

2
b′′2 +

1

2
b′′3 =

1

2

(76)

There are 2 conditions for the method to be of the third order

1

4
b′′2 +

1

4
b′′3 =

1

3
1

2
a32b

′′
3 =

1

6

(77)

It is clear that the second condition in (76) is incompatible with the first condition
in (77). It means that there is no third order method defined by Butcher tableau (72)
but only a second order method. Second order methods with Butcher tableau (72)
are given by the conditions b′′1 = 0 and b′′2 + b′′3 = 1 whatever are the coefficients aij .

Therefore low order RK methods embedded in the standard RK4 method are
necessarily of maximum order 2 and a common choice is the “standard” second order
RK method given by the following Butcher tableau

0
1
2

1
2

1
2 0 1

2

0 0 1

(78)

Note that other fourth order RK methods where the coefficients satisfy conditions (68)
and (69) could also be used with almost the same advantages. Actually it is usual to
choose the value of the free coefficients in order to minimize the leading terms of the
local error asymptotic expansion of either the lower or the higher order RK formula.

We conclude that the only 4th order RK formula with 4 stages that embeds a
lower RK formula for local error estimation purposes is the RK4(2) formula given by
Butcher tableaux (22) and (78) summarized as follows

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

1
3

1
3

1
6

(79)

4.4.4. A 5 stages embedded RK4 method It follows from the previous study that the
quest for a 3rd order RK method to be used in conjunction with the standard RK4
method defined by Butcher tableau (22) necessarily implies a 5 stages method for the
3rd order RK method. In order to have the 4th order 4 stages RK method embedded
in the 3rd order 5 stages RK method, we look for a 3rd order RK method defined by
a Butcher tableau of the following form:
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0
1
2

1
2

1
2 0 1

2

1 0 0 1
c5 a5,1 a5,2 a5,3 a5,4

b1 b2 b3 b4 b5

(80)

where the free coefficients a5,j, j = 1, . . . , 4 and bj , j = 1, . . . , 4 have to be determined
in order to improve the computational efficiency of the method. Note that we
necessarily have c5 =

∑4
j=1 a5,j and therefore the value of c5 is imposed by the value

of the other coefficients.
The computational sequence for one step of the embedded RK method becomes

(see (35) for comparison)

uip
k (t) = exp(hk

2 D) · u[4]
k (t)

α1 = Gk(zk, t, u
ip
k (zk, t)) = exp(hk

2 D) N (u
[4]
k (t))

α2 = Gk(zk + hk

2 , t, u
ip
k (zk, t) + hk

2 α1) = N (Aip
k (zk, t) + hk

2 α1)

α3 = Gk(zk + hk

2 , t, u
ip
k (zk, t) + hk

2 α2) = N (Aip
k (zk, t) + hk

2 α2)

α4 = Gk(zk + hk, t, u
ip
k (zk, t) + hkα3)

= exp(−hk

2 D) · N
(
exp(hk

2 D) · [uip
k (zk, t) + hkα3]

)

α5 = Gk(zk + c5hk, t, u
ip
k (zk, t) + hk

4∑

j=1

αja5,j)

= exp(−(c5 − 1
2 )hkD) · N

(
exp((c5 − 1

2 )hkD) · [uip
k (zk, t) + hk

4∑

j=1

αja5,j]
)

u
[3]
k+1(t) = exp(hk

2 D) ·
[
uip

k (t) + hk

5∑

j=1

bjαj

]

u
[4]
k+1(t) = exp(hk

2 D) ·
[
uip

k (t) + hk

6 (α1 + 2α2 + 2α3 + α4)
]

(81)

where t 7→ u
[4]
k (t) (resp. t 7→ u

[3]
k (t)) denotes the RK4 (resp. RK3) approximation of

t 7→ A(zk, t) the solution at grid point zk.
By choosing a51 = 1

6 , a52 = 1
3 , a53 = 1

3 and a54 = 1
6 and therefore c5 =∑4

j=1 a5,j = 1, the same term appears in the expression of α5 as well as in the

expression of u
[4]
k+1 and this can be capitalized in order to reduce the computations.

Embedded RK methods having this feature are said to satisfy the FSAL property
(First Step At Last). Thus it remains to determine the values of bj , j = 1, . . . , 5 in
order that the second RK formula has order 3 (but not order 4). There are 4 condition
equations for the method to be of order 3 [7, 21]:





b1 + b2 + b3 + b4 + b5 = 1

1

2
b2 +

1

2
b3 + b4 + b5 =

1

2
1

4
b2 +

1

4
b3 + b4 + b5 =

1

3
1

4
b3 +

1

2
b4 +

1

2
b5 =

1

6

. (82)
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The solution (b1, b2, b3, b4, b5) to this under-determined linear system is

(1
6
,
1

3
,
1

3
,
1

6
− b5, b5

)
where b5 is arbitrarily chosen (83)

One can check that whatever is the value of b5 there are at least 2 out of 4 condition
equations for the fourth order not satisfied. Therefore, we obtain a family of ERK4(3)
methods indexed by a free parameter λ defined by the following Butcher tableau

0
1
2

1
2

1
2 0 1

2

1 0 0 1

1 1
6

1
3

1
3

1
6

1
6

1
3

1
3

1
6 − λ λ

(84)

This ERK4(3) method actually coincides with Dormand and Prince Runge-Kutta 4(3)
T formula [22]. Suitable value for λ suggested in [22] is λ = 1

10 .
The computational sequence (81) for one step of the ERK4(3) method can be

improved. As before one can save the computation of the exp(−hk

2 D) term involved

in the expression of α4 and α5 since a cancellation happens with the exp(hk

2 D) term in

the expression of u
[3]
k+1 and u

[4]
k+1. Moreover, although the ERK4(3) method appears

as a 5 stages method, is effective cost is very similar to a 4 stages method since
the computation of the first coefficient α1 at step k + 1 shares the evaluation of the
nonlinear operator N in common with the coefficient α5 computed at step k. Namely
the computational procedure (81) can be recast as follows

uip
k (t) = exp(hk

2 D) · u[4]
k (t)

α1 = exp(hk

2 D) α′
5,k

α2 = N (Aip
k (zk, t) + hk

2 α1)

α3 = N (Aip
k (zk, t) + hk

2 α2)

α′
4 = N

(
exp(hk

2 D) · [Aip
k (zk, t) + hkα3]

)

r(t) = exp(hk

2 D) ·
[
uip

k (t) + hk

6 (α1 + 2α2 + 2α3)
]

u
[4]
k+1(t) = r(t) + hk

6 α
′
4

α′
5,k+1 = N (u

[4]
k+1)

u
[3]
k+1(t) = r(t) + hk

30 (2α′
4 + 3α′

5,k+1)

(85)

We will detail in the next section the way the local error can be estimated from the

values u
[3]
k+1 and u

[4]
k+1. Compared to the computational procedure (37) of the standard

RK4 scheme for the IP method, the propound computational procedure (85) has a
very similar computational cost even if the embedded RK method has 5 stages: the
number of evaluations of the nonlinear operator N is 4 in both case. The extra cost
is limited to 2 additions and 3 multiplications and the need to keep in memory 2
intermediate results.
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4.4.5. Local error estimate for the RK4-IP method We consider the embedded
Runge-Kutta method given by Butcher tableaux (84). Assuming that the solution
value at grid point zk is regarded as exact (because we are concerned by an estimation

of the local error), we denote by u
[3]
k (resp. u

[4]
k ) the approximate solution computed at

the current grid point zk by the third order (resp. the fourth order) RK method. The
local errors at grid point zk+1 and time t for each of the 2 methods are respectively
given by

ℓ
[3]
k+1(t) = A(zk+1, t)− u[3]

k+1(t) = ψ3(t, zk, u
[3]
k )h4

k +O(h5
k)

ℓ
[4]
k+1(t) = A(zk+1, t)− u[4]

k+1(t) = ψ4(t, zk, u
[4]
k )h5

k +O(h6
k)

(86)

and by difference of these 2 relations we obtain

A
[4]
k+1(t)− u

[3]
k+1(t) = ψ3(t, zk, u

[3]
k )h4

k +O(h5
k).

Thus the local error for the third order RK method at grid point zk+1 can be
approximated, with an error in O(h5

k), in the following way

ℓ
[3]
k+1(t) ≈ ψ3(t, zk, u

[3]
k )h4

k +O(h5
k) ≈ u[4]

k+1(t)− u
[3]
k+1(t). (87)

The L2-local error at grid point zk+1 is computed as follows

L
[3]
k+1 = ‖ℓ[3]k+1‖L2(R,C) = ‖ℓ̂[3]k+1‖L2(R,C) ≈

(∫

R

∣∣∣û[4]
k+1(t)− û

[3]
k+1(t)

∣∣∣
2

dt

) 1
2

≈


ht

J−1∑

j=0

∣∣∣û[4]
k+1(tj)− û

[3]
k+1(tj)

∣∣∣
2




1
2 (88)

where (tj)j=0,...,J denotes a constant step-size sampling of the observed time window
and the last approximation results from the use of the left rectangle quadrature rule.

As mentioned before, even if the local error estimate (87) holds only for the
third order method, in practise we use the value given by the fourth order method
as the approximation of the solution at grid point zk+1. In general, this approach
overestimates the actual local error, which is safe but not of optimal efficiency.

5. Algorithms and experimental comparison

5.1. The basic RK4-IP algorithm for solving the GNLSE

We present in this section the basic RK4-IP algorithm for solving the GNLSE, i.e. the
RK4-IP algorithm without step-size control. First, as shown in the previous sections,
the computation of the exp(h

2Dt) and nonlinear terms requires several uses of the
Fourier transform and inverse Fourier transform. It is therefore important to recast
the computational procedure given in (37) in order to reduce the number of Fourier
transforms to achieve.

For convenience, we introduce the following notations. For a mapping f : R→ C,
we denote by N̂ (f̂(ν)) the Fourier transform F [t 7→ N (f(t))](ν), by t 7→ uk(t)
the approximation of the electric pulse amplitude A at grid point zk and by ûk its
Fourier transform. Taking into account relation (15) we transform the computational
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sequence (37) in the following way:

ûip
k (ν) = e

bdν
h
2 × ûk(ν)

α̂1(ν) = e
bdν

h
2 × N̂ (ûk(ν))

α̂2(ν) = N̂
(
ûip

k (ν) + h
2 α̂1(ν)

)

α̂3(ν) = N̂
(
ûip

k (ν) + h
2 α̂2(ν)

)

α̂′
4(ν) = N̂

(
e

bdν
h
2 × ûip

k (ν) + hα̂3(ν)
)

(89)

and

ûk+1(ν) = e
bdν

h
2 ×

(
ûip

k (ν) + h
6 (α̂1(ν) + 2α̂2(ν) + 2α̂3(ν))

)
+ h

6 α̂
′
4(ν)

uk+1(t) = F−1
(
ν 7→ ûk+1(ν)

)
(t)

(90)

This reformulation of the computational procedure gives rise to the following al-
gorithm for solving the GNLSE (2) by the Interaction Picture method in conjunction
with the RK4 method.

RK4-IP algorithm
Input: Array u containing the sampling of the signal amplitude at the fibre entrance

Array [νj ]j=1,...,N containing the frequency sampling
Array [zk]k=0,...,K containing the spatial grid points

Array ĥR containing the sampling of the Fourier transform of the Raman response
function

Output: Array u containing the sampling of the signal amplitude at the fibre end
{Initialisation}
for j = 1, . . . , N do
d̂[j]← − 1

2α+ i
∑nmax

n=2
βn

n! (2πνj)
n

tfexpd[j]← exp(h
2 d̂[j])

end for
û1 ← FFT(u, forward)
{Loop over the propagation sub-interval}
for k = 1, . . . ,K do

for j = 1, . . . , N do
ûip[j]← tfexpd[j]× û1[j]

end for
α̂1 ← COMPUTE TFN(u1)
for j = 1, . . . , N do
α̂1[j]← tfexpd[j]× α̂1[j]
û2[j]← ûip[j] +

h
2 α̂1[j]

end for
u2 ← FFT(û2, backward)
α̂2 ← COMPUTE TFN(u2)
for j = 1, . . . , N do
û3[j]← ûip[j] +

h
2 α̂2[j]

end for
u3 ← FFT(û3, backward)
α̂3 ← COMPUTE TFN(u3)
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for j = 1, . . . , N do
û4[j]← tfexpd[j]× (ûip[j] + hα̂3[j])

end for
u4 ← FFT(û4, backward)
α̂4 ← COMPUTE TFN(u4)
for j = 1, . . . , N do
û1[j]← tfexpd[j]× (ûip[j] + h

6 α̂1[j] +
h
3 α̂2[j] +

h
3 α̂3[j]) + h

6 α̂4[j]
end for
u← FFT(û1, backward) {Array u contains [Ak(zk+1, tj)]j=1,...,N the sampling of
the signal amplitude at step zk}

end for

FUNCTION ĝ = COMPUTE TFN(f)
{Compute the Fourier transform of g : t 7→ N (f)(z, t) for a given z}

Input: Array f contains the time sampling of function f for the given z
Array ĥR contains the sampled Fourier transform of the Raman response function
Array [νj ]j=1,...,J contains the frequency sampling points

Output: Array ĝ contains the sampled Fourier transform of g
for j = 1, . . . , J do
op1[j]← |f [j]|2

end for
ôp1 ← FFT(op1, forward)
for j = 1, . . . , J do
ôp2[j]← ôp1[j]× ĥR[j]

end for
op2 ← FFT(ôp2, backward) {Array op2 contains the convolution product hR ⋆t

|f(t)|2}
for j = 1, . . . , J do
op3[j]← f [j]×

(
(1− fR)op1[j] + fRop2[j]

)

end for
ôp3 ← FFT(op3, forward)
for j = 1, . . . , J do

ĝ[j]← iγ(1 + ν[j]
ν0

)ht × ôp3[j]
end for

In this algorithm, the computational cost mainly lies in the computation of the
Fourier transforms. Over one spatial step, the number of Fourier transforms to be
computed is 16. The C++ program we have developed to solve the GNLSE (2) by
the RK4-IP method according to the above algorithm uses the FFTW library for
computing the Fourier transforms [23]. FFTW, for ”Fastest Fourier Transform in
the West”, is a software library for computing discrete Fourier transforms (DFTs)
developed by Matteo Frigo and Steven G. Johnson at the Massachusetts Institute of
Technology. It supports a variety of algorithms and can choose the one it estimates
or measures to be preferable in the particular circumstances. FFTW is known as the
fastest free software implementation of the Fast Fourier transform (FFT) algorithm
at present time. It can compute transforms of real-valued and complex-valued arrays
of arbitrary size n with a complexity in O(n log(n)).
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5.2. Step-size control

For step-size control, a tolerance “tol” is given as bound on the local error estimate.
A step-size control strategy [7] consists in rejecting the current step-size if it gives an
estimated local error higher than the specified tolerance and in accepting the solution
computed with this step-size otherwise. There are 2 criteria usually employed for step-
size control purposes. The criterion of error per step (EPS) selects the step size hk at
each step such that the local error is lower than the tolerance tol whereas the criterion
of error per unit step (EPUS) selects the step size hk at each step such that the local
error is lower than tol×hk. It is clear that for sufficiently small tolerance value EPUS
criterion selects a smaller step-size than EPS criterion. When the current step-size is
rejected, a new smaller step-size has to be chosen to recompute the solution over the
current step. As well, when the current step-size meets the tolerance requirement for
the local error it has to be scaled up for the next step computations. In both case, the
new step-size has to be estimated using the available information on the previous step
computations. Here, we consider the ERK4(3) method defined by (84) and we assume
that the leading term in the asymptotic expansion (87) of the local error dominates.
However a similar development could be done with the other methods presented in
section 4. From (87) and (88) there exists C ∈ R∗

+ such that

L
[3]
k+1 = ‖ℓ[3]k+1‖L2(R,C) = C h4

k.

The optimal step-size hopt is the one for which the local error estimate L
[3]
k+1 is the

closest to the prescribed tolerance tol, i.e. C h4
opt = tol. By eliminating the constant C

from these 2 relations we obtain

hopt = hk 4

√
tol

L
[3]
k+1

.

For robustness the step-size control has to be designed in order to respond as smoothly
as possible with real or apparent abrupt changes in behaviour. This means that the
step-size should not vary from one step to the other by an excessive ratio. That is the
reason why we impose that the new step-size does not exceed twice the current step-
size above and half the current step-size below. As well, in order to avoid situations
where the specified tolerance is ever exceeded resulting in rejecting too many steps, a
safety factor is sometimes introduced. If hopt is the value of the step-size estimated to
give a predicted truncation error equal to the tolerance, then the smaller value 0.9hopt

for instance is used instead. Here our approach of evaluating the local error for the
3rd order RK method but propagating the solution computed from the 4th order RK
method is known to overestimate the actual local error. As a consequence no safety
factor is needed.

Following these requirements, we use the following step-size control formula

hnew = max

(
0.5 , min

(
2.0 ,

4

√
tol

err

))
hk (91)

where “tol” denotes the tolerance value specified by the user as a bound on the
local error and “err” denotes the estimation of the local error for the current step
as given by (88) for the ERK4(3) method. The 2 constants with values 0.5 and 2.0
are somewhat arbitrary and have to be regarded as design parameters.
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In figure 1 we have figure the behavior of the step-size control formula (91) by
drawing the variation of the ratio hnew/hold against the variation of the ratio tol/est.
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Figure 1. Illustration of the behaviour of the step-size control formula.

Following a similar reasoning, we use the following step-size control formula for
the Conservation Quantity Error method and for the step doubling method

hnew = max

(
0.5 , 0.9 min

(
2.0 ,

5

√
tol

err

))
hk (92)

where the estimation of the local error for the current step is given by (52) for the
CQE method and by (43) for the SD method. In (92), the constant with value 0.9 is
to be regarded as a safety factor.

5.3. Algorithm for the ERK4(3)-IP method with step-size control

We present in this section the algorithm for the fourth order Embedded Runge-Kutta
in the Interaction Picture (ERK4(3)-IP) method. Taking into account the step-size
control strategy based on the ERK4(3) method presented in section 5.2, we transform
the computational sequence (89) in the following way:
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ûip
k (ν) = e

bdν
hk

2 × ûk(ν)

α̂1(ν) = e
bdν

hk

2 × α̂′
5,k

α̂2(ν) = N̂
(
ûip

k (ν) + hk

2 α̂1(ν)
)

α̂3(ν) = N̂
(
ûip

k (ν) + hk

2 α̂2(ν)
)

α̂′
4(ν) = N̂

(
e

bdν
hk

2 × ûip
k (ν) + hkα̂3(ν)

)

r̂(ν) = e
bdν

hk

2 ×
(
ûip

k (ν) + hk

6 (α̂1(ν) + 2α̂2(ν) + 2α̂3(ν))
)

û
[4]
k+1(ν) = r̂(ν) + hk

6 α̂
′
4(ν)

α̂′
5,k+1(ν) = N̂

(
û

[4]
k+1(ν)

)

û
[3]
k+1(ν) = r̂(ν) + hk

30 (2α̂′
4 + 3α̂′

5)

L
[3]
k+1 =


ht

J−1∑

j=0

∣∣∣û[4]
k+1(tj)− û

[3]
k+1(tj)

∣∣∣
2




1
2

hopt = max

(
0.5 , min

(
2.0 , 4

√
tol

L
[3]
k+1

))
hk

(93)

If L
[3]
k+1 6 tol where tol denotes the prescribed tolerance for the local error

then the current computational step is accepted and we record the mapping
uk+1 : t 7→ F−1

(
ν 7→ ûk+1(ν)

)
(t) as the approximate solution at grid point zk+1.

For computations from the new grid point zk+1 = zk + hk, the step-size is set to
hk+1 = min(hopt, L − zk+1) where L denotes the fiber length. If the local error does
not match the tolerance then computations from grid point zk given by (93) are
repeated with the smaller step-size hk = hopt.

This computational procedure gives rise to the following algorithm derived from
the basic RK4-IP algorithm presented in section 5.1:

ERK4(3)-IP algorithm
Input: Array u contains the input signal amplitude sampled in time

Array [νj ]j=1,...,J contains the frequency sampling points

Array ĥR contains the Fourier transform of the Raman response function
tol the tolerance value for the local error
{Initialisation}
for j = 1, . . . , J do
d̂[j]← − 1

2α+ i
∑nmax

n=2
βn

n! (2πνj)
n

end for
û← FFT(u, forward)

N̂u← COMPUTE TFN(u)
zk = 0, h = hinitial

{Loop over the propagation sub-interval}
while zk < L do

for j = 1, . . . , J do
tfexpd[j]← exp(h

2 d̂[j])
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ûip[j]← tfexpd[j]× û[j]
end for
for j = 1, . . . , J do
α̂1[j]← tfexpd[j]× N̂u[j]
û2[j]← ûip[j] +

h
2 α̂1[j]

end for
u2 ← FFT(û2, backward)
α̂2 ← COMPUTE TFN(u2)
for j = 1, . . . , J do
û3[j]← ûip[j] +

h
2 α̂2[j]

end for
u3 ← FFT(û3, backward)
α̂3 ← COMPUTE TFN(u3)
for j = 1, . . . , J do
û4[j]← tfexpd[j]× (ûip[j] + hα̂3[j])

end for
u4 ← FFT(û4, backward)
α̂4 ← COMPUTE TFN(u4)
for j = 1, . . . , J do
r̂[j]← tfexpd[j]× (ûip[j] + h

6 α̂1[j] +
h
3 α̂2[j] +

h
3 α̂3[j])

û1[j]← r̂[j] + h
6 α̂4[j] {RK4 solution}

end for
u1 ← FFT(û1, backward)
α̂5 ← COMPUTE TFN(u1)
for j = 1, . . . , J do
v̂1[j]← r̂[j] + h

30 (2α̂4[j] + 3α̂5[j]) {RK3 solution}
end for
{Step-size control}
err← 0
for j = 1, . . . , J − 1 do

err← err + |û1[j]− v̂1[j]|2
end for
err←

√
ht err

hopt = max

(
0.5 , min

(
2.0 , 4

√
tol
err

))
h {Optimal step-size for the given

prescribed tolerance}
if err 6 tol then
{the current local error matches the tolerance}
zk = zk + h {New grid point is confirmed}
h = min(hopt, L− zk) {New step-size value}
u ← u1 {Array u contains the time sampled values [Ak(zk, tj)]j=1,...,J of the
signal amplitude at grid point zk}
û← û1

N̂u← α̂5

else
{The current local error does not match the tolerance}
h = hopt {New computation from zk with smaller step-size hopt is necessary}

end if
end while
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A comparison of this algorithm to the basic RK4-IP algorithm presented in
section 5.1 shows that it has a computational cost very similar. The number of
evaluations of the non-linear operator N is 4 in both case and in both case we have 4
evaluations of the exp(hk

2 D) operator. The extra cost is limited to 2 additions and 3
multiplications and the need to keep in memory 2 intermediates results (not including
the computation of the new optimal step-size). Of course, this is only true when the
current step-size is not rejected since otherwise all the computations for the current
step are lost when we restart from the previous grid point with a smaller step-size.
The over-cost is limited to the computation of the OPN and to the computation of
the new optimal step-size.

5.4. Algorithm for the RK4-IP method with step-size control by the CQE method

We now present a variant algorithm for the RK4-IP method where the step-size con-
trol is done according to the modified CQE method described in section 4.3. This
algorithm is derived from the basic RK4-IP algorithm presented in section 5.1 and in
particular the function COMPUTE TFN(f) is identical in both cases.

RK4-IP algorithm with MCQE adaptive step-size strategy
Input: Array u contains the sampling of the signal amplitude at the fibre entrance

Array [νj ]j=1,...,J contains the frequency sampling points

Array ĥR contains the Fourier transform of the Raman response function
Output: Array u contains the sampling of the signal amplitude at the fibre end
{Initialisation}
for j = 1, . . . , J do
d̂[j]← − 1

2α+ i
∑nmax

n=2
βn

n! (2πνj)
n

end for
û← FFT(u, forward)
zk = 0, h = hinitial

{Loop over the propagation sub-interval}
while zk < L do

OPNk ← 0 {Optical Photon Number at the current grid point}
for j = 1, . . . , J do

OPNk ← OPNk + |û[j]|2/(2πν[j])
tfexpd[j]← exp(h

2 d̂[j])
ûip[j]← tfexpd[j]× û[j]

end for
α̂1 ← COMPUTE TFN(u)
for j = 1, . . . , J do
α̂1[j]← tfexpd[j]× α̂1[j]
û2[j]← ûip[j] +

h
2 α̂1[j]

end for
u2 ← FFT(û2, backward)
α̂2 ← COMPUTE TFN(u2)
for j = 1, . . . , J do
û3[j]← ûip[j] +

h
2 α̂2[j]

end for
u3 ← FFT(û3, backward)
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α̂3 ← COMPUTE TFN(u3)
for j = 1, . . . , J do
û4[j]← tfexpd[j]× (ûip[j] + hα̂3[j])

end for
u4 ← FFT(û4, backward)
α̂4 ← COMPUTE TFN(u4)
for j = 1, . . . , J do
ûtmp[j]← tfexpd[j]× (ûip[j] + h

6 α̂1[j] +
h
3 α̂2[j] +

h
3 α̂3[j]) + h

6 α̂4[j]
end for
{Step-size control}
OPNk+1 ← 0 {Optical Photon Number at new grid point}
for j = 1, . . . , J do

OPNk+1 ← OPNk+1 + |ûtmp[j]|2/(2πν[j])
end for
err← |e−αhOPNk −OPNk+1|
hopt = max

(
0.5 , min

(
2.0 , 0.9 5

√
tol
err

))
h {Optimal step-size for the given

prescribed tolerance}
if err 6 tol then
{the current local error matches the tolerance}
zk = zk + h {New grid point is confirmed}
h = min(hopt, L− zk) {New step-size value}
û← ûtmp

u ← FFT(û, backward) {Array u contains the values [Ak(zk+1, tj)]j=1,...,J the
sampling of the signal amplitude at step zk}

else
{The current local error does not match the tolerance}
h = hopt {New computation from zk with smaller step-size hopt is necessary}

end if
end while

A comparison of this algorithm to the basic RK4-IP algorithm presented in
section 5.1 and to the ERK4(3)-IP algorithm shows that it has a computational
cost very similar. Indeed, the MCQE adaptive step-size strategy do not modify the
structure of the basic RK4-IP algorithm but only add the computation of the OPN
at the entrance and at the end of the current step section. Here again, the number of
evaluations of the non-linear operator N is 4 in both case and in both case we have 4
evaluations of the exp(hk

2 D) operator.

5.5. Numerical experiments

5.5.1. Soliton solution to the NLSE in optics We first consider the case of the non-
linear Schrödinger equation (NLSE) in optics, a simplified version of the GNLSE (2)
where α = 0, fR = 0, nmax = 2. The linear operator is D : A 7→ iβ2∂ttA and the

non-linear operator is N : A 7→ iγA(z, t)
∣∣A(z, t)

∣∣2. When β2 < 0, there exists an exact
solution to the NLSE known as the optical soliton [1]. Namely, if the source term is
given by

∀t ∈ R a0(t) =
N√
γLD

1

ch(t/T0)
(94)
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where N = 1 is the soliton order, T0 is the pulse half-width and LD = −T 2
0 /β2 is the

dispersion length then the solution to the NLSE reads ∀z ∈ [0, L]

∀t ∈ R A(z, t) =
N√
γLD

eiz/2LD

ch(t/T0)
. (95)

Furthermore, for N ∈ N, N > 2, relation (95) gives the solution to the NLSE in
position z multiple of π

2LD.
Fundamental soliton (N = 1) doesn’t provide a well suited example for exploring

the features of the ERK4(3) method and for comparison purposes since its shape
doesn’t change on propagation. We therefore consider in the following a 3rd order
soliton (N = 3). In Fig. 2 we show for the 3rd order soliton the adjustment of the step-
size when using the ERK4(3) method for evaluating the local error with a tolerance set
to tol = 10−6 and an initial step-size of h = 1 m. The other physical parameters of the
numerical experiment are L = 637.21 m, γ = 4.3 W−1 km−1, β2 = −19.83 ps2 km−1,
T0 = 2.8365 ps. The number of discretisation steps along the fiber is found to be
605 and the computation time is 69 s on a Intel Core 2 Quad Q6600. At the fiber
end (z = L), the relative global error measured with the quadratic norm is 1.12 10−4

whereas the maximum relative error is 1.89 10−4.
The same accuracy with a constant step-size computation would have required a

step size of 0.01 m for a total number of step of 63722 and a computation CPU time
of 5490 s.

For comparison, when using an adaptive step-size strategy based on the SD
approach with the same values of tolerance and initial step-size, we obtain that the
number of discretisation steps along the fiber is 396 (or 792 if we consider that it is
the accurate solution computed over the fine grid of step-size hk/2 that is propagated)
and the computation time is 148 s. At the fiber end (z = L), the relative quadratic
error is 8.83 10−6 whereas the maximum relative error is 1.48 10−5. The evolution of
the step-size along the fiber is depicted in Fig. 2 for a comparison with the ERK4(3)
method. Now if we impose to find with the ERK4(3) method a quadratic error at the
fiber end of approx. 8.83 10−6 (for a comparison with the accuracy obtained with the
SD method) we obtain the result by setting a tolerance of 10−7 and the number of
step is 1209 whereas the CPU time is 128 s.

This simple example illustrates the fact that the ERK4(3) method overestimates
the local error as mentioned before. The consequence is that the size of the steps are
a little smaller than the one obtained with the SD method on the coarse grid and
therefore that a larger number of steps is required. However, since in the ERK4(3)
method the local error for each step is computed faster than in the SD method the
total CPU time of the computation is much lower. The global error at the fiber end
(z = L) is smaller when the IP method is used in conjunction with the SD method
since it is not the solution computed with the RK4 method that is propagated but
the more accurate one computed with the half step-size in the SD method [11].

Since α = 0 in the simplified situation considered here, the two step-size control
approaches based on the CQE method and on the MCQE method coincide. With
the same values of tolerance and initial step-size as before (tol = 10−6 and h = 1
m), we obtain that the number of discretisation steps along the fiber is 226 and the
computation time is 34 s. At the fiber end (z = L), the relative quadratic error is
5.19 10−3 whereas the maximum relative error is 9.17 10−3. The evolution of the step-
size along the fiber is depicted in Fig. 3 for a comparison with the ERK4(3) method.
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Figure 2. Evolution of the step-size along the fiber length for the ERK4(3)
and the SD methods (considered over the coarse and fine grids) when solving the
NLSE for a 3rd order soliton.

We can observe that the size of the steps obtained by the CQE method are much
larger than the ones obtained by the ERK4(3) method. Moreover we can see that
the general shape of the curve obtained with the ERK4(3) method is smooth whereas
the one corresponding to the CQE method is rougher. It’s means that there is more
estimated step-sizes rejected with the CQE method than with the ERK4(3) method.
This observation has to put facing the globally good agreement in the general shape
of the curve for the ERK4(3) and the SD method shown in Fig. 2. It appears that the
CQE method selects for a given tolerance larger step-sizes than the 2 other methods.
The CQE method is therefore fast, but it causes a larger number of rejected step-
sizes and a rather bad accuracy of the computed solution at the fiber end for a given
tolerance compared to the SD and ERK4(3) method. When compared to the ERK4(3)
method, we can see that the CQE method computes a solution 50 times less accurate
for a CPU time just twice smaller.

To be comprehensive, when using the same parameters as before (a tolerance set
to 10−6 and an initial step-size set to h = 1 m) with a step-size control strategy based
on the ERK4(2) method defined in (79) rather than on the ERK4(3) method, we
obtain at the fiber end a quadratic relative error of 2.96 10−8 and a maximum relative
error of 2.77 10−8. The number of discretisation steps is 4035 and the computation
time is 367 s. In this case, the local error is estimated from the solution computed
with a 2nd order RK scheme and therefore the local error is largely overestimated
(since it is the more accurate solution computed with a 4th order RK scheme that is
propagated) resulting in a underestimation of the optimal step-size.
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Figure 3. Evolution of the step-size along the fiber length for the ERK4(3) and
the CQE methods when solving the NLSE for a 3rd order soliton.

We have summarized in table 1 the features of the various step-size control
approaches given above. In table 2 we give the features of the step-size control
approaches for solving the NLSE with a tolerance of 10−9 and an initial step-size
of 0.1 m. The same comments as for a tolerance of 10−6 can be done regarding the
comparison between the ERK4(3) and CQE methods. For a similar CPU time, the
accuracy of the computed solution at the fiber end is 100 time better with the ERK4(3)
method than with the CQE method. Surprisingly, it is the SD method that provides
the better result. The reason could be that the low value chosen for the tolerance
implies a large number of steps and since the accurate local error estimate provided
by the SD method enables to design a quite optimal step-size, the total number of
steps is smaller (as observed in the numerical experiment). Globally even if each step

Method number of steps CPU time (s.) quadratic error maximal error
ERK4(3) 605 69 1.12 10−4 1.89 10−4

SD 792 148 8.83 10−6 1.48 10−5

CQE 226 34 5.19 10−3 9.17 10−3

ERK4(2) 4035 367 2.96 10−8 2.77 10−8

Table 1. Comparison of the efficiency of the various step-size control approaches
for solving the NLSE with a tolerance of 10−6 and an initial step-size of 1 m.
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requires more time, the whole execution time is good enough and the result accurate.

Method number of steps CPU time (s.) quadratic error maximal error
ERK4(3) 5052 554 4.49 10−8 4.35 10−8

SD 3188 529 1.46 10−8 1.79 10−8

CQE 6367 662 5.73 10−6 5.04 10−6

Table 2. Comparison of the efficiency of the various step-size control approaches
for solving the NLSE with a tolerance of 10−9 and an initial step-size of 0.1 m.

5.5.2. Solving the GNLSE in optics We now consider the case of the GNLSE (2)
with the following set of physical parameters : ω0 = 1770 Thz, γ = 4.3 W−1km−1,
β2 = 19.83 ps2km−1, β3 = 0.031 ps3km−1 and βn = 0 for n > 4, α = 0.046 km−1,
L = 96, 77 m, fR = 0.245. An expression for the Raman time response function for
silica core fiber is given in [24]. The Gaussian pulse at the fiber entrance (z = 0) is
expressed as

∀t ∈ R a0(t) =
√
P0 e−

1
2
(t/T0)

2

(96)

where T0 = 2.8365 ps is the pulse half-width and P0 = 100 W is the pulse peak power.
In Fig. 4 we show the adjustment of the step-size when using the ERK4(3) method

for evaluating the local error with a tolerance set to tol = 10−6 and an initial step
size of h = 0.1m. The number of discretisation steps along the fiber is found to
be 279 and the computation time is 50 s. The quadratic norm of the solution at
the fiber end (z = L) is 23.018853566539611 whereas the norm of the maximum is
5.1082812862836695.

When using the SD method for determining the step-size in the IP method in
the same circumstances we find that the number of discretisation steps along the fiber
is 232 and the computation time is 124 s. The quadratic norm of the solution at
the fiber end (z = L) is 23.018876949765658 whereas the norm of the maximum is
5.1082806571962491. Here again the same comments as for the soliton case can be
done when comparing the 2 adaptive step-size approaches.

In the present situation since the fiber suffers losses, the 2 methods CQE and
MCQE take into account the losses in a slightly different way and therefore give
very slightly different results for the control of the step-size. With a tolerance set to
tol = 10−6 and an initial step size of h = 0.1 m as before, we obtain 123 steps along
the fiber and a CPU time of 28.54 s for the CQE method and 123 steps along the fiber
and a CPU time of 30.79 s for the MCQE method. The quadratic norm of the solution
at the fiber end (z = L) is 23.0181610088442560 whereas the norm of the maximum is
5.1083035516257808 for the CQE method and it is respectively 23.018161878786020
and 5.1083036530739773 for the MCQE method. The evolution of the step-size along
the fiber for the CQE and MCQE methods is depicted in Fig. 4 for a comparison with
the ERK4(3) and SD methods. Here again one can observe that the size of the steps
obtained by the CQE and MCQE methods are much larger than the ones obtained by
the ERK4(3) and SD methods.

We have summarized in table 3 the features of the various step-size control
approaches when solving the GNLSE with a tolerance of 10−6 and an initial step-
size of 0.1 m.

When the tolerance is set to tol = 10−9 with an initial step size of h = 0.1 m, the
number of steps with the ERK4(3) method is 1545 and the computational time is 221 s

Technical Report - CNRS UMR 6082 FOTON - http://foton.cnrs.fr



Some step-size control strategies for solving the GNLSE by the RK4-IP method 37

Method steps numb. CPU time (s.) quadratic norm norm of the max.
ERK4(3) 279 50 23.018853566539611 5.1082812862836695

SD 232 124 23.018876949765658 5.1082806571962491
CQE 123 28.54 23.018161008844256 5.1083035516257808

MCQE 123 30.79 23.018161878786020 5.1083036530739773

Table 3. Comparison of the efficiency of the various step-size control approaches
for solving the GNLSE with a tolerance of 10−6 and an initial step-size of 0.1 m.

whereas 906 steps are required by the SD method for a computational time of 645 s.
The quadratic norm of the solution at the fiber end (z = L) is 23.018880606441541
whereas the norm of the maximum is 5.1082806056123137 for the ERK4(3) method
and it is respectively 23.018880620838782 and 5.1082806054745253 for the SD method.
We obtain 457 steps along the fiber and a CPU time of 76 s for the CQE method and
463 steps along the fiber and a CPU time of 70 s for the MCQE method. The quadratic
norm of the solution at the fiber end (z = L) is 23.018877436289240 whereas the norm
of the maximum is 5.1082219724449098 for the CQE method and it is respectively
23.018877663305577 and 5.1082220123430686 for the MCQE method.

The evolution of the step-size along the fiber length is very similar to the one
presented in Fig. 3.
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Figure 4. Evolution of the step-size along the fiber length for the ERK4(3) and
the SD methods when solving the GNLSE.
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6. Conclusion

In this document we have studied the possibility to use an ERK method to solve the
nonlinear problem in the IP or S3F methods applied to the GNLSE and to deliver
an estimation of the local error for step-size control purposes. We have shown that
it doesn’t exist a 4 stages (or less) RK3 method embedded in the standard RK4
method. Only a RK2 method is obtained. However we have presented a 5 stages
RK3 method in which the standard RK4 method is embedded. Since in practise
the solution computed with the RK4 method is more accurate, it is the one that is
propagated. This approach usually overestimates the actual local error which is safe
even though not optimal for step-size control purposes. This drawback is offset by
the fact the ERK method delivers an estimation of the local error at no extra cost
compared to the standard RK4 method. We have also compare this approach to other
standard methods for estimating the local error such as the step doubling method
and the CQE method both theoretically and on numerical experiments. In the 2
situations we have investigated numerically, we have found that the ERK4(3) method
provides step-sizes in a very similar way to the SD method. However, as the ERK4(3)
method overestimates the local error the step-sizes are a little smaller than the ones
provided by the SD method. The ERK4(3) method is however much faster than the
SD method. When compared to the ERK4(3) method, we have observed that the CQE
and MCQE methods give larger step-sizes and less accurate solutions for a comparable
computation time. Moreover we have seen that the control step-size strategy based
on the CQE and MCQE methods provides a rougher curve for the selected step-sizes
than the one obtained with the ERK4(3) method. A recommendation on the basis
of this study would be to prefer a control step-size strategy based on the ERK4(3)
method rather than on the CQE method.

On the contrary to the Symmetric Split-Step method the IP method uses a
splitting based on a change of unknown rather than to the second order accurate
Strang formula and therefore is exact. It follows that it could be interesting to look
for higher order ERK methods to be used in conjunction with the IP method. One
motivation for such a study is that so as to attain a certain accuracy of the results less
computational steps are required with high order RK schemes and therefore they are
likely to reduce the accumulation of round-off errors. There exists in the literature a lot
of high order ERK schemes [7]. However each of these schemes has been constructed
in order to satisfy one given criterion and none of them preserve the advantageous
position of the internal quadrature nodes of the RK4 formula liable for the efficiency
of the RK4-IP method. Therefore a next stage would be the construction of a ERK5(4)
method well suited to be used in conjunction with the IP method and that preserves
the ease of implementation and the advantageous position of the internal quadrature
nodes of the RK4 formula so far as one can.
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like to thank F. Mahé and R. Texier-Picard from the Institute of Mathematics in
Rennes, France (IRMAR CNRS UMR 6625) for the helpfull advices on Runge-Kutta
methods and for their contributions to the Green-Laser project. The authors also
would like to thank Pr. O. Boffard and S. Le Maguer from IRISA (CNRS UMR

Technical Report - CNRS UMR 6082 FOTON - http://foton.cnrs.fr



Some step-size control strategies for solving the GNLSE by the RK4-IP method 39

6074) Project team CORDIAL for the technical support in computer science they
have kindly provided.

References

[1] G. Agrawal. Nonlinear fiber optics. Academic Press, 3rd edition, 2001.
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