N

N

Gibbs sampling methods for Pitman-Yor mixture models

Mame Diarra Fall, Eric Barat

» To cite this version:

Mame Diarra Fall, Eric Barat. Gibbs sampling methods for Pitman-Yor mixture models. 2014.
hal-00740770v2

HAL Id: hal-00740770
https://hal.science/hal-00740770v2

Preprint submitted on 19 May 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00740770v2
https://hal.archives-ouvertes.fr

Gibbs Sampling Methods for Pitman-Yor
Mixture Models

Mame Diarra Fall' and Eric Barat?

LI MAPMO - UMR 6628 Fédération Denis Poisson
Université d’Orléans 45067 Orléans cedex 2, France

2 Laboratoire de Modélisation, Simulation et Systeémes
CEA/DRT/LIST/DCSI/LM2S, 91191 Gif-sur-Yvette, France.

e-mail: diarra.fallQuniv-orleans.fr ; eric.barat@cea.fr

Abstract

We introduce a new sampling strategy for the two-parameter Poisson-
Dirichlet process mixture model, also known as Pitman-Yor process mix-
ture model (PYM). Our sampler is therefore applicable to the well-known
Dirichlet process mixture model (DPM).

Inference in DPM and PYM is usually performed via Markov Chain
Monte Carlo (MCMC) methods, specifically the Gibbs sampler. These
sampling methods are usually divided in two classes: marginal and condi-
tional algorithms. Each method has its merits and limitations. The aim of
this paper is to propose a new sampler that combines the main advantages
of each class. The key idea of the proposed sampler consists in replac-
ing the standard posterior updating of the mixing measure based on the
stick-breaking representation, with a posterior updating of [Pit96b] which
represents the posterior law under a Pitman-Yor process as the sum of a
jump part and a continuous one. We sample the continuous part in two
ways, leading to two variants of the proposed sampler. We also propose
a threshold to improve mixing in the first variant of our algorithm.

The two variants of our sampler are compared with a marginal method,
that is the celebrated Algorithm 8 of [Nea00], and two conditional algo-
rithms based on the stick-breaking representation, namely the efficient
slice sampler of [KGW11] and the truncated blocked Gibbs sampler of
[1JO1]. We also investigate effects of removing the proposed threshold in
the first variant of our algorithm and introducing the threshold in the ef-
ficient slice sampler of [KGW11]. Results on real and simulated data sets
illustrate that our algorithms outperform the other conditionals in terms
of mixing properties.

Keywords: Bayesian nonparametrics; Dirichlet process mixture model;
Pitman-Yor process mixture model; Gibbs sampler; Slice sampling

1 Introduction

Bayesian nonparametrics have recently gained popularity in a great number
of applications in statistics and machine learning (density estimation, cluster-
ing, image segmentation and reconstruction, language modeling etc.). Dirich-
let process mixture models (DPM) ([Fer83], [Lo84]) have become ubiquitous
in Bayesian nonparametric modeling as reviewed by [MQ04] and recently by
[MM13]. This makes crucial the use of effective sampling strategies for DPM
and their two-parameter generalization a.k.a as Pitman-Yor mixtures (PYM).
In particular, the mixing properties of MCMC samplers appears as a key point
in order to address high dimension applications using large datasets. In this
paper, we investigate such a task.
A DPM assumes that the random density function can be written as

Fx) = / p(x[0)dH(0) with H ~ DP(a,Go), (1)

where {p(:|0) : @ € O} is a family of non-negative (possibly multivariate) kernels
defined on a complete and separable metric space X such that [, p(x|@)A(dx) =
1 for all 8 € © and for some o-finite measure A\. The prior over the mixing
distribution H is a Dirichlet process (DP) [Fer73] with parameters oo > 0 and
base distribution Gy that is the prior guess at the shape of H, E[H(-)] = Go().
As it is well-known, the DP selects an almost surely discrete random probability
measure that can be represented as

H(:) = Zwk(Se;('), (2)
k=1

where (wg)72, are non-negative weights that sum to unity, and (6;)22, a se-
quence of ©-valued random locations. The random probability measure H can
be constructed using the stick-breaking representation, where the weights are

WE = Vg H(l - Ul)

<k

for a sequence (vg)r>1 of independent random variables on (0,1). One can
replace the Dirichlet process in (1) with any almost surely discrete random
probability measure, for example a Pitman-Yor process (PYP). The definition
of the PYP is set forth in the next paragraph, but here we anticipate that the
Pitman-Yor process mixture model is obtained as follows

f(x)= /p(x\@)dH(G) with H ~ PY(d, a, Gy), (3)
with d € [0,1), & > —d. The PYM is an interesting alternative to the DPM

that allows more flexibility in the modeling. Alternatively, the model (3) can
be expressed hierarchically as follows

x:6; ' p(xil6;)
0,H “ H (4)

HlOé,GO ~ PY(d,a,Go).

By exploiting the discreteness of H, the PYM also provides a flexible model
for clustering items of various kinds in a hierarchical setting without explicitly
specifying the number of components.

In a Bayesian context, one is interested in the posterior distribution of the
random density f. However, this later does not exhibit any closed form and
inference is necessarily simulation-based. After the first MCMC method in-
troduced by [Esc94] for DP mixture models, many authors contributed to its
improvement ([EW95], [MM98]) and to handle non-conjugate cases [Nea00].
These aforementioned techniques integrate with respect to the mixing mea-
sure H and, thus, remove the infinite dimensional aspect of the problem. This
leads to the so-called marginal (or Pélya urn) approaches. Efficient versions
of marginal samplers usually achieve good mixing performances [Nea00]. An
alternative to marginal methods is given by the conditional algorithms which
explicitly represent the mixing measure using, for instance, its stick-breaking
series representation ([IJ01], [Wal07]). The challenge in conditional approaches
is to deal with the countably infinite representation of H in Equation (2). In
[LJO1], authors resort to an approximation and truncate the mixing measure at a
deterministic value. An alternative which avoids hard truncations was proposed
by [MT98] who provided an approximation of the Dirichlet process by means
of a random truncation of its stick-breaking representation. The idea of ran-
dom truncation has also been developed in [PRO7] with a Metropolis-Hastings
sampling scheme, and in [Wal07] using the slice sampling strategy. This later
algorithm has been improved by [Pap08] and [KGW11].

The key advantage of conditional methods using the stick-breaking construc-
tion is in updating the mixing measure H as well as the other parameters in the
model. This makes possible direct inference on H. Furthermore, components
weights are explicitly represented and updated. This property makes these al-
gorithms able to update blocks of parameters and easy to parallelize in order
to take advantage of recent parallel computation hardware architectures, which
is well suited particularly for large data sets. On the flip side, by integrat-
ing mixture components out of the model, marginal techniques are based on
incremental updates which are prejudicial when working with huge data sets.
Another drawback of marginalizing over the mixing measure is that computing
posterior conditionals require additional sampling steps (see [[J01]).

However, dealing with exchangeable prediction rules, marginal methods ex-
hibit most of the time better mixing properties than conditionals, and our exper-
imental comparison in Section 5 corroborates this assessment. Also, the random
weights are collapsed by marginalization and this results in a crucial reduction
of the parameters space dimension. A limitation of conditional methods based
on the stick-breaking representation is that the sampler operates in the space
of non-exchangeable cluster labels, as pointed out in the paper by [PISWO06].
Indeed, in this representation, weights are explicitly defined by the prior and
components are represented with a size-biased ordering over their labels. This
means that components with lower labels have higher prior probabilities than
components with higher labels. As a consequence, components are not inter-
changeable and cluster prior labelling contributes to the posterior sampling. In
this situation, the sampler needs to mix efficiently over clusters labels to avoid
any clustering bias. Then, [PISW06] recommend systematic use of two addi-
tional Metropolis-Hastings moves (”label-swap” and ”label-permute”) in order
to improve mixing over clusters. When working with non-exchangeable clusters

labels, this additional step seems to be the only way to improve the mixing
over clusters (see also [Pap08]). In contrast, in marginal methods using Pdlya
urn representation, the sampling occurs in the space of equivalence classes over
exchangeable clusters labels where clusters identities are arbitrary and insignif-
icant. This is the adequate space to live for the sampler because cluster labels
are irrelevant.

In this context, we introduce a new conditional sampling scheme which is
formulated in the space of equivalence classes over clusters labels where clusters
identities are irrelevant. Our approach can be seen as marginalizing the clusters
labels ordering. Before going further, we point out that instead of using the
stick-breaking representation for the underlying mixing measure, recent con-
ditional samplers exploit other constructive representations. For instance, the
use of the so-called Ferguson and Klass representation [FK72] of independent
increment processes has been recently considered in the literature. See, e.g.,
[GW11] and [NBP09], and references therein for some recent contributions in
this direction. Such approaches are interesting in the sense that they allow to
consider classes of priors, in general, wider than the PYP and the DP. However,
they become non-trivial to implement, even when applied to the DP model.
Given the importance of the DPM and PYM, the dominant priors in Bayesian
nonparametrics, it seems important to devote attention to the development of
alternative, simple and efficient algorithms. It is the purpose of this paper to
provide a simple and fast way to infer DPM and PYM. Also, it is worth men-
tioning that since this work was presented in a technical report, it has been
successfully applied, for example in [CTM].

The remainder of this paper is structured as follows. In Section 2, we recall
some preliminaries about Pitman-Yor processes. Section 3 briefly recalls the
basis of the algorithms that are used to compare our samplers and discuss the
advantages and limitations of marginal and conditional methods. Afterwards,
in Section 4, we present the two variants of the proposed MCMC. We evaluate
performance of the algorithms through application to real and simulated data
sets in Section 5. Finally, we conclude the paper in Section 6 with discussions
and extensions for further work.

2 Preliminaries on Pitman-Yor processes

In this section, we provide a succinct description of the Pitman-Yor process. We
refer interested readers to [Pit96b], [PY97], [Pit02],[IJ01], [IJ03] and references
therein for more details on Pitman-Yor processes.

Definition 1 (Two-parameter GEM distribution)

Let d € [0,1), @ > —d, (vj)j>1 a sequence of independent random variables
such that for all j, v; ~ Beta(l — d,a + jd). Define the sequence of weights
(wj) by the stick-breaking scheme as follows w1 = vi,ws = va(1—v1),..., w; =
vj Hf;ll(l —v;). The sequence w = (w;)j>1 is said to follow a two-parameter
GEM distribution (after Griffiths, Engen and McCloskey), with parameters d
and «, and denoted by

w ~ GEM(d, o).

Definition 2 (Pitman-Yor process)
Let w ~ GEM(d,«) and Gy a diffuse (non-atomic) probability measure on a

measurable space (©,8B) (i.e Go({0}) =0 for each 6 € ©). Let ©* = (07);>1
be iid Go, independently of w. Then

H() 2 widoy (), (5)
k=1

where dg«(+) denotes the Dirac measure giving mass 1 at 6*, is distributed ac-
cording to a two-parameter Poisson-Dirichlet distribution on (0,8). We refer
to H as a Pitman-Yor process with parameters d and o and base measure Gy.
It is denoted by:

H ~ PY(d, a, Gy).

Setting d = 0, the Pitman-Yor process reduces to the Dirichlet process with
parameters « and Gy, while the PY(d,0,Gp) yields a measure whose random
weights are based on a stable law with index 0 < d < 1.

Definition 2 is a constructive definition of the PYP called stick-breaking
representation. The PYP has also a characterization in terms of generalized
Blackwell-MacQueen [BM73] urn scheme. Henceforth, K, will denote the ran-
dom variable identifying the number of distinct values appearing in the sample
(6;...,0,) from a two-parameter Poisson-Dirichlet process, and k,, a realization
of K,,.

Proposition 1 (Generalized Blackwell-MacQueen urn)
Let d € [0,1), a > —d and Gy a diffuse probability measure on ©. Consider a
sequence of (8;);>1 generated via the following predictive distributions

0, ~ G (6)
k
a+dk “~n; —d
0,:1101,....0, ~ TG,y %, 7
+1‘ ! a+mn 0+j:1 a+n 6; ()
where {67,5 = 1,...,k,} are the unique values among {0;,i = 1,...,n} and

nj the frequency of 05. The distribution of this sequence of exchangeable draws
converges almost surely to a discrete distribution which is distributed accord-
ing to a PY(d,«o,Gp) when n goes to infinity: 61,...,0,|H ~ H where H ~
PY(d, o, Gy).

The predictive distributions (6)-(7) are the key components of marginal methods
described in Section 3. They also make clear the role of the parameters in
Pitman-Yor and Dirichlet process mixture models. In a DPM, the probability
for 6,41 to coincide with an already observed value, say 67, is determined by
n; while the probability to sample a new value for 6,11 from the base measure
Gy is proportional to the concentration parameter . As a consequence, « is
the only parameter which can be used to tune the number of clusters. [KH73]
showed that the asymptotic behaviour of the number of clusters K, that are
induced by the Dirichlet process is

K, /log(n) — a.

For some applications, this feature can be too restrictive. In a PYM, together
« and d control the formation of new clusters. The first controls the overall

number of clusters whereas d determines the asymptotic growth of K,. The
larger d, the more new values are generated. In [Pit02], it is shown that

Kn/nd — Sd
where Sy is a strictly positive random variable, with continuous density

I'a+1) a
ms ga(s)ds (s >0)

Pd,a(s € ds) = gd,a(s) =

where gq = gq,0 is the density function of a positive stable random variable with
parameter d.
These effects can be visualized by looking at the induced prior distribution of
the number of distinct clusters in a sample of size running from 1 to 10, 000, for
both DP and PYP with respectively o = 10 and (d = 0.5, « = 10). Results are
displayed in Figure 1.

Dirichlet Process Pitman-ar Pracess
600 T T T T

500

400 -

300

L L L L L L L L L 0 L L L L L L L L L
1000 2000 3000 4000 5000 6000 7000 &O000 9000 10000 0 1000 zooQ 3000 4000 5000 6000 7000 GOOO 9000 10000

Figure 1: Number of clusters as a function of the sample size for a DP(a = 10) (left)
and a PYP(d = 0.5, = 10) (right). The rate at which the number of clusters K,
increases is slower in the DP than in the PYP, being respectively log(n) and n.

Another characteristic of the DP and the PYP is a reinforcement mechanism
(named after ”rich-get-richer”) that tends to reinforce among the observed clus-
ters those having higher frequencies. As noted above, in a DP the probability
of joining an existing cluster j is proportional to the size n; of that cluster. In a
PYP however, this probability is proportional to n; — d, with d acting as a dis-
count parameter that reduces the probability of adding a new observation to an
existing cluster. This yields a power-law behaviour for the PYP which greatly
influences the clustering structure and makes this prior well-suited to natural
language processing applications, unlike the DP [Teh06]. We refer to [DBFL™]
for more details on the role of d in the combined effect of the reinforcement
mechanism and the increase in the rate at which new values are generated.

After having recalled the basis of Pitman-Yor processes, we present in the
next section the MCMC samplers of both marginal and conditional type for the
Dirichlet and Pitman-Yor mixture models.

3 Sampling from DPM and PYM

To be self-contained, in this section we recall basis of the two classes of MCMC
algorithms for sampling under the posterior of a DPM and a PYM and briefly
describe each of the algorithms that are used to compare our proposed method.

3.1 MCMUC algorithms for PYM

Posterior distributions are intractable in DPM and PYM. Posterior inference
is performed using approximation techniques such MCMC methods. There are
many sampling MCMC algorithms which can roughly be divided into two cat-
egories: marginals and conditionals.

3.1.1 Marginal methods

These methods are called marginal since the infinite dimensional random com-
ponent, namely the mixing measure H, is integrated out of the model and the
predictive distributions are used within a Gibbs sampler to get posterior sam-
ples. Marginal methods can be sub-categorized into conjugate or non-conjugate
models. By conjugacy, we mean that the mixture kernel p(:|@) and the base
distribution Gy form a conjugate pair. In this case, calculations in condi-
tional posterior distributions are simplified and can be performed analytically
([Nea91], [Esc94], [WME94], [EW95] and [BM96]). In non-conjugate models
however, posteriors can not be easily calculated. The sampling scheme is more
difficult and requires elaborated techniques ([MM98], [WD98] and [GRO1]). The
reader is referred to [Nea00] for a more complete overview and discussions about
these methods. Neal [Nea00] also proposes two novel sampling schemes for non-
conjugate models: the first (referred to as ”algorithm 7” in Neal’s paper) uses
a combination of Metropolis-Hastings steps with Gibbs updates. The second,
named after "algorithm 8", is based on an augmentation scheme and extends
the model to include auxiliary components which exist temporarily. We briefly
detail this algorithm we will use to contrast our sampler since, to our knowledge,
it achieves the best mixing properties in marginal methods. This algorithm has
been developed for Dirichlet process mixture models in Neal’s paper. Here, we
slightly modify it by adding the second parameter in order to infer Pitman-Yor
mixture models.

Algorithm 8 of [Nea00]: The idea behind ”algorithm 8” of [Nea00] is to
add auxiliary components (representing potential future components) when up-
dating classification variables.

To be more precise, let ¢; such that ¢; = k iff 8; = 6}, where ®* =
(0%, 03, ...) denote the unique values among (01, ...,0,). Since data are ex-
changeable and labels of components completely arbitrary, each datum x; can
be treated as the last. Using the predictive distribution (7), x; is thus assigned
to an already represented component or to an auxiliary component. If we denote
by k;; the number of active components disregarding observation ¢ and n_; ; the

number of ¢; for j # ¢ that are equal to k, the prior probability to allocate x; to
n—i, —d
a—i—:—l

an active component is and the probability to create a new component

a+tdk,,

18 a+n—1"

which will be equally distributed among the m auxiliary components.

The choice of m is left to the user. It is governed by a balance between compu-
tational considerations and mixing properties. Combining with the likelihood,
updating classification variables is done via the conditional probabilities:

—ix—d
Dok =@ |08 for k=1,..., k7,
N n—1+a«
Pr(ci:k\xi,c_i,@)O(o+ dk=
— |05 fork=4k +1,....k, .
m(n_1+a)p(x|k) or n+ n+m

After this step, parameters for non-empty components are updated according to
their posterior law based on the prior Gg and the likelihood of all data currently
allocated to:
p(6;1X.c) x Go(d8;) [] p(xl6p).
{i:c;=k}

3.1.2 Conditional methods

In contrast to marginal methods, conditional samplers retain the mixing mea-
sure H and explicitly represent it using, for example, the stick-breaking con-
struction stated in Equation (5). The issue is to treat the infinite dimensionality
of H. There are methods that approximate H by a deterministic truncation of
the number of its components, and those that use a finite but random number
of masses.

The truncated blocked Gibbs sampler [I1J01]

To remove the infinite dimensional aspect of the problem, Ishwaran and James
([LJ01], [1JO3]) truncate H at a chosen integer value N. It is necessary to set
vy = 1 in the stick-breaking construction of H to ensure that the truncated
measure Hy is a probability measure, with distribution:

N
HN() = Z wk(;g; ()
k=1

Under this truncated framework, and using classification variables ¢ = (¢1, ..., ¢,),
the hierarchical model (4) can be rewritten as follows

X;lci, ®F ~ p(Xi|9:,;)

N
clw ~ Y wid() (8)
k=1

wld,a ~ GEM(d,)

0;:1Go ~ Go,
where X = (x1,...,Xy,) represent the data, @* = (07,...,0%) the parameters
of the mixture components and w = (wi,...,wy) the components weights,
with wy = erv:_ll(l —v,) =1-— kN:_ll wy. Rewriting the model in this form

makes direct posterior inference possible since one has to treat a finite number of
components. If we denote by k,, the number of currently non-empty components,
the full conditionals involved in the Gibbs sampler are given by the following:

1. Conditional for c: ¢;|w,®* X ~ Z,ivzl w0 fori = 1,...,n where
(W1, wn) o (w1 p(x4|07), ..., wNn p(x:]OF)) -

2. Conditional for w : wy = vf andwk—vknl 1(1 vf)fork=2,...,.N—
1, WlthkaBeta(l—d—l—nk,a—i—kd—i—zl:anZ)forkzl,...,N—l,
where ny = #{i : ¢; = k}.

3. Conditional for @*:

e 0, ~Gofork=Fk,+1,---,N.
e 0}|c,X has density proportional to

Go(d6y) J[p(xil6p) fork=1,... k..
{i:c;=k}

This sampler is easy to implement since the truncation allows it to be similar
to standard Gibbs samplers in finite dimensional models. However, even if
methods for controlling the truncation accuracy have been proposed ([1J01],
[LJ03]), it would be better to avoid any hard approximation. To this purpose,
algorithms that only use a finite number of elements at any iteration while
allowing inference to the true infinite-dimensional prior have been proposed
by Papaspiliopoulos and Roberts [PR07] and Walker [Wal07]. This later uses
an elegant strategy called slice sampling and is based on auxiliary variables.
Walker’s slice sampling was improved by Papaspiliopoulos [Pap08] and Kalli et
al. [KGW11]. This later is named after ”slice efficient”.

The slice sampler ([Wal07], [KGW11])

The idea under the slice sampler proposed by [Wal07] for inference in DPM
is to introduce uniform auxiliary variables which make the mixture model con-
ditionally finite. To make it precise, let us consider the model (4) with kernel p
and mixing measure H being constructed using the stick-breaking representa-
tion (5). The density of a single observation x;, given w and ©*, is

= wi p(xil6f) 9)
k=1

The infinite dimensional aspect of (9) is tackled by introducing u = (uq, ug, ..., uy,)
uniform auxiliary variables such that the joint density of any (x;,u;) is

oo

f(xi,u) =) 1(u; < wg) p(x:]05) Zwk p(x]05) U (u;]0,wy) ,
k=1

where U (+|a, b) denotes the uniform density function over [a, b]. The conditional
density of x;, given u;, is

f () = o - S pxil6)).

k=1 1(ul < wk) ke{jw;>u;}

So, given u;, the number of components of the mixture model f is finite. One
can then complete the model by introducing a further assignment variable ¢;
and considering the joint density function

f (X ui, ¢) = 1wy < we,) p(xi|6)) = we, U (u]0,we,) p(x:]6%) -

The full conditionals required to implement this Gibbs sampler are those of:
the slice variables w;, the indicators c;, the components parameters 6; and
the stick-breaking weights vi. In the slice sampler of Walker [Wal07], each of
these variables is sampled independently and the sampling of the vy is quite
hard. This was handled in the efficient version of the slice sampler ("slice
efficient”) proposed in [KGW11]. In this version, the stick weights and the slice
variables are blocked during iterations, which, by integrating out slice variables,
dramatically simplifies generation of the weights and results in a more efficient
sampler compared to Walker’s algorithm. So, we will compare our methods with
the 7slice efficient” one. The required full conditionals of this later algorithm
are now given.

1. Conditional for w;: u; ~ U (u;]0, we,).

2. Conditionals for 8} and wj : they are the same that in the truncated
blocked Gibbs sampler of [1J01] previously described.

3. Conditional for ¢;: Pr(c; = k) oc 1(k : w > u;) p(x;|0}). To sample from
this probability mass function, one needs to know the exact number of
components that are required at each iteration of the sampler. It is given
by the smallest K such that

K
Zwk >1—u",
k=1

where v* = min{uy,...,u,}.

In this section, we have outlined a marginal and two conditional methods
for inference in Pitman-Yor mixture models. In the next section, the merits
and limitations of each class of algorithms are summarized. This motivates
the development of a new sampling approach which falls within the class of
conditional approaches.

4 A new sampling method

By integrating mixture components out of the model, marginal algorithms make
the allocation step very sequential since they need to condition on all previously
allocated data. These incremental updates make marginal samplers not easily
parallelizable. This feature is prejudicial when working with large data sets since
the allocation step forms the most time consuming part of the algorithm. How-
ever, marginal samplers have the advantage that they deal with exchangeable
prediction rules and exhibit most of the time better mixing properties.

The stick-breaking representation of the Pitman-Yor process allows to ex-
plicitly represent the weights in terms of independent Beta random variables. As
a consequence, updating indicator variables in the allocation step is done with-
out conditioning on the other indicators. This makes conditional algorithms
using this representation easy to implement in a parallel computer. However
this simplicity in the representation comes at a cost of slower mixing, since
the stick-breaking prior has a weak preference for components to be sorted by
decreasing mass. Consequently, additional moves in the MCMC algorithm are

10

necessary to improve mixing over clusters labels as suggested in [PISW06] and
[Pap08].

In this context, we propose a conditional algorithm which is rather different
from the others discussed so far. Our sampler is an attempt to combine the
main advantages of marginal and conditional algorithms. The underlying idea
is to integrate out the explicit order of clusters labels like in marginal methods
hence collapsing the model to a lower dimensional space while keeping compo-
nents weights as done in conditional approaches. To these aims, we propose
to replace the standard posterior updating of the mixing measure based on
the stick-breaking representation, with a posterior updating of Pitman-Yor pro-
cesses under the class of Poisson-Kingman models introduced by [Pit03]. The
next proposition summarizes this posterior characterization.

Proposition 2 [Pit96b], Corollary 20

Let H ~ PY(d, o, Go) where Gy is a diffuse probability measure s.t. E(H) = Gy.
Consider a sample 01,...,0,|H ~ H. Let {9;}?21 denote the set of unique
values of {0;}7_, and n; the number of occurrences of 07 in the sample. Then
the posterior of H can be expressed as follows

kn,
H|917...70nizwj60; + 7, Hg,, (10)
j=1

where

(wi,...,wk,,rg,) ~ Dir(ny—d,...,ng, —d,a+ dky,)
H, ~ PY(d,a+dkn,Go),

and Hy, independent of (w1,...,wg, Tk,), with E(Hg,) = Go.

The posterior characterization (10) allows us to work on the space of equiva-
lence classes of clusters 67 and, due to exchangeability, to integrate out the order
of cluster labels as in the marginal samplers. Indeed, Pitman showed in [Pit96a)]
equivalence between exchangeability of the random partition generated by sam-
pling from a discrete distribution and symmetry in the law characterizing the
limiting frequencies of occupied components given the data. We can easily check
that exchangeability is ensured in equation (10) since it sums to a symmetric
Dirichlet distribution and an unconditional Pitman-Yor process (independent
of the observed data). So, our sampler lives in the space of equivalence classes
over clusters labels. These labels are then exchangeable and no mix over them is
needed. This property has important consequences on the algorithm mixing. As
opposed, in the conditional algorithms using the stick-breaking representation,
exchangeability is lost when using the usual updating rule:

H()[01,...0, = wide: () + Y widz, (), (11)

kec* k¢c*
where ¢* = (c], ..., ¢},) are the unique values of the classification variables ¢ =
(c1,...,cn), the weights w;, follow a GEM distribution with updated parameters:
wy =vf,ws =vi(1 —v}),...,wk =0} H;:ll(l —vf) where v] ~ Beta(l —d +

ny, o+ 1ld+ 30" Ny), and for all k ¢ c*, Zy, 2 Gy,

11

This clearly illustrates that the posterior distribution of a random probability
measure constructed via the stick-breaking representation depends on which ex-
plicit atoms labels observations are allocated to. This property is not necessary
and has the impact of bothering the Gibbs sampler.

Given the posterior characterization (10), we are now in position to set up a
new Gibbs sampling scheme for simulating from the posterior of a Pitman-Yor
mixture model.

4.1 Proposed variants

For simulating Hy, , the continuous part of the posterior given in equation (10),
we propose two variants. The first makes use of a thresholded version of the
7slice efficient dependent” of [KGW11]. The second is based on a truncation as
originally suggested in [IJO1].

4.1.1 Exchangeable Thresholded Slice Sampler

We first propose a slice sampler inspired from [Wal07] and [KGW11]. The main
steps are now summarized.

We augment the state with additional slice variables u = (ug,us,...,uy)
such that the joint density for any (x;,u;), given a collection w of random
masses and component parameters @*, is

F(xiyui) = wi p (xi|07) U (wif0, &) , (12)
k=1

where £ is a dependent variable such that for all k,

£k = min (wg, ¢), (13)

with ¢ €]0,1] and is independent of wy. Here, ¢ is a threshold that we propose
in order to improve mixing properties of the sampler compared to [Wal07] and
[KGW11]. The threshold ¢ can be a random or deterministic variable. Here,
the role of (is to ensure that on average at each iteration, all occupied clusters
and at least a non-occupied one are proposed by the algorithm. For example, a
deterministic typical value of { that gives rise to good trade-off between mixing
properties and computational burden is the mean weight of the first atom (in
size-biased order of Hy) with no data allocated to, which can be expressed in
the two-parameter case as

(a+dEqq(Kn))(1 — d)

S RS ICES

)

where E,, 4(K,) is the expected value of K,,:

n

Ea,d(Kn) == Z

i=1

(a+d)i1p

(o +1)i1p’
where ()44 = I'(x + a)/T'(z) is the Pochhammer symbol.
In the case of the Dirichlet process (d = 0),

n

(&% n
Bl =3 oy =etes (13-
i=1

12

For d # 0, it can be easily checked that,

For sufficiently large n, this expectation can be fairly approximated using Stir-

ling’s formula

Fla+1) 4

Eqa(Ky) ——n”.
alln) = ar "
Coming back to the slice sampling formulation, using equation (13), we can

rewrite equation (12) as follows:

Fxiu) =1(C>u) 70 D we p(xil67) + D 1 (we > wi) p(xi]67),

wg>(wg <¢

where both sums are finite since #{j : w; > e} < oo, for all € > 0. The use of
u allows to sample a finite number K* of weights and locations for Hy,,.

Let us here denote w = (wy,ws,...,wy, , Wy,) where wy,ws,...,wy, are
the k,, Dirichlet random weights in the posterior characterization (10), and wy,,
is a collection of random variables distributed according to a two-parameter
GEM(d, a + dK,,) distribution; these are the stick-breaking random weights of
Hj, . The Gibbs sampler allows to generate variables from the joint posterior
of (®* c¢,w,u|X), by sampling iteratively from each full conditional. As in
[KGW11], we jointly sample w,u|c. The full conditional distributions involved
in the steps of the sampler are then:

o p(c[0",w,u),
o p(0%|c,w,u),
e p(w,ule,0%) = p(u|w, ¢, %) p(wlc, 0).
We now provide a way of simulating from each conditional.

1. Conditional for (w,u) :

We jointly sample w, u|c in three steps by first sampling wy, wa, ..., wg, |c,
then u|wy,ws,...,wy, ,c, and finally wg, |u. The mains steps are now
given.

e Sample wy, for k < kj:

Wiy ..y WK, Tk, |C~Dir(ny —d,..., ng, —d, a+k,d).
e Sample u;|wy, wa,...,w, ,C:
ind. .
wi|wy, wa, ..., w, ¢~ U (u;]0, min (w,,,).
Set v* = min{uy, ..., up}.

e Sample wy for k > k,. While rp_1 > u*,

13

v ~ Beta(1 —d,a+ kd),
Wk = Uk Tk—1,
T =7rkp—1 (1 —vg).

Set K* = min ({k : 7, < u*}).

Clearly, wy, < u* for all £ > K*, that is why we only have to sample a
finite set of wg~.

Note that, at each iteration, non-empty clusters are re-labeled according
to their order of appearance in the sampling. We operate in the space
of equivalence classes over non-empty clusters labels which are thus ex-
changeable. The stick-breaking prior only concerns empty clusters for the
given iteration of the Gibbs sampler. As pointed out, this encourages good
mixing over clusters.

2. Conditional for c:
As underlined, sampling of classification variables requires the compu-
tation of a normalizing constant which becomes feasible using auxiliary
variables since the choice of ¢; is from a finite set:
. K*
cilw,u,®* X nd Wi,i Ok (),
k=1

where wy, ; x 1 (wg > u;) max (wg,) p (x;]05) , and ZJK; wg,; = 1.

Note also that, in order to speed up computations, it is convenient to sort
weights wy, k > k, in decreasing order. By this, we can avoid tests for all
k > Kk as soon as w, < U;.

3. Conditional for ©*:

e Updating parameters for non-empty components from the density
proportional to:

Go(d;)] p(xil6;) for all k < k.
i:Ciik
e Sampling parameters for unallocated components from their priors:

0;: %S Gy, for k, < k < K*.

The blocked Gibbs sampler structure allows easy implementation of the algo-
rithm on a parallel computer.

4.1.2 Exchangeable Truncated Gibbs Sampler

The second variant of the algorithm we propose is an alternative of the first one.
It is still based on the posterior given in equation (10). But instead of using
the slice sampling strategy to sample the continuous part Hy, , we resort to an
approximation by taking a fixed level L. This truncation eliminates the need

14

of auxiliary variables. This scheme was suggested in [[J01]. We approximate

equation (10) by
k

n
*
E wjég;, + Tankna
Jj=1

where H,:n is an approximation of Hy, , i.e a truncation of Hy, at level L. The
total number of represented components is then K* = k,, + L. The main steps
are now given.

e Sample classification variables:
. d K*
(cilw,u, @, X) > w65 ()
k=1

where

K
wy; oc wy, p(x;]0;) and Zwkvi -1
k=1

e Sample wy for k < k,:

(w1, wa, ..., W, , Tk, |c) ~Dir(ny —d,no —d, ..., ng, —d, a+k,d).

e Sample wy, for k, < k < K*:

vp ~ Beta(l —d,a+ kd),
Wi = Ve Tk—1,
T =Trk—1 (1 — Uk) .
Set wi~ = rg+_1 such that v« = 1.
e Sample components parameters using
— the density proportional to
Go(d6;) [T p(xilon)
i:c;=k
for non-empty components (i.e. k < ky,),
— the priors for unallocated components:
iid

0; ~ Gy, for k, < k < K*.

5 Comparisons of algorithms

In this section, we carry out a comparative study that involves a variety of data
sets, both real and simulated. We evaluate the performance of the samplers
described in the previous sections and our new sampling method. We thus
compare these following algorithms:

e algorithm 8 of [Nea00] (" Algo. 87),

15

e the slice efficient of [KGW11] (”Slice efficient”),
e the truncated blocked Gibbs sampler of [IJ01] (" Trunc.”),

e the two variants of the proposed sampling scheme based on an exchange-
able model (”Slice exch. thres.” and ”Trunc. exch.”).

We also investigate the gain in the mixing performances of the algorithms due
to the exchangeability property of the model on one hand, and to the proposed
threshold on the other hand. For this reason, we implement in addition our
slice sampler using the exchangeable model but without the threshold (”Slice
exch. without thres.”) and the slice efficient of [KGW11] which uses an non-
exchangeable model with the introduction of the threshold (”Slice eff. thres.”).
Note that the ”Slice efficient” is referred to as ”Slice efficient dependent” in
[KGW11], in contrast to their independent version which makes use of a deter-
ministic slice function.

Data specification:

We tested the algorithms with p(:|@) being a normal kernel with parameters
0* = (u,0?) and Gy a normal-inverse Gamma distribution i.e, Go(u,o0~2) =
N (u|n, k?) xG(o72|v,) where G(:|, B) denotes the Gamma distribution with
density proportional to z7~te=%/8,

For comparison purposes, we considered the same real and simulated data
sets as in [KGW11].

1. The simulated data were generated from the following mixtures of Gaus-
sians.

e A bimodal mixture (bimod):
0.5N(~1,0.5%) + 0.5 N/ (1,0.5%).
e An unimodal lepto-kurtic mixture (lepto):

0.67N(0,1) + 0.33 N (0.3,0.25%).

These simulated densities are shown in Fig.2.

In order to gauge algorithms performance for small and large data sets,
we generated n = 100, n = 1,000 and n = 10,000 draws from each of
these two mixtures.

2. The real data are

e Galaxy data, which are the velocities (in 10® km/s) of 82 distant
galaxies diverging from our own. It is a popular data set in density
estimation problems and is also used by [EW95], [GRO01] for instance.

e S&P: this consists of 2023 daily index returns. This data set is uni-
modal, asymmetric, and heavy-tailed.

16

lepho
= = bimod

Figure 2: Bimodal (bimod) and unimodal lepto-kurtic(lepto) mixtures

Algorithms performance:

We monitored the convergence of two quantities: the deviance of the esti-
mated density and the number of occupied clusters. The deviance is a global
function of all parameters of the model and is defined as

D=2 log | "p(xile;) | .
=1

J

where n; is the size of cluster j.

The performance of competing samplers in their stationary regime was judged
by looking at the integrated autocorrelation time (IAT) for each monitored
quantity. IAT is defined in [Sok97] as,

T:1+22pj,
j=1

where p; is the sample autocorrelation at lag j. This quantity is an indicator of
mixing behaviour of algorithms and measures effectiveness of MCMC samples.
As such, it has also been used by other authors to compare MCMC methods
(for example [Nea00], [GRO1], [PRO7], [KGW11]). IAT controls the statistical
error in Monte Carlo measurements. In fact, the correlated samples generated
by a Markov chain at equilibrium cause a variance that is 27 larger than in
independent sampling [Sok97]. If we denote by 7; the integrated autocorrelation
time produced by algorithm j for a given quantity, then 71 /7 = k > 1 means

17

that algorithm 1 requires k more iterations than algorithm 2 to produce the same
Monte Carlo error [PRO7]. So, when comparing two alternative Monte Carlo
algorithms for the same problem, the most efficient is the one that produces the
smaller TAT since it provides better estimates.

However, the calculation of IAT is difficult in practice. Following [Sok97],
an estimator of 7 can be obtained by summing the estimated autocorrelations

up to a fixed lag L:
L
F=142) p;
j=1

The choice of the cut-off point L is left to the user.
One can also estimate the standard error of 7 using this formula from [Sok97]:

22L+1) ,

std(7) = i

where M is the Monte-Carlo size.

Algorithms parametrization:

At first, we set the discount parameter d of the PYM to zero in order to
reduce it to a DPM. The strength parameter of the PYM, that is now the
precision parameter of the DPM, was respectively set to a = {1,5}. Secondly,
we investigated the behaviour of the competing algorithms in a power-law case
(Pitman-Yor). The values d = 0.3 and a = 1 were chosen for the PYM. The
expected number of a priori components are then much larger than in the DPM
case. We report in Tables 1-3 the expected number of a priori components, for
each data set length and each parametrization.

Data E(K,)
Galaxy (n = 82) 4.4
Lepto/bimod (n = 100) 4.6
Lepto/bimod (n = 1, 000) 6.9
SLP 500 (n = 2023) 7.6
Lepto/bimod (n = 10, 000) 9.2

Table 1: E(K,,) for each data set length in a DP(a = 1)

Data E(K,)
Galaxy (n = 82) 14.3
Lepto/bimod (n = 100) 15.2
Lepto/bimod (n = 1, 000) 26.5
S&P 500 (n = 2023) 30
Lepto/bimod (n = 10, 000) 38

Table 2: E(K,) for each data set length in a DP(a = 5)

18

Data E(K,)
Galaxy (n = 82) 10.63
Lepto/bimod (n = 100) 11.48
Lepto/bimod (n = 1,000) 25.5
S&P 500 (n = 2023) 36.4
Lepto/bimod (n = 10,000) | 58.9

Table 3: E(K,) for each data set length in a PYP(a = 1,d = 0.3)

The hyperparameters have been fixed in a data-driven way according to
[GRO1] and set as follows: if R is the range of the data we take n = R/2
(mid-range), k? = 1/R?, v = 2 and 3 = 0.02R>.

The blocked Gibbs sampler of [IJ01] was truncated at level N = 3alog(n),
where n is the data size. This induces a truncation error that stands for the L,
distance between the marginal density of the data under the truncated model
and the marginal density under the full model, (see [IJO1]). The corresponding
truncation errors for the different data sets are reported in the following table.

Data €

Galaxy (n = 82) 7.4139e-04
Lepto,/bimod (1 = 100) 9.04130-04
Lepto/bimod (n = 1,000) | 8.2446e-06
S&P 500 (n = 2023) 2.25726-06
Lepto/bimod (n = 10,000) | 7.5181e-08

We also truncated the second variant of our sampler at level L = 2alog(n).
The algorithm 8 of [Nea00] was tested with m = 2 auxiliary components.

We followed the instructions of [Sok97] who recommends running the sam-
plers for a sufficient number of iterations. For each of the data sets, we ran
2,000, 000 iterations for each algorithm and discarded the first 200,000 for the
burn-in period. We believe that these numbers are sufficient to obtain reliable
results.

Results and comments:

We report in Tables 4-9 the results of our comparisons for each set of data
in the DPM case with o = 1. The other results are postponed in the appendix.
Each table contains respectively, for each algorithm, the estimated IAT for the
mean number of clusters and for the deviance, the estimated mean number of
clusters and the estimated deviance. Estimated IAT are obtained by integrating
autocorrelation values for each monitored quantity up to a fixed lag (Lp for
deviance and L¢ for the mean number of clusters). The estimates of standard
errors are put inside parentheses.

For visual comparison purposes, the autocorrelation curves are displayed in
Figures 4 and 5 for Galaxy data. We also show in Figure 3 the histogram of
the data and the density estimates when using each algorithm. By looking
at the curves of the estimated densities, the values of the estimated deviances
and the mean number of clusters, we made sure that all algorithms perform
the estimation correctly and then they can be assessed through their mixing
performance.

19

In the overall experiments, it turns out that:

e As expected, algorithm 8 performs better than all conditional algorithms
since it works in an unidentifiable allocation structure. Furthermore, in-
tegrating out the mixture components speeds up the convergence since
the dimensionality of the space is drastically reduced. One can refer to
[PRO7] and [PISWO06] for more details about why conditional approaches
are outperformed by marginals.

e On the other hand, the two variants of our method are superior to all other
competitors in conditional algorithms using the stick-breaking representa-
tion, thanks to exchangeability in the model and the introduction of the
threshold we propose. The ”Slice efficient” gives the worst performance.

We believe that the poor-mixing due to non-exchangeability in the posterior
stick-breaking representation is emphasized by the lack of the weights in slice
samplers. This could often hinder the Gibbs sampler in the allocation step, for
changing an observation from a component associated with a few observations to
a component associated with many. Introducing our threshold would facilitate
this change. To validate this conjecture, we experimented the effect of the
threshold in the ”Slice efficient”. This algorithm is referred as ”Slice eff. thres.”
Furthermore, the threshold makes little difference between the thresholded slice
efficient (”Slice eff. thres.) and the truncated blocked Gibbs sampler (Trunc.).
This later considers the weights of the mixture components when updating
classification variables.

On the flip side, removing the threshold in our sampler (”Slice exch. without
thres.”) increases the IAT. Overall, it was observed on all data sets that the
threshold causes a rapid decrease of autocorrelation curves in the first lags.
However, it slightly increases the computation time per iteration. We underline
that all algorithms have been implemented without any parallelization. All of
them, excluding ” Algo. 8”, may be easily parallelized.

We now turn our attention to the benefits we reap thanks to the exchange-
ability property of the model. This is notable in differences between ”Slice
exch. thres.” and ”Slice eff. thres.” and in differences between ”Trunc. exch.”
and ”Trunc.”. We also notice on the curves that the autocorrelations obtained
by ”Slice exch. without thres.” decrease and reach zero faster than in algo-
rithms using non-exchangeable models (" Trunc.”, ”Slice eff. thres” and ”Slice
efficient”). This behaviour was observed on all data sets.

It is worth noting that the two variants of our algorithms and algorithm 8
of [Nea00] were stable in all experiments: for various simulations, we always
obtained the same results in each data set and in each size of data. On the
contrary, the algorithms using non-exchangeable models ([IJ01] and [KGW11])
did not always give the same results. We also observed erratic convergence
behaviour of the Gibbs sampler in these two algorithms, particularly for large
data sets (for example lepto with n = 10,000).

20

Results for d =0 and aa =1

In the following tables, n stands for the data set length, Lp and L¢ are
respectively the number of autocorrelation lags for deviance and for the clus-

ters number.

Values inside parentheses correspond to standard deviations of

estimates.
IAT for # of | IAT for de- | Estimated # | Estimated
clusters viance of clusters deviance
Slice exch. thres	14.48(0.37) [2.88(0.05) [3.986(0.93) [1561.14(21.61)
Trunc. exch.	14.42(0.37) [2.94(0.05) [3.989(0.93) [1561.16(21.69)
SE without thres.	35.52(0.92) [4.77(0.09) [3.989(0.93) [1561.15(21.61)
[Truncated [38.65(1.00) [3.63(0.07) [3.996(0.94) [1561.15(21.66)	
Slice efficient	60.65(1.57) [5.28(0.10) [3.991(0.93) [1561.15(21.62)
Slice eff. thres.	37.82(0.98) [3.61(0.07) [3.986(0.93) [1561.08(22.17)
[Algo 8 (m = 2) | 825(0.21) [2.57(0.05) [3.987(0.93) [1561.16(21.62) |

Table 4: Galaxy data n = 82, Lp = 150, Ly, = 300.

IAT for # of | IAT for de- | Estimated # | Estimated

clusters viance of clusters deviance
Stice exch. thres	28.76(0.74)	5.85(0.11)	3.801(1.66)	287.50(8.46)
Trunc. exch.	28.51(0.74) [6.0000.11)	3.808(1.67)	287.58(3.48)	
SE without thres.	70.56(1.82)	9.54(0.17)	3.799(1.67)	287.58(8.43)
Truncated	54.38(1.40)	5.89(0.11)	3.789(1.66)	287.58(3.42)
Stice efficient [99.92(2.58) [8.76(0.16)	3.784(1.65)	287.58(8.42)		
Stice eff. thres.	55.41(1.43) [5.65(0.10)	3.794(1.66)	287.61(8.58)	
Algo 8 (m=2)	1559(0.40)	5.20(0.09)	3.794(1.66)	287.59(8.52)

Table 5: Bimod data n = 100, Lp = 150, L,; = 300.

21

IAT for # of | IAT for de- | Estimated # | Estimated

clusters viance of clusters deviance
Stice exch. thres	93.28(3.93)	3.65(0.07)	3.806(1.73)	2735.14(8.66)
Trunc. exch.	91.20(3.85) [3.6900.07)	3.795(1.72)	2735.14(8.66)	
SE without thres.	228.64(9.64)	5.44(0.10)	3.809(1.73)	2735.15(8.67)
Truncated	156.27(6.60)	3.71(0.07)	3.777(1.71)	2735.13(8.62)
Stice efficient	257.25(10.85)] 5.13(0.09)	3.766(1.68)	2735.12(8.61)	
Stice eff. thres.	150.13(6.33)	3.81(0.07)	3.798(1.71)	2735.15(8.72)
Algo 8 (m=2)	47.25(1.99)	3.06(0.06)	3.798(1.72)	2735.14(8.65)

Table 6: Bimod data n = 1000, Lp = 150, L, = 800.

IAT for # of | IAT for de- | Estimated # | Estimated

clusters viance of clusters deviance
Stice exch. thres	25.61(0.85)	13.53(0.29)	3.991(1.64)	239.74(11.38)
Trunc. exch.	24.78(0.83)	13.46(0.28)	3.983(1.63)	239.75(11.31)
SE without thres.	90.56(3.02)	42.74(0.90)	3.991(1.63)	239.73(11.26)
Truncated	41.221.37) [17.03(0.36)	4.001(1.64)	230.72(11.31)	
Stice efficient	120.71(4.03)	46.28(0.98)	3.979(1.64)	239.77(11.20)
Stice eff. thres.	44.73(1.49) [16.98(0.36)	3.989(1.64)	230.77(11.82)	
Algo 8 (m =2)	14.79(0.49) [9.83(0.28)	3.994(1.63)	230.72(11.36)	

Table 7: Lepto data n = 100, Lp = 200, Ly, = 500.

IAT for # of | IAT for de- | Estimated # | Estimated

clusters viance of clusters deviance
Stice exch. thres	235.49(9.93)	13.17(0.24)	4.006(2.05)	2400.51(18.68)
Trunc. exch.	237.70(10.02) [13.66(0.25)	4.022(2.08)	2400.48(18.72)	
SE without thres.	462.09(19.49)	18.75(0.34)	3.973(1.99)	2400.53(18.73)
Truncated	204.24(12.41)	12.67(0.23)	3.958(2.01)	2400.47(18.49)
Stice efficient	472.95(19.95)] 16.91(0.31)	3.864(1.92)	2400.45(18.26)	
Stice eff. thres.	302.50(12.76) [13.80(0.25)	3.978(2.07)	2400.53(18.93)	
Algo 8 (m=2)	148.81(6.28)	11.55(0.21)	4.018(2.07)	2400.48(18.69)

Table 8: Lepto data n = 1000, Lp = 150, Ly; = 800.

22

IAT for # of | IAT for de- | Estimated # | Estimated

clusters viance of clusters deviance
Stice exch. thres	22.58(0.75)	145.07(3.06)	4.977(0.82)	14990.47(57.56)
Trunc. exch. [21.59(0.72)	148.69(3.14)	4.978(0.82)	14990.50(59.09)	
SE without thres.	93.93(3.13)	194.26(4.10)	4.976(0.82)	14990.35(57.80)
Truncated	32.75(1.09)	148.66(3.14)	4.975(0.81)	14990.94(59.44)
Stice efficient	105.92(3.53)	204.63(4.32)	4.965(0.81)	14991.21(61.14)
Stice eff. thres.	34.87(1.16)	145.46(3.07)	4.969(0.82)	14990.56(60.53)
Algo 8 (m=2)	13.55(0.45)	106.28(2.24)	4.980(0.82)	14990.38(59.09)

Table 9: S&P 500 n = 2023, Lp = 200, Lys = 500.

IAT for # of | IAT for de- | Estimated # | Estimated

clusters viance of clusters deviance
Slice exch. thres	244.64(11.53)	5.79(0.12)	3.77(1.74)	27235.46(9.09)
Trunc. exch.	247.02(11.65)	557(0.12)	3.77(1.73)	27235.45(9.04)
SE without thres.	433.42(20.44)] 11.82(0.25)	3.75(1.73)	27235.44(9.01)	
Truncated	286.67(13.52)] 5.46(0.11)	3.73(1.74)	27235.44(3.98)	
Stice efficient	456.95(21.55)	12.20(0.26)	3.76(1.76)	27235.44(9.00)
Stice eff. thres.	258.92(12.21)] 6.09(0.13)	3.75(1.72)	27235.46(9.09)	
Algo 8 (m =2)	180.58(8.51)	4.76(0.10)	3.78(1.76)	27235.46(9.05)

Table 10: Bimod data n = 10,000, Lp = 200, Ly = 1000.

IAT for # of | IAT for de- | Estimated # | Estimated
clusters viance of clusters deviance
’ Slice exch. thres 212.65(10.03) | 11.74(0.25 3.74(1.77) 23517.95(12.52

(0.25) ()
| Trunc. exch. } 179.46(8.46) } 10.96(0.23) } 3.74(1.74) } 23517.94(12.43) }
SE without thres.	502.18(23.68)	19.68(0.42)	3.82(1.82)	23518.00(12.64)
Truncated	186.83(8.81)	17.80(0.38)	4.73(1.75)	23518.57(13.92)
Stice efficient	444.243(20.95) 17.60(0.37)	3.68(1.70)	23517.90(12.35)	
Stice eff. thres.	203.24(9.58)	12.03(0.25)	3.73(1.76)	23517.99(12.59)
Algo 8 (m=2)	142.67(6.73)	10.47(0.22)	3.74(1.77)	23517.95(12.47)

Table 11: Lepto data n = 10,000, Lp = 200, Lj; = 1000.

23

Densities

0.08 T T T
Histogram ——
Slice exch. without thres. T = 1.94e-03 ——
Slice exch. thres. T = 2.74e-03 ———
0.07 Slice efficient T = 2.27e-03 ———
Slice eff. thres. T =3.03e-03 ——
Trunc. T=4.33e-03 ——
Algo. 8 (2) T = 1.58e-03
0.06 Trunc. exch. T = 1.57e-03 .
0.05
0.04
0.03
Jﬂ lL l\
0.01 || I ﬂ” LML A ‘l | [—
1] —— e “ | S —

0
5000 10000 15000 20000 25000 30000 35000

Figure 3: Histogram of data and estimated densities (Galaxy data).

Clusters: autocorrelation time

T T T T T
Slice exch. without thres.: 3.989 (0.932) iat = 35.522 (0.918) T = 1.9
Slice exch. thres.: 3.986 (0.929) iat = 15.463 (0.400) T = 2.7
Slice efficient: 3.991 (0.933) iat = 60.646 (1.567) T = 2.2

Slice eff. thres.: 3.986 (0.924) iat = 37.821 (0.977) T = 3.03e-03 —

0.8 Trunc.: 3.996 (0.936) iat = 38.650 (0.999) T = 4.33e-03 ———
Algo. 8 (2): 3.987 (0.926) iat = 8.246 (0.213) T= 1.5
Trunc. exch.: 3.989 (0.928) iat = 14.421 (0.373) T= 1.5

0.6 T

0.4

0.2

0 50 100 150 200 250 300

Figure 4: Autocorrelation curves used to estimate the IAT for the number of clusters
(Galaxy data).

24

Deviance: autocorrelation time

1
Slice exch.fwithout thres.: 1561.152 (21.606) iat = 4.770 (0.087) T = 1.94e-03 ——
Slice exch. thres.: 1561.143 (21.611) iat = 2.885 (0.053) T = 2.74e-03 ———
Slice efficient: 1561.149 (21.619) iat = 5.283 (0.097) T = 2.27e-03 ———
Slice eff. thres.: 1561.084 (22.175) iat = 3.614 (0.066) T = 3.03e-03
08 I Trunc.: 1561.154 (21.661) iat = 3.627 (0.066) T = 4.33e-03 ———
Algo. 8 (2): 1561.158 (21.616) iat = 2.568 (0.047) T = 1.58e-03
Trunc. exch.: 1561.163 (21.692) iat = 2.941 (0.054) T = 1.57e-03
|
0.6
[
[
0.4 T
-0.2
0 20 40 60 80 100 120 140

Figure 5: Autocorrelation curves used to estimate the IAT for the deviance (Galaxy

data).

25

160

6 Conclusion and discussion

When models become more and more complex, due to an increase in dimen-
sion, the poor mixing of a MCMC algorithm can be inhibiting. Therefore, it
seems important to develop samplers that allow to improve mixing while exper-
imenting strategies to reduce the computational cost. The present paper has
aimed at providing a simple, efficient and easy to use Gibbs sampler for pos-
terior simulation under Pitman-Yor and Dirichlet mixture models that satisfies
the constraint of efficient parallelization ability while maintaining mixing prop-
erties closed to Polya urn approaches. We have attempted to combine blocking
properties of conditional approaches which retain the random distribution in
the sampling, and exchangeability of the model which is maintained in Pdlya
urn based algorithms. The proposed approach combines an update but unused
formula from [Pit96b] with the slice sampling sampling strategy and a tricky
threshold. Our comparative study on both real and simulated data sets support
our belief that the two novel variants of our conditional Gibbs sampler have the
potential to be a useful addition to the menu of samplers for DP and PYP.

A difference between the two proposed variants is that for the truncated
version ("Trunc. exch.”), the fixed length of approximation has to be decided
before effective sampling. This is most of the time not a crux for Dirichlet
processes, but for the two-parameter case the fixed approximation may give
rise to biased estimates for moderate truncation lengths. For large lengths,
the computational burden is emphasized especially for large data sets. The
exchangeable thresholded slice version (”Slice exch. thres.”) achieves adaptive
truncation at each iteration and maintain nice trade-off between IAT and time
cost. This latter variant gives then rise to convenient trade-off between IAT and
computation time while avoiding any hard truncation.

On one hand, as mentionned our samplers are applicable to Pitman-Yor
and Dirichlet mixture models. On the other hand, since the ”Slice efficient” of
[KGW11] has been developed for more general stick-breaking priors and that
the introduction of the proposed threshold improves its mixing property, one
can consider such a combination when working with mixtures based on general
stick-breaking processes other than Dirichlet and Pitman-Yor processes. In this
case, an interesting perspective could be to introduce also mixing moves over
clusters labels as suggested in [PISW06] and [PR07]. As mentioned, the ordering
of clusters labels matters in the stick-breaking representation. A step of labels
permutation could result in a better mixing chain.

In our experimental study, it appeared that particularly for the two-parameter
class, standard conditional algorithms may present unexpected biased results.
This drawback is reinforced for large data sets. On the other hand, Pélya urn
based algorithms and our proposed sampling schemes exhibit stable behaviour
in all situations.

26

Appendix

In this appendix, we show the rest of the results from our comparative study,
excepted results for lepto and bimod data with n = 10, 000.

A-Results for d =0 and a« =5

IAT for # of | IAT for de- | Estimated # | FEstimated

clusters viance of clusters deviance
Stice exch. thres	10.73(0.28)	2.80(0.05)	7.082(3.32)	1563.10(23.55)
Trunc. exch.	10.11(0.26)	2.81(0.05)	7.084(3.31)	1563.10(23.54)
SE without thres.	26.32(0.68)	4.13(0.07)	7.085(3.32)	1563.10(23.53)
Truncated	19.51(050)	3.45(0.06)	7.079(3.32)	1563.10(23.57)
Stice efficient	38.75(1.00)	4.96(0.09)	7.085(3.31)	1563.11(23.59)
Slice eff. thres.	19.75(0.51)	3.32(0.06)	7.057(3.31)	1563.33(25.34)
Algo 8 (m =2)	6.16(0.16) [2.35(0.04)	7.084(3.31)	1563.10(23.56)	

Table 12: Galaxy data n = 82, Lp = 150, Lj; = 300.

IAT for # of | IAT for de- | Estimated # | Estimated

clusters viance of clusters deviance
Stice exch. thres	14.24(0.37)	2.35(0.04)	8.886(5.41)	283.18(8.98)
Trunc. exch.	13.74(0.35)	2.33(0.04)	8.880(5.38)	283.17(8.97)
SE without thres.	34.31(0.89)	3.30(0.06)	8.884(5.40)	283.17(8.95)
Truncated	23.22(0.60) [2.67(0.05)	8.883(5.41)	283.18(9.00)	
Stice efficient	45.67(1.18) [3.58(0.06)	8.801(5.38)	283.18(3.97)	
Stice eff. thres.	23.60(0.61)	2.38(0.04)	8.877(5.30)	283.56(9.98)
Algo 8 (m =2)	8.56(0.22) [2.01(0.04)	8.888(5.42)	283.18(3.98)	

Table 13: Bimod data n = 100, Lp = 150, L,; = 300.

27

IAT for # of | IAT for de- | Estimated # | Estimated

clusters viance of clusters deviance
Stice exch. thres	81.36(3.43)	6.90(0.13)	9.880(7.26)	2741.07(12.05)
Trunc. exch.	81.07(3.42) [6.81(0.12)	9.956(7.35)	2741.08(12.05)	
SE without thres.	200.17(8.44)	12.37(0.23)	9.913(7.20)	2741.08(12.07)
Truncated	135.98(5.73)	7.35(0.13)	9.958(7.34)	2741.08(12.09)
Stice efficient	256.71(10.83)] 12.85(0.23)	9.962(7.40)	2741.09(12.06)	
Stice eff. thres.	130.61(5.51)	6.92(0.13)	9.867(7.30)	2741.43(12.70)
Algo 8 (m=2)	42.85(1.81)	5.35(0.10)	9.928(7.36)	2741.08(12.03)

Table 14: Bimod data n = 1000, Lp = 150, Lj; = 800.

IAT for # of | IAT for de- | Estimated # | Estimated

clusters viance of clusters deviance
Stice exch. thres	11.12(0.37)	14.26(0.30)	9.004(4.74)	257.17(21.70)
Trunc. exch.	11.84(0.39)	14.34(0.30)	8.988(4.75)	257.19(21.80)
SE without thres.	27.06(0.90)	30.15(0.64)	8.999(4.74)	257.15(21.64)
Truncated [17.79(059)	15.96(0.34)	9.011(4.75)	257.16(21.69)	
Stice efficient	37.12(1.24)	33.49(0.71)	9.009(4.74)	257.18(21.67)
Stice eff. thres.	17.47(058) [15.16(0.32)	9.002(4.76)	257.56(23.14)	
Algo 8 (m =2) [6.95(0.23) [11.43(0.24)	8.999(4.73)	257.18(21.66)		

Table 15: Lepto data n = 100, Lp = 200, L, = 500.

IAT for # of | IAT for de- | Estimated # | Estimated

clusters viance of clusters deviance
Stice exch. thres	90.94(3.84)	15.81(0.20)	11.121(7.69)	2354.96(19.51)
Trunc. exch. [90.68(3.82) [15.72(0.29)	11.127(7.64)	2354.95(19.59)		
SE without thres.	216.32(9.12)	25.05(0.46)	11.082(7.67)	2354.91(19.34)
Truncated	145.95(6.16)	17.40(0.32)	11.080(7.70)	2354.98(19.60)
Stice efficient	254.45(10.73)	27.28(0.50)	11.196(7.65)	2354.90(19.60)
Stice eff. thres.	133.89(5.65)	15.62(0.29)	11.148(7.65)	2355.27(20.19)
Algo 8 (m=2)	50.75(2.14)	13.13(0.24)	11.098(7.69)	2354.94(19.48)

Table 16: Lepto data n = 1000, Lp = 150, L, = 800.

28

IAT for # of | IAT for de- | Estimated # | Estimated

clusters viance of clusters deviance
Stice exch. thres	17.00(0.57)	151.34(3.91)	7.476(2.65)	14980.81(53.22)
Trunc. exch.	18.02(0.60)	143.45(3.71)	7.484(2.65)	14980.68(51.86)
SE without thres.	56.57(1.89)	214.64(5.55)	7.473(2.64)	14989.66(52.30)
Truncated [21.73(0.72) [150.94(3.90)	7.454(2.64)	14990.39(54.49)		
Stice efficient	66.67(2.22)	225.38(5.82)	7.481(2.65)	14990.43(54.78)
Stice eff. thres.	23.14(0.77)	156.84(4.05)	7.475(2.65)	14990.18(56.20)
Algo 8 (m =2)	11.33(0.38)	97.28(2.51)	7.478(2.65)	14980.76(52.48)

Table 17: S&P 500 data n = 2023, Lp = 300, Ly, = 500.

29

B- Results for d=0.3 and a =1

IAT for # of | IAT for de- | Estimated # | Estimated

clusters viance of clusters deviance
Slice exch. thres	10.56(0.27)	2.84(0.05)	4.867(2.13)	1561.67(21.84)
Trunc. exch.	981(0.25) [2.79(0.05)	4.716(1.77)	1561.61(21.93)	
SE without thres.	27.22(0.70)	457(0.08)	4.868(2.13)	1561.66(21.83)
Truncated [20.20(0.75)	3.65(0.07)	4.932(1.97)	1561.73(21.94)	
Stice efficient	44.65(1.15) [5.43(0.10)	4.872(2.13)	1561.66(21.82)	
Stice eff. thres.	24.950.64) [3.7200.07)	4.858(2.11)	1561.79(23.21)	
Algo 8 (m =	5.79(0.15)	2.37(0.04)	4.869(2.13)	1561.66(21.89)

Table 18:

Galaxy data n = 82, Lp = 150, Ly; = 300.

IAT for # of | IAT for de- | Estimated # | Estimated

clusters viance of clusters deviance
Stice exch. thres	25.77(0.67)	7.75(0.14)	4.726(3.42)	267.96(9.97)
Trunc. exch.	26.47(0.68)	7.97(0.15)	4.650(3.06)	267.93(9.99)
SE without thres.	67.54(1.74)	14.84(0.27)	4.715(3.42)	267.96(9.92)
Truncated	7153(1.85)	9.88(0.18)	5.067(3.93)	267.87(10.00)
Slice efficient	97.86(2.53)	16.35(0.30)	4.743(3.42)	267.95(10.05)
Stice eff. thres.	56.18(1.45) [9.74(0.18)	4.710(3.42)	268.18(10.50)	
Algo 8 (m =	14.27(037) [5.790.11)	4.720(3.40)	267.95(9.99)	

Table 19: Bimod data n = 100, Lp = 150, L; = 300.

30

IAT for # of | IAT for de- | Estimated # | Estimated

clusters viance of clusters deviance
Stice exch. thres	42.74(1.80)	2.60(0.05)	4.427(3.21)	2646.88(9.02)
Trunc. exch.	46.05(1.94) [2.540.05)	4.401(3.05)	2646.88(9.01)	
SE without thres.	180.18(7.60)	5.86(0.11)	4.426(3.24)	2646.88(8.99)
Truncated	80.45(3.77)	2.82(0.05)	4.525(3.38)	2646.89(9.05)
Stice efficient	200.64(8.46)	6.23(0.11)	4.446(3.21)	2646.88(9.03)
Stice eff. thres.	77.30(3.26) [2.700.05)	4.409(3.18)	2647.10(9.45)	
Algo 8 (m=2)	22.80(0.96)	2.15(0.04)	4.425(3.18)	2646.88(8.99)

Table 20: Bimod data n = 1000, Lp = 150, Lj; = 800.

IAT for # of | IAT for de- | Estimated # | Estimated

clusters viance of clusters deviance
Stice exch. thres	47.85(1.60)	27.00(0.57)	3.719(3.70)	223.92(8.55)
Trunc. exch.	50.04(1.67)	26.91(0.57)	3.674(3.30)	223.86(3.61)
SE without thres.	188.12(6.27)	70.11(1.48)	3.709(3.69)	223.94(8.50)
Truncated	93.37(3.11) [35.96(0.76)	3.955(4.18)	223.78(8.75)	
Stice efficient	224.68(7.49)	74.51(1.57)	3.606(3.68)	223.94(8.49)
Stice eff. thres.	85.30(2.85)	31.98(0.67)	3.732(3.73)	224.05(9.08)
Algo 8 (m =2)	27.28(091) [17.83(0.38)	3.720(3.71)	223.92(8.55)	

Table 21: Lepto data n = 100, Lp = 200, Ljy; = 500.

IAT for # of | IAT for de- | Estimated # | Estimated

clusters viance of clusters deviance
Stice exch. thres	156.21(7.37)	13.56(0.20)	4.255(3.22)	2371.35(16.11)
Trunc. exch.	167.13(7.88)	13.08(0.28)	4.247(3.13)	2371.34(16.03)
SE without thres.	341.73(16.11)	18.15(0.38)	4.252(3.18)	2371.34(15.97)
Truncated	270.51(12.75)	17.04(0.36)	4.387(3.62)	2371.52(16.49)
Stice efficient	422.00(19.90)	20.47(0.43)	4.201(3.30)	2371.50(16.53)
Stice eff. thres.	217.35(10.25)] 13.66(0.29)	4.226(3.19)	2371.54(16.60)	
Algo 8 (m=2)	96.90(4.57)	10.90(0.23)	4.242(3.22)	2371.34(15.98)

Table 22: Lepto data n = 1000, Lp = 200, L, = 1000.

31

References

[BM73]

[BM96]

[CTM]

[DBFL™)

[Esc94]

[EW95]

[Fer73]

[Fer83]

[FK72]

[GRO1]

[GW11]

[1J01]

[1J03]

[KGW11]

[KHT73]

D. Blackwell and J. B. MacQueen. Ferguson distributions via Pdlya
urn schemes. Ann. Statist., 1:353-355, 1973.

C. A. Bush and S. N. MacEachern. A semiparametric Bayesian model
for randomised block designs. Biometrika, 83(2):275-285, 1996.

F. Caron, Y.W. Teh, and T.B. Murphy. Bayesian nonparametric
Plackett-Luce models for the analysis of preferences for college degree
programmes. Annals of Applied Statistics, To appear.

P. De Blasi, S. Favaro, A. Lijoi, R. Mena, I. Priinster, and M. Rug-
giero. Are Gibbs-type priors the most generalization of the Dirichlet
process? IEEE Transactions of Pattern Analysis and Machine Intel-
ligence.

M.D. Escobar. Estimating normal means with a Dirichlet process
prior. J. Am. Stat. Assoc., 89:268-277, 1994.

M.D. Escobar and M. West. Bayesian density estimation and infer-
ence using mixtures. J. Am. Stat. Assoc., 90:577-588, 1995.

T. S. Ferguson. A Bayesian analysis of some nonparametric problems.
Ann. Statist., 1:209-230, 1973.

T.S. Ferguson. Bayesian density estimation by mixtures of Normal
distributions. Recent advances in Statistics: papers in honor of Her-
man Chernoff on his siztieth birthday, pages 287-302, 1983.

T.S. Ferguson and M.J. Klass. A representation of independent incre-
ment processes without Gaussian components. The Annals of Math-
ematical Statistics, 43(5):1634-1643, 1972.

P. J. Green and S. Richardson. Modelling heterogeneity with and
without the Dirichlet process. Scandinavian Journal of Statistics,
28:355-375, 2001.

J. E. Griffin and S. G. Walker. Posterior simulation of Normalized
Random Measure mixtures. Journal of Computational and Graphical
Statistics, 20:241-259, 2011.

H. Ishwaran and L. F. James. Gibbs sampling methods for stick-
breaking priors. J. Am. Stat. Assoc., 96:161-173, 2001.

H. Ishwaran and L. F. James. Some further developments for stick-
breaking priors: Finite and infinite clustering and classification.
Sankhya Series A, 65:577-592, 2003.

M. Kalli, J. E. Griffin, and S. G. Walker. Slice sampling mixture
models. Statistics and Computing, 21(1):93-105, 2011.

R. Korwar, , and M. Hollander. Contributions to the theory of Dirich-
let processes. The Annals of Probability, pages 705-711, 1973.

32

[Log4]

[MMO9g]

[MM13]

IMQO4]

[MT98]

[NBP09]

[Nea91]

[Nea00]

[Pap08]

[PISWO06]

[Pit96a]

[Pit96b]

[Pit02]

[Pit03]

[PRO7]

A.Y. Lo. On a class of Bayesian Nonparametric estimates: 1. density
estimates. The Annals of Statistics, 12:351-357, 1984.

S. N. MacEachern and P. Miiller. Estimating mixture of Dirichlet
process models. J. Comput. Graph. Stat., 7:223-238, 1998.

P. Miiller and R. Mitra. Bayesian Nonparametric Inference-Why and
How. Bayesian Analysis, 8(2):269-302, 2013.

P. Miiller and F. Quintana. Nonparametric Bayesian data analysis.
Statistical Science, 19(1):95-110, 2004.

P. Muliere and L. Tardella. Approximating distributions of random
functionals of Ferguson-Dirichlet priors. Canadian Journal of Statis-
tics, 26(2):283-297, 1998.

L. E Nieto-Barajas and I. Priinster. A sensitivity analysis for
Bayesian nonparametric density estimators. Statistica Sinica, 19:685—
705, 2009.

R. M. Neal. Bayesian mixture modeling. In Mazimum entropy and
Bayesian Methods: Proceedings of the 11th International Workshop
on Mazimum Entropy and Bayesian Methods of Statistical Analysis,
Seattle, pages 197211, 1991.

R. M. Neal. Markov chain sampling methods for Dirichlet process
mixture models. Journal of Computational and Graphical Statistics,
9(2):249-265, 2000.

O. Papaspiliopoulos. A note on posterior sampling from Dirichlet
mixture models. Preprint, 2008.

I. R. Porteous, A. Thler, P. Smyth, and M. Welling. Gibbs sampling
for (coupled) infinite mixture models in the stick breaking represen-
tation. In UAIL AUAI Press, 2006.

J. Pitman. Random discrete distributions invariant under size-biased
permutation. Adv. Appl. Prob, 28:525-539, 1996.

J. Pitman. Some developments of the Blackwell-MacQueen urn
scheme. In T.S. Ferguson et al., editor, Statistics, Probability and
Game Theory; Papers in honor of David Blackwell, volume 30 of
Lecture Notes-Monograph Series, pages 245-267. Institute of Mathe-
matical Statistics, 1996.

J. Pitman. Combinatorial stochastic processes. Technical Report
621, Dept. Statistics, U.C. Berkeley, 2002.

J. Pitman. Poisson-Kingman partitions. Statistics and Science: A
Festschrift for Terry Speed, IMS Lectures Notes Monograph, 40:1-34,
2003.

O. Papaspiliopoulos and G. O. Roberts. Retrospective Markov chain
sampling Monte Carlo methods for Dirichlet process hierarchical
models. Biometrika, 95:169-186, 2007.

33

[PY97]

[Sok97]

[Teh06]

[Wal07]

[WD9g]

[WME94]

J. Pitman and M. Yor. The two-parameter Poisson-Dirichlet distri-
bution derived from a stable subordinator. Ann. Proba., 25:855-900,
1997.

A. D. Sokal. Monte carlo methods in statistical mechanics: Foun-
dations and new algorithms. NATO Adv. Sci. Inst. Ser. B Phys.,
361:131-192, 1997.

Y. W. Teh. A hierarchical Bayesian language model based on Pitman-
yor processes. In Proceedings of the 21st International Conference on
Computational Linguistics and the 44th annual meeting of the As-
sociation for Computational Linguistics, pages 985-992. Association
for Computational Linguistics, 2006.

S. G. Walker. Sampling the Dirichlet mixture model with slices.
Comm. Statist., 36:45-54, 2007.

S.G. Walker and P. Damien. Sampling methods for Bayesian non-
parametric inference involving stochastic processes. Practical Non-
parametric and Semiparametric Bayesian Statistics, 133:243-254,
1998.

M. West, P. Miiller, and M. D. Escobar. Hierarchical priors and mix-
ture models, with application in regression and density estimation.
Aspects of Uncertainty, pages 363-386, 1994.

34

