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Abstract We introduce a new sampling strategy for

the two-parameter Poisson-Dirichlet process mixture mo-

del, also known as Pitman-Yor process mixture model

(PYM). Our sampler is therefore applicable to the well-

known Dirichlet process mixture model (DPM). Infer-

ence in DPM and PYM is usually performed via Markov

Chain Monte Carlo (MCMC) methods, specifically Gibbs

sampler. These sampling methods are usually divided in

two classes: marginal and conditional algorithms. Each

method has its merits and limitations. The aim of this

paper is to propose a new sampler which combines the

main advantages of each class. Our method relies on a

result of [Pit96b] for updating Pitman-Yor processes.

The infinite part of the unconditional process is sam-

pled in two ways, leading to two variants of the pro-

posed sampler. We also propose a threshold to improve
mixing in the first variant of our algorithm. The two

variants of our sampler are compared with a marginal

method (algorithm 8 of [Nea00]) and two state of the

art conditional algorithms which are formulated in the

space of cluster labels namely the efficient slice sampler

of [KGW11] and the truncated blocked Gibbs sampler

of [IJ01]. We also investigate effects of removing the

proposed threshold in the first variant of our algorithm

and introducing the threshold in the efficient slice sam-

pler of [KGW11]. Results on real and simulated data

sets illustrate that our algorithms outperform the other

conditionals in terms of mixing properties.
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1 Introduction

Bayesian nonparametrics have shown their utility in a

great number of applications in statistics and machine

learning (density estimation, clustering, image segmen-

tation and reconstruction, language modeling etc.) and

their interest is increasing. In this context, it becomes

necessary to investigate mixing properties of MCMC

samplers, particularly in high dimensional spaces with

large data sets.

After the first MCMC method proposed by [Esc94]

for inferring DPM, many authors contributed to its

improvement ([EW95], [MM98]) and to handle non-

conjugate cases [Nea00]. These aforementioned tech-

niques marginalize the random distribution using Dirich-

let distribution properties and sample draws from it. Ef-

ficient versions of marginal algorithms usually achieve

good mixing performances [Nea00]. An alternative to

marginal methods is given by the the so-called condi-

tional algorithms which explicitly represent the mea-

sure generated by the process using its stick-breaking

representation ([IJ01], [Wal07]). The challenge in this

approach is to deal with the countably infinite repre-

sentation of the distribution. In [IJ01], authors resort

to an approximation and truncate the measure at a cho-

sen value N . An alternative which avoids truncations

was introduced by [PR07] and [Wal07]. This later al-

gorithm was improved by [Pap08] and [KGW11]. The

advantage of conditional methods is that they take into

account the measure generated by the process making

its inference possible. However, as it was pointed out by
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[PISW06], in conditional methods using stick-breaking

representation, the sampling occurs in the space of non-

exchangeable clusters labels. As a consequence, clusters

prior labeling contributes to the posterior sampling and

additional moves in the MCMC algorithm are necessary

to improve mixing over clusters labels.

In this context, we introduce a new conditional sam-

pling scheme which is formulated in the space of equiv-

alence classes over clusters labels where clusters identi-

ties are irrelevant. This is the adequate space because

nothing observable depends on these labels.

The remainder of this paper is structured as fol-

lows. In section 2, we recall some preliminaries on defi-

nitions and results about Pitman-Yor processes. In sec-

tion 3, we briefly recall the basis of the algorithms that

are used to compare our samplers and discuss the ad-

vantages and limitations of marginal and conditional

methods. Afterwards, in section 4, we derive explicitly

a truncated Gibbs sampler working in the equivalence

class of random exchangeable partitions and a new ex-

changeable truncated slice Gibbs sampler which is free

of approximation. We evaluate performance of the al-

gorithms through application to one real and two sim-

ulated data sets in section 5. Finally, we conclude the

paper in section 6 with discussions and extensions for

further work.

2 Preliminaries on Pitman-Yor processes

2.1 Some basic definitions and results ([Pit96b],

[PY97], [Pit02])

Definition 1 (Two-parameter GEM distribution)

Let d ∈ [0, 1], α > −d, v1, v2, . . . independent random

variables such that for all j, vj ∼ Beta(1 − d, α + jd).

Define the sequence of weights (wj) by the residual al-

location model (RAM) also known as the stick-breaking

scheme as follows w1 = v1, w2 = v2(1 − v1), . . . , wj =

vj
∏j−1
i=1 (1− vi). The sequence w = (w1, w2, . . .) is said

to follow a two-parameter GEM1 distribution, with pa-

rameters d and α, and denoted by

w ∼ GEM(d, α).

Definition 2 (Two-parameter Poisson-Dirichlet distri-

bution)

Let w ∼ GEM(d, α). The ranked size sequence w̃ =

r(w) where w̃1 ≥ w̃2 ≥ . . . and r(·) the sequence ranking

function, has a two-parameter Poisson-Dirichlet distri-

bution with parameters d and α and is denoted by

w̃ ∼ PD(d, α).

1 The acronym stands for Griffiths, Engen and McCloskey.

Definition 3 (Pitman-Yor process)

Let d ∈ [0, 1], α > −d and w̃ ∼ PD(d, α)2. Let G0 be

a diffuse (non-atomic) probability measure on a mea-

surable space (Θ,B) (i.e G0(θ) = 0 for all θ ∈ Θ).

Consider Z1, Z2, . . . to be iid G0, taking values on Θ

and independent of w̃. Let δZ(·) denote the Dirac mea-

sure giving mass 1 at Z. Then, the random probability

measure

H(·) =

∞∑
k=1

w̃kδZk
(·),

is a two-parameter Poisson-Dirichlet process (a.k.a

Pitman-Yor process) on (Θ,B), with parameters d and

α and base measure G0. It is denoted by:

H ∼ PY(d, α,G0).

The parameters α and d tune the variability of gener-

ated measures around G0. Setting d = 0, the Pitman-

Yor process reduces to the Dirichlet process with pa-

rameter α and base measure G0, denoted DP(α,G0).

Like DP, the PYP has several properties, for in-

stance a stick-breaking representation and a character-

ization in terms of generalized Blackwell-MacQueen urn

scheme. Since the algorithms we will describe later on

are based upon the Pólya urn characterization or the

stick-breaking construction of the process, we recall in

the following the basis of these representations.

2.2 Stick-breaking characterization of PYP

2.2.1 Stick-breaking representation

Ishwaran and James ([IJ01], [IJ03]) extended the stick-

breaking representation of the Dirichlet process due to

Sethuraman [Set94] to more general random measures

that encompass both DP and PYP. The stick-breaking

representation is a constructive definition based on a

residual allocation model and is given as follows. Let

d ∈ [0, 1], α > −d, w ∼ GEM(d, α) and G0 a diffuse

probability measure on Θ. Let Θ∗ = (θ∗1 ,θ
∗
2 , . . .) be iid

G0, independently of w. Let us construct

H(·) =

∞∑
k=1

wkδθ∗k(·). (1)

Under these assumptions, we have

H ∼ PY(d, α,G0).

2 There is another parametrization of the PYP, with d =
−κ < 0 et α = mκ for some κ > 0 and m = 2, 3, . . .
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2.2.2 Posterior distribution under stick-breaking

Let H be a random measure generated via a stick-

breaking process. Consider Θ = (θ1, . . . ,θn) a sam-

ple from H. Let us define the membership variables

c = (c1, . . . , cn) such that ci = k iff θi = θ∗k. Let

c∗ = (c∗1, . . . , c
∗
Kn

) the set of unique values of c and

Θ∗ = (θ∗1 , . . . ,θ
∗
Kn

) the set of unique values of Θ. Then,

H(·)|θ =
∑
k∈c∗

w∗kδθ∗k(·) +
∑
k/∈c∗

wkδZk
(·), (2)

where for all k /∈ c∗, Zk
iid∼ G0, the weights w∗k follow

a GEM distribution with updated parameters: w∗1 =

v∗1 , w
∗
2 = v∗2(1 − v∗1), . . . , w∗n = v∗n

∏n−1
i=1 (1 − v∗i ) where

v∗l ∼ Beta(1− d+ nl, α+ ld+
∑∞
m=l+1 nm) with nm =

#{ck : ck = m}.

2.3 Generalized Blackwell-MacQueen representation of

PYP

The PYP can also be described by a generalization of

the Blackwell-MacQueen urn scheme ([Pit95], [Pit96a]).

This result stems from characterization of PYP via species

sampling model (SSM).

2.3.1 Prediction rule characterization of PYP

Let d ∈ [0, 1], α > −d and G0 a diffuse probability

measure on Θ. Consider a sequence of (θi) generated

via the following predictive distributions:

θ1 ∼ G0 (3)

θn+1|θ1, . . . ,θn ∼
α+ dKn

α+ n
G0 +

Kn∑
j=1

nj − d
α+ n

δθ∗j , (4)

where Kn is the current number of distinct θi, {θ∗j , j =

1, . . . ,Kn} the unique values among {θi, i = 1, . . . , n}
and nj the frequency of θ∗j . The distribution of this se-

quence of exchangeable draws converges almost surely

to a discrete distribution which is distributed according

to a PY(d, α,G0) when n goes to infinity: θ1, . . . ,θn|H ∼
H where H ∼ PY(d, α,G0) a.s., with distribution

H(·) =

+∞∑
k=1

wkδθ∗k(·), (5)

where w ∼ GEM(d, α), θ∗1 , . . . ,θ
∗
n ∼ G0 and are inde-

pendent of w.

The predictive distributions (3)-(4) are the key com-

ponents of marginal methods described in section 3.

Remark 1

Note that in the representation (5), the weights are

given by the empirical frequencies: wk = limn→∞
nk

n ,

where the frequencies are defined in the order of ap-

pearance of species.

2.3.2 Posterior distribution of PYP under species

sampling process

We present here an important result from ([Pit96b],

Corollary 20). A detailed proof of this corollary can be

found in [Car99]. This result is the basis of the new

sampling method we propose to infer the mixture of

Pitman-Yor processes. This corollary characterizes the

posterior distribution of PYP under SSM.

Let H ∼ PY(d, α,G0) where G0 is a diffuse proba-

bility measure s.t. E(H) = G0. Let θ1, . . . ,θn|H ∼ H

and Kn the number of distinct values of θi, let {θ∗j }
Kn
j=1

the set of unique values of {θi}ni=1 and finally let nj the

number of occurrences of θ∗j in the sample. Then, we

have

H|θ1, . . . ,θn
d
=

Kn∑
j=1

wjδθ∗j + rKn
HKn

, (6)

where

(w1, . . . , wKn
, rKn

) ∼ Dir(n1 − d, . . . , nKn
− d, α+ dKn)

HKn
∼ PY(d, α+ dKn, G0),

and HKn
independent of (w1, . . . , wKn

, rKn
), with

E(HKn
) = G0.

We will detail more this result and its consequences

in section 4 dedicated to our new sampler.

3 Sampling from DPM and PYM

3.1 Pitman-Yor process mixture model (PYM)

The well-known Dirichlet process mixture model (DPM)

due to [Fer83] and [Lo84] can be extended to define

Pitman-Yor process mixture models in the following

way

x ∼
∫
p(·|θ)dH(θ) with H ∼ PY(d, α,G0), (7)

where p(·|θ) is a kernel, for instance a Gaussian with

parameters θ = (µ, σ2) with µ being the mean and σ2

the variance of the normal component.

The model (7) can be expressed in a hierarchical

Bayesian model as follows

xi|θi ∼ p(xi|θi)
θi|H ∼ H (8)

H|d, α,G0 ∼ PY(d, α,G0).
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The parameters θi are conditionally independent given

H and each observation xi is conditionally independent

on the others given θi.

Since H is discrete, some θi will be identical. One

can consider observations having the same parameter

θi as belonging to the same component. Then, latent

indicator variables can be introduced that assign obser-

vations to mixture components. Let ci such that ci = k

iff θi = θ∗k, where Θ∗ = (θ∗1 , θ
∗
2 , . . . ) denote the unique

values among (θ1, . . . ,θn). The parameter θi takes the

value θ∗k with probability wk. The model (8) can be

expressed hierarchically as follows using stick-breaking

representation:

xi|ci,Θ∗ ∼ p(xi|θ∗ci)

ci|w ∼
∞∑
k=1

wkδk(·) (9)

w|d, α ∼ GEM(d, α)

θ∗k|G0 ∼ G0.

3.2 MCMC algorithms for PYM

Posterior distributions are intractable in DPM and PYM.

Posterior inference is performed using approximation

techniques such as Markov Chain Monte-Carlo meth-

ods (MCMC). There are many sampling MCMC al-

gorithms which can roughly be divided into two cat-

egories: marginals and conditionals.

3.2.1 Marginal methods

Marginal algorithms have been developed to infer Dirich-

let process mixture models (DPM). These methods are

called marginal since the random probability measure

H is integrated out of the model and Pólya urn scheme

is used to sample draws from it (parameters θ). Marginal

methods can be sub-categorized into conjugate or non-

conjugate models. By conjugacy, we mean that the like-

lihood p(·|θ) of the data and the base distribution G0

of the process form a conjugate pair. In this case, calcu-

lations in conditional posterior distributions are simpli-

fied and can be performed analytically ([Nea91], [Esc94],

[WME94], [EW95] and [BM96]). In non-conjugate mod-

els however, posteriors can not be easily calculated. The

sampling scheme is more difficult and requires elabo-

rated techniques ([MM98], [WD98] and [GR01]). One

can refer to [Nea00] for a more complete overview and

discussions about these methods. Neal [Nea00] also pro-

poses in his paper two novel sampling schemes for non-

conjugate models: the first (referred to as ”algorithm 7”

in the paper) uses a combination of Metropolis-Hastings

steps with Gibbs updates. The second, named after

”algorithm 8”, is based on an augmentation scheme

and extends the model to include auxiliary components

which exist temporarily. We briefly detail this algo-

rithm we will use to contrast our sampler since, to

our knowledge, it achieves the best mixing properties

in marginal methods. This algorithm was developed for

Dirichlet process mixture models in Neal’s paper. Here,

we slightly modify it by adding the second parameter

in order to infer Pitman-Yor process mixture models.

Algorithm 8 of [Nea00]: The idea behind ”algorithm

8” of [Nea00] is to add auxiliary components (repre-

senting potential future components) in order to avoid

evaluating the intractable integral when updating clas-

sification variables. Since data are exchangeable and la-

bels of components completely arbitrary, each datum xi
can be treated as the last. It is then assigned to an al-

ready represented component or to an auxiliary compo-

nent. If we denote by K−n the number of active compo-

nents disregarding observation i, the prior probability

to allocate xi to an active component is
n−i,k−d
α+n−1 and

the probability to create a new component is
α+dK−n
α+n−1 ,

which will be equally distributed among the m auxiliary

components. The choice of m is left to the user. It is

governed by a balance between computational consid-

erations and mixing properties. When updating classi-

fication variables, the following rules are used: if ci = cj
for some j 6= i (i.e xi belongs to a non-singleton com-

ponent), auxiliary parameters are drawn indepedenlty

from the prior G0. Otherwise, if ci 6= cj for all j 6= i,

the observation will be allocated to one of the m auxil-

iary components. To do this, one could randomly choose

one of the m auxiliary components but thanks to the
exchangeability, this does not matter and xi is allo-

cated to the first auxiliary component (i.e ci = K−n +1),

with component parameter θ∗ci . Parameters of the m−1

other auxiliary components (if m > 1) are drawn inde-

pendently from G0. The update of ci is done via the

conditional probabilities:

P(ci = k|xi, c−i,Θ∗) ∝



n−i,k − d
n− 1 + α

p(xi|θ∗k)

for k = 1, . . . ,K−n ,

α+ dK−n
m(n− 1 + α)

p(xi|θ∗k)

for k = K−n + 1, . . . ,K−n +m.

After this step, parameters for non-empty components

are updated according to their posterior law based on

the prior G0 and the likelihood of all data currently

allocated to:

p(θ∗k|X, c) ∝ G0(dθ∗k)
∏

{i:ci=k}

p(xi|θ∗k).
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3.2.2 Conditional methods

Marginal approaches integrate out the random mea-

sure H and draw values from it. In contrast, condi-

tional methods retain the random distribution and ex-

plicitly represent it using its stick-breaking construc-

tion. Among them, there are methods that approximate

the random measure by truncating the number of its

components, and those that are not based on approxi-

mations.

The truncated blocked Gibbs sampler [IJ01]

An issue with non-marginal approaches is to treat the

infinite number of components. To sidestep this, Ish-

waran and James ([IJ01], [IJ03]), using the fact that

weights in the GEM distribution decrease exponentially

fast in law, showed that the number of components can

be truncated at a chosen integer value N . It is necessary

to set vN = 1 in the stick-breaking construction of H to

ensure that the truncated measure HN is a probability

measure, with distribution:

HN (·) =

N∑
k=1

wkδθ∗k(·).

Under this truncated framework, the hierarchical PYM

(9) can be rewritten as follows

xi|ci,Θ∗ ∼ p(xi|θ∗ci)

ci|w ∼
N∑
k=1

wkδk(·) (10)

w|d, α ∼ GEM(d, α)

θ∗k|G0 ∼ G0,

where X = (x1, . . . ,xn) represent the data, c = (c1, . . . , cn)

the classification variables, Θ∗ = (θ∗1 , . . . ,θ
∗
N ) the pa-

rameters of the mixture components and w = (w1, . . . , wN )

the components weights. Rewriting the model in this

form makes direct posterior inference possible since one

has to treat a finite number of components. The algo-

rithm works by drawing values from the following con-

ditional distributions of the blocked variables

Allocation variables: c|w,Θ∗,X.
PYP weights: w|c.
Components parameters: Θ∗|c,X.

If we denote by Kn the number of currently non-empty

components, the full conditionals involved in the Gibbs

sampler are given by the following:

1. Conditional for c:

ci|w,Θ∗,X ∼
∑N
k=1 wk,iδk(·) for i = 1, . . . , n where

(w1,i, . . . , wN,i) ∝ (w1 p(xi|θ∗1), . . . , wN p(xi|θ∗N )).

2. Conditional for w :

w1 = v∗1 et wk = v∗k

k−1∏
l=1

(1−v∗l ) for k = 2, . . . , N−1,

with

v∗k ∼ Beta(1−d+nk, α+kd+

N∑
l=k+1

nl) for k = 1, . . . , N−1,

where nk = #{i : ci = k}.

3. Conditional for Θ∗:

• θ∗k ∼ G0 for k = Kn + 1, · · · , N .

• θ∗k|c,X has density proportional to

G0(dθ∗k)
∏

{i:ci=k}

p(xi|θ∗k) for k = 1, . . . ,Kn.

This sampler is easy to implement since the trunca-

tion allows it to be similar to standard Gibbs samplers

in finite dimensional models. However, even if meth-

ods for controlling the truncation accuracy have been

proposed ([IJ01], [IJ03]), it would be better to keep

the exact infiniteness nature of the distributions and

avoid any hard approximation. To this purpose, algo-

rithms which sample from the exact posterior distribu-

tions while requiring a finite number of components at

each iteration have been proposed by Papaspiliopou-

los and Roberts [PR07] and Walker [Wal07]. This later

uses an elegant strategy called slice sampling and is

based on auxiliary variables. Walker’s slice sampling

was improved by Papaspiliopoulos [Pap08] and Kalli et

al. [KGW11]. This later is named after ”slice efficient”.

The slice sampler ([Wal07], [KGW11])

The idea under the slice sampler proposed by [Wal07]

for inference in DPM is to introduce auxiliary variables

which make the mixture model conditionally finite. To

make it precise, let us consider the model (8) with ker-

nel p where H is constructed using the stick-breaking

representation. The density of a single observation xi,

given w and Θ∗, is

f (xi) =

∞∑
k=1

wk p (xi|θ∗k) .

Let us introduce u = (u1, u2, . . . , un) uniform auxiliary

variables such that the joint density of any (xi, ui) is

f (xi, ui) =
∑
k

1(ui < wk) p (xi|θ∗k)

=

∞∑
k=1

wk p (xi|θ∗k)U (ui|0, wk) ,
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where U (·|a, b) denotes the uniform distribution over

[a, b]. The conditional density of xi, given ui, is

f (xi|ui) =
1∑

k 1(ui < wk)

∑
k∈{j:wj>ui}

p (xi|θ∗k) .

Given ui, the number of components in the mixture is

finite. One can complete the model by introducing an

assignment variable ci and considering

f (xi, ui, ci) = 1(ui < wci) p
(
xi|θ∗ci

)
= wci U (ui|0, wci) p

(
xi|θ∗ci

)
.

The full conditionals required to implement this Gibbs

sampler are those of: the slice variables ui, the indica-

tors ci, the components parameters θ∗k and the stick-

breaking weights vk. In the slice sampler of Walker

[Wal07], each of these variables is sampled indepen-

dently and sampling of the vk is quite hard. This was

handled in the efficient version of the slice sampler (”slice

efficient”) proposed in [KGW11]. In this version, the

stick weights and the slice variables are blocked dur-

ing iterations, which, by integrating out slice variables,

dramatically simplifies generation of the weights and re-

sults in a more efficient sampler compared to Walker’s

algorithm. So, we will compare our methods with the

”slice efficient” one. The required full conditionals of

this algorithm are now briefly described.

1. Conditional for ui:

ui ∼ U(ui|0, wci).

2. Conditional for θ∗k:

• for non-empty components, the density of θ∗k is

proportional to

G0(dθ∗j )
∏

{i:ci=j}

p(xi|θ∗j ),

• for empty components, θ∗k ∼ G0.

3. Conditional for wk :

This conditional is given in the truncated blocked

Gibbs sampler of [IJ01] previously described.

4. Conditional for ci:

P(ci = k) ∝ 1(k : wk > ui) p(xi|θ∗k).

To sample from this probability mass function, one needs

to know the exact number of components that are re-

quired at each iteration of the sampler. It is given by

the smallest K such that

K∑
k=1

wk > 1− u∗,

where u∗ = min{u1, . . . , un}.

In this section, we have outlined a marginal and two

conditional methods for inference in Pitman-Yor mix-

ture models. In the following paragraph, the merits and

limitations of each class of algorithms are highlighted.

3.2.3 Advantages and disadvantages of each class

The key advantage of conditional methods using stick-

breaking construction is in updating the random mea-

sure generated by the process as well as parameters

drawn from it. This makes direct inference possible for

this measure. In addition, by construction, they do not

suffer from the issue of conjugacy encountered in marginal

methods. Furthermore, components weights are explic-

itly represented. As a consequence, updating indicator

variables in the allocation step is done without condi-

tioning on the other indicators. This property makes

these algorithms able to update blocks of parameters

and easy to implement in a parallel computer, which is

well suited particularly for large data sets.

On the flip side, by integrating mixture components

out of the model, marginal techniques make the allo-

cation step very sequential since they need to condi-

tion on all previously allocated data. These incremental

updates are prejudicial when working with huge data

sets where computational efficiency is essential. An-

other drawback of marginalizing over the prior is that

computing posterior conditionals require additional sam-

pling steps (see [IJ01]). However, dealing with exchange-

able prediction rules, marginal methods exhibit most of

the time better mixing properties, and our experimental

comparison in section 5 corroborates this assessment.

Another important point is that the random weights

are collapsed by marginalization and this results in a

crucial reduction of the parameters space dimension.

Another aspect pointed out by [PISW06] is that in

conditional methods based on the stick-breaking pro-

cess, the sampler operates in the space of non-exchangeable

cluster labels. Indeed, in this representation, weights

are explicitly defined by the prior and components are

represented with a size-biased ordering over their la-

bels. This means that components with lower labels

have higher prior probabilities than components with

higher labels. As a consequence, components are not

interchangeable and cluster priors labeling contributes

to the posterior sampling. In this situation, the sampler

needs to mix efficiently over clusters labels to avoid any

clustering bias. [PISW06] recommend systematic use

of two additional Metropolis-Hastings moves (”label-

swap” and ”label-permute”) in order to improve mix-

ing over clusters. When working with non-exchangeable

clusters labels, this additional step seems to be the

only way to improve the mixing over clusters (see also
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[Pap08]). In contrast, in marginal methods using Pólya

urn representation, the sampling occurs in the space

of equivalence classes over exchangeable clusters labels

(i ∼ j iff θi = θj) where clusters identities are arbitrary

and insignificant. This is the adequate space to live for

the sampler because cluster labels are irrelevant.

In this context, we propose a conditional algorithm

which is rather different from the others discussed so

far. As opposed to the other conditional methods using

stick-breaking representation, our sampler lives in the

space of equivalence classes over clusters labels. These

labels are then exchangeable and no mix over them is

needed. This property has important consequences on

the algorithm mixing.

4 A new sampling method

Our sampler is an attempt to combine the main ad-

vantages of marginal and conditional algorithms. The

underlying idea is to integrate out the explicit order

of clusters labels like in marginal methods hence col-

lapsing the model to a lower dimensional space while

keeping components weights as done in conditional ap-

proaches. Then, we aim to the following characteristics:

1. Follow a conditional approach by retaining the ran-

dom distribution function generated by the process.

2. Sample in the space of equivalence classes of ex-

changeable clusters to obtain a better mixing chain.

3. Target easy parallel implementation of the alloca-

tion step in order to deal with large data sets.

Our method relies on a result of ([Pit96b], Corol-

lary 20) which expresses the posterior distribution of

limit relative frequencies of atoms in a species sam-

pling model (SSM) based on a two-parameter Pólya urn

(see section 2.3.2). This model ensures exchangeability

of the underlying random partition, characterized by

the symmetry of the exchangeable partition probabil-

ity function (EPPF). The symetric EPPF determines

the distribution of the exchangeable random partition

{1, 2, . . . } whose classes are the equivalence classes for

the random equivalence relation defined by i ∼ j iff

ci = cj . In particular, c1 = 1 implies that A1 contains

all m s.t. cm = c1. This implies that the label j of

any class given by the order of appearance of the jth

species is an arbitrary tag and does not preexist to the

sampling process.

We have seen, in section (2.3.2), that if

H ∼ PY(d, α,G0),

where G0 is a non-atomic probability measure and if we

consider a sample θ1, . . . ,θn from H, then the posterior

of H can be expressed as follows

H|θ1, . . . ,θn
d
=

Kn∑
j=1

wjδθ∗j + rKnHKn , (11)

where

(w1, . . . , wKn , rKn) ∼ Dir(n1 − d, . . . , nKn − d, α+ dKn),

HKn
∼ PY(d, α+ dKn, G0),

and HKn
is independent of (w1, . . . , wKn

, rKn
).

Pitman showed in [Pit96a] equivalence between ex-

changeability of the random partition induced by the

model and symmetry in the law characterizing the lim-

iting frequencies of occupied components given the data.

We can easily check that exchangeability is ensured in

equation (11) since it sums to a Dirichlet distribution

(symmetric) and a rescaled ISBP Pitman-Yor process

(independent of observed data). It is worth mention-

ing that exchangeability is lost when using the usual

conditional updating in the general Sethuraman stick-

breaking representation of Pitman-Yor processes (equa-

tion (2)). Furthermore, in the SSM representation, atoms

correspond to equivalence classes and their labels are

defined in the order of appearance of new species. On

the contrary, labels are explicit in general stick-breaking

approaches and predefined by the prior before any sam-

pling sequence. This property is not necessary and has

the impact of bothering the Gibbs sampler.

4.1 Proposed variants

For sampling the independent infinite process HKn
in

equation (11), we propose two variants. The first makes
use of a thresholded version of the ”slice efficient de-

pendent” of [KGW11]. The second is based on a trun-

cation of the posterior Pitman-Yor mixture, originally

suggested in [IJ01].

4.1.1 Exchangeable Thresholded Slice Sampler

We first propose a slice sampler inspired from [Wal07]

and [KGW11] for sampling the posterior of a Pitman-

Yor mixture process model. The main steps are now

summarized. Let us introduce u = (u1, u2, . . . , un) uni-

form auxiliary variables such that the joint density for

any (xi, ui), given w and Θ∗, is

f (xi, ui) =

∞∑
k=1

wk p (xi|θ∗k)U (ui|0, ξk) , (12)

where ξk is a dependent variable such that for all k,

ξk = min (wk, ζ) , (13)
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with ζ ∈ ]0, 1] and is independent of wk. Here, ζ is

a threshold that we propose in order to improve mix-

ing properties of the sampler compared to [Wal07] and

[KGW11]. The threshold ζ can be a random or deter-

ministic variable. The role of ζ is to ensure that at each

iteration, on average all occupied clusters and at least

a non-occupied one are proposed by the algorithm. For

example, a deterministic typical value of ζ that gives

rise to good trade-off between mixing properties and

computational burden is the mean weight of the first

atom (in size-biased order of HKn) with no data allo-

cated to, which can be expressed in the two-parameter

case as

ζ =
(α+ dEα,d(Kn))(1− d)

(α+ n)(α+ 1)
,

where Eα,d(Kn) =
∑n
i=1

(α+d)i−1↑
(α+1)i−1↑

(with (x)a↑ = Γ (x+

a)/Γ (x)) which can be fairly approximated for suffi-

ciently large n by Eα,d(Kn) ≈ Γ (α+1)
d Γ (α+d)n

d (see [Pit02]).

Using equation (13), we can rewrite equation (12)

as follows:

f (xi, ui) = 1 (ζ > ui) ζ
−1
∑
wk>ζ

wk p (xi|θ∗k)

+
∑
wk≤ζ

1 (wk > ui) p (xi|θ∗k) ,

where both sums are finite since #{j : wj > ε} < ∞,
for all ε > 0. The use of u allows to sample a finite num-

ber K∗ of weights and locations for the unconditional

Pitman-Yor process.

The Gibbs sampler allows to generate variables from

the joint posterior (Θ∗, c,w,u|X), by sampling itera-

tively from each full conditional. As in [KGW11], we

jointly sample w,u|c. The full conditional distributions

involved in the steps of the Gibbs sampler are then:

• p(c|θ∗, w, u),

• p(θ∗|c, w, u),

• p(w, u|c,θ∗) = p(u|w, c,θ∗) p(w|c,θ∗).

We now detail each conditional.

1. Conditional for (w,u) :

We denote by Kn the number of distinct clusters

after n observations and nk the number of observa-

tions belonging to cluster k, for k ≤ Kn. We jointly

sample w,u|c by first sampling w1, w2, . . . , wKn |c,

then sampling u|w1, w2, . . . , wKn
, c, and finally sam-

pling wKn+1, wKn+2, . . . |u. The mains steps are now

given.

– Sample wk for k ≤ Kn,

w1, . . . , wKn
,rKn
|c

∼ Dir (n1 − d, . . . , nKn
− d, α+Kn d) .

– Sample ui|w1, w2, . . . , wKn , c,

ui|w1, w2, . . . , wKn , c
ind.∼ U (ui|0,min (wci , ζ)) .

Set u∗ = min{u1, . . . , un}.
– Sample wk for k > Kn. While rk−1 > u∗,

vk ∼ Beta (1− d, α+ k d) ,

wk = vk rk−1,

rk = rk−1 (1− vk) .

Set K∗ = min ({k : rk < u∗}).

Clearly, wk < u∗ for all k > K∗, that is why we only

have to sample a finite set of wK∗ .

Note that, at each iteration, non-empty clusters are

re-labeled according to their order of appearance in

the sampling. We operate in the space of equiva-

lence classes over non-empty clusters labels which

are thus exchangeable. The stick-breaking prior only

concerns empty clusters for the given iteration of

the Gibbs sampler. As pointed out, this encourages

good mixing over clusters in comparison to the stick-

breaking sampling of [IJ01]. In the same time, the

sampler keeps the random distribution functions.

2. Conditional for c:

As underlined, sampling of classification variables

requires the computation of a normalizing constant

which becomes feasible using auxiliary variables since

the choice of ci is from a finite set:

ci|w,u,Θ∗,X
ind∼

K∗∑
k=1

wk,i δk (·) , (14)

where

wk,i ∝ 1 (wk > ui) max (wk, ζ) fN (xi|θ∗k) ,

and
∑K∗

j=1 wk,i = 1.

Note also that, in order to speed up computations,

it is convenient to sort weights wk, k > Kn in de-

creasing order. By this, we can avoid tests for all

k > κ as soon as wκ < ui.

3. Conditional for Θ∗:

– Updating parameters for non-empty components

from the density proportional to:

G0(dθ∗k)
∏
i:ci=k

p(xi|θ∗k) for all k ≤ Kn.

– Sampling parameters for unallocated components

from their priors:

θ∗k
i.i.d.∼ G0, for Kn < k ≤ K∗.
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The blocked Gibbs sampler structure allows easy im-

plementation of the algorithm on a parallel computer

since, at one iteration, the random distributions are re-

tained for the whole data set.

4.1.2 Exchangeable Truncated Gibbs Sampler

The second variant of the algorithm we propose is an

alternative of the first one. It is still based on the poste-

rior under a Pitman-Yor distribution given in equation

(11). But instead of using the slice sampling strategy

to sample the infinite part of the unconditional process,

one can resort to an approximation by taking a fixed

level L. This truncation eliminates the need of auxiliary

variables. This leads to a truncated Pitman-Yor process

for the independent part of the process. This scheme

was suggested in [IJ01]. We approximate equation (11)

by

Kn∑
j=1

wjδθ∗j + rKn
H∗Kn

,

where H∗Kn
is an almost-sure approximation of HKn ,

i.e a truncation of HKn
at level L. The total number

of represented components is then K∗ = Kn + L. The

main steps are now given.

– Sample classification variables:

(ci|w,u,Θ∗,X)
ind∼

K?∑
k=1

wk,i δk (·) ,

where

wk,i ∝ wk p (xi|θ∗k) and

K∗∑
k=1

wk,i = 1.

– Sample wk for k ≤ Kn:

(w1, w2, . . . , wKn
, rKn

|c) ∼
Dir (n1 − d, n2 − d, . . . , nKn

− d, α+Kn d) .

– Sample wk for Kn < k ≤ K∗:

vk ∼ Beta (1− d, α+ k d) ,

wk = vk rk−1,

rk = rk−1 (1− vk) .

Set wK∗ = rK∗−1 such that vK∗ = 1.

– Sample components parameters using

– the density proportional to

G0(dθ∗k)
∏
i:ci=k

p(xi|θk) (15)

for non-empty components (k ≤ Kn),

– the priors for unallocated components:

θ∗k
i.i.d.∼ G0, for Kn < k ≤ K∗. (16)

5 Comparisons of algorithms

In this section, we evaluate on several data sets the

performance of the samplers described in the previous

sections and our new sampling method. We thus com-

pare these following algorithms:

– algorithm 8 of [Nea00] (”Algo. 8”),

– the slice efficient of [KGW11] (”Slice efficient”),

– the truncated blocked Gibbs sampler of [IJ01] (”Trunc.”),

– the two variants of our sampling scheme using the

exchangeable model (”Slice exch. thres.” and ”Trunc.

exch.”).

We also investigate the gain in the mixing performances

of the algorithms due to the exchangeability property

of the model on one hand, and to the proposed thresh-

old on the other hand. For this reason, we implement

in addition our slice sampler using the exchangeable

model but without the threshold (”Slice exch. without

thres.”) and the slice efficient of [KGW11] (which uses

an non-exchangeable model) with the introduction of

the threshold (”Slice eff. thres.”). Note that the ”Slice

efficient” is referred to as ”Slice efficient dependent”

in [KGW11], in contrast to their independent version

which makes use of a deterministic slice function.

Data specification:

We tested the algorithms with p(·|θ) being a nor-

mal kernel with parameters θ∗ = (µ, σ2) and G0 a

normal-inverse Gamma distribution i.e, G0(µ, σ−2) =

N (µ|η, κ2) ×G(σ−2|γ, β) where G(·|γ, β) denotes the

Gamma distribution with density proportional to xγ−1e−x/β .

For comparison purposes, we considered the same

real and simulated data sets as in [KGW11].

1. The simulated data were generated from the follow-

ing mixtures of Gaussians.

– A bimodal mixture (bimod):

0.5N (−1, 0.52) + 0.5N (1, 0.52).

– An unimodal lepto-kurtic mixture (lepto):

0.67N (0, 1) + 0.33N (0.3, 0.252).

These simulated densities are shown in Fig. 1.

In order to gauge algorithms performance for small

and large data sets, we generated n = 100, n =

1, 000 and n = 10, 000 draws from each of these two

mixtures. 3

2. The real data are Galaxy data, which are the veloc-

ities (in 103 km/s) of 82 distant galaxies diverging

from our own. It is a popular data set in density

3 Results for n = 10, 000 are not shown here.
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Fig. 1 Bimodal (bimod) and unimodal lepto-kurtic
(lepto) mixtures

estimation problems and is also used by [EW95],

[GR01] for instance.

Algorithms performance:

We monitored the convergence of two quantities: the

deviance of the estimated density and the number of

occupied clusters. The deviance is a global function of

all parameters of the model and is defined as

D = −2

n∑
i=1

log

∑
j

nj
n
p(xi|θ∗j )

 ,

where nj is the size of cluster j.

The performance of competing samplers in their sta-

tionary regime was judged by looking at the integrated

autocorrelation time (IAT) for each monitored quantity.

IAT is defined in [Sok97] as,

τ = 1 + 2

∞∑
j=1

ρj ,

where ρj is the sample autocorrelation at lag j. This

quantity is an indicator of mixing behavior of algo-

rithms and measures effectiveness of MCMC samples.

As such, it has also been used by other authors to com-

pare MCMC methods (for example [Nea00], [GR01],

[PR07], [KGW11]). IAT controls the statistical error in

Monte Carlo measurements. In fact, the correlated sam-

ples generated by a Markov chain at equilibrium cause a

variance that is 2τ larger than in independent sampling

[Sok97]. If we denote by τj the integrated autocorrela-

tion time produced by algorithm j for a given quantity,

then τ1/τ2 = k > 1 means that algorithm 1 requires k

more iterations than algorithm 2 to produce the same

Monte Carlo error [PR07]. So, when comparing two al-

ternative Monte Carlo algorithms for the same problem,

the most efficient is the one that produces the smaller

IAT since it provides better estimates.

However, the calculation of IAT is difficult in prac-

tice. Following [Sok97], an estimator of τ can be ob-

tained by summing the estimated autocorrelations up

to a fixed lag L

τ̂ = 1 + 2

L∑
j=1

ρ̂j .

The choice of the cut-off point L is left to the user.

One can also estimate the standard error of τ̂ using

this formula from [Sok97],

std(τ̂) ≈
√

2(2L+ 1)

M
τ2,

where M is the Monte-Carlo size.

Algorithms parametrization:

At first, we set the discount parameter d of the PYM

to zero in order to reduce it to a DPM. The strength

parameter of the PYM, that is now the precision param-

eter of the DPM, was respectively set to α = {1, 0.2, 5}.
Secondly, we investigate the behavior of the competing

algorithms in a power-law case (Pitman-Yor). The val-

ues d = 0.3 and α = 1 were chosen for the PYM.

The hyperparameters are fixed in a data-driven way

according to [GR01] and set as follows: if R is the range

of the data we take η = R/2 (mid-range), κ2 = 1/R2,

γ = 2 and β = 0.02R2.

The blocked Gibbs sampler of [IJ01] was truncated
at level N = 3αlog(n), where n is the data size. This

induces a truncation error that stands for the L1 dis-

tance between the marginal density of the data under

the truncated model and the marginal density under

the full model, (see [IJ01]). The corresponding trunca-

tion errors for the different data sets are reported in the

following table.

Data ε

Galaxy (n = 82) 7.4139e-04

Lepto/bimod (n = 100) 9.0413e-04

Lepto/bimod (n = 1000) 8.2446e-06

We also truncate the second variant we propose (for

sampling the infinite part the unconditional Pitman-

Yor process) at level L = 2αlog(n). The algorithm 8 of

[Nea00] was tested with m = 2 auxiliary components.

We follow the instructions of [Sok97] who recom-

mends running the samplers for a sufficient number of
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iterations. For each of the data sets, we run 2, 000, 000

iterations for each algorithm and discarded the first

200, 000 for the burn-in period. We believe that these

numbers suffice to obtain reliable results.

Results and comments:

We report in Tables 1-5 the results of our compar-

isons in the DPM case with α = 1. The other results

are shown in the appendix.

Each table contains respectively, for each algorithm,

the estimated IAT for the mean number of clusters and

for the deviance, the estimated mean number of clus-

ters and the estimated deviance. Estimated IAT are

obtained by integrating autocorrelation values for each

monitored quantity up to a fixed lag (LD for deviance

and LC for the mean number of clusters). The estimates

of standard errors are put inside parentheses.

By looking at the curves of the estimated densities,

the values of the estimated deviances and the mean

number of clusters, we made sure that all algorithms

perform the estimation correctly and then they can be

assessed through their mixing performance.

In the overall experiments, it turns out that:

– As expected, algorithm 8 performs better than all

conditional algorithms since it works in an uniden-

tifiable allocation structure. Furthermore, integrat-

ing out the mixture components speeds up the con-

vergence because the dimensionality of the space is

drastically reduced. One can refer to [PR07] and

[PISW06] for more details about why conditional

approaches are outperformed by marginals.

– On the other hand, the two variants of our method

are superior to all other competitors in conditional

algorithms, thanks to exchangeability in the model

and the introduction of the threshold we propose.

The ”Slice efficient” gives the worst performance.

We believe that the poor-mixing due to non-exchangeabi-

lity in the posterior stick-breaking representation is em-

phasized by the lack of the weights in slice samplers.

This could often hinder the Gibbs sampler in the allo-

cation step, for changing an observation from a com-

ponent associated with a few observations to a compo-

nent associated with many. Introducing our threshold

would facilitate this change. To validate this conjec-

ture, we have experimented the effect of the threshold in

the ”Slice efficient”. This algorithm is referred as ”Slice

eff. thres.” Furthermore, the threshold makes little dif-

ference between the thresholded slice efficient (”Slice

eff. thres.) and the truncated blocked Gibbs sampler

(Trunc.). This later considers the weights of the mix-

ture components when updating classification variables.

On the flip side, removing the threshold in our sam-

pler (”Slice exch. without thres.”) increases the IAT.

It was noted on all data sets that the threshold glob-

ally decreases the autocorrelation fast in the first lags.

However, it slightly increases the computation time per

iteration. We underline that all algorithms have been

implemented without any parallelization. All of them,

excluding ”Algo. 8”, may be easily parallelized.

We now turn our attention to the benefits we reap

thanks to the exchangeability property of the model.

This is notable in differences between ”Slice exch. thres.”

and ”Slice eff. thres.” and in differences between ”Trunc.

exch.” and ”Trunc.”. We also notice on the curves that

the autocorrelations obtained by ”Slice exch. without

thres.” decrease and reach zero faster than in algo-

rithms using non-exchangeable models (”Trunc.”, ”Slice

eff. thres” and ”Slice efficient”). This behavior was ob-

served on all data sets.

It is worth noting that the two variants of our al-

gorithms and algorithm 8 of [Nea00] were stable in

all experiments: for various simulations, we always ob-

tained the same results in each data set and in each

size of data. On the contrary, the algorithms using non-

exchangeable models ([IJ01] and [KGW11]) did not al-

ways give the same results. We also observed erratic

convergence behavior of the Gibbs sampler in these two

algorithms, particularly for large data sets (for example

lepto with n = 10, 000).
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In the following tables, n stands for the data set

length, LD and LC are respectively the number of au-

tocorrelation lags for deviance and for the clusters num-

ber. Values inside parentheses correspond to standard

deviations of estimates.

Table 1 Galaxy data n = 82, LD = 150, LC = 300.

IAT for #
clusters

IAT for
deviance

Estimated
# clusters

Estimated de-
viance

Slice exch.
thres.

14.48(0.37) 2.88(0.05) 3.986(0.93) 1561.14(21.61)

Trunc. exch. 14.42(0.37) 2.94(0.05) 3.989(0.93) 1561.16(21.69)

Slice exch.
without thres.

35.52(0.92) 4.77(0.09) 3.989(0.93) 1561.15(21.61)

Trunc. 38.65(1.00) 3.63(0.07) 3.996(0.94) 1561.15(21.66)

Slice efficient 60.65(1.57) 5.28(0.10) 3.991(0.93) 1561.15(21.62)

Slice eff.
thres.

37.82(0.98) 3.61(0.07) 3.986(0.93) 1561.08(22.17)

Algo 8 (m =
2)

8.25(0.21) 2.57(0.05) 3.987(0.93) 1561.16(21.62)

Table 2 Bimod data n = 100, LD = 150, LC = 300.

IAT for #
clusters

IAT for
deviance

Estimated
# clusters

Estimated de-
viance

Slice exch.
thres.

28.76(0.74) 5.85(0.11) 3.801(1.66) 287.59(8.46)

Trunc. exch. 28.51(0.74) 6.00(0.11) 3.808(1.67) 287.58(8.48)

Slice exch.
without thres.

70.56(1.82) 9.54(0.17) 3.799(1.67) 287.58(8.43)

Trunc. 54.38(1.40) 5.89(0.11) 3.789(1.66) 287.58(8.42)

Slice efficient 99.92(2.58) 8.76(0.16) 3.784(1.65) 287.58(8.42)

Slice eff.
thres.

55.41(1.43) 5.65(0.10) 3.794(1.66) 287.61(8.58)

Algo 8 (m =
2)

15.59(0.40) 5.20(0.09) 3.794(1.66) 287.59(8.52)
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Table 3 Bimod data n = 1000, LD = 150, LC = 800.

IAT for #
clusters

IAT for
deviance

Estimated
# clusters

Estimated
deviance

Slice exch.
thres.

93.28(3.93) 3.65(0.07) 3.806(1.73) 2735.14(8.66)

Trunc. exch. 91.20(3.85) 3.69(0.07) 3.795(1.72) 2735.14(8.66)

Slice exch.
without thres.

228.64(9.64) 5.44(0.10) 3.809(1.73) 2735.15(8.67)

Trunc. 156.27(6.60) 3.71(0.07) 3.777(1.71) 2735.13(8.62)

Slice efficient 257.25(10.85) 5.13(0.09) 3.766(1.68) 2735.12(8.61)

Slice eff.
thres.

150.13(6.33) 3.81(0.07) 3.798(1.71) 2735.15(8.72)

Algo 8 (m =
2)

47.25(1.99) 3.06(0.06) 3.798(1.72) 2735.14(8.65)

Table 4 Lepto data n = 100, LD = 200, LC = 500.

IAT for #
clusters

IAT for
deviance

Estimated
# clusters

Estimated de-
viance

Slice exch.
thres.

25.61(0.85) 13.53(0.29) 3.991(1.64) 239.74(11.38)

Trunc. exch. 24.78(0.83) 13.46(0.28) 3.983(1.63) 239.75(11.31)

Slice exch.
without
thres.

90.56(3.02) 42.74(0.90) 3.991(1.63) 239.73(11.26)

Trunc. 41.22(1.37) 17.03(0.36) 4.001(1.64) 239.72(11.31)

Slice effi-
cient

120.71(4.03) 46.28(0.98) 3.979(1.64) 239.77(11.29)

Slice eff.
thres.

44.73(1.49) 16.98(0.36) 3.989(1.64) 239.77(11.82)

Algo 8 (m =
2)

14.79(0.49) 9.83(0.28) 3.994(1.63) 239.72(11.36)

Table 5 Lepto data n = 1000, LD = 150, LC = 800.

IAT for #
clusters

IAT for
deviance

Estimated
# clusters

Estimated de-
viance

Slice exch.
thres.

235.49(9.93) 13.17(0.24) 4.006(2.05) 2400.51(18.68)

Trunc. exch. 237.70(10.02) 13.66(0.25) 4.022(2.08) 2400.48(18.72)

Slice exch.
without thres.

462.09(19.49) 18.75(0.34) 3.973(1.99) 2400.53(18.73)

Trunc. 294.24(12.41) 12.67(0.23) 3.958(2.01) 2400.47(18.49)

Slice efficient 472.95(19.95) 16.91(0.31) 3.864(1.92) 2400.45(18.26)

Slice eff.
thres.

302.50(12.76) 13.80(0.25) 3.978(2.07) 2400.53(18.93)

Algo 8 (m =
2)

148.81(6.28) 11.55(0.21) 4.018(2.07) 2400.48(18.69)
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6 Conclusion

When models become more and more complex, the poor

mixing of a MCMC algorithm can be inhibiting. There-

fore, it is important to develop models that allow to im-

prove mixing while experimenting strategies to reduce

the computational cost.

In order to satisfy the constraint of efficient paral-

lelization ability while maintaining mixing properties

closed to Pólya urn approach, we developed two vari-

ants of a new scheme for sampling the posterior of

Pitman-Yor type mixture models. We attempted to com-

bine blocking properties of conditional approaches which

retain the random distribution in sampling, and ex-

changeability of the model which is maintained in Pólya

urn based algorithms. The resulting algorithms pro-

vide interesting mixing behavior. A difference between

the two proposed variants is that for the truncated

version (”Trunc. exch.”), the fixed length of approx-

imation has to be decided before effective sampling.

This is most of the time not a crux for Dirichlet pro-

cesses, but for the two-parameter case the fixed approx-

imation may give rise to biased estimates for moder-

ate truncation lengths. For large lengths, the compu-

tational burden is emphasized especially for large data

sets. The exchangeable thresholded slice version (”Slice

exch. thres.”) achieves adaptive truncation at each iter-

ation and maintain nice trade-off between IAT and time

cost. This variant gives then rise to convenient trade-off

between IAT and computation time while avoiding any

hard truncation.

On one hand, our samplers are developed for Pitman-

Yor mixture models and are then applicable to Dirichlet

process mixture models. On the other hand, since the

introduction of the proposed threshold in the ”Slice ef-

ficient” of [KGW11] improves its mixing property, the

algorithm ”Slice eff. thres” could be useful for mixtures

based on more general stick-breaking processes other

than Dirichlet process and Pitman-Yor process. In this

case, an interesting perspective could be to introduce

also mixing moves over clusters labels as suggested in

[PISW06] and [PR07]. As mentioned, the ordering of

clusters labels matters in the stick-breaking represen-

tation. A step of labels permutation could result in a

better mixing chain.

In our experimental study, it appeared that particu-

larly for the two-parameter class, standard conditional

algorithms may present unexpected biased results. This

drawback is reinforced for large data sets. On the other

hand, Pólya urn based algorithms and our proposed

sampling schemes exhibit stable behavior in all situa-

tions.
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Appendix

A-RESULTS FOR d = 0 AND α = 5

Table 6 Galaxy data n = 82, LD = 150, LC = 300.

IAT for #
clusters

IAT for
deviance

Estimated
# clusters

Estimated de-
viance

Slice exch.
thres.

10.73(0.28) 2.80(0.05) 7.082(3.32) 1563.10(23.55)

Trunc. exch. 10.11(0.26) 2.81(0.05) 7.084(3.31) 1563.10(23.54)

Slice exch.
without thres.

26.32(0.68) 4.13(0.07) 7.085(3.32) 1563.10(23.53)

Trunc. 19.51(0.50) 3.45(0.06) 7.079(3.32) 1563.10(23.57)

Slice efficient 38.75(1.00) 4.96(0.09) 7.085(3.31) 1563.11(23.59)

Slice eff.
thres.

19.75(0.51) 3.32(0.06) 7.057(3.31) 1563.33(25.34)

Algo 8 (m =
2)

6.16(0.16) 2.35(0.04) 7.084(3.31) 1563.10(23.56)

Table 7 Bimod data n = 100, LD = 150, LC = 300.

IAT for #
clusters

IAT for
deviance

Estimated
# clusters

Estimated de-
viance

Slice exch.
thres.

14.24(0.37) 2.35(0.04) 8.886(5.41) 283.18(8.98)

Trunc. exch. 13.74(0.35) 2.33(0.04) 8.880(5.38) 283.17(8.97)

Slice exch.
without thres.

34.31(0.89) 3.30(0.06) 8.884(5.40) 283.17(8.95)

Trunc. 23.22(0.60) 2.67(0.05) 8.883(5.41) 283.18(9.00)

Slice efficient 45.67(1.18) 3.58(0.06) 8.891(5.38) 283.18(8.97)

Slice eff.
thres.

23.60(0.61) 2.38(0.04) 8.877(5.39) 283.56(9.98)

Algo 8 (m =
2)

8.56(0.22) 2.01(0.04) 8.888(5.42) 283.18(8.98)

Table 8 Bimod data n = 1000, LD = 150, LC = 800.

IAT for #
clusters

IAT for
deviance

Estimated
# clusters

Estimated de-
viance

Slice exch.
thres.

81.36(3.43) 6.90(0.13) 9.889(7.26) 2741.07(12.05)

Trunc. exch. 81.07(3.42) 6.81(0.12) 9.956(7.35) 2741.08(12.05)

Slice exch.
without thres.

200.17(8.44) 12.37(0.23) 9.913(7.29) 2741.08(12.07)

Trunc. 135.98(5.73) 7.35(0.13) 9.958(7.34) 2741.08(12.09)

Slice efficient 256.71(10.83) 12.85(0.23) 9.962(7.40) 2741.09(12.06)

Slice eff.
thres.

130.61(5.51) 6.92(0.13) 9.867(7.30) 2741.43(12.70)

Algo 8 (m =
2)

42.85(1.81) 5.35(0.10) 9.928(7.36) 2741.08(12.03)
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Table 9 Lepto data n = 100, LD = 200, LC = 500.

IAT for #
clusters

IAT for
deviance

Estimated
# clusters

Estimated de-
viance

Slice exch.
thres.

11.12(0.37) 14.26(0.30) 9.004(4.74) 257.17(21.70)

Trunc. exch. 11.84(0.39) 14.34(0.30) 8.988(4.75) 257.19(21.89)

Slice exch.
without thres.

27.06(0.90) 30.15(0.64) 8.999(4.74) 257.15(21.64)

Trunc. 17.79(0.59) 15.96(0.34) 9.011(4.75) 257.16(21.69)

Slice efficient 37.12(1.24) 33.49(0.71) 9.009(4.74) 257.18(21.67)

Slice eff.
thres.

17.47(0.58) 15.16(0.32) 9.002(4.76) 257.56(23.14)

Algo 8 (m =
2)

6.95(0.23) 11.43(0.24) 8.999(4.73) 257.18(21.66)

Table 10 Lepto data n = 1000, LD = 150, LC = 800.

IAT for #
clusters

IAT for
deviance

Estimated
# clusters

Estimated de-
viance

Slice exch.
thres.

90.94(3.84) 15.81(0.29) 11.121(7.69) 2354.96(19.51)

Trunc. exch. 90.68(3.82) 15.72(0.29) 11.127(7.64) 2354.95(19.59)

Slice exch.
without thres.

216.32(9.12) 25.05(0.46) 11.082(7.67) 2354.91(19.34)

Trunc. 145.95(6.16) 17.40(0.32) 11.080(7.70) 2354.98(19.60)

Slice efficient 254.45(10.73) 27.28(0.50) 11.196(7.65) 2354.90(19.60)

Slice eff.
thres.

133.89(5.65) 15.62(0.29) 11.148(7.65) 2355.27(20.19)

Algo 8 (m =
2)

50.75(2.14) 13.13(0.24) 11.098(7.69) 2354.94(19.48)
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B- RESULTS FOR d = 0.3 AND α = 1

Table 11 Galaxy data n = 82, LD = 150, LC = 300.

IAT for #
clusters

IAT for
deviance

Estimated
# clusters

Estimated de-
viance

Slice exch.
thres.

10.56(0.27) 2.84(0.05) 4.867(2.13) 1561.67(21.84)

Trunc. exch. 9.81(0.25) 2.79(0.05) 4.716(1.77) 1561.61(21.93)

Slice exch.
without thres.

27.22(0.70) 4.57(0.08) 4.868(2.13) 1561.66(21.83)

Trunc. 29.20(0.75) 3.65(0.07) 4.932(1.97) 1561.73(21.94)

Slice efficient 44.65(1.15) 5.43(0.10) 4.872(2.13) 1561.66(21.82)

Slice eff.
thres.

24.95(0.64) 3.72(0.07) 4.858(2.11) 1561.79(23.21)

Algo 8 (m =
2)

5.79(0.15) 2.37(0.04) 4.869(2.13) 1561.66(21.89)

Table 12 Bimod data n = 100, LD = 150, LC = 300.

IAT for #
clusters

IAT for
deviance

Estimated
# clusters

Estimated de-
viance

Slice exch.
thres.

25.77(0.67) 7.75(0.14) 4.726(3.42) 267.96(9.97)

Trunc. exch. 26.47(0.68) 7.97(0.15) 4.650(3.06) 267.93(9.99)

Slice exch.
without thres.

67.54(1.74) 14.84(0.27) 4.715(3.42) 267.96(9.92)

Trunc. 71.53(1.85) 9.88(0.18) 5.067(3.93) 267.87(10.00)

Slice efficient 97.86(2.53) 16.35(0.30) 4.743(3.42) 267.95(10.05)

Slice eff.
thres.

56.18(1.45) 9.74(0.18) 4.710(3.42) 268.18(10.50)

Algo 8 (m =
2)

14.27(0.37) 5.79(0.11) 4.720(3.40) 267.95(9.99)

Table 13 Bimod data n = 1000, LD = 150, LC = 800.

IAT for #
clusters

IAT for
deviance

Estimated
# clusters

Estimated de-
viance

Slice exch.
thres.

42.74(1.80) 2.60(0.05) 4.427(3.21) 2646.88(9.02)

Trunc. exch. 46.05(1.94) 2.54(0.05) 4.401(3.05) 2646.88(9.01)

Slice exch.
without thres.

180.18(7.60) 5.86(0.11) 4.426(3.24) 2646.88(8.99)

Trunc. 89.45(3.77) 2.82(0.05) 4.525(3.38) 2646.89(9.05)

Slice efficient 200.64(8.46) 6.23(0.11) 4.446(3.21) 2646.88(9.03)

Slice eff.
thres.

77.30(3.26) 2.70(0.05) 4.409(3.18) 2647.10(9.45)

Algo 8 (m =
2)

22.80(0.96) 2.15(0.04) 4.425(3.18) 2646.88(8.99)
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Table 14 Lepto data n = 100, LD = 200, LC = 500.

IAT for #
clusters

IAT for
deviance

Estimated
# clusters

Estimated de-
viance

Slice exch.
thres.

47.85(1.60) 27.00(0.57) 3.719(3.70) 223.92(8.55)

Trunc. exch. 50.04(1.67) 26.91(0.57) 3.674(3.39) 223.86(8.61)

Slice exch.
without thres.

188.12(6.27) 70.11(1.48) 3.709(3.69) 223.94(8.50)

Trunc. 93.37(3.11) 35.96(0.76) 3.955(4.18) 223.78(8.75)

Slice efficient 224.68(7.49) 74.51(1.57) 3.696(3.68) 223.94(8.49)

Slice eff.
thres.

85.39(2.85) 31.98(0.67) 3.732(3.73) 224.05(9.08)

Algo 8 (m =
2)

27.28(0.91) 17.83(0.38) 3.720(3.71) 223.92(8.55)

Table 15 Lepto data n = 1000, LD = 200, LC = 1000.

IAT for #
clusters

IAT for
deviance

Estimated
# clusters

Estimated de-
viance

Slice exch.
thres.

156.21(7.37) 13.56(0.29) 4.255(3.22) 2371.35(16.11)

Trunc. exch. 167.13(7.88) 13.08(0.28) 4.247(3.13) 2371.34(16.03)

Slice exch.
without thres.

341.73(16.11) 18.15(0.38) 4.252(3.18) 2371.34(15.97)

Trunc. 270.51(12.75) 17.04(0.36) 4.387(3.62) 2371.52(16.49)

Slice efficient 422.09(19.90) 20.47(0.43) 4.291(3.30) 2371.50(16.53)

Slice eff.
thres.

217.35(10.25) 13.66(0.29) 4.226(3.19) 2371.54(16.60)

Algo 8 (m =
2)

96.90(4.57) 10.90(0.23) 4.242(3.22) 2371.34(15.98)
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