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Abstract. Longitudinal measures of brain volume are powerful tools to assess 
the anatomical changes underlying on-going neurodegenerative processes. In 
different neurological disorders, such as in multiple sclerosis, Alzheimer’s dis-
ease and Parkinson’s disease, the neurodegenerative aspect may result in subtle 
anatomical brain changes before the appearance of clinical symptoms. Large 
longitudinal brain imaging datasets are now accessible to investigate such struc-
tural changes over time and to evaluate their use as biomarkers of prodromal 
disease. However, manual segmentation is long and tedious and although auto-
matic methods exist, they are often performed in a cross-sectional manner 
where each visit is analysed independently. With such analysis methods, bias, 
error and longitudinal noise may be introduced. MR scanner noise and physio-
logical effects can also introduce additional variability. Therefore, we devel-
oped a specific pipeline for longitudinal brain image analysis. To avoid any 
bias, an individual subject template is created and used as a reference within the 
pipeline. Then, the pair-wise deformation fields of each visit to the individual 
template are used to estimate the variation between individual time-points.  

1 Introduction 

Longitudinal measures of brain volumetry are powerful tools to assess the 
anatomical changes underlying on-going neurodegenerative processes. In different 
neurological disorders, such as multiple sclerosis (MS), Alzheimer’s disease (AD) 
and Parkinson’s disease (PD), brain atrophy has been shown to be a good surrogate 
marker of disease progression [1-3]. Magnetic resonance imaging (MRI) can provide 
reproducible 3D structural images of the brain, which can be used to assess its 
integrity. Furthermore, the emergence of freely available longitudinal MRI databases, 
(e.g., ADNI [4], OASIS [5]) provide the necessary data to develop and test new 
methods and investigate the longitudinal structural changes of healthy and 
pathological brains. 

MRI-based neuro-anatomical studies are often performed in a cross-sectional 
manner where each time-point is evaluated independently. Typically, brain 
morphometry comparison can be done by matching paired images (template-to-



subject or subject-to-subject), where the deformation field is used to map atlas regions 
for ROI analysis,  or for voxel-wise comparisons of anatomical changes such as 
deformation-based morphometry (DBM), or by segmenting anatomical structures 
from each individual visit independently. However, in the context of longitudinal 
datasets, the robust estimation of anatomical changes is still challenging [6].  

Different approaches have been proposed to overcome the complexity of 
anatomical longitudinal data image analysis. In the context of clinical evaluation over 
a few years where anatomical changes are small and continuous, the use of 3D 
individual template targets have been proposed to perform non-linear registration [7]. 
Indeed, to compare anatomical differences, 3D population templates have proven 
their importance for different applications such as mapping (function, structure, 
vasculature, etc) [8], volume estimation [9] and group comparisons [10]. While 
different techniques exist to create unbiased population templates for cross-sectional 
studies [11-12], few of these techniques have applied for the creation of an individual 
subject 3D template. Reuter et al. created a 3D template for longitudinal analysis by 
computing the median of the rigidly registered subject images [7].  

In this article, we propose a method to create an unbiased individual template from 
non-linear registration of the subject's visits. The method is evaluated using 
segmentations of the brain: lateral ventricles and hippocampi obtained by non-linear 
matching of the individual template to a population-specific template (i.e., an AD 
template), followed by a non-local patch-based segmentation technique. Inspired by 
the non-local means technique proposed by Buades et al. [13], the non-local patch-
based segmentation uses the redundancy of similar regions from different subjects to 
identify and label corresponding local structure. This segmentation approach is 
inspired by the work of Coupe et al. [14], Eskildsen et al. [15] and Fonov et al [16]. 

2 Method 

The pipeline developed in the context of longitudinal MRI segmentation consists 
of two parts (Fig. 1).  In summary, the first steps of the pipeline are performed cross-
sectionally (CS) or independently for each of the subject visits. Then the pre-
processed data goes through a subject-specific pipeline which considers the subject 
visits as an ensemble to generate the unbiased individual template for the subject i 
first using linear registration to build a subject-specific linear template (SL) and then 
using non-linear registration to build a subject-specific non-linear template (SNL).  
The method is detailed in the following sections.  

 



 
Fig. 1. Longitudinal pipeline. The different steps performed on each subject visits are 
represented in the left part of the diagram, where the processes in the left small square 
represents the cross-sectional (CS) part of the pipeline. The subject template creation (linear 
and non-linear) is represented in the right side of the figure. 

2.1 Cross-sectional pre-processing 

MRI denoising: to improve the performance of the pipeline, the redundancy of the 
image is used to remove the noise introduce during the MRI acquisition. The standard 
deviation of the MRI Rician noise is estimated automatically following [17] 

Intensity non-uniformity correction and normalization: a non-parametric 
estimation of the slow varying non-uniformity field corrects the intensity 
inhomogeneity produce by scanner radio-frequency coil variations [18]. In addition, 
linear histogram matching is performed between each subject and a reference image 
(AD template) to normalize the image intensities between subjects/scans to a range 
between 0.0 and 100.0. 



Stereotaxic space: to correct for variation in head position and orientation but to 
preserve the subject head size, an initial linear rigid registration (translation and 
rotation) is computed to bring each subject into the ICBM152 template stereotaxic 
space [19]. 

2.2 Subject specific pipeline 

Individual template creation: The subject-specific template is based on the work of 
Guimond et al. and Fonov et al. [11-12, 20]. The template is created in two steps, first 
using linear registration and second, using non-linear registration: 

─ For each subject i, and each visit j, a hierarchical nine-parameter linear registration, 
based on an intensity cross-correlation similarity measure, is performed between 
the volume Vi,jstx and the current linear template SLi [19] and the first visit is used 
an initial target.  

─ Removal of the average transformation  for each subject transformation ( ) 

to remove bias ( ). 

─ The new individual template is obtained by averaging each visit with their 
respective corrected transformations ( ). 

─ To improve the inter-visit intensity inhomogeneity, at each iteration we compute 
the residual inhomogeneity field [18] of the difference image between the 
resampled visit and the subject template.  

After creation of SLi, the subject-specific linear template, the non-linear subject-
specific template SNLi is computed with a similar approach, but using non-linear 
registration, ANIMAL [9] (Fig. 1). The template SLi is used as the target for the first 
iteration and the details of the hierarchical schedule is summarized in Table 1. 
 

Iteration Step size (mm) 
Blurring kernel 

(mm) 
Neighbourhood size 

(mm) 
Local iterations 

1-2 32 16 96 20 
3-4 16 8 48 20 
5-6 8 4 24 20 
7-8 4 2 12 10 

8-12 2 1 6 10 

Table 1. ANIMAL non-linear registration schedule. For each iterations, we define a step size as 
the distance between control nodes for the free-form deformation recovered. The blurring ker-
nel is the size of the full-width-half-maximum of the Gaussian kernel used to blur the source 
and target data. The local correlation which define the local similarity is estimated in the neigh-
boorhood of diameter equals to the neighboorhood size parameter. 

 



Template segmentation and propagation: The longitudinal pipeline applies the 
proposed methods of patch-based segmentation proposed initially by Coupé et al. [14] 
for hippocampus. then proposed for ventricles by Fonov et al. [16] and the whole 
brain by Eskildsen et al. [15]. In summery, based on the similarity of each patch of 
the SNLi and its surrounding patches, to all patches of the library in a certain search 
volume, a label is attributed to the considered voxel. Experts manually segmented the 
different regions considered, however different cohorts were chosen therefore each 
segmentation is performed independently. 
 
Once the SNLi template is segmented, the non-linear deformations for each visit used 
to create the subject-specific template are then applied to transform the segmentations 
to each visit Vi,j for the subject (Fig. 2).  

 

 
Fig. 2. Lateral ventricles, hippocampi and brain patch-based segmentation. The subject non-
linear template is warpped into the ICBM template space to perform a non-local segmentation 
of the lateral ventricles, hippocampi and brain. The patch-based approach consists in finding 
the most similar voxels in a given neighbourhood of the T1W image library and then fuses the 
corresponding labels to create the segmentation of the different structures. 



2.3 Data  

The NIBAD challenge longitudinal data consists of T1W images (1.5x0.9375, 
0.9375mm3, 1.5T MRI scanner) of 46 patients with AD and 23 age-match controls 
scanned at 0, 2, 6, 12, 26, 38 and 52 weeks. 

3 Results 

Without a gold standard provided for the NIBAD challenge, it is impossible to 
measure the accuracy and precision of the proposed pipeline. However, the patch-
based technique for anatomical region segmentation has been shown to yield good 
results compare to the state of the art. Figure 3 is a random selection of 5 subject non-
linear templates with their corresponding brain, ventricles and hippocampi mask 
before propagation to the subject visits. 

 
Fig. 3. Individual non-linear template brain, ventricles and hippocampi 

segmentation for subjects 188, 192, 193, 230 and 249. 

4 Discussion and conclusion 

The proposed pipeline with individual template creation in the context of longitu-
dinal analysis provides accurate segmentation of brain, ventricles and hippocampi. 
Despite the lack of temporal information, the pipeline treats the ensemble of subjects 
first independently before creating a robust individual 3D template for segmentation, 
and therefore avoiding non-symmetric and/or non-transitive errors. 

The patch-based technique for segmentation presents the advantage of being accu-
rate and also it can produce multiple segmentations at once, if the pre-labeled library 
used as references contains more than one labeled structure. While the segmentation 
library used here has been created from different cohorts of subjects (e.g., ADNI, 



ICBM, etc…), visual quality control of the NIBAD challenge data confirmed the 
accuracy of the segmentations.  

In conclusion, our pipeline fulfills the requirements for the NIBAD challenge by 
providing brain, ventricles and hippocampi volumes and atrophies. All the longitudi-
nal data completed the pipeline, including subjects with less conventional head posi-
tioning and poor quality acquisitions. If temporal information was provide, more so-
phisticated longitudinal regularization could improve the results by correcting for 
physiological, scanner physical variability, motion artifacts. 
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