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Abstract. In this paper, we propose a normative Multi-Agent System to handle

uncertainty in a monitoring application. It is based on the assertion that no single

most-likely situation should be considered, thus requiring the management of mul-

tiple concurrent hypotheses. A decision is then made by comparing these hypoth-

esized situations to requirements and expectations, thus detecting potential prob-

lems. This system uses a large knowledge base of interconnected situation models

on several levels of abstraction. It is centered around the need to constantly recon-

sider which hypotheses should be evaluated, with regards to both the current data

from the sensors and wider requirements in terms of efficiency and specific focus

from an expected scenario. We propose both a generic concept, and a more specific

system for human health monitoring, using ambulatory physiological sensors.

Keywords. Multi-agent systems, Knowledge-based Information Systems, AI and

Medicine, Hypothetical Reasoning, Hybrid Normative Systems

Introduction

Monitoring human activity implies addressing two main issues: taking into account the

influence of context, and the paucity of input data, which can take the form of noise,

ambiguity, or model variability. We consider this context as a combination of the envi-

ronment (physical level), the temporal succession of situations (data level), and a set of

requirements and expectations (interpretation level). This paper describes a Multi-Agent

System which aims at handling these issues, both in a generic manner and in the specific

case of monitoring a person’s health using ambulatory, physiological sensors.

It is based on the Superco project of the French DGA (Defense Procurement

Agency), which consists in a soldier wearing a monitoring device on the battlefield, to

provide real-time, personalized information about his or her health and mission-readiness

to the commanders. This means that the available data are limited to what light, wear-

able, unobtrusive sensors can provide. These data are then processed and interpreted in

various ways, to fit the commander’s informative needs: here, generating alerts when a

potentially-worrying situation is detected.

The paradigm of Multi-Agent Systems allows for multiple, heterogeneous entities

to be handled through a unified communication/cooperation frame. The heterogeneity of

agents is considered as a requirement, to encompass the variety of situations a person

can find herself in; a large knowledge base of interconnected situation models can thus



be explored, as a dynamic population of multiple hypotheses on several levels of ab-

straction. These hypotheses are compared to the successive sets of sensor data over time,

with transition mechanisms to handle the need to change the currently-studied hypothe-

ses when the input data changes. They are then interpreted, to decide whether to raise

alarms or not. Hypothesis management, as a whole, is performed within a frame of high-

level requirements regarding efficiency, efficacy and adequacy of the system behaviour.

A normative multi-agent architecture [6] is proposed to model these requirements and

adapt them dynamically as new situations arise.

It is considered as a given that a large number of situation hypotheses must not be

evaluated at all times: because of computational cost, and more importantly, to ensure

the usability of results: considering ambiguous data (and models), too large a number of

hypotheses would be considered likely, thus reducing the quantity of information each

one holds. The hypotheses must be chosen and evaluated in light of a scenario, a path

of successively-studied hypotheses, much like a word must be understood as part of a

sentence and holds no assertive meaning on its own.

The context is prone to evolve, in terms of data and requirements: sensemaking is

dynamically built as a match between captured data and elaborated expectations, in a

framework of evolving requirements [20]. Adaptive control is therefore needed, which

is the strength of a normative system such as this paper proposes: on one hand, the

high-level (end-user) requirements can be dynamically updated, and on the other hand,

operational rules adapt the parameters to the changing needs of the sensor data.

In light of this, we discuss, in this paper, some experimental results in the recogni-

tion of Activities of Daily Life (ADL), with the purpose of examplifying the proposed

system’s expressiveness, dynamics and regulation potential. The goal is then to detect

discrepancies between hypothesized situation(s) and expectations, rather than trying to

detect a single most-likely situation.

1. State of the Art

Monitoring Human Activity is known to be a complex task, whichever sensors, envi-

ronments or goals are being considered. This is due to constraints on the available data,

which are both noisy and ambiguous [21], but also to the fact that some crucial elements

are not quantifiable or measurable via sensors [19]. In addition, the recognition process

must draw on some a-priori knowledge about the objects at hand, since the way an object

is “looked at” depends on what this object is expected to be [9]. Thus must all monitoring

applications take the widely-studied context into account. This context is often hypoth-

esized rather than sensed, which means that the interpreted situations carry more infor-

mation than the sensors can account for. Such loosely-focused has a very wide spectrum

of possible scenarios to choose from, which implies choices about which situations to

consider (what to try and perceive).

In return, evaluating a situation model can result in feedback about the context. Ac-

tivity recognition must therefore be seen as a constant loop of perception and choices

about how to perceive.

Reasoning with multiple, concurrent hypotheses is a way to reflect the data’s uncer-

tainty, and the weight of the unobservable context. These hypotheses are based on hetero-

geneous data models which represent both stable situations and transitory periods. These

can either be learned offline (as a-priori knowledge), as in Model-Based detection [8], or

built online as exploratory learning [9]. Data-driven methods are used for the latter, often



based on Hidden Markov Models [1], but with a requirement for human expert annota-

tion [11]. In the specific case of human health, robust and proven models must be used

from the start, as no expert annotation would be available on-line. Learning these models

is thus out of this paper’s scope: the knowledge base is considered known, and large (but

cannot be exhaustive [17], as Human Activity is a very wide-scoped concept). The goal

is then to navigate this knowledge base, to choose which hypotheses to evaluate.

A common comparison framework is necessary to handle these multiple, heteroge-

neous and autonomous hypotheses. Context Spaces are used in [18], in which degrees

of support for hypotheses are computed via abductive inference). Confidence values are

computed in [22], with associated cross entropy for overall correctness. The resulting

confidence value reflects the amount of contradiction, if any, between model and data.

Monitoring human activity does not boil down to considering constraints from the

realm of data. As a decision-making process, it has to meet the expectations of the social

body in charge of this monitoring. Through analytical modeling [10], these requirements

must be considered in addition to notions such as effectiveness, efficiency and adequacy

of results (which is linked to entropy: the quantity of usable information). This calls for

a hybrid system mixing bio-physical laws of the human body with the human organi-

zation’s frames. Decision frames in such systems are to be modelled at several levels

[25]: local frames suited to the entities’ routine, and larger, global frames to ensure the

compliance of the system as a whole, to institutional norms as functional requirements

and goals [5]. This implies the decomposition of the global problem into smaller, more

manageable phenomena [2], inside a contextual frame which provides, on higher levels

of abstraction, disambiguation for the levels closest to the strongly-focused data models.

[24], [23] and [7] propose such decompositions of human activity.

Normative MAS are a class of Multi-Agent Systems in which declarative, rule-based

coordination components (called Filters [4]) allow the modelisation of various kinds

of norms. These filters provide a dynamic, adaptive frame supporting complex control

strategies, promoted for long by many authors [16] [12] [15]. They allow to separate the

a-priori knowledge (the data models) and the algorithms (the enforcement of norms),

thus complying with the guidelines to designing a monitoring platform defined in [3].

This makes for a complex decision paradigm, where the goal is no longer to rec-

ognize specific events but rather to detect discrepancies between observations and ex-

pectations: sensemaking is not a state of knowledge [13], but rather a process of fitting

data into a frame that is continuously replaced and adapted to fit the data. The proposed

architecture is a way to cope with these issues.

2. Generic Multi-Hypotheses Monitoring

As stated before, we consider a large knowledge base of interconnected situation models.

These situation models are built on several levels of abstraction, so that a global scenario

can be decomposed into meaningful, complex steps, which are composed of simpler,

data-driven models. To be able to navigate between hypotheses, we need to handle tran-

sitions: when the situation changes, so do the sensor data, and the system must therefore

“resample” to adjust the currently-studied hypothesis population to the new data. All

hypotheses are evaluated through a confidence value, which reflects its likelihood with

regards to the current data and context.



The situation network is thus composed of all situation hypotheses, with both hor-

izontal edges linking hypotheses of the same kind, and vertical edges for combinations

on different levels of abstraction. Figure 1 shows an example with several hypotheses

evaluated over time, with changing likelihoods. Desk-work is seen as a combination of

Sitting and a Basal physiology; the latter sees its confidence drop (time t1), and generates

another one (Ingestion) to replace it.

Figure 1. Evolving Hypotheses: Composition and Transition.

The mechanisms of Focus (evaluating data-level hypotheses according to a given

context), Anticipation (echoing a change in the data by generating “successor” hypothe-

ses) and Exploration (reaching upwards from data-level hypotheses to “high-level”,

meaningful hypotheses) are built into the Multi-Agent System (MAS) and use the links

of the known situation network. These mechanisms must be regulated, so that the system

generates an adequate number of relevant hypotheses: in addition to the situation net-

work, we therefore need knowledge and rules to ensure that the hypothesis generation is

open enough, while still retaining a high informative level (that is, avoiding to drown the

system in a flood of inseparably likely hypotheses). Such operational rules are embodied

by Filters, as described in Section 4.

Moreover, should the hypothesized situation stray from an acceptable or, at least,

expected frame, rules must be in place for the system to react and generate some alert.

This is the application of high-level expectations and requirements; these can also be

written in the form of rules, so that the MAS uses a unified Filter engine to apply both

operational (regulation) and institutional (expectations) rules.

These rules can be very varied in kind, and can be added, removed or updated on-

the-fly, either through autonomous adaptive control, or by human intervention.

3. Multi-Agent System

The multi-hypothesis management architecture is built upon a dynamic population of

hypothesis-agents (called H in the rest of the paper), which can be referred to as either

agents or hypotheses with the same meaning: the combination of a data model, meaning,

algorithms, and current output values.

The hypothesis-agents’s operating cycle (see Fig. 2) consists in waiting for notifica-

tions to perform two kinds of actions: evaluating the likelihood of the hypothesis given

the current data (verification), and choosing which new hypotheses (if any) should be

evaluated next (prediction to replace the current hypothesis when found to be weak).

The agents share information through a Blackboard, and Filters [4] apply sets of

rules to ensure the system’s compliance to an adaptive, dynamic set of norms.



Figure 2. Hypothesis Agent Cycle.

3.1. Hypothesis Agent Definition

A hypothesis-agent is a tuple H = {K,χ, ν, C,R, tr}, with:

• K: the components (either sensor data or other agents’ output info) from which

the confidence value is computed

• χ: verification methods (to compute a confidence value from the components)

• ν: relations to other hypotheses (see Prediction)

• C: confidence value

• R: confidence range (low, medium, high)

• tr: durations spent in each R

3.2. Knowledge, Data and Information

Considering [21]’s nomenclature, we consider the following:

• Data: coming from the sensors; used by low-level agents to verify basic hypothe-

ses. The data generation is independent from the system’s operation but different

kinds of pre-processing can be applied when needed.

• Knowledge: a situation network (oriented graph) of hypothesis models, from data-

level to contextually meaningful situations. The Knowledge part is “read-only”.

• Information: all of the agents’ output, particularly confidence values (resulting

from data abstraction).

Figure 3 shows how the architecture is built around the Blackboard, where Informa-

tion and Data are shared. The hypothesis-agents are the seats of all comparison between

Information/Data and Knowledge. Both Information and Data propagation are subject

to rules applied by a kind of Filter (see Section 4), which aims at reducing unneces-

sary calculus and results in a forced synchronization of input data. The final goal is the

generation of alerts.

3.3. Verification

A verification step is needed when the sensors provide new data: this means re-evaluating

the confidence of each current hypothesis linked to these data. The goal here is not so

much to decide which hypothesis is most likely, as to determine a set of “likely enough”

hypotheses which can be compared to global expectations.



Figure 3. Multi-Agent Architecture.

To distinguish between the plausible hypotheses, those that are possible and those

that are completely off, three confidence ranges are defined (high, medium and low).

Predictive actions will be decided upon depending on the confidence range an agent is

found to be in; these ranges are separated by thresholds Tlow and Thigh, which can be

dynamically adapted by an operational filter (see Section 4):

H.R =







low if H.C < Tlow,

high if H.C > Thigh,

else medium

3.4. Prediction

Over time, the hypotheses’ plausibility (confidence) varies as new sensor data arrive.

Should a hypothesis be proven unlikely by the new data, it must be replaced by a new set

of relevant hypotheses. Choosing these new hypotheses requires taking into account both

some a-priori knowledge of which situations {H}t+1 can follow Ht at time t, and the

difference between observations Yt−1 and Yt. This can be done by computing a distance

dij on the horizontal links of the situation network (see Section 2), between Hi.χ and

Hj .χ. This is called Anticipation, and happens when an agent is found to be in the Rlow

or Rmedium ranges for a given duration.

As these new anticipated hypotheses {H}t+1 are the result of variations in the sen-

sor data, it takes place mainly in the lower-level hypothesis-agents, thus generating new

data-level agents which need to be anchored into a wider contextual meaning: higher-

level hypotheses. This mechanism, called Exploration, is illustrated in Fig. 1, where the

data-level Ingestion hypothesis creates a wider Meal hypothesis. Exploring agents create

other agents they are components of: Hexploring ∈ Hexplored.K.

It must be emphasized that these methods rely on a rich situation network, which in-

cludes not only a large number of data models, but also links between hypotheses: com-

positions between abstraction levels, possible transitions, and distances between models

(in terms of both expected data and semantics). This knowledge base must be learnt and

computed off-line (which is out of this paper’s scope).

3.5. Hypothesis Patterns

The successive Prediction steps can be seen as the creation of hypothesis paths, or time-

lines. These simultaneously-evaluated concurrent timelines can be compared to an ex-

pected scenario: either to recognize specific patterns, or to detect that the situation strays

from the expectations. As previously stated, such comparisons require a measure of dis-

tance between hypotheses; only high-level hypotheses (full, complex situations rich in



contextual meaning) should be built into timelines, as expectations regarding a planned

activity are expressed in terms of meaningful situations rather than data-level models.

Moreover, a given hypothesis can be reinforced (its confidence value increased) if it

is the last element in a path of strong past hypotheses, meaning that the timeline it results

from is more likely than a string of weak, loose hypotheses.

4. Normative MAS

A Normative MAS is a society of autonomous agents, with organizational rules govern-

ing these agents’ activity and what information is available to them. The filters, as defined

in [4], are a set a rules, defining requirements and activation contexts. An autonomous

filter engine, with its own operating frequency, applies these rules, which result in mes-

sages (activation notifications) sent to the agents. These rules can be given frequencies,

orders of precedence, and priorities. These filter parameters, and the rules themselves,

can be dynamically modified so as to shift the system’s focus. This can be done either

through autonomous adaptive control, or by a human intervention (for example if a su-

pervisor decides to change the global requirements). Moreover, the heterogeneous agents

can use different sets of filters, as the agents are responsible for their subscription to

relevant filters.

Table 1 gives some filter rules examples, which are written with conditions, mes-

sages (what to do) and targets (the agents the messages are sent to). nred is the number

of unlikely hypotheses (confidence ranges Rlow and Rmedium, as opposed to Rhigh, the

likely hypotheses), while Nef is a parameter of the Efficiency filter.

4.1. Parameters

The notion of transition from a situation to another is closely linked with the notion of

duration: generating a new hypothesis is merely a loose assumption of a data change’s

relevance at a given time: therefore, hypotheses are given inertia durations before the

predictive actions (anticipation, exploration, termination) are triggered. This implies in-

troducing parameters which we call δ (and which are compared to the agents’ tr timers).

Modifying these parameters will adjust the system’s aperture; that is, generating enough

new hypotheses to reflect the person’s evolution, while minimizing the sensitivity to

noise and allowing for the minimum period during which a hypothesis must be evaluated,

for this evaluation to be meaningful.

As seen on Figure 3, one kind of filters is the Operational Filters, which control each

hypothesis agent’s actions, and maintain their consistency with the data. These are:

• Verification filters are tasked with propagating new input data when needed (rules

are applied to check whether the data changed enough to compute new confidence

values, and noise is filtered).

• Prediction filters apply the three predictive actions (defined in the previous sec-

tion) by comparing the agent’s confidence ranges and associated timers to the

current thresholds.

• History filters are used to select which pieces of information deserve to be stored

in the logs (so as to avoid drowning the useful traces), and browse the logs.



Filter Target Message Condition

Op: Termination all Hi term Hi.R = low & tlowi
= δterm

Op: Anticipation all Hi ant Hi.R = med & tmedi = δant

Inst: Efficiency Tlow inc(Tlow) nred > Nef

Inst: Efficiency Tlow dec(Tlow) nred < Nef

Table 1. Filter Rules: Examples

4.2. High-Level Requirements

The Institutional filters apply the global requirements by modifying the parameters ac-

cording to a set of regulation rules:

• Regulation filters are dedicated to the system’s adaptive control, by dynamically

adjusting parameters. For example, the Efficiency rule may raise the Tlow thresh-

old to discriminate more against unlikely hypotheses, when these are too numer-

ous (more than a Nef number). Table 1 illustrates this filter’s rules.

• Alert filters detect discrepancies between acceptable expectations (norms) and

current hypotheses, to generate alerts as defined previously. Among these rules

are, for example a semantic distance to the Scenario, or checking for unacceptable

Micro-scenarios.

While the Operational filters provide a local, data-driven frame to handle the agents’

routine operation, the Institutional filters ensure the system’s regulation as a whole and

fulfill its goal of detecting potentially unacceptable situations.

5. The Specific Case of Human Physiology

5.1. Data and Hypothesis Models

The Superco project is built around the idea of generating alerts when a person’s sit-

uation is detected as deviating from acceptable expectations. This detection must use

ambulatory, physiological sensors. In this case, Heart and Breath Rate, along with Skin

Temperature and a 3-axis Accelerometer. Early results have shown that the data models

must not only be tailored to each person (depending on fitness, gender, age...), but also

adapted to several possible contexts (for example, the basal Heart Rate for a given person

varies between morning and evening). This results in a great uncertainty and ambiguity,

as different hypothetical situations could result in the same observations from the sensors

in different settings. This Knowledge Base is considered known and does not change.

Moreover, a single situation can be characterized differently depending on a person’s

habits (for example, the inability to stand still without growing restless), mood, state of

hunger or fatigue... Therefore, both the hypotheses’ data models, and the links between

hypotheses, must be adapted to each person’s specific physiology: there are no generic

models for physiological values such as Heart Rate, except for naive viable ranges.

For this application, we define two levels of hypotheses: States, and Micro-scenarios,

which are full, complex situations, seen as steps in a global scenario. A Scenario can thus

be built as a succession of Micro-scenarios. For example, a Meal or a Phone Call could

be parts of a Daily Life scenario. A Micro-scenario is a combination of broad meaning

and a set of components which embody the simpler hypotheses composing the situation:

Figure 4 shows an example of a Micro-scenario (desk-work) which is composed of two

States (basal physiology and sitting activity).



Figure 4. Situation Network: Simple Example for ADLs.

While Micro-scenarios are context-driven, institutional models which represent

complete, meaningful situations, States are data-driven, operational hypotheses regard-

ing the sensor observations. Their components are the input data themselves, from which

a confidence value is computed, using expected values in a given context. This confidence

value can be separated into ranges, which define the predictive actions undertaken by the

agents: in the example of Figure 4, the basal hypothesis is unlikely (medium confidence)

and its agent will therefore create successors to replace it (phonation...).

5.2. Alarming Situations

The notion of alert dwells in the observer’s eye rather than in the observed data itself:

alerts depend on the context and the requirements. As such, their rules must be defined

in a declarative and dynamic manner, for which we propose three main axes.

The data-level alerts are basic, universal and objective alerts: sensor failure, crip-

pling levels of noise, and physiological values that are known as out of a person’s viable

bounds (such as a Skin Temperature below 25◦C). These alert models are tailored to each

person’s specific physiology.

On the other hand, scenario alerts are full situations, taking the context into account,

and which involve both common sense, and expectations. These alerts include situation

hypotheses known as unacceptable (either a priori, or defined as such on-the-fly), or

situations which simply differ from what the subject is expected to do (for example, a

soldier on a given mission), without being a danger to his health by themselves. These

scenario alerts are given various levels of importance, from a sudden, very alarming

situation to a pattern of hypotheses which may be the early symptoms of a condition

which would fully develop later.

Finally, system alerts are raised when the data interpretation fails to comply with

requirements such as effectiveness, efficiency or entropy: the system’s output would not

be useful if too many hypotheses were simultaneously considered likely, for example.

6. Results and Discussion

This section presents some results obtained by simulating a real-time interpretation: a

Java application reading, a posteriori, a set of input data which come from a monitor-

ing belt providing synchronized Heart Rate, Breath Rate, Skin Temperature, and 3-axis



accelerometry. Future data collection could include environmental data such as altitude,

outside temperature, or sound volume, to enrich the interpretation of context. The data

collection protocol was validated by an ethics committee. The data models were tailored

to the subject, as per the knowledge constraints stated in Section 5. This was done in

cooperation with a team of physiologists.

Figure 5. Number of Likely/Unlikely Hypotheses.

Figure 5 shows the number of hypothesis agents over a longer period of time (in

blue: all, in red: unlikely H, in green: likely H), and illustrates the operation of the

Efficiency filter (see Table 1): whenever the number of unlikely hypotheses reaches a

given level, the parameters are modified so that the system becomes less tolerant, and this

number subsequently drops. Point A on Figure 5 reveals such a drop, which is followed

by a sudden increase. This highlights the system’s dynamics: when the interpretation is

unsatisfactory, new hypotheses are generated to replace the failing ones (both States and

Micro-scenarios). Upon creation, the Micro-scenario focus (see Figure 1) will generate

new State hypotheses as its components.

Figure 6. Influence of the Verification Frequency.

Tuning such a monitoring system implies a necessary compromise between sensi-

tivity and computational cost (it is crucial to save batteries and match real-time con-

straints on a real ambulatory system). This balance may be found by off-line learning

and by online adaptive control, particularly to focus the system’s resources on periods

of greater criticity [12]. For example, reducing the Verification frequency (increasing the

Verification Filters’ period, which can be done on-the-fly) reduces the system’s tolerance

to low-likelihood hypotheses: their confidences are smoothed towards Rlow: Figure 6

shows a snapshot of two State hypotheses, with the same data, but with different fverif .

The green, yellow and red lines show, over time, the confidence ranges (high, medium,

low). At time X , the Phonation hypothesis is destroyed (low confidence) only for the

higher Verification period. It also mechanically results is fewer anticipated hypotheses

(since there are less anticipating agents).

This highlights that tweaking one parameter has an effect on virtually every aspect

of the interpretation mechanisms: a lower number of hypotheses means a different ap-

plication of filter rules such as the Efficiency criterion shown on 1, which in turn has an

impact on the tolerance to unlikely hypotheses.

Further work will focus on training the system’s adaptive control rules. This may

include the discovery of heuristics, as the parameters’ interdependency may prove costly.



Moreover, the richer the interpretation system, the more parameters there are, and there-

fore the more complicated this interdependency becomes.

The numbers of likely and unlikely hypotheses (resp. green and red lines on Fig. 5)

are indicators to different features of the system. The “green line” shows how well the

system recognizes which situation the subject is in: if ngreen is too low, it may mean that

the system does not recognize the situation. But if ngreen is too high, the interpretation

is too fuzzy: no decision can be taken as to which situation is “true”. However, if neither

of these too-numerous likely hypotheses trigger any alert, then the interpretation still

achieves the system’s goal of verifying whether the person is in trouble. The green line

can therefore be interpreted as relevant to the Institutional requirements.

On the other hand, the “red line” (unlikely Hi) shows the system’s operational ac-

tivity. Too low a number of unlikely hypotheses would mean that the system is not open

enough (the Prediction step is akin to re-sampling). Indeed, the unlikely hypotheses are

evidence of the system’s exploration of varied possible situations.

Depending on the situation’s criticity, rules can be added or modified on-line, so that

the system is more or less open. The driving idea here is to be able to focus the system’s

resources on the most informative/critical elements.

As to the number of hypotheses considered likely (ngreen), the False Positive crite-

rion (hypotheses considered likely but which are not true) is not entirely relevant (aside

from the uncertainty previously mentionned): as it is the very nature of these data to be

ambiguous, the goal is to detect the possibility of an alert.

On the other hand, a False Negative criterion can be applied to the generation of

alerts. However, this is made difficult by the fact that the amount of possible alerts de-

pends on the varying requirements (since the institutional filters can be dynamically mod-

ified by the end-user). Further work will focus on the specification of alert rules, espe-

cially with regards to a comparison between an expected scenario [14], and the various

hypothesized timelines (as mentionned in Section 3.5).

7. Conclusion

We have proposed in this paper, a generic architecture to monitor human activity. Mul-

tiple interpretation hypotheses are processed concurrently, at several abstraction levels,

by independent agents, based on data models and contextual knowledge (situations and

scenarios at hand) that are acquired and learned off-line (using annotated data and human

expert knowledge).

The system is designed to raise alerts that are grounded both in evidence from the

data and expectations from the social bodies in charge of the monitoring. In addition,

it has to behave in a way that is consistent with respect to operational requirements,

regarding for example the range of hypotheses to be considered simultaneously. In this

context, one major designing guideline is to provide declarative and separate modelling

of these requirements. The second one is to provide dynamic adaptation capabilities, to

ensure that hypothesis generation comply with current requirements, but also to ensure

that these requirements stay up-to-date with regards to the evolving context: operational

and institutional requirements are meant to evolve, depending (i) on the current number

of hypotheses (and their confidence values), and (ii) on the possibility for alarms, or hints

thereof. A normative multi-agent system is proposed in this perspective and some results

discussed for ADLs. These results are preliminary, and more sophisticated models are

needed. However, they highlight the system’s expressiveness and adaptativity potential.
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