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In this paper, we propose a normative Multi-Agent System to handle uncertainty in a monitoring application. It is based on the assertion that no single most-likely situation should be considered, thus requiring the management of multiple concurrent hypotheses. A decision is then made by comparing these hypothesized situations to requirements and expectations, thus detecting potential problems. This system uses a large knowledge base of interconnected situation models on several levels of abstraction. It is centered around the need to constantly reconsider which hypotheses should be evaluated, with regards to both the current data from the sensors and wider requirements in terms of efficiency and specific focus from an expected scenario. We propose both a generic concept, and a more specific system for human health monitoring, using ambulatory physiological sensors.

Introduction

Monitoring human activity implies addressing two main issues: taking into account the influence of context, and the paucity of input data, which can take the form of noise, ambiguity, or model variability. We consider this context as a combination of the environment (physical level), the temporal succession of situations (data level), and a set of requirements and expectations (interpretation level). This paper describes a Multi-Agent System which aims at handling these issues, both in a generic manner and in the specific case of monitoring a person's health using ambulatory, physiological sensors.

It is based on the Superco project of the French DGA (Defense Procurement Agency), which consists in a soldier wearing a monitoring device on the battlefield, to provide real-time, personalized information about his or her health and mission-readiness to the commanders. This means that the available data are limited to what light, wearable, unobtrusive sensors can provide. These data are then processed and interpreted in various ways, to fit the commander's informative needs: here, generating alerts when a potentially-worrying situation is detected.

The paradigm of Multi-Agent Systems allows for multiple, heterogeneous entities to be handled through a unified communication/cooperation frame. The heterogeneity of agents is considered as a requirement, to encompass the variety of situations a person can find herself in; a large knowledge base of interconnected situation models can thus be explored, as a dynamic population of multiple hypotheses on several levels of abstraction. These hypotheses are compared to the successive sets of sensor data over time, with transition mechanisms to handle the need to change the currently-studied hypotheses when the input data changes. They are then interpreted, to decide whether to raise alarms or not. Hypothesis management, as a whole, is performed within a frame of highlevel requirements regarding efficiency, efficacy and adequacy of the system behaviour. A normative multi-agent architecture [START_REF] Boissier | Controlling multi-party interaction within normative multi-agent organizations[END_REF] is proposed to model these requirements and adapt them dynamically as new situations arise.

It is considered as a given that a large number of situation hypotheses must not be evaluated at all times: because of computational cost, and more importantly, to ensure the usability of results: considering ambiguous data (and models), too large a number of hypotheses would be considered likely, thus reducing the quantity of information each one holds. The hypotheses must be chosen and evaluated in light of a scenario, a path of successively-studied hypotheses, much like a word must be understood as part of a sentence and holds no assertive meaning on its own.

The context is prone to evolve, in terms of data and requirements: sensemaking is dynamically built as a match between captured data and elaborated expectations, in a framework of evolving requirements [START_REF] Santini | Image retrieval[END_REF]. Adaptive control is therefore needed, which is the strength of a normative system such as this paper proposes: on one hand, the high-level (end-user) requirements can be dynamically updated, and on the other hand, operational rules adapt the parameters to the changing needs of the sensor data.

In light of this, we discuss, in this paper, some experimental results in the recognition of Activities of Daily Life (ADL), with the purpose of examplifying the proposed system's expressiveness, dynamics and regulation potential. The goal is then to detect discrepancies between hypothesized situation(s) and expectations, rather than trying to detect a single most-likely situation.

State of the Art

Monitoring Human Activity is known to be a complex task, whichever sensors, environments or goals are being considered. This is due to constraints on the available data, which are both noisy and ambiguous [START_REF] Silvent | Multi-level temporal abstraction for medical scenario construction[END_REF], but also to the fact that some crucial elements are not quantifiable or measurable via sensors [START_REF] Pantelopoulos | Prognosis -a wearable health monitoring system for people at risk: Methodology and modeling[END_REF]. In addition, the recognition process must draw on some a-priori knowledge about the objects at hand, since the way an object is "looked at" depends on what this object is expected to be [START_REF] Felsberg | Exploratory learning structures in artificial cognitive systems[END_REF]. Thus must all monitoring applications take the widely-studied context into account. This context is often hypothesized rather than sensed, which means that the interpreted situations carry more information than the sensors can account for. Such loosely-focused has a very wide spectrum of possible scenarios to choose from, which implies choices about which situations to consider (what to try and perceive).

In return, evaluating a situation model can result in feedback about the context. Activity recognition must therefore be seen as a constant loop of perception and choices about how to perceive.

Reasoning with multiple, concurrent hypotheses is a way to reflect the data's uncertainty, and the weight of the unobservable context. These hypotheses are based on heterogeneous data models which represent both stable situations and transitory periods. These can either be learned offline (as a-priori knowledge), as in Model-Based detection [START_REF] Mo | Conflicts versus analytical redundancy relations: a comparative analysis of the model based diagnosis approach from the artificial intelligence and automatic control perspective[END_REF], or built online as exploratory learning [START_REF] Felsberg | Exploratory learning structures in artificial cognitive systems[END_REF]. Data-driven methods are used for the latter, often based on Hidden Markov Models [START_REF] Amate | Probabilistic model definition for physiological state monitoring[END_REF], but with a requirement for human expert annotation [START_REF] Guyet | Knowledge construction from time series data using a collaborative exploration system[END_REF]. In the specific case of human health, robust and proven models must be used from the start, as no expert annotation would be available on-line. Learning these models is thus out of this paper's scope: the knowledge base is considered known, and large (but cannot be exhaustive [START_REF] Minnen | Expectation grammars: Leveraging high-level expectation for activity recognition[END_REF], as Human Activity is a very wide-scoped concept). The goal is then to navigate this knowledge base, to choose which hypotheses to evaluate.

A common comparison framework is necessary to handle these multiple, heterogeneous and autonomous hypotheses. Context Spaces are used in [START_REF] Padovitz | An approach to data fusion for context awareness[END_REF], in which degrees of support for hypotheses are computed via abductive inference). Confidence values are computed in [START_REF] Thomson | Evaluating semantic-level confidence scores with multiple hypotheses[END_REF], with associated cross entropy for overall correctness. The resulting confidence value reflects the amount of contradiction, if any, between model and data.

Monitoring human activity does not boil down to considering constraints from the realm of data. As a decision-making process, it has to meet the expectations of the social body in charge of this monitoring. Through analytical modeling [START_REF] Freedy | A new tactical group decision analysis system (tgdas) combining analytical and naturalistic decision modeling[END_REF], these requirements must be considered in addition to notions such as effectiveness, efficiency and adequacy of results (which is linked to entropy: the quantity of usable information). This calls for a hybrid system mixing bio-physical laws of the human body with the human organization's frames. Decision frames in such systems are to be modelled at several levels [START_REF] Weber | Making sense with institutions: Context, thought and action in weick's theory[END_REF]: local frames suited to the entities' routine, and larger, global frames to ensure the compliance of the system as a whole, to institutional norms as functional requirements and goals [START_REF] Baker | Guidebook to Decision-Making Methods[END_REF]. This implies the decomposition of the global problem into smaller, more manageable phenomena [START_REF] Amigoni | Anthropic agency: A multiagent system for physiological processes[END_REF], inside a contextual frame which provides, on higher levels of abstraction, disambiguation for the levels closest to the strongly-focused data models. [START_REF] Vettier | Managing multiple hypotheses with agents to handle incomplete and uncertain data[END_REF], [START_REF] Bigham | Activity recognition using a hierarchical framework[END_REF] and [START_REF] Chahuara | Methodes svm et mln pour la reconnaissance automatique d'activites humaines dans les habitats perceptifs: tests et perspectives[END_REF] propose such decompositions of human activity.

Normative MAS are a class of Multi-Agent Systems in which declarative, rule-based coordination components (called Filters [START_REF] Badeig | A contextual environment approach for multi-agent-based simulation[END_REF]) allow the modelisation of various kinds of norms. These filters provide a dynamic, adaptive frame supporting complex control strategies, promoted for long by many authors [START_REF] Meyer | Self-adaptive selective sensor network querying[END_REF] [12] [START_REF] Merghem | On using multi-agent systems in end to end adaptive monitoring[END_REF]. They allow to separate the a-priori knowledge (the data models) and the algorithms (the enforcement of norms), thus complying with the guidelines to designing a monitoring platform defined in [START_REF] Avanzi | Design and assessment of an intelligent activity monitoring platform[END_REF].

This makes for a complex decision paradigm, where the goal is no longer to recognize specific events but rather to detect discrepancies between observations and expectations: sensemaking is not a state of knowledge [START_REF] Klein | A data/frame theory of sensemaking[END_REF], but rather a process of fitting data into a frame that is continuously replaced and adapted to fit the data. The proposed architecture is a way to cope with these issues.

Generic Multi-Hypotheses Monitoring

As stated before, we consider a large knowledge base of interconnected situation models. These situation models are built on several levels of abstraction, so that a global scenario can be decomposed into meaningful, complex steps, which are composed of simpler, data-driven models. To be able to navigate between hypotheses, we need to handle transitions: when the situation changes, so do the sensor data, and the system must therefore "resample" to adjust the currently-studied hypothesis population to the new data. All hypotheses are evaluated through a confidence value, which reflects its likelihood with regards to the current data and context.

The situation network is thus composed of all situation hypotheses, with both horizontal edges linking hypotheses of the same kind, and vertical edges for combinations on different levels of abstraction. Figure 1 shows an example with several hypotheses evaluated over time, with changing likelihoods. Desk-work is seen as a combination of Sitting and a Basal physiology; the latter sees its confidence drop (time t 1 ), and generates another one (Ingestion) to replace it. The mechanisms of Focus (evaluating data-level hypotheses according to a given context), Anticipation (echoing a change in the data by generating "successor" hypotheses) and Exploration (reaching upwards from data-level hypotheses to "high-level", meaningful hypotheses) are built into the Multi-Agent System (MAS) and use the links of the known situation network. These mechanisms must be regulated, so that the system generates an adequate number of relevant hypotheses: in addition to the situation network, we therefore need knowledge and rules to ensure that the hypothesis generation is open enough, while still retaining a high informative level (that is, avoiding to drown the system in a flood of inseparably likely hypotheses). Such operational rules are embodied by Filters, as described in Section 4.

Moreover, should the hypothesized situation stray from an acceptable or, at least, expected frame, rules must be in place for the system to react and generate some alert. This is the application of high-level expectations and requirements; these can also be written in the form of rules, so that the MAS uses a unified Filter engine to apply both operational (regulation) and institutional (expectations) rules.

These rules can be very varied in kind, and can be added, removed or updated onthe-fly, either through autonomous adaptive control, or by human intervention.

Multi-Agent System

The multi-hypothesis management architecture is built upon a dynamic population of hypothesis-agents (called H in the rest of the paper), which can be referred to as either agents or hypotheses with the same meaning: the combination of a data model, meaning, algorithms, and current output values.

The hypothesis-agents's operating cycle (see Fig. 2) consists in waiting for notifications to perform two kinds of actions: evaluating the likelihood of the hypothesis given the current data (verification), and choosing which new hypotheses (if any) should be evaluated next (prediction to replace the current hypothesis when found to be weak).

The agents share information through a Blackboard, and Filters [START_REF] Badeig | A contextual environment approach for multi-agent-based simulation[END_REF] apply sets of rules to ensure the system's compliance to an adaptive, dynamic set of norms. 

Hypothesis Agent Definition

A hypothesis-agent is a tuple H = {K, χ, ν, C, R, t r }, with:

• K: the components (either sensor data or other agents' output info) from which the confidence value is computed • χ: verification methods (to compute a confidence value from the components) • ν: relations to other hypotheses (see Prediction) • C: confidence value • R: confidence range (low, medium, high) • t r : durations spent in each R

Knowledge, Data and Information

Considering [START_REF] Silvent | Multi-level temporal abstraction for medical scenario construction[END_REF]'s nomenclature, we consider the following:

• Data: coming from the sensors; used by low-level agents to verify basic hypotheses. The data generation is independent from the system's operation but different kinds of pre-processing can be applied when needed. • Knowledge: a situation network (oriented graph) of hypothesis models, from datalevel to contextually meaningful situations. The Knowledge part is "read-only". • Information: all of the agents' output, particularly confidence values (resulting from data abstraction).

Figure 3 shows how the architecture is built around the Blackboard, where Information and Data are shared. The hypothesis-agents are the seats of all comparison between Information/Data and Knowledge. Both Information and Data propagation are subject to rules applied by a kind of Filter (see Section 4), which aims at reducing unnecessary calculus and results in a forced synchronization of input data. The final goal is the generation of alerts.

Verification

A verification step is needed when the sensors provide new data: this means re-evaluating the confidence of each current hypothesis linked to these data. The goal here is not so much to decide which hypothesis is most likely, as to determine a set of "likely enough" hypotheses which can be compared to global expectations. To distinguish between the plausible hypotheses, those that are possible and those that are completely off, three confidence ranges are defined (high, medium and low). Predictive actions will be decided upon depending on the confidence range an agent is found to be in; these ranges are separated by thresholds T low and T high , which can be dynamically adapted by an operational filter (see Section 4):

H.R =    low if H.C < T low , high if H.C > T high , else medium 

Prediction

Over time, the hypotheses' plausibility (confidence) varies as new sensor data arrive. Should a hypothesis be proven unlikely by the new data, it must be replaced by a new set of relevant hypotheses. Choosing these new hypotheses requires taking into account both some a-priori knowledge of which situations {H} t+1 can follow H t at time t, and the difference between observations Y t-1 and Y t . This can be done by computing a distance d ij on the horizontal links of the situation network (see Section 2), between H i .χ and H j .χ. This is called Anticipation, and happens when an agent is found to be in the R low or R medium ranges for a given duration. As these new anticipated hypotheses {H} t+1 are the result of variations in the sensor data, it takes place mainly in the lower-level hypothesis-agents, thus generating new data-level agents which need to be anchored into a wider contextual meaning: higherlevel hypotheses. This mechanism, called Exploration, is illustrated in Fig. 1, where the data-level Ingestion hypothesis creates a wider Meal hypothesis. Exploring agents create other agents they are components of: H exploring ∈ H explored .K.

It must be emphasized that these methods rely on a rich situation network, which includes not only a large number of data models, but also links between hypotheses: compositions between abstraction levels, possible transitions, and distances between models (in terms of both expected data and semantics). This knowledge base must be learnt and computed off-line (which is out of this paper's scope).

Hypothesis Patterns

The successive Prediction steps can be seen as the creation of hypothesis paths, or timelines. These simultaneously-evaluated concurrent timelines can be compared to an expected scenario: either to recognize specific patterns, or to detect that the situation strays from the expectations. As previously stated, such comparisons require a measure of distance between hypotheses; only high-level hypotheses (full, complex situations rich in contextual meaning) should be built into timelines, as expectations regarding a planned activity are expressed in terms of meaningful situations rather than data-level models.

Moreover, a given hypothesis can be reinforced (its confidence value increased) if it is the last element in a path of strong past hypotheses, meaning that the timeline it results from is more likely than a string of weak, loose hypotheses.

Normative MAS

A Normative MAS is a society of autonomous agents, with organizational rules governing these agents' activity and what information is available to them. The filters, as defined in [START_REF] Badeig | A contextual environment approach for multi-agent-based simulation[END_REF], are a set a rules, defining requirements and activation contexts. An autonomous filter engine, with its own operating frequency, applies these rules, which result in messages (activation notifications) sent to the agents. These rules can be given frequencies, orders of precedence, and priorities. These filter parameters, and the rules themselves, can be dynamically modified so as to shift the system's focus. This can be done either through autonomous adaptive control, or by a human intervention (for example if a supervisor decides to change the global requirements). Moreover, the heterogeneous agents can use different sets of filters, as the agents are responsible for their subscription to relevant filters.

Table 1 gives some filter rules examples, which are written with conditions, messages (what to do) and targets (the agents the messages are sent to). n red is the number of unlikely hypotheses (confidence ranges R low and R medium , as opposed to R high , the likely hypotheses), while N ef is a parameter of the Efficiency filter.

Parameters

The notion of transition from a situation to another is closely linked with the notion of duration: generating a new hypothesis is merely a loose assumption of a data change's relevance at a given time: therefore, hypotheses are given inertia durations before the predictive actions (anticipation, exploration, termination) are triggered. This implies introducing parameters which we call δ (and which are compared to the agents' t r timers). Modifying these parameters will adjust the system's aperture; that is, generating enough new hypotheses to reflect the person's evolution, while minimizing the sensitivity to noise and allowing for the minimum period during which a hypothesis must be evaluated, for this evaluation to be meaningful.

As seen on Figure 3, one kind of filters is the Operational Filters, which control each hypothesis agent's actions, and maintain their consistency with the data. These are:

• Verification filters are tasked with propagating new input data when needed (rules are applied to check whether the data changed enough to compute new confidence values, and noise is filtered). • Prediction filters apply the three predictive actions (defined in the previous section) by comparing the agent's confidence ranges and associated timers to the current thresholds. • History filters are used to select which pieces of information deserve to be stored in the logs (so as to avoid drowning the useful traces), and browse the logs. 

High-Level Requirements

The Institutional filters apply the global requirements by modifying the parameters according to a set of regulation rules:

• Regulation filters are dedicated to the system's adaptive control, by dynamically adjusting parameters. For example, the Efficiency rule may raise the T low threshold to discriminate more against unlikely hypotheses, when these are too numerous (more than a N ef number). Table 1 illustrates this filter's rules. • Alert filters detect discrepancies between acceptable expectations (norms) and current hypotheses, to generate alerts as defined previously. Among these rules are, for example a semantic distance to the Scenario, or checking for unacceptable Micro-scenarios.

While the Operational filters provide a local, data-driven frame to handle the agents' routine operation, the Institutional filters ensure the system's regulation as a whole and fulfill its goal of detecting potentially unacceptable situations.

The Specific Case of Human Physiology

Data and Hypothesis Models

The Superco project is built around the idea of generating alerts when a person's situation is detected as deviating from acceptable expectations. This detection must use ambulatory, physiological sensors. In this case, Heart and Breath Rate, along with Skin Temperature and a 3-axis Accelerometer. Early results have shown that the data models must not only be tailored to each person (depending on fitness, gender, age...), but also adapted to several possible contexts (for example, the basal Heart Rate for a given person varies between morning and evening). This results in a great uncertainty and ambiguity, as different hypothetical situations could result in the same observations from the sensors in different settings. This Knowledge Base is considered known and does not change.

Moreover, a single situation can be characterized differently depending on a person's habits (for example, the inability to stand still without growing restless), mood, state of hunger or fatigue... Therefore, both the hypotheses' data models, and the links between hypotheses, must be adapted to each person's specific physiology: there are no generic models for physiological values such as Heart Rate, except for naive viable ranges.

For this application, we define two levels of hypotheses: States, and Micro-scenarios, which are full, complex situations, seen as steps in a global scenario. A Scenario can thus be built as a succession of Micro-scenarios. For example, a Meal or a Phone Call could be parts of a Daily Life scenario. A Micro-scenario is a combination of broad meaning and a set of components which embody the simpler hypotheses composing the situation: Figure 4 shows an example of a Micro-scenario (desk-work) which is composed of two States (basal physiology and sitting activity). While Micro-scenarios are context-driven, institutional models which represent complete, meaningful situations, States are data-driven, operational hypotheses regarding the sensor observations. Their components are the input data themselves, from which a confidence value is computed, using expected values in a given context. This confidence value can be separated into ranges, which define the predictive actions undertaken by the agents: in the example of Figure 4, the basal hypothesis is unlikely (medium confidence) and its agent will therefore create successors to replace it (phonation...).

Alarming Situations

The notion of alert dwells in the observer's eye rather than in the observed data itself: alerts depend on the context and the requirements. As such, their rules must be defined in a declarative and dynamic manner, for which we propose three main axes.

The data-level alerts are basic, universal and objective alerts: sensor failure, crippling levels of noise, and physiological values that are known as out of a person's viable bounds (such as a Skin Temperature below 25 • C). These alert models are tailored to each person's specific physiology.

On the other hand, scenario alerts are full situations, taking the context into account, and which involve both common sense, and expectations. These alerts include situation hypotheses known as unacceptable (either a priori, or defined as such on-the-fly), or situations which simply differ from what the subject is expected to do (for example, a soldier on a given mission), without being a danger to his health by themselves. These scenario alerts are given various levels of importance, from a sudden, very alarming situation to a pattern of hypotheses which may be the early symptoms of a condition which would fully develop later.

Finally, system alerts are raised when the data interpretation fails to comply with requirements such as effectiveness, efficiency or entropy: the system's output would not be useful if too many hypotheses were simultaneously considered likely, for example.

Results and Discussion

This section presents some results obtained by simulating a real-time interpretation: a Java application reading, a posteriori, a set of input data which come from a monitoring belt providing synchronized Heart Rate, Breath Rate, Skin Temperature, and 3-axis accelerometry. Future data collection could include environmental data such as altitude, outside temperature, or sound volume, to enrich the interpretation of context. The data collection protocol was validated by an ethics committee. The data models were tailored to the subject, as per the knowledge constraints stated in Section 5. This was done in cooperation with a team of physiologists. Figure 5 shows the number of hypothesis agents over a longer period of time (in blue: all, in red: unlikely H, in green: likely H), and illustrates the operation of the Efficiency filter (see Table 1): whenever the number of unlikely hypotheses reaches a given level, the parameters are modified so that the system becomes less tolerant, and this number subsequently drops. Point A on Figure 5 reveals such a drop, which is followed by a sudden increase. This highlights the system's dynamics: when the interpretation is unsatisfactory, new hypotheses are generated to replace the failing ones (both States and Micro-scenarios). Upon creation, the Micro-scenario focus (see Figure 1) will generate new State hypotheses as its components. Tuning such a monitoring system implies a necessary compromise between sensitivity and computational cost (it is crucial to save batteries and match real-time constraints on a real ambulatory system). This balance may be found by off-line learning and by online adaptive control, particularly to focus the system's resources on periods of greater criticity [START_REF] Hayes-Roth | An architecture for adaptive intelligent systems[END_REF]. For example, reducing the Verification frequency (increasing the Verification Filters' period, which can be done on-the-fly) reduces the system's tolerance to low-likelihood hypotheses: their confidences are smoothed towards R low : Figure 6 shows a snapshot of two State hypotheses, with the same data, but with different f verif . The green, yellow and red lines show, over time, the confidence ranges (high, medium, low). At time X, the Phonation hypothesis is destroyed (low confidence) only for the higher Verification period. It also mechanically results is fewer anticipated hypotheses (since there are less anticipating agents).

This highlights that tweaking one parameter has an effect on virtually every aspect of the interpretation mechanisms: a lower number of hypotheses means a different application of filter rules such as the Efficiency criterion shown on 1, which in turn has an impact on the tolerance to unlikely hypotheses.

Further work will focus on training the system's adaptive control rules. This may include the discovery of heuristics, as the parameters' interdependency may prove costly.

Moreover, the richer the interpretation system, the more parameters there are, and therefore the more complicated this interdependency becomes.

The numbers of likely and unlikely hypotheses (resp. green and red lines on Fig. 5) are indicators to different features of the system. The "green line" shows how well the system recognizes which situation the subject is in: if n green is too low, it may mean that the system does not recognize the situation. But if n green is too high, the interpretation is too fuzzy: no decision can be taken as to which situation is "true". However, if neither of these too-numerous likely hypotheses trigger any alert, then the interpretation still achieves the system's goal of verifying whether the person is in trouble. The green line can therefore be interpreted as relevant to the Institutional requirements.

On the other hand, the "red line" (unlikely H i ) shows the system's operational activity. Too low a number of unlikely hypotheses would mean that the system is not open enough (the Prediction step is akin to re-sampling). Indeed, the unlikely hypotheses are evidence of the system's exploration of varied possible situations.

Depending on the situation's criticity, rules can be added or modified on-line, so that the system is more or less open. The driving idea here is to be able to focus the system's resources on the most informative/critical elements.

As to the number of hypotheses considered likely (n green ), the False Positive criterion (hypotheses considered likely but which are not true) is not entirely relevant (aside from the uncertainty previously mentionned): as it is the very nature of these data to be ambiguous, the goal is to detect the possibility of an alert.

On the other hand, a False Negative criterion can be applied to the generation of alerts. However, this is made difficult by the fact that the amount of possible alerts depends on the varying requirements (since the institutional filters can be dynamically modified by the end-user). Further work will focus on the specification of alert rules, especially with regards to a comparison between an expected scenario [START_REF] Lesire | Particle petri nets for aircraft procedure monitoring under uncertainty[END_REF], and the various hypothesized timelines (as mentionned in Section 3.5).

Conclusion

We have proposed in this paper, a generic architecture to monitor human activity. Multiple interpretation hypotheses are processed concurrently, at several abstraction levels, by independent agents, based on data models and contextual knowledge (situations and scenarios at hand) that are acquired and learned off-line (using annotated data and human expert knowledge).

The system is designed to raise alerts that are grounded both in evidence from the data and expectations from the social bodies in charge of the monitoring. In addition, it has to behave in a way that is consistent with respect to operational requirements, regarding for example the range of hypotheses to be considered simultaneously. In this context, one major designing guideline is to provide declarative and separate modelling of these requirements. The second one is to provide dynamic adaptation capabilities, to ensure that hypothesis generation comply with current requirements, but also to ensure that these requirements stay up-to-date with regards to the evolving context: operational and institutional requirements are meant to evolve, depending (i) on the current number of hypotheses (and their confidence values), and (ii) on the possibility for alarms, or hints thereof. A normative multi-agent system is proposed in this perspective and some results discussed for ADLs. These results are preliminary, and more sophisticated models are needed. However, they highlight the system's expressiveness and adaptativity potential.
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	Filter	Target	Message	Condition
	Op: Termination	all H i	term	H i .R = low & t low i = δterm
	Op: Anticipation	all H i	ant	H i .R = med & t med i = δant
	Inst: Efficiency	T low	inc(T low )	n red > N ef
	Inst: Efficiency	T low	dec(T low )	n red < N ef