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Abstract. The recent emergence of linguistic formalisms exclusively
based on the simply-typed λ-calculus to represent both syntax and se-
mantics led to the presentation of innovative techniques which apply to
both the problems of parsing and generating natural languages. A com-
mon feature of these techniques consists in using strong relations between
typing properties and syntactic structures of families of simply-typed λ-
terms. Among significant results, an efficient algorithm based on Datalog
programming is presented in [Kan07] for context-free grammar of almost

linear λ-terms, which are linear λ-terms augmented with a restricted
form of copy. We present an extension of this method to terms for which
deletion is allowed.
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1 Introduction

Abstract categorial grammars (ACGs) and λ-grammars, introduced indepen-
dently in [dG01] and [Mus01], are formalisms designed for linguistics purposes
and which take their origins in two main ideas: on the one hand Montague’s
formalization [Mon74] of compositional semantics for natural language based on
the λ-calculus; and on the other hand Curry’s idea to dissociate the structure
of languages (tectogrammar) from their realizations (phenogrammar) [Cur61].
This view on grammatical formalization is further advocated in [Mus10].

In the framework of ACGs and λ-grammars, surface and semantic realiza-
tions are both represented and computed by means of simply-typed λ-terms.
Devising parsing algorithms in this general context amounts to devise uniform
solutions to the problems of parsing and generation for natural languages with
the compositional hypothesis. In a similar context, Pogodalla ([Pog00]) gave a
first algorithm for generating sentences from meaning representations, and the
first one specifically dedicated to λ-grammars and ACGs has been proposed in
[Sal05]. The latter has then been extended in [Kan07] and [Sal10]. While the pro-
posal of [Sal10] gives a general algorithmic solution to the parsing/generation
problems in the Montagovian framework, Kanazawa’s result is mostly concerned
with describing a tractable algorithm for some restricted case. In particular, it
contains an efficient extension of the Datalog recognizer for context-free gram-
mars of strings [Ull88] to context-free grammars of linear λ-terms (i.e. for which



there is no copy or deletion operations) and of almost linear λ-terms (i.e. a re-
laxed form of linear terms for which a restricted form of copy is allowed). The
purpose of this paper is to extend Kanazawa’s technique to context-free gram-
mars of terms for which the operation of deletion is allowed. Such grammars are
context-free grammars of almost affine λ-terms (i.e. almost linear λ-terms with
deletion). Yoshinaka [Yos06] has proved that allowing deletion in λ-grammars
does not essentially improve the expressive power of non-deleting λ-grammars.
Nevertheless, his construction gives rise to non-deleting grammars the size of
which may be exponential with respect to the size of the original deleting gram-
mars.

The central theorem in Kanazawa’s method is that almost linear terms are
the unique inhabitants of their most general typings; it was recently proved
that this result can actually be extended to almost affine terms [Kan10,BS11].
It is hence natural to see whether it is possible to build a Datalog recognizer
based on Kanazawa’s method for grammars of almost affine terms. From the
perspective of grammar design, the addition of deletion allows enhancing the
flexibility in which entries can be represented and in particular, it allows some
contextual information to flow across a derivation. For example, it permits to
handle agreement with techniques similar to the ones used in the Grammatical
Framework [Ran09]; it also gives the possibility of implementing certain ideas
from lexical semantics [BMR10] in order to disambiguate lexical entries in their
semantic interpretation thanks to contextual information.

The paper is structured as follows: section 2 introduces the notion of context-
free λ-grammars; in section 3, we present a restricted intersection type system
in which we study the typing properties of almost affine λ-terms that are given
in section 4. The final section is dedicated to presenting Datalog recognizers for
context-free grammars of almost affine λ-terms, as an extension of the programs
given in [Kan07].

2 Context-free λ-grammars

Given a set of atomic types A, the set of simple types T (A) on A is defined
as the closure of A by the right-associative operator →. To a type α ∈ T (A),
we associate its order defined as ord(α) = 1 if α belongs to A and ord(α) =
max(1 + ord(α1), ord(α2)) if α = α1 → α2. We also inductively define the set
of positions in α, P(α), as the prefix-closed finite set of sequences of naturals
numbers given by P(α1 → · · · → αn → a) = {ǫ} ∪

⋃

i∈{1,...,n}{i · s | s ∈ P(αi)}
where ǫ is the empty sequence and · is the operation of concatenation of
sequences (we write N

∗ for the set of sequences of natural numbers). Given
α = α1 → . . . → αn → a, to each position s in P(α) we associate an atomic type
at(s, α), such that at(ǫ, α) = a and at(i · s, α) = at(s, αi) (i being in {1, . . . , n});
when at(s, α) = a we say that a is the atomic type at position s in α. The notion
of position in types is inspired from games semantics for the simply typed λ-
calculus (see [BS11] for more details).



Given two sets of atomic types A and B, a type substitution is a homomor-
phism σ from T (A) to T (B) (noted σ : T (A) 7→ T (B)), i.e. a function such
that σ(α → β) = σ(α) → σ(β). A type substitution σ is a relabeling when for
every atomic type in A, its image by σ is atomic, i.e. belongs to B. A type
relabeling is a type renaming when it is bijective. Given two type substitutions
σ1 and σ2 from T (A) to T (B), σ1 is said more general than σ2 when there is
a type substitution σ : T (B) 7→ T (B) such that σ2 = σ ◦ σ1. Given two types
α1 and α2 in T (A), they are unifiable when there is a type substitution σ such
that σ(α1) = σ(α2). In such a case, σ is said to unify α1 and α2 and is called a
unifier of α1 and α2. In case two types are unifiable, it is well known that the
set of their unifiers contains most general ones, and that most general unifiers
are all equivalent up to renaming. In general we will call a most general unifier
the most general unifier, considering that we work with type substitution up to
composition with renamings.

Given a set of constants C (where constants are written c, c1, . . .) and a set
of variables V (where variables are written x, y, x1, . . .), we define the set of λ-
terms Λ ::= V | C | λV .Λ | (ΛΛ). The usual conventions that limit the number
of parentheses and sequences of λ’s in the spelling of λ-terms are adopted. We
also take for granted the notions of set of free variables of a term M (noted
FV (M)); the set of constants in M is noted Cst(M). A term M is closed when
FV (M) = ∅. We consider terms typed à la Church so that variables are explicitly
carrying their types as exponents, but for the sake of readability, we will often
omit this typing notation when it is unnecessary to the understanding.

A higher-order signature (HOS) Σ = (A, C , τ) is a tuple made of a finite set of
atomic types A, a finite set of constants C and a funtion τ which associates types
in T (A) to constants in C . The order of a higher-order signature Σ = (A, C , τ) is
defined as maxc∈C (ord(τ(c))). We now define (Λα

Σ)α∈T (A) as the family of the
smallest sets verifying:

1. xα ∈ Λα
Σ and c ∈ Λ

τ (c)
Σ

2. if M ∈ Λβ
Σ , then λxα.M ∈ Λα→β

Σ ,

3. if M1 ∈ Λβ→α
Σ , M2 ∈ Λβ

Σ , then M = M1M2.

We now define linear, syntactically almost linear and syntactically almost affine
λ-terms:

1. xα and c are linear, syntactically almost linear and syntactically almost
affine,

2. given M1 ∈ Λα→β
Σ and M2 ∈ Λα

Σ , (M1M2) is linear (resp. syntactically
almost linear, resp. syntactically almost affine) when M1 and M2 are both
linear (resp. syntactically almost linear, resp. syntactically almost affine) and
FV (M1)∩FV (M2) = ∅ (resp. if xγ ∈ FV (M1)∩FV (M2) then γ is atomic),

3. given M in Λβ
Σ , λxα.M of Λα→β

Σ is (syntactically almost) linear if M is (syn-
tactically almost) linear and xα ∈ FV (M). λxα.M is syntactically almost
affine when M is syntactically almost affine.

Remark that linear terms are syntactically almost linear; also, syntactically al-
most linear terms are syntactically almost affine. When M is linear and M։βM ′



then M ′ is also linear. But, in case M is syntactically almost linear or syntacti-
cally almost affine, it may be the case that M ′ is not syntactically almost linear
or syntactically almost affine: while λf (o→o)→o.(λyo.xo→o→oyoyo)(f(λzo.zo)) is
both syntactically almost linear and syntactically almost affine, its normal form
λf (o→o)→o.xo→o→o(f(λzo.zo))(f(λzo.zo)) is neither syntactically almost linear
nor syntactically almost affine. Thus, we say that M is almost linear (resp. al-
most affine) when there is a λ-term M ′ that is syntactically almost linear (resp.
syntactically almost affine) such that M ′

։βM . Remark that every linear term
is both almost linear and almost affine and that every almost linear term is also
almost affine.

Given two HOS Σ1 = (A1, C1, τ1) and Σ2 = (A2, C2, τ2), a homomorphism

H between Σ1 and Σ2 is a function that maps T (A1) to T (A2), Λα
Σ1

to Λ
H (α)
Σ2

for every α ∈ T (A1) and verifies:

1. H (α → β) = H (α) → H (β),
2. H (λxα.M) = λH (xα).H (M), H (MN) = H (M)H (N) and H (xα) = xH (α),

3. H (c) is a closed λ-term of Λ
H (τ 1(c))
Σ2

.

A context-free λ-grammar (λ-CFG) G = (Σ1, Σ2, H , s) is a tuple where:

1. Σ1 = (A1, C1, τ1) is a second-order signature and Σ2 = (A2, C2, τ2) a HOS,
respectively called the abstract and the object signatures of G .

2. H is a homomorphism between Σ1 and Σ2, called the lexicon.
3. s ∈ A1 is the distinguished type.

This particular class of ACG is called context-free because Σ1 is bound to be a
second-order signature. Indeed such ACGs have derivation structures that are
the same as context-free languages.

Given a λ-CFG G = (Σ1, Σ2, H , s), we define, its abstract language as A(G) =

{M ∈ Λs
Σ1

| FV (M) = ∅} and its object language as O(G) = {M ∈ Λ
H (s)
Σ2

|
∃M ′ ∈ A(G), |H (M ′)|β = M}. A λ-CFG G = (Σ1, Σ2, H , s) is said linear
(resp. almost linear, resp. almost affine) when for each constant c in the abstract
signature of G , H (c) is a linear (resp. almost linear, resp. almost affine) term.
While the original definition of λ-CFGs [dG01,Mus01] corresponds to linear λ-
CFGs, extensions to affine (i.e. with deletion and no copy) and almost linear
(i.e. with limited copy and no deletion) λ-CFGs were introduced in [Yos06]
and [Kan07] respectively. An almost affine λ-CFG is a combination of the two
previous extensions of the original definition.

3 Listed Types

We here present a type system that allows to assign a restricted form of inter-
section types to simply typed λ-terms in the spirit of [Sal10]. Mostly we use this
second layer of typing for two purposes. First, it allows to define a notion of most
general typing for terms typed à la Church that slightly differs from the most
general typing one would get by dropping the type annotations. For example, we



get the type (a → b) → c as the most general type for the term λxo→o.yo, while
the most general typing of λx.y would be a → b. Second, this restricted form
of intersection types allows us to assign informative types to constants that are
deleted during β-reduction.

Given two countable sets of atomic types A and B, we define (Uα(B))α∈T (A),
where Uα(B) is the set of types built on B and uniform with α, to be the least
subsets of T (B) that verify the following identities:

1. Uα(B) = B when α is atomic,
2. Uα→β(B) = {γ → δ | γ ∈ Uα(B) and δ ∈ Uβ(B)}.

Lemma 1. Two types γ1 and γ2 in Uα(B) are always unifiable and their most
general unifier is a relabeling.

Proof. A simple induction on the structure of α.

We now define the family (Lα(B))α∈T (A) , where Lα(B) is the set of listed
types built on B and uniform with α, as the smallest sets such that:

1. Uα(B) ⊆ Lα(B),
2. if l1 and l2 are in Lα(B) then l1 ∩ l2 are in Lα(B).

Intuitively, the elements of Lα(B) are intersection types without the universal
type [CDC80] where the use of the intersection is restricted to the most external
level in order to combine types that are uniform with α. While atomic types will
be noted by small roman letters a, b, c, . . ., and simple types by small greek letters
α, β, γ, . . ., listed types will be written as overlined small greek letters α, β, γ, . . .
As for intersection types, ∩ is associative, commutative and idempotent. We
may therefore confuse the elements of Lα(B) with non-empty finite subsets of
Uα(B) and we use the notation δ ∈ γ, γ1 ⊆ γ2 and γ1 = γ2 with their obvious
meanings. In the sequel, we will need to represent listed types that are built as
intersection of types that only differ on specific positions; as a shorthand, we
shall write certain listed types as {a; b} → {c; d} → e so as to denote the listed
type a → c → e ∩ a → d → e ∩ b → c → e ∩ b → d → e.

Given α such that γ = γ1∩. . .∩γn belongs to Lα(B), we write P(γ), the set of
positions in γ, for P(α)×{1, . . . , n}; and for (s, k) in P(γ), we write at((s, k), γ)
for at(s, γk).

Let us fix a HOS Σ = (A, C, τ) and a countable set of atomic types B; a
typing environment is a pair 〈Γ ;∆〉, where:

1. Γ is a partial function (with a finite domain denoted by Dom(Γ )) that maps
constants to listed types so that Γ (c) is in Lτ (c)(B),

2. ∆ is a partial function (with a finite domain denoted by Dom(∆)) that maps
variables to uniform types so that ∆(xα) is in Uα(B).

As it is usual, we write both components of a typing environment as sequences;
when writing c1 : γ1, . . . , cn : γn for Γ , we mean that the domain of Γ is the
set {c1, . . . , cn} and that for all i in {1, . . . , n}, Γ (ci) = γi; the same convention



α ∈ Γ (c)
AxC

〈Γ ; ∆〉 ⊢ c : α

∆(xα) = γ
AxV

〈Γ ; ∆〉 ⊢ x
α : γ

〈Γ ; ∆, x
α : γ〉 ⊢ M : δ

Abs
〈Γ ; ∆〉 ⊢ λx

α
.M : γ → δ

〈Γ ; ∆〉 ⊢ M1 : γ → δ 〈Γ ; ∆〉 ⊢ M2 : γ
App

〈Γ ; ∆〉 ⊢ M1M2 : δ

Fig. 1. Derivation system for listed types

is adopted for the type assignments xα1

1 : δ1, . . . x
αm

m : δm in ∆. We write ’ ’ for
an empty typing environment. A typing pair is a pair noted 〈Γ ;∆〉 ⊢ γ where
〈Γ ;∆〉 is a typing environment and where γ is an element of T (B). Given M
in Λα

Σ , we say that M is an inhabitant of the typing pair 〈Γ ;∆〉 ⊢ γ or that
〈Γ ;∆〉 ⊢ γ is a typing of M , when 〈Γ ;∆〉 ⊢ M : γ is derivable with the rules of
Figure 1. Remark that when M ∈ Λα

Σ is an inhabitant of 〈Γ ;∆〉 ⊢ γ then γ is
an element of Uα(B).

In order to have a homogeneous notation for positions in typing pairs, po-
sitions in a type γ ∈ Uα(B) will be noted {(s, 1) | s ∈ P(α)}. The set of
positions of 〈Γ ;∆〉 ⊢ γ is defined as P(〈Γ ;∆〉 ⊢ γ) = {(c, p) | c ∈ Dom(Γ ), p ∈
P(Γ (c))} ∪ {(xα, p) | xα ∈ Dom(∆), p ∈ P(∆(xα))} ∪ {(⊤, p) | p ∈ P(γ)}; every
position in P(〈Γ ;∆〉 ⊢ γ) is therefore of the form (h, p) where h is either a con-
stant, a variable or the special symbol ⊤. Finally, we define at((h, p), 〈Γ ;∆〉 ⊢ γ)
to be at(p, γ) if h = ⊤, at(p, ∆(xα)) if h = xα and at(p, Γ (c)) if h = c.

Note that, because variables and constants can only be assigned types of a
specific shape, the set of typings of a term M with listed types is not closed under
substitution as it is the case for the typing judgements that are derivable with
simple types. Instead, the set of typings with listed types that can be derived
for a term M are closed under relabelings. A typing 〈Γ1;∆1〉 ⊢ γ1 is said more
general than a typing 〈Γ2;∆2〉 ⊢ γ2 when there is a relabeling σ such that:

1. γ2 = γ1.σ,
2. for every xα in Dom(∆1), xα is in Dom(∆2) and ∆2(x

α) = ∆1(x
α).σ,

3. for every c in Dom(Γ1), c is in Dom(Γ2) and Γ1(c).σ ⊆ Γ2(c).

Moreover, if 〈Γ2;∆2〉 ⊢ γ2 is not more general than 〈Γ1;∆1〉 ⊢ γ1, we say that
〈Γ1;∆1〉 ⊢ γ1 is strictly more general 〈Γ2;∆2〉 ⊢ γ2.

Obviously, if 〈∆1;Γ1〉 ⊢ γ1 is more general than 〈∆2;Γ2〉 ⊢ γ2, whenever M
is an inhabitant of 〈∆1;Γ1〉 ⊢ γ1, it is also an inhabitant of 〈∆2;Γ2〉 ⊢ γ2. It can
easily be proved that for every term M there is a most general typing in the
set of typings of M . However, this most general typing is not unique (even up
to renaming) simply because we may assign an arbitrarily large listed type to
any constant (see example 1). Nevertheless, when introducing an order on the



most general typings of a term M with respect to the number of different atomic
types that occur in them, it appears that the smallest ones are all equivalent
up to renaming. Thus, working up to renaming of atomic types, we call such a
typing the most general listed typing of M or the mglt of M . The mglt of M can
be obtained by replacing each occurrence of a constant in M by a variable (the
resulting term is noted c-linear(M)), computing the most general typing with
simple types (taking into account the shape constraint imposed by listed types),
and then type each constant with the intersection of the types assigned to the
variables that are replacing its occurrences.

Example 1. Given, two constants f and c of respective type o → o and o, the
mglt of M = λP o→o.f((λxo.fc)(P o→oc)) is 〈c : a1∩a2, f : a1 → b1∩b1 → b2; 〉 ⊢
(a2 → c) → b2. Note that 〈c : a1 ∩ a2 ∩ d, f : a1 → b1 ∩ b1 → b2 ∩ e1 → e2; 〉 ⊢
(a2 → c) → b2 is also a most general typing of M .

Lemma 2. If 〈Γ1;∆1〉 ⊢ γ1 is a typing of term M and is more general than
〈Γ2;∆2〉 ⊢ γ2 then 〈Γ2;∆2〉 ⊢ γ2 is a typing of M .

Proof. Simple induction on the structure of M .

The following properties are naturally inherited from derivations of the terms
in the simply-typed λ-calculus.

Property 1. Given a term M , every typing of M is less general than its mglt.

Property 2. (Subject Reduction) Given terms M and M ′ such that M ′
։βM ,

every typing of M ′ is a typing of M .

4 Typing properties of almost affine terms

Throughout this section we assume that λ-terms are built on a HOS Σ =
(A, C, τ) and that listed types are built on a countable set B of atomic types.

4.1 Negatively non-duplicating typings are not sufficient

In [Aot99], it was proved that all the terms N that are typable with a given
negatively non-duplicating typing are βη-equivalent. This result is obtained on
terms that do not contain constants. We here adapt this correspondence to the
case of λ-terms that contain occurrences of constants. Let us first introduce
negatively non-duplicating listed typings and the notion of polarity. Given a typ-
ing 〈Γ ;∆〉 ⊢ γ, the set of positive (resp. negative) positions P+(〈Γ ;∆〉 ⊢ γ)
(resp. P−(〈Γ ;∆〉 ⊢ γ)) of 〈Γ ;∆〉 ⊢ γ is the set of positions (h, (s, k)) such that,
h is either a constant or a variables and s has an odd (resp. even) length and
of positions (⊤, (s, k)) such that s has an even (resp. odd) length. We also write
Pθ

a〈Γ ;∆〉 ⊢ γ (with θ in {−; +})for the set {p | Pθ〈Γ ;∆〉 ⊢ γ ∧ at(p, 〈Γ ;∆〉 ⊢
γ) = a}. A negatively non-duplicating typing 〈Γ ;∆〉 ⊢ γ is a typing such that
for every atomic type a, the number of elements of P−

a 〈Γ ;∆〉 ⊢ γ is less than 1.



From [Kan10] and [BS11] it can easily be derived that the mglt of a β-normal
term M is negatively non-duplicating iff M is almost affine. This result can also
be, rather easily, generalized to any almost affine term.

Theorem 1. If a term is almost affine then its most general listed typing is
negatively non-duplicating.

We now briefly outline how Kanazawa [Kan07] exploited negatively non-
duplicating typings so as to build a Datalog program for solving the recognition
problem for almost linear λ-CFG and show on an example why a naive transla-
tion of this method cannot succeed for almost affine λ-CFG.

Given an almost linear term M , its mglt is a negatively non-duplicating
typing, and it is also the case that the almost linear terms N that are βη-
convertible to M also have a negatively non-duplicating mglt. So if 〈Γ ;∆〉 ⊢ γ is
the mglt of M , and 〈Γ ′;∆′〉 ⊢ γ′ is that of N , 〈Γ ′;∆′〉 ⊢ γ′ is a typing of M by
subject reduction, while 〈Γ ;∆〉 ⊢ γ might not be a typing of N . This problem
can be overcome by pointing out that M has a negatively non-duplicating typing
〈Γl;∆l〉 ⊢ γl that is less general than any other of its negatively non-duplicating
typings. Thus, because 〈Γ ′;∆′〉 ⊢ γ′ is a negatively non-duplicating typing of
M , 〈Γl;∆l〉 ⊢ γl is less general than 〈Γ ′;∆′〉 ⊢ γ′ and is therefore a typing of
N . As a conclusion, 〈Γl;∆l〉 ⊢ γl is a negatively non-duplicating typing of M
that is also a typing of all the almost linear terms that are βη-convertible to
M . Kanazawa’s technique [Kan07] is precisely based on this property, and for
an almost linear λ-CFG G, he builds a datalog program that can compute the
typings of every term in the language of O(G). Thus given an almost linear term
M , verifying whether M is in O(G) amounts to find whether there is a term in
O(G) that can be typed with the least general negatively non-duplicating typing
of M . This is done by querying the Datalog program on an extensional database
that represents the least general negatively non-duplicating typing of M .

When trying to extend this technique to almost affine λ-CFG, we face the
problem that given an almost affine term M in β-normal form, it is not possible
to find a negatively non-duplicating typing of M that is a typing of all the almost
affine λ-terms that are βη-convertible to M .

Example 2. Let us consider the affine term M = λfo→oxoyo.c1xoyo (in the
sequel, we will write it λfxy.c1 x y) built on the signature Σ that declares two
constants c1 and c2, both of type o → o → o. The mglt of M is c1 : a → b →
c ⊢ (u → v) → a → b → c. We are now going to consider two almost affine terms
N1 and N2 that are βη-convertible to M , and have a look at their mglt:

1. N1 = λfxy.(λg.c1 x y)(f x) with c1 : a → b → c ⊢ (a → v) → a → b → c as
mglt,

2. N2 = λfxy.(λg.c1 x y)(f y) with c1 : a → b → c ⊢ (b → v) → a → b → c as
mglt.

If we take the least general negatively non-duplicating typing of M , i.e. c1 : a →
b → c ⊢ (v → v) → a → b → c it is neither a typing for N1 nor for N2. And,



c1 : d → d → c ⊢ (d → v) → d → d → c, the most general typing that is both a
typing of N1 and N2, is not negatively non-duplicating. As a consequence, it is
inhabited by terms different from M like λfxy.c1 y x.

Furthermore in the case of almost linear λ-terms, the least general negatively
non-duplicating typing of an almost linear λ-term M is also the least general
typing that has M as unique inhabitant. This is no longer the case with almost
affine λ-terms: first, there may be several least general typing for which M is the
unique inhabitant; second, such a typing may not be negatively non-duplicating.

Example 3. Considering the term M as in example 2, amongst the least general
typings for which M is the unique inhabitant, there is: c1 : a → b → c ∩ v →
a → v ⊢ (a → v) → a → b → c and c1 : a → b → c, c2 : v → a → v ⊢ (b → v) →
a → b → c and none is negatively non-duplicating because they both contain
two negative occurrences of v.

4.2 Potentially negatively non-duplicating typings

Given an almost affine term M , even if its mglt is negatively non-duplicating,
there exist typings with weaker syntactic constraints that still fully characterize
M . These syntactic constraints are close to the ones of negatively non-duplicating
typings. We need new concepts to decipher and explain these constraints.

Given a typing 〈Γ ;∆〉 ⊢ γ, and p1, p2 in P(〈Γ ;∆〉 ⊢ γ), p1 enables p2 if:

1. either, p1 = (h, (s1, k)) and p2 = (h, (s1 · i, k)) for some i ∈ N,
2. or, p1 = (⊤, (ǫ, 1)) and, either p2 = (c, (ǫ, k)) or p2 = (xα, (ǫ, 1)).

For p in P(〈Γ ;∆〉 ⊢ γ), we write en(p) the set of positions that are enabled
by p. Furthermore, given p in P(〈Γ ;∆〉 ⊢ γ) and Q ⊆ P(〈Γ ;∆〉 ⊢ γ) we write
eq(Q, p) for the set {q ∈ Q | at(q, 〈Γ ;∆〉 ⊢ γ) = at(p, 〈Γ ;∆〉 ⊢ γ)}. We now
define, Pot(〈Γ ;∆〉 ⊢ γ) the set of potential positions of the pair 〈Γ ;∆〉 ⊢ γ by:

Pot(〈Γ ;∆〉 ⊢ γ) = Pot(en(⊤, ǫ), (⊤, ǫ))

where Pot(Q, p) is defined as the smallest set such that:

Pot(Q, p) = {p} ∪
⋃

q∈eq(Q,p)



{q} ∪
⋃

r∈en(q)

Pot(Q∪ en(r), r)





Pot(Q, p) approximates the derivation system in Figure 1 at the level of
positions. Intuitively, it builds the set of positions that correspond to subformulae
of the typing 〈Γ ;∆〉 ⊢ γ that may be used in an axiom rule in a derivation. Thus,
if we let Irr(〈Γ ;∆〉 ⊢ γ) be P(〈Γ ;∆〉 ⊢ γ)−Pot(〈Γ ;∆〉 ⊢ γ), it is a set of positions
that cannot be used in any derivation of a judgement of the form 〈Γ ;∆〉 ⊢ M : γ
when M is in normal form. For θ in {−; +}, we will use the following notations:

1. Irrθ(〈Γ ;∆〉 ⊢ γ) for Irr(〈Γ ;∆〉 ⊢ γ) ∩ Pθ(〈Γ ;∆〉 ⊢ γ), and Irrθ
a(〈Γ ;∆〉 ⊢ γ)

for Irr(〈Γ ;∆〉 ⊢ γ) ∩ Pθ
a(〈Γ ;∆〉 ⊢ γ)



2. Potθ(〈Γ ;∆〉 ⊢ γ) for Pot(〈Γ ;∆〉 ⊢ γ)∩Pθ(〈Γ ;∆〉 ⊢ γ), and Potθ
a(〈Γ ;∆〉 ⊢ γ)

for Pot(〈Γ ;∆〉 ⊢ γ) ∩ Pθ
a(〈Γ ;∆〉 ⊢ γ)

Property 3. For every irrelevant position p in the mglt 〈Γ ;∆〉 ⊢ γ of a β-normal
term M , every position p′ 6= p ∈ Irr(〈Γ ;∆〉 ⊢ γ) verifies at(p, 〈Γ ;∆〉 ⊢ γ) 6=
at(p′, 〈Γ ;∆〉 ⊢ γ).

If Γ (c) = γ1 ∩ . . . ∩ γn, we say that the kth simple type assigned to c is
equivalent to its lth simple type when for every p1 = (c, (s, k)) and p2 = (c, (s, l)),
the following properties hold:

1. p1 ∈ Pot(〈Γ ;∆〉 ⊢ γ) iff p2 ∈ Pot(〈Γ ;∆〉 ⊢ γ),
2. if p1 ∈ Pot(〈Γ ;∆〉 ⊢ γ), then at(p1, 〈Γ ;∆〉 ⊢ γ) = at(p2, 〈Γ ;∆〉 ⊢ γ)

In case the kth simple type assigned to c is equivalent to its lth simple type and
p1 = (c, (s, k)) and p2 = (c, (s, l)), we write p1 ≡ p2. The smallest equivalence
relation on P(〈Γ ;∆〉 ⊢ γ) that contains the relation ≡ is written ≈. Remark that
whenever p1 ≈ p2, p1 and p2 have the same polarity so that we can extend in the
obvious way the notion of polarity to the equivalence classes of P(〈Γ ;∆〉 ⊢ γ)/≈.
Furthermore, given p in P(〈Γ ;∆〉 ⊢ γ)/≈ either all the elements of p belong
to Pot(〈Γ ;∆〉 ⊢ γ), in which case we say that p is potential, or they all belong
to Irr(〈Γ ;∆〉 ⊢ γ), in which case we say that p is irrelevant. Note that, if p is
potential, for every p1, p2 in p we have at(p1, 〈Γ ;∆〉 ⊢ γ) = at(p2, 〈Γ ;∆〉 ⊢ γ)
so that we may write at(p, 〈Γ ;∆〉 ⊢ γ) for the atomic type associated to the
elements of p; also, if p is irrelevant, we may have p1 and p2 in p such that
at(p1, 〈Γ ;∆〉 ⊢ γ) 6= at(p2, 〈Γ ;∆〉 ⊢ γ). Thus given an atomic type a, we call the
number of potential positive (resp. negative) occurrences of a in 〈Γ ;∆〉 ⊢ γ the
number of potential positive (resp. negative) equivalence classes p in P(〈Γ ;∆〉 ⊢
γ)/≈ such that a = at(p, 〈Γ ;∆〉 ⊢ γ).

Definition 1. A typing 〈Γ ;∆〉 ⊢ γ is potentially negatively non-duplicating
(PN -typing) if and only if

– every atomic type has at most one negative potential occurrence in it.
– for an atomic type a, if Pot−a (Γ ⊢ γ) 6= ∅ then Irr−a (Γ ⊢ γ) = ∅

In example 3, the typings we exhibited as not being negatively non-duplicating
typings are actually PN-typings.

As PN-typings are a natural extensions of negatively non-duplicating typings,
it is easy to show that they also enjoy the property of being uniquely inhabited.

Theorem 2. (Coherence) Given a β-normal term M such that 〈Γ ;∆〉 ⊢ M :
γ is derivable, if 〈Γ ;∆〉 ⊢ γ is a PN-typing and 〈Γ ;∆〉 ⊢ N : γ is derivable, then
M =βη N .

Proof. Suppose M is η-long form for 〈Γ ;∆〉 ⊢ γ. By induction M , we prove that
any term N in β-normal η-long form for 〈Γ ;∆〉 ⊢ γ verifies M = N .



While Kanazawa takes the least negatively non-duplicating typing of a β-
normal almost linear term M as the typing which fully characterizes M and
the almost linear terms that are βη-equivalent to M , we will next show that
some PN-typings, we call the least PN-typings, of an almost affine term M fully
characterizes M and the almost affine terms that are βη-equivalent to M .

5 Least PN-typings

In what follows, all the terms considered are closed (i.e. their set of free variables
is empty); hence, instead of writting 〈Γ ; 〉 ⊢ γ for a typing, we will simply write
Γ ⊢ γ. We also fix a HOS Σ, an almost affine and β-normal term M ∈ ΛΣ and
we let Γ ⊢ γ be the mglt of M .

Similarly to what is done in [Kan07], we aim at constructing a PN-typing of
M that is less general than any PN-typing of M . In general, such a typing does
not exist, instead, there are finitely many PN-typings (up to renaming) of M
such that any typing of M which is strictly less general than one of them is not
a PN-typing. We call these typings the least PN-typings of M .

We divide the construction of the least PN-typings of M into two parts.
The first part of the construction is mostly dealing with the problems inherent
to deletion, while the second can be considered as a mere rephrasing for PN-
typings of what is done in [Kan07] for negatively non-duplicating typings. The
constructions we describe in these two parts are based on relabelings that act
on irrelevant positions in the first case, and on potential positions in the second
one. We thus adopt the following notations:

– Irrat(Γ ⊢ γ) = {at(p, Γ ⊢ γ) | p ∈ Irr(Γ ⊢ γ)}
– Potat(Γ ⊢ γ) = {at(p, Γ ⊢ γ) | p ∈ Pot(Γ ⊢ γ)}

The set of atomic types Irrat+(Γ ⊢ γ) (resp. Irrat−(Γ ⊢ γ)) is defined as
{at(p, Γ ⊢ γ) | p ∈ Irr+(Γ ⊢ γ)} (resp. {at(p, Γ ⊢ γ) | p ∈ Irr−(Γ ⊢ γ)}).

A relabeling σ is said irrelevant (resp. potential) with respect to Γ ⊢ γ when
the set {a | a · σ 6= a} is included in Irrat(Γ ⊢ γ) (resp. Potat(Γ ⊢ γ)). When
Γ ⊢ γ is a PN-typing, σ is said PN-preserving if Γ ·σ ⊢ γ ·σ is also a PN-typing.
A substitution is PN-irrelevant (resp. PN-potential) with respect to Γ ⊢ γ when
it is both irrelevant (resp. potential) and PN-preserving with respect to Γ ⊢ γ.

We are now going to study PN-preserving relabelings as the composition of
PN-irrelevant and PN-potential relabelings.

5.1 PN-irrelevant relabelings

Lemma 3. Given a PN-typing Γ ⊢ γ, a relabeling σ is PN-irrelevant iff for
every a in Irrat−(Γ ⊢ γ), a.σ is not in Potat(Γ ⊢ γ).

According to Property 3, given the mglt Γ ⊢ γ of a β-reduced term M , for
every a ∈ Irrat(Γ ⊢ γ) there is a unique position p ∈ P(Γ ⊢ γ) such that
at(p, Γ ⊢ γ) = a. Given a fresh atomic type ω /∈ Potat(Γ ⊢ γ), a PN-irrelevant
relabeling σ on Irrat(Γ ⊢ γ), is said maximal when it satisfies the following
properties:



1. a · σ = ω when a is in Irrat−(Γ ⊢ γ),
2. a · σ ∈ Potat(Γ ⊢ γ) ∪ {ω} when a is in Irrat+(Γ ⊢ γ).

Lemma 4. Given a PN-tpying Γ ⊢ γ, a maximal irrelevant relabeling σ on this
typing, and a relabeling σ′ such that, Γ · (σ′ ◦ σ) ⊢ γ · (σ′ ◦ σ) is a PN-typing iff
σ′ = σ1 ◦ σ2 where σ1 PN-potential substitution and σ2 is a renaming.

We now define the Σ-mglt ΓΣ ⊢ γ of M such that for every c ∈ C, ΓΣ(c) =
Γ (c) ∪ {α}, where α is made of fresh atomic types for which there is a unique
occurrence in ΓΣ ⊢ γ. Let us now define the set Ω(ΓΣ ⊢ γ) of maximal PN-
irrelevant relabelings on ΓΣ ⊢ γ. Because Potat(ΓΣ ⊢ γ) is finite, Ω(ΓΣ ⊢ γ) is
also finite (up to renaming).

Definition 2. Given a HOS Σ, a term M ∈ ΛΣ, ΓΣ ⊢ γ its Σ-mglt and Ω(ΓΣ ⊢
γ) the set of maximal PN-irrelevant substitutions on ΓΣ ⊢ γ, a Σ-saturated
typing Γsat ⊢ δ of M is a typing which verifies:

– there is σ ∈ Ω(ΓΣ ⊢ γ) such that δ = γ · σ
– for every constant c ∈ Dom(ΓΣ), every α ∈ ΓΣ(c) and every σ ∈ Ω(ΓΣ ⊢ γ),

we have α · σ ∈ Γsat(c).

Example 4. Let us consider the term M as in Example 2. Recall that we suppose
that this term is built on a signature Σ that contains two constants c1 and c2

of type o → o → o and that the mglt of M is: c1 : a → b → c ⊢ (u →
v) → a → b → c. Let A be the set {a, b, c, ω}, then the set of Σ-saturated
typings of M is {c1 : γ1, c2 : γ2 ⊢ γ | γ ∈ (A → ω) → a → b → c} where
γ1 = a → b → c ∩ A → A → ω and γ2 = A → A → ω

A Σ-saturated typing of an almost affine term M in β-normal form is a PN-
typing; indeed, for every relabeling σ ∈ Ω(ΓΣ ⊢ γ), Pot(ΓΣ · σ ⊢ γ · σ)/≈ and
Pot(ΓΣ ⊢ γ)/≈ are in a one to one correspondence that preserves the atomic
type associated to classes of positions. This implies that Pot(Γsat ⊢ δ)/≈ and
Pot(ΓΣ ⊢ γ)/≈ verify the same property. We can then deduce that Γsat ⊢ δ is a
PN-typing.

5.2 PN-potential relabelings

Example 5. Let us consider the term M = λfo→o→oxoyo.f(c1x)(c1x) built on a
signature declaring c1 with the type o → o. The mglt of M is c1 : a → b1 ∩ a →
b2 ⊢ (b1 → b2 → c) → a → v → d. Let A be the set {a, b1, b2, c, ω}, then M has
a unique Σ-saturated typing:

c1 : a → b1 ∩ a → b2 ∩ A → ω ⊢ (b1 → b2 → c) → a → ω → c

The PN-typing c1 : a → b ∩ A′ → ω ⊢ (b → b → c) → a → c, where A′ =
{a, b, c, ω} is a typing of M ′, which is obtained by applying a relabeling σ such
that b1.σ = b2.σ = b. The relabeling σ is potential since b1 and b2 are both
potential atomic types.



In this example, it appears that the potential relabeling σ is a PN-potential
relabeling with respect to the unique Σ-saturated typing of M ; moreover, it
assigns the same type to both occurrences of c1, which corresponds to the method
used in [Kan07] at the level of the syntax of the term.

This example shows that even though maximal PN-irrelevant relabelings lead
to PN-typings that are less general than the mglt of M , and which are the least
general PN-typings of M generated by PN-irrelevant relabelings, there are still
less general typings generated by applying the composition of maximal PN-
irrelevant relabelings and PN-potential relabelings.

Theorem 3. Given a PN-typing Γ ⊢ γ and two of its PN-potential relabelings
σ1 and σ2, there is a PN-potential relabeling σ of Γ ⊢ γ such that Γ.σ ⊢ γ.σ is
less general than both Γ.σ1 ⊢ γ.σ1 and Γ.σ2 ⊢ γ.σ2.

This theorem leads to the existence of a relabeling σmax (called the maximal
PN-potential relabeling on Γsat) on Pot(Γsat ⊢ δ) such that for every relabeling
σ which verifies Dom(σ) ⊆ Pot(Γsat ⊢ δ), Γsat · (σ ◦ σmax) ⊢ δ · (σ ◦ σmax) is a
PN-typing iff σ = σ1 ◦ σ2 where σ1 is PN-irrelevant and σ2 is a renaming.

Definition 3. A typing Γ ⊢ γ of M is called a least PN-typing of M if there
is Σ-saturated typing Γsat ⊢ δ of M such that Γ ⊢ γ = Γsat · σmax ⊢ δ · σmax,
where σ the maximal PN-potential relabeling on Γsat.

We are now in position to state the main theorem that allows us to construct
a Datalog recognizer.

Theorem 4. Given a signature Σ, a closed almost affine term M ∈ ΛΣ in β-
normal form, for every closed almost affine term M ′ ∈ ΛΣ such that M ′

։βM
there is a least PN-typing Γsat ⊢ γ of M that types M ′.

Proof. Let us consider the mglts Γ ⊢ γ and Γ ′ ⊢ γ′ of M and M ′ respectively.
Because M and M ′ are almost affine terms, these typings are negatively non-
duplicating (Theorem 1), and by subject reduction Γ ′ ⊢ M : γ′. Then, it can be
easily remarked that there is a least PN-typing of M that is less general than
Γ ′ ⊢ γ′.

6 The Datalog recognizer

6.1 Description of the program

Let us consider an almost affine λ-CFG G = (Σ1, Σ2, H , s) (where for i ∈ {1, 2},
Σi = (Ai, Ci, τ i)), a closed almost affine term M in β-normal form and Γ ⊢ γ
its mglt. We now give the details of the construction of a Datalog program
that checks whether M belongs to O(G). This construction is done in the same
fashion as in [Kan07].



In what follows we adopt the notation γ[−→α ] for a type α ∈ Uγ(A), where −→α
is the sequence of atomic types appearing in α in a left-to-right order. Also, we
write σω for the substitution such that:

σω(a) =

{

ω when a ∈ Irrat−(Γ ⊢ γ)
a otherwise

The term-related database Let’s consider the term to parse M such that
Cst(M) = {c1, . . . , cl} ⊆ C2. Given a typing Γ ⊢ γ of M , we let ΓΣ2

⊢ γ be the
Σ-mglt of M and Γω ⊢ γω = ΓΣ2

· σω ⊢ γ · σω.

1. to every constant c ∈ Dom(Γω) and every type α ∈ Γω(c) we associate the
rule:

c(−→α ) :- atom(x1), . . . , atom(xn).

where an atomic types a of α that belongs to either Potat(Γω ⊢ γω) or
Irrat−(Γω ⊢ γω) is considered as a Datalog constant a; and each atomic type
of α that belongs to Irrat+(Γω ⊢ γω) is considered as a Datalog variable
xi (i ∈ {1, . . . , n}). Note that for i ∈ {1, . . . , n} there is one and only one
occurrence of xi in −→α according to Property 3.

2. for every atomic type a in Potat(Γ ⊢ γ) ∪ {ω}, add a fact:

atom(a).

The grammar-related database Given a constant c ∈ C1 and the mglt Γ ⊢ γ
of H (c), the following datalog rule ρc:

p0(
−→x0) :- p1(

−→x1), . . . , pn(−→xn), ef(1)(
−→y1), . . . ef(m)(

−→ym), atom(z1), . . . , atom(zl).

is associated to c and verifies.

– τ1(c) = p1 → . . . → pn → p0.
– −→x1, . . . ,

−→xn,−→y1, . . . ,
−→ym are exclusively made of Datalog variables

– given Dom(Γ ) = {e1, . . . , ep} = Cst(M):
• there exists j ∈ {1, . . . ,m}, such that α = τ2(ef(j))[

−→yj ] iff α ∈ Γ (ef(j))
• γ = H (p1)[

−→x1] → . . . → H (pn)[−→xn] → H (p0)[
−→x0]

• xi belongs to {z1, . . . , zl} iff xi ∈
−→x0 and xi has a unique occurrence in

−→x0, . . . ,
−→xn,−→y1, . . . ,

−→ym.

Note that the Datalog variables {z1, . . . , zl} are associated to irrelevant po-
sitions in Γω ⊢ γω; this way, we ensure irrelevant positions are forced to belong
to the desired set of atomic types (thanks to atom(zi)), and we ensure the safety
condition on the rules of our Datalog program.

For each constant c ∈ C1, it is easy to see that the rule ρc is in fact associated
to every typing Γ ′ ·σ ⊢ γ′ ·σ, where Γ ′ ⊢ γ′ is the mglt of H (c) and the relabeling
σ maps atomic types in Irrat(Γ ′ ⊢ γ′) to atomic types in Potat(Γ ⊢ γ) ∪ {ω},
such that Γ ⊢ γ is a typing of the term to parse M . Morever, if Γ ⊢ γ is taken
as the mglt of M in the constrution of the term-related database, the rules



c(−→α ) :- atom(x1), . . . , atom(xn). derives any type α ∈ Γsat(c), for Γsat ⊢ δ a least
PN-typing of M .

We note a program built as above recog(G , Γ ); moreover, given any atomic
type p in the abstract signature Σ1 of G, we next prove that there is a term
N ∈ Λp

Σ1
such that H (N)։βM iff there is a derivation in answer to the Data-

log query ? :- p(−→γ ) (where every irrelevant occurrence in γ of an atomic type to
Irrat+(Γ ⊢ γ) is replaced by a Datalog variable in −→γ ). Note that, by construc-
tion, the query ? :- p(−→γ ) is the same for any least PN-typing of M .

6.2 Completeness and Correctness of the method

Given a Datalog program recog(G , Γ ), a request ? :- p(−→γ ) built as previously
detailed, and Γ ⊢ γ a typing of M , we note

recog(G , M) :- p(−→γ )

whenever there is a derivation of p(−→γ ) in recog(G , M); such a derivation must
assign a type in Potat(Γ ⊢ γ) ∪ {ω} to each Datalog variable present in −→γ .

Lemma 5. Let’s consider G = (Σ1, Σ2, H , s) an almost affine λ-CFG. There
exist a type assignment Γ and a type γ such that

recog(G , Γ ) ⊢ p(γ)

iff there is a closed term N ∈ Λp
Σ1

such that Γ ⊢ H (N) : γ.

Proof. Proceed by induction on the Datalog derivation for the first implication,
by a simple induction on N for the second one.

Theorem 5. Let’s consider an almost affine λ-CFG G = (Σ1, Σ2, H , s). Then
the two following propositions are equivalent:

1. there is a term M ∈ O(G)

2. recog(G , Γ ) ⊢ s(−→γ ), such that Γ ⊢ γ is a least PN-typing typing of M

Proof. (1 ⇒ 2) Let’s first consider a term M ∈ O(G); by definition of an object
language, there is a term N ∈ A(G), such that |H (N)|β = M . Hence, according

to Lemma 5, for every typing ∆ ⊢ δ of H (N), recog(G , ∆) ⊢ s(
−→
δ ). This is in

particular true for some least PN-typing Γ ⊢ γ of M , according to Theorem 4. By
construction, for any least PN-typing of M , recog(G , Γ ) and s(−→γ ) are identical,
so 2. is verified.

(2 ⇒ 1) Let’s now suppose recog(G , Γ ) ⊢ s(−→γ ), such that every least-PN-
typings of M are represented by Γ ⊢ γ. According to Lemma 5, there is a term
N ∈ A(G) such that H (N) inhabits Γ ⊢ γ; but the least PN-typings of M are
PN-typings and by Theorem 2, the terms M and H (N) must be βη-equivalent.



Abstract Grammar Object Grammar

John : NP λQP.P (Q john pers undefined undefined)
read : NP → NP → S λPQ.(Pπ1)(λx.(Qπ2)(λy.read x y))
Hamlet : NP λQP.P (Q ham pers ham bcont ham bphys)

where V = NP → NP → S and πi = λx1x2x3.xi

Fig. 2. Example of a semantically enriched λ-CFG

Extensional Rules of recog(G , Γ )

NP (x1, x2, x3, x4, x4, x5, x5) :- john pers(x1), undefined(x2), undefined(x3).
S(x6) :- NP (x1, x2, x3, x1, x4, x5, x6),

NP (x′

1, x
′

2, x
′

3, x
′

2, x7, x8, x5),
read(x4, x7, x8),

NP (x1, x2, x3, x4, x4, x5, x5) :- ham pers(x1), ham bcont(x2), ham bphys(x3).

read(x1, x2, ω) :- atom(x1), atom(x2).

Intensional Rules of recog(G, Γ )

john pers(ω). atom(1). read(2, 3, 1).
undefined(ω). atom(2). john pers(2).
ham pers(ω). atom(3). ham bcont(3).
ham bcont(ω).
ham bphys(ω).

Fig. 3. Example of Datalog program

6.3 Example

As an example, let us consider the almost affine λ-CFG in Figure 2, where se-
mantic aspects are considered; for instance, ham bcont and ham bphys stand
respectively for the content and the object denoted by the book ”Hamlet”. We
consider the following semantic representation of the sentence John read Hamlet

read john pers ham bcont

and build the associated Datalog program as in Figure 3. There is a derivation
in this program for the Datalog request :-?S(1) which corresponds to the PN-
typing:

8

>

<

>

:

read : 2 → 3 → 1, john pers : 2,ham bcont : 3,

ham bphys : ω,ham bpers : ω,undefined1 : ω,

undefined2 : ω

⊢ Lex (read John Hamlet) : 1

Readers should note that in practice, only the last 6 rules depend on the
term to parse M and on its least PN-typings. It is therefore possible to enhance



the construction of the grammar by constructing every rule of the grammar-
related database plus, for every constant c in the object signature the rules
c(−→α ) :- atom(x1), . . . , atom(xn) such that τ2(c)[

−→α ] is of the form α1 → . . . →
αm → ω. Then, given a term M to parse, we only need to add the facts on
the predicate atom and for every constant c in the object signature the rules
c(−→α ) :- atom(x1), . . . , atom(xn) such that α is not of the previously mentionned
form. Therefore, the complexity of the fixed-language recognition should be close
to the one given in [Kan07] for almost linear λ-CFGs.

7 Conclusion

While Datalog programs for almost linear λ-CFGs led to efficient parsing algo-
rithms, we give a Datalog recognizer construction which subsumes Kanazawa’s,
and which recognize λ-term in the language of an almost affine λ-CFG. Even
though almost affine λ-CFGs are not more expressive than almost linear λ-CFGs,
they facilitate the design of grammars which, for instance, take account of feature
agreements or semantic aspects.

Technically, the solution proposed in this paper is exclusively based on typ-
ing properties of almost affine terms, in particular, we introduced PN-potential
relabelings so as to identify occurrences of constants in a term M that origi-
nate from the same occurrence in the β-expanded term M . On the theoretical
point of view, the introduction of deletion in the grammar implies the intro-
duction of intersection types in the typing theory, just as it is done in [Sal07]
for parsing generalized λ-grammar. Simple types seem therefore enough only
to study linearity and almost linearity in λ-grammars. The use of intersection
types gives also a great framework to handle occurrences of constants, and the
listed types we introduced offer the possibility of considering parsing context-free
grammars of non-simply-typed λ-terms, by assigning types of different shape to
constants. Also, while [Kan07] results are based on the properties of negatively
non-duplicating typings, we introduced the family of potentially negatively non-
duplicating typings (to which negatively non-duplicating typings also belong).

While Kanazawa’s method performs in LOGCFL, it remains to know what
the complexity of the algorithm given in this article is exactly; though, we know
the Datalog program ensures a polynomial time parsing algorithm. We also plan
to compare the size of the final program with the size of a the Datalog recognizer
linearized almost affine λ-CFG as given in [Yos06] so as to assess whether there is
a significant gain in considering almost affine λ-CFG. In the future, we also plan
to enhance this algorithm with an extraction of the associated derivations so as
to develop a parser based on these results. Finally, it would also be interesting
to see whether the operation of deletion can help modeling in a simple manner
other linguistic phenomena such as ellipsis.
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