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For future ultrafast all-optical networks, new optical devices are required that directly 

manipulate communication channels to shift their wavelength over the bandwidth of an 

optical fiber (50THz).
1,2

 Current proposed solutions based on nonlinear processes, 

however, suffer from small efficiencies owing to low nonlinear susceptibilities.
3
 Here, we 

demonstrate all-optical wavelength conversion of a near-infrared beam using a resonant 

non-linear process within a terahertz (THz) quantum-cascade-laser (QCL).
4
 The process 

is based on injecting a low power CW near-infrared beam in resonance with the 

interband transitions of the QCL. This results in an enhanced nonlinearity allowing the 

efficient generation of the difference and sum frequency, shifting the frequency of the 

near-infrared beam by the QCL frequency. Efficiencies of 0.13% are shown which are 

equivalent to those obtained using Free Electron Lasers. As well as important 

implications as an ultrafast wavelength shifter, this work also opens up the possibility of 

efficiently up-converting THz radiation to the near-infrared and the study of high THz-

optical field interactions with quantum structures using QCLs. 



Wavelength division multiplexing (WDM) is currently used extensively in optical fibre 

networks to enhance the carrier capacity of optical fibres where each wavelength in a multi-

wavelength bunch is assigned to a particular communication channel.
5
 In these types of 

networks, wavelength manipulation is essential for data routing, and optoelectronic shifters 

are employed to perform wavelength shifting; the optical signal is converted to an electrical 

signal and then back into an optical signal at a different wavelength. This creates an 

undesirable speed bottleneck. In order to overcome this problem, as well as to increase the 

bandwidth, all-optical networks have been proposed that would succeed their electrical 

counterparts. For these types of networks new types of optical devices are required that 

directly manipulate communication channels to shift their wavelength across the optical fiber 

bandwidth. 

Non-linear processes in semiconductor devices have the potential to fill this 

technological gap where two wavelengths in a nonlinear material can be mixed to generate the 

sum or difference frequency, effectively shifting the original wavelengths.
3
 Normally, 

however, these techniques are based on the small bulk non-linearities of the material, and 

demand phase matching for a long interaction length and/or high pump powers. These 

considerations can be overcome by using resonant non-linearities of quantum wells
6,7

 which 

are orders of magnitudes greater than those of the bulk, permitting much shorter interaction 

lengths. Indeed considerable investigations have been undertaken of the wavelength shift of 

near infrared (NIR) beam in the presence of an intense THz beam in a quantum well system.
8-

11
 These studies were based on enhanced non-linear susceptibilities where the near-infrared 

beam was resonant with excitonic interband transitions and the THz beam was resonant with 

excitonic intersubband levels. The resonances could be modified to engineer the wavelength 

shift by changing the quantum well geometry
10

 or by the application of an external electric 

field
12,13

 and large efficiencies (0.1% - 0.2%) could be obtained.
14,15

 However, an important 



point of all this work is that the THz beam is provided by an entire facility - the free electron 

laser (FEL) - and thus prohibiting its relevance to real world applications. 

 THz QCLs
4,16

 are recently realised semiconductor sources that operate in the THz 

range. QCLs are based on intersubband transitions where laser action takes place between 

confined conduction band subbands in a series of coupled quantum wells. The intracavity 

fields (upto a few kV/cm) of these devices can approach those that are used in the FEL studies 

mentioned above.
15

 QCLs therefore have the potential as an integrated wavelength converter 

to shift an external NIR beam by the QCL frequency by (i) providing large intracavity powers 

and (ii) an enhanced non-linearity from the interband resonance of the NIR beam with the 

confined states. Previous work using QCLs and a NIR beam took advantage of the bulk 

second order non-linearity of GaAs to perform frequency mixing
17

 or the use of a double 

resonant process
18

 but the efficiencies of the processes were limited (10
-4

 -10
-3

 %). Here, we 

demonstrate an improvement of 2 orders of magnitude with conversion efficiencies of up to 

0.13 %, comparable to those obtained in FEL investigations.  

 

Figure 1a shows the schematic of the process investigated here via the resonant 

interband excitation of the QCL with the NIR beam. The THz QCL laser transition EQCL 

occurs within the conduction band between the highlighted green states (green wave arrow). 

A NIR beam ENIR (red arrow) is coupled into the QCL cavity and resonantly tuned with an 

interband transition implying hole and electron states. As a result the difference frequency is 

generated ENIR-EQCL (dark red arrow), via a virtual state and the THz photon (green arrow), 

which is below the bandgap and therefore avoids absorption.
10

 (The reverse situation also 

occurs with an excitation at the virtual transition to generate the sum frequency, ENIR+EQCL, at 

the bandgap).  



Figure 1b shows the geometry of the experiment where the input interband excitation 

and the THz QCL emission are collinear i.e. in the same plane parallel to the surface of the 

QCL. This is in strong contrast to previous experiments that have investigated resonant non-

linear mixing where the THz beam and near-infrared excitation were orthogonal.
10,12,15,18

 This 

type of guided geometry for both the THz beam and input interband excitation allows the use 

of a much longer interaction length. The NIR pump is coupled into one QCL facet and the 

difference frequency exits the opposite facet as well as the remaining input (the latter 

depending on the optical losses). 

The guided modes are shown in Figure 1c for the THz QCL emission and the injected 

NIR beam (just below bandgap) using a dual wavelength waveguide. The confinement of the 

transverse magnetic (TM) polarised THz beam is based on a standard surface plasmon mode. 

The NIR excitation (transverse electric (TE) or TM) is confined by the top metal layer and a 

300nm Al0.5Ga0.5As grown between the lower doped layer and the substrate. This layer has a 

lower refractive index than the surrounding material and therefore dielectrically confines the 

injected NIR beam. 

 

QCLs operating at 2.8THz using GaAs/AlGaAs quantum wells and based on a bound-

to-continuum design
19

 were employed and operated in continuous wave at 10K. (See method 

section for more details on the sample and experimental set-up). Figure 2a show the spectra of 

the beam without transmission through the QCL with the pump beam centred at 

ENIR=1.5267eV (λ=812nm) i.e. just above the effective bandgap of the QCL and 

corresponding to electronic transitions between the first confined hole and electron states. The 

polarisation of the NIR beam was chosen to be parallel to that of the QCL (i.e. TM polarized) 

implying interband transitions from only the light hole states.
20

 Figure 2b shows the spectrum 

after transmission through the QCL driven below laser threshold (black curve) where ENIR is 



just visible, as a result of a parasitic part of the beam that does not pass through the ridge. The 

situation changes drastically when the QCL is above threshold (red curve). The difference 

frequency is clearly observed at Ed=ENIR-EQCL= 1.5152eV (λ=818nm), i.e. separated from the 

pump ENIR by exactly the photon energy of the THz QCL (f=2.78THz) and is below the 

bandgap of the material. A point to note is the high apparent conversion efficiency, with the 

difference frequency 14 times more intense than the pump wavelength (taken as the ratio of 

the integrated signals of the pump and sideband). This is due to the sharp interband 

absorption. To estimate the actual conversion efficiency, defined as the ratio of the power of 

the sideband divided by that of the input NIR pump Pd/PNIR, the coupling efficiency of the 

pump needs to be determined. This was done by characterising the transmission of the pump 

at an energy below the effective gap of the QCL where the interband losses are zero. This 

allows the determination of the NIR pump intensity coupled into the input facet of the QCL. 

With this calibration taken into account an efficiency of 0.13% is determined.  

The inset of figure 3a shows the interest of this technique for THz detection. A high 

resolution spectrum of the sideband (with the pump at 1.528eV) showing many modes is 

shown which is an exact replica of the QCL Fabry Perot emission and which was taken in less 

than a second. This shows that this wavelength conversion allows one to measure and 

upconvert the THz emission of the QCL to the near-infrared. Further, these measurements 

used standard CCD camera technology for detection. The spectrum exhibits a 1.2 GHz 

resolution which is comparable to that of a considerably slower high resolution FTIR 

spectrometer. 

The resonant nature of interaction can be seen in figure 3a where spectra for several 

pump wavelengths and their corresponding difference frequency for a TM pump polarisation 

are shown. For clarity, the curves have been normalised by setting the pump wavelength 

intensities to one. As the pump energy is increased from 1.522eV to 1.534eV the difference 



frequency increases in intensity showing a double resonance before decreasing at higher 

pump energies. These results are plotted in figure 3b and show the efficiency with the 

absorption of the pump taken into account (see above) as a function of the pump energy 

(square points). Resonances at 1.531eV and 1.527eV are observed with the latter showing a 

conversion efficiency of 0.13% which was the highest obtained. This is more than two orders 

of magnitude greater than previously demonstrated frequency mixing using QCLs. The full 

width at half maximum of each resonance is ~1 – 2 meV. These resonances arise when ENIR is 

resonant with interband transitions that have a large overlap between the electron and hole 

wavefunctions. Also shown in figure 3b is the efficiency with a TE polarised NIR beam 

corresponding to interband excitation predominately from heavy holes states.
20

 One resonance 

is clearly observed at 1.525 eV and another broader one around 1.528 eV. The slightly lower 

energy of the resonance for the TE polarization compared to that of the TM is due to the 

higher confinement of the heavy hole states. The slighty reduced efficiency in the TE 

polarisation is due to the smaller overlap of the electron and heavy hole states. 

To identify the states involved in the nonlinear process, the photoluminescence (PL) 

from the QCL was investigated (Figure 4b). As the PL emission is given by the transitions 

having the lowest energy, i.e. involving heavy holes states, it is compared to the efficiency 

curve for a TE polarization of the NIR pump (figure 4a, red squares). The TE efficiency is 

also plotted as a function of the difference energy ENIR-EQCL (green circles). Firstly, regarding 

the resonances in the efficiency at the pump beam energies (red squares), the main peak 

corresponds to the shoulder in the PL spectrum at 1.525 eV and that the higher energy and 

broader resonance corresponds to a transition around 1.527 eV. Secondly, no peaks are seen 

in the PL in the difference energy range (green circles) illustrating that there are no resonant 

transitions and confirming that the wavelength conversion is realized through a virtual state 

below the bandgap. (The small shoulder at 1.519eV is due to PL from the GaAs substrate). 



Figure 4c shows a comparison between the PL spectrum with the overlap of the interband 

wavefunctions of the QCL, the PL being proportional to the square of the overlap between the 

electron and hole states.
21,22

 Figure 4d presents the bandstructure of the studied sample 

including conduction and valence bands. The states taken into account are highlighted and are 

the three lowest lying heavy hole levels (labelled H1 to H3) and five electronic states in the 

miniband (labelled E1 to E5) which have a significant overlap. Comparing figures 4a, 4b and 

4c, the efficiency peak at 1.525eV is a result of resonances with HH1E1 and HH1E2 

transitions i.e. the lowest lying states. The higher energy broader resonance is more difficult 

to identify to a sole transition and appears to be related multiple contributions between the 

three hole states and the lower electron states. This explains the broader nature of the second 

resonance. A similar analysis can be performed for the light hole states that shows only a 

significant overlap comes between the lowest lying hole state and the lowest electronic states 

that are separated by 3meV, in agreement with the results of figure 3b. Thus the nonlinear 

process is singly resonant with the lowest energy hole states and the electronic states of the 

QCL’s miniband. 

 

It is possible to estimate the second order susceptibility, χ(2)
, from the efficiency, η:
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where Pd (nd), PNIR (nNIR), PQCL (nQCL) are the intensities (refractive indices (~ 3.6)) of the 

generated beam, the input NIR pump, and the THz QCL respectively, L is the cavity length of 

the QCL (1.5mm), λd is the generated wavelength (818nm) and S is the interaction area 

defined as the modal overlap between the three interacting waves (8000 µm
2
) [17]. The 



intracavity THz power is 75mW, estimated from the detected output power and a facet 

reflectivity of 0.32. Įp are the losses of the NIR pump (estimated at 1000 cm
-1

)
20

 and ǻk is the 

phase mismatch. Here the losses of the difference frequency and the THz beam are taken as 

zero. Although phase matching in the geometry presented here is possible due to refractive 

index dispersion at resonance
26

 (see supplementary material S2), the high losses of the pump 

beam is the limiting factor regarding the interaction length. Equation 1 can then be simplified 

to: 
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Taking the maximum efficiency of 0.13 %, a second order non-linearity of ~1×10
4 

pm/V is 

determined. This is rough agreement with previous studies which have shown interband 

nonlinearities in the range of 10
2
-10

4
 pm/V for quantum wells

27,28
 confirming that the non-

linear susceptibility is enhanced by the resonant excitation.
29 

 

We have shown that the resonant interband properties of a QCL can be used for efficient 

frequency mixing through enhanced nonlinearities. The perspectives on this work are wide 

ranging. The wavelength shift can be engineered to any desired THz value
30 

and can be 

equally applied to MIR QCLs,
31

 where the wavelength shift is much greater and can be used 

to shift between different telecommunication bands
32

. As well as room temperature and high 

power output,
33

 MIR QCLs are based on InGaAs/AlInAs quantum wells where the interband 

transition is directly in the telecommunication range. Further increases in efficiencies could be 

realised through a) adapted active region designs or the insertion of passive quantum wells to 

enhance the non-linearity through optimisation of the overlaps between the confined states; 

and b) the combination of intersubband non-linearities with those of the interband transitions. 

This work also shows the potential to efficiently up convert the QCL emission permitting the 



use of NIR technology for the detection of THz emission or providing a NIR-THz link for 

free space telecommunications. On a more fundamental side, this work also opens up the 

possibility of studying high THz-optical field interactions using compact and powerful QCLs, 

previously reserved to entire facilities such as the FEL. 

 

In conclusion an efficient wavelength converter based on a compact QCL was demonstrated. 

Frequency conversion with high efficiencies was realised through the enhancement of the 

non-linearity where the pump is resonant with interband transitions, combined with the high 

THz intra-cavity power density. These developments show the potential of QCLs as novel 

optical components for the all-optical telecommunication networks. 

 

Methods 

QCLs operating at 2.8THz using GaAs/AlGaAs quantum wells and based on a bound-

to-continuum design were employed (12µm active region thickness). Samples were processed 

into a single plasmon geometry with a ridge width of 250µm and a cavity length of 1.5mm. 

The samples were operated in continuous wave at 10K. (See supplementary material S1 for 

the optical and electrical characteristics as well as the spectrum). As the bandgap of GaAs is 

in the near-infrared, the interband pump was sourced from a CW Ti:Sapphire laser that also 

allowed a large wavelength tunability and permits the correct interband resonance excitation 

to be found. 100 µW of NIR pump power was used with a coupling efficiency of ~20%, 

resulting in ~20µW coupled into the QCL cavity. Low powers for the input NIR beam were 

used so as not to affect the QCL performance. This was verified by confirming that the 

threshold current observed in the change in differential resistance of the VI did not increase 

with the coupled NIR beam. The transmitted NIR beam is collected at the opposite facet using 

a high numerical aperture objective and analysed using a spectrometer coupled to a 

thermoelectrically cooled CCD camera. 
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Figure Captions 

 

Figure 1| Scheme principle and optical modes. a, Schematic of the resonant non-linear 

process for the generation of the difference frequency (ENIR-EQCL) in a QCL operating at EQCL 

(green wave arrow between states Eu and En). A NIR pump ENIR (red arrow) is tuned in 

resonance with interband transitions involving hole states in the valence band and electron 

states in the miniband of a QCL. This allows the generation of a lower energy beam (dark red 

arrow) at ENIR-EQCL via a virtual state below the material bandgap (dotted line) and the THz 

photon (green arrow). (For clarity the process is shown for one quantum well). b, Schema of 

the geometry and the experimental principle. A NIR beam, ENIR, is coupled  into the cavity of 

a QCL operating at EQCL via one facet (left side of the figure). The transmitted ENIR and the 

difference frequency ENIR-EQCL are collected through the opposite facet. c, Intensity profiles 

of the THz QCL mode at 2.8THz (green line) and the NIR mode (red line) of the dual 

wavelength QCL waveguide. The NIR mode is confined between the metallic upper contact 

layer and an AlGaAs layer insuring a maximum overlap with the active region of the QCL. 

 

Figure 2| Wavelength shifting using interband excitation. a, Spectrum of the NIR pump, 

ENIR, before coupling into the QCL cavity. b, Spectrum of the transmitted beam with QCL 

below laser threshold (black curve). Spectrum of the transmitted beam with QCL above laser 

threshold (red curve). A high intensity peak appears at ENIR-EQCL i.e ENIR shifted by the 

energy of the QCL frequency (2.78 THz).  

 

Figure 3| Resonant behavior and polarization effect of NIR pump. a, Spectra of the QCL 

output for different pump excitation energies. The pump beams are normalized to 1. Eg 



corresponds to the energy from which the NIR pump is absorbed, showing that the generated 

beam is always below the absorption edge. Insert: High resolution spectrum of the generated 

beam that corresponds to the QCL emission intensity spectral profile. b, Conversion 

efficiency as a function of the NIR pump energy with losses taken into account for TE 

polarization (red dots) and TM polarization (black squares) of the input pump beam. The solid 

curves are gaussian fits to the data. 

 

Figure 4| Confined states involved in resonant nonlinear interaction. a, Conversion 

efficiency for TE polarization of the NIR pump as a function of the generated difference beam 

energy (green dots) and the pump energy (red squares). b, Photoluminescence spectrum of the 

QCL biased above laser threshold (i.e. for wavelength shifting). c, Overlaps of the interband 

transitions involving the 3 lowest lying heavy holes states (HH1, HH2 and HH3) and the 

electronic states of the lower miniband of the QCL (states E1 to E5). d, Bandstructure of the 

QCL showing the valence (heavy holes) and conduction band states. The states in bold lines 

are those with significant overlap in the range of energies where the difference frequency is 

observed. The calculated overlaps in (c) correspond to transitions between HH1 (black), HH2 

(magneta) and HH3 (blue) with miniband states increasing in energy from E1 through to E5. 

The QCL laser transition is represented by a green wave arrow between the upper and lower 

laser states. 
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