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MULTIPHYSICS OPTIMAL TRANSPORTATION AND IMAGE ANALYSIS

Afaf Bouharguane, Emmanuel Maitre, Édouard Oudet and Nicolas
Papadakis1

Abstract. Benamou and Brenier formulation of Monge transportation problem [3] has proven to be
of great interest in image processing to compute warpings and distances between pair of images [1].
In some applications, however, the built-in minimization of kinetic energy does not give satisfactory
results. In particular cases where some specific regions represent physical objects, it does not make
sense, as produces genuine optimal transport, to split, merge or arbitrarily deform these regions along
the optimal path. The aim of this work is to introduce several extended energies to take care of physical
properties of the image in the interpolation process. We present algorithms to compute approximations
of the corresponding generalized optimal transportation plans.
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1. Introduction

1.1. Context in image processing

Optimal transportation has found a wide field of application in image interpolation and registration, since
pioneering works of Benamou and Brenier [3] who introduced an algorithm based on the minimization of the
kinetic energy by flows which preserve the mass. By structure, optimal transportation does not preserve image
regions along the optimal interpolation path. Consequently it is actually not difficult to exhibit test cases where
the algorithm produces a path of images where high density regions split at the beginning before merging back
at its end (see [3] for an example). However, in some applications to image interpolation this behaviour is not
desirable. Suppose for instance that the images represent the evolution in time of a droplet of oil in water. The
droplet can obviously split during time; however, this phenomenon has a physical cost which is not taken into
account in the interpolation given by the genuine optimal transportation model. For an elastic membrane, we
would expect no splitting at all. This article aims at studying how some physics can be added to the optimal
transportation theory, how to construct algorithms to compute solutions to the corresponding optimization
problems and how to apply the proposed methods to image interpolation. We introduce several extended
models of optimal transportation, which will amount to add some energy terms to the classical kinetic energy,
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or add constraints on the admissible space for minimizers. Note that due to this generalized form, the Euler-
Lagrange equations are not of Monge-Ampere type as genuine optimal transportation, and algorithms based
on this formulation [8], and recently [6,7], can not be used in our context. This work focus on algorithms, with
their numerical validation. Study of the mathematical structure of spaces to which the generalized transport
plans belong is an undergoing work.

1.2. Quick introduction to optimal transportation

Let Ω be an open bounded domain and let us consider the Monge problem of pushing one probability measure
µ to another probability measure ν, through a transportation map which minimizes some cost. We assume the
measures µ and ν to be absolutely continuous with respect to the Lebesgue measure, of densities ρ0 and ρ1,
nonnegative on Ω. As probability measures we have∫

Rn

ρ0(x)dx =

∫
Rn

ρ1(x)dx = 1.

In application to image processing, these densities will correspond to gray levels, and in general this condition
would not be satisfied. However means to cope with the general case exist [2]. A map T : Rn → Rn is a transfer
map from ρ0 to ρ1 if for all bound A ⊂ Rn,∫

A

ρ1(x)dx =

∫
{T (x)∈A}

ρ0(x)dx. (1)

If T is a C1 mapping, then by a change of variables this is equivalent to

det(∇T (x))ρ1(T (x)) = ρ0(x),

which is under-determined. Let Γ(ρ0, ρ1) be the set of mappings T transfering ρ0 on ρ1. The Lp Kantorovich-
Wassertein distance between ρ0 and ρ1 is then defined by

dp(ρ0, ρ1)p = inf
T∈Γ(ρ0,ρ1)

∫
|T (x)− x|pρ0(x)dx.

The Lp Monge-Kantorovitch problem (MKP) corresponds to find a mapping T such that this infimum is
achieved.

In the case p = 2, the problem admits an unique solution (see e.g. Villani [12] page 66), which is the gradient
of a convex fonctional from Ω to R:

T (x) = ∇Ψ(x).

The convex function Ψ is solution of Monge-Ampère equation:

det(D2Ψ)ρ1(∇Ψ(x)) = ρ0(x).

This equation being highly nonlinear, numerical methods to solve the MKP problem based on discretization
of the Monge-Ampère equation have already been investigated [6–8, 10]. In application to image morphing
problem, it is relevant to seek a time-dependent family of mappings T (·, t) transfering continuously ρ0 to ρ1.
In [3] the authors introduced a fluid mechanics formulation of MKP, by adding a new dimension to the original
problem (the time). The idea is to consider an arbitrary time interval [0, tm] and all functions ρ(x, t) ≥ 0 and
vector fields v(x, t) ∈ Rn solution of the continuity conditions with prescribed initial and final densities:

∂tρ+ div(ρv) = 0, ρ(x, 0) = ρ0(x), ρ(x, tm) = ρ1(x). (2)

Then we have :
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Theorem 1 (Benamou-Brenier). In the case p = 2 the KW distance between ρ0 and ρ1 is such that:

d2(ρ0, ρ1)2 = inf tm

∫
RN

∫ tm

0

ρ(x, t)|v(x, t)|2dxdt

the infimum being taken on ρ, v verifying (2).

This approach is numerically solved using a saddle-point problem based on a augmented Lagrangian method.
In the last few years, others applications of optimal transportation methods to image analysis have been pro-
posed. For instance, instead of solving the saddle-point problem directly, Angenent et al. derived a novel
gradient flow for the computation of the optimal transport map [1]. Unfortunately, all these methods do not
take into account the physics of the represented objects in a image. Indeed, most of them compute an optimal
way to deform one of the images to the other, by minimizing the mean distance between each displaced pixel.
Therefore no energy is attached to image regions which could represent physical objects, and some regions can
split into pieces along the optimal transportation way, as illustrated in the figure 1 Therefore, in this paper, we
propose and study generalized optimal transport models which will attach a multiphysics model to the images
to be interpolated or registrated.

ρ(0) = ρ0 ρ(0.25) ρ(0.5) ρ(0.75) ρ(1) = ρ1

Figure 1. Plot of the isolevels of the density ρ(t) along the optimal path computed with the
approach of [3]. The physics included in the image is not conserved along this path and the
mass can split.

The starting point of this article is the Benamou-Brenier approach which is a fluid mechanics formulation
of the L2-MKP [3]. We then consider Ω = (0, 1)2 with periodic boundary conditions (i.e. the torus R2/Z2).
Still considering a time interval [0, tm], we set Qm = Ω × (0, tm). In order to minimize the energy under the
constraint (2), we first introduce the new variables ρ and m = ρv (into which the constraint expresses linearly)
and we consider the problem:

inf
ρ,m

tm

∫
RN

∫ tm

0

|m|2

2ρ
dxdt

under the constraint
∂tρ+ div(m) = 0, ρ(x, 0) = ρ0(x), ρ(x, tm) = ρ1(x). (3)

The remaining of this paper is organized as follows: in the next section, we consider a new optimal transport
taking into account the surface tension. We will see that this additional term still allows some regions of
image to split during the optimal transportation path. To tackle this issue, we then consider in section 3
a generalized optimal transport with incompressibility constraint. This first approach is nevertheless time
consuming so that we also propose in section 4 a penalization method to impose incompressibility. We finally
extend the penalization approach and propose energies modeling general physical constraints, by taking into
account velocity priors such as translation or rigidity. The paper ends with a conclusion and some perspectives
in section 5.
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2. Generalized energy functionals: the surface tension case

Assume that the images to interpolate represent drop of a liquid into another. It is natural to associate to
such system a surface tension energy, that we could try to minimize during an optimal transport path. Using
a Korteweg-type energy, his amounts to consider

inf
ρ,m

tm

∫
RN

∫ tm

0

|m|2

2ρ
+ χ|∇ρ|dxdt,

for a given surface tension coefficient χ > 0, still under the constraint (3). The associated Lagrangian is given
by

L(φ, ρ,m) =

∫ tm

0

∫
Ω

|m|2

2ρ
+ χ|∇ρ| − ∂tφρ−∇φ ·mdxdt−

∫
Ω

φ(0, x)ρ0(x)− φ(tm, x)ρ1(x)dx. (4)

Given two densities ρ0 et ρ1, the minimization problem is equivalent to the saddle-point problem:

inf
ρ,m

sup
φ
L(φ, ρ,m).

Arguing as in [3] we introduce dual variables (a, b) ∈ R× Rd such that

|m|2

2ρ
= sup

(a,b)∈K
a(t, x)ρ(t, x) + b(t, x) ·m(t, x),

with
K =

{
(a, b) : R× R2 → R× R2, a+

1

2
|b|2 ≤ 0 on R× R2

}
.

As well we introduce a dual variable c ∈ Rd, associated to the surface tension term, using

|∇ρ| = sup
|c|≤1

c · ∇ρ.

For sake of clarity, we set µ = (ρ,m) and q = (a, b), and introduce the support function of K, F such that
F (q) = 0 for q ∈ K and F (q) = +∞ otherwise. Therefore we have |m|

2

2ρ = supq∈K µ · q = supq −F (q) + µ · q.
Likewise we introduce the indicator function of the closed unit ball of R2 by setting H(c) = 0 if |c| ≤ 1 and +∞
otherwise. At last we set

G(φ) =

∫
Ω

φ(0, x)ρ0(x)− φ(tm, x)ρ1(x)dx.

Still following [3], we show that our saddle point problem can be written as

sup
µ

inf
φ,q,c

F (q) +G(φ) +H(c) + 〈µ,∇t,xφ− q〉 − χ 〈c,∇ρ〉 , (5)

where the brackets stand for the L2(Qm) scalar product, the variables µ, q are taken in L2(Qm)d+1, c in L2(Qm)d

and φ in H1(Qm). Indeed we first have

− inf
ρ,m

sup
φ
L(φ, ρ,m) = sup

ρ,m
inf
φ
G(φ) +

∫ tm

0

∫
Ω

µ · ∇t,xφ− sup
q∈K

µ · q − χ sup
|c|≤1

c · ∇ρ dxdt.

Then we note that∫ tm

0

∫
Ω

sup
q∈K

µ · qdxdt = sup
q∈L2(Qm)d+1

−F (q) +

∫ tm

0

∫
Ω

µ · qdxdt = sup
q∈L2(Qm)d+1

−F (q) + 〈µ, q〉 ,
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and likewise that∫ tm

0

∫
Ω

χ sup
|c|≤1

c · ∇ρ dxdt = sup
c∈L2(Qm)d

−H(c) + χ

∫ tm

0

∫
Ω

c · ∇ρdxdt = sup
c∈L2(Qm)d

−H(c) + χ 〈c,∇ρ〉 ,

which gives (5). Introducing D(c) = χ(div(c), 0) , we can rewrite expression (5) as:

sup
µ

inf
φ,q,c

F (q) +G(φ) +H(c) + 〈µ,∇t,xφ− q +D(c)〉 , (6)

where ∫ tn

0

∫
∂Ω

ρ(t, x)c(t, x)dt

vanishes since we consider periodic boundary conditions in space. We now aim at finding a saddle-point of this
problem which corresponds to a standard form of [9] in order to apply augmented Lagrangian techniques. The
formal optimal condition for this problem are:

∂tφ+ |m|2
2ρ2 + χdiv(c) = 0 in [0, tm]× Ω

∂tρ+ div(m) = 0 in [0, tm]× Ω
m
ρ = ∇φ in [0, tm]× Ω

ρ(0, .) = ρ0 in Ω
ρ(tm, .) = ρ1 in Ω

Observing that the variable m can be eliminated, the optimality conditions can be rewritten in term of ρ, φ
and c as: 

∂tφ+ |∇φ|2
2 + χdiv(c) = 0 in [0, tm]× Ω

∂tρ+ div(m) = 0 in [0, tm]× Ω
ρ(0, .) = ρ0 in Ω
ρ(tm, .) = ρ1 in Ω

(7)

We then define the augmented Lagrangian by introducing r > 0:

Lr(φ, q, c, µ) = F (q) +G(φ) +H(c) + 〈µ,∇t,xφ− q +D(c)〉+
r

2
〈∇t,xφ− q +D(c),∇t,xφ− q +D(c)〉 . (8)

2.1. The algorithm

We consider the following iterative algorithm to compute this saddle point numerically: This algorithm builds
from (φn−1, qn−1, µn, cn−1) the next iterate.

Step 1: φn = arg minLr( . , q
n−1, cn−1, µn)

Step 2: cn = arg minLr(φ
n, qn−1, . , µn)

Step 3: qn = arg minLr(φ
n, . , cn, µn)

Step 4: µn+1 = arg maxLr(φ
n, qn, cn, . )

Let us describe which Euler-Lagrange equations are associated to these optimization problems:
Step 1: Differentiation of the Lagrangian with respect to φ reads formally

dLr(φ, q, c, µ)(ψ) = G(ψ) + 〈µ,∇t,xψ〉+ r 〈∇t,xφ− q +D(c),∇t,xψ〉

Taking first ψ smooth and with compact support in Qm, so that G(ψ) = 0, we get the PDE to be
verified by the minimizer φn in Qm:

−r∆t,xφ
n = divt,x(µn − rqn−1 + rD(cn−1)).
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Then we derive the boundary conditions: for all ψ,

G(ψ) +

∫
∂Qm

Nt,x ·
(
µn + r(∇t,xφn − qn−1 +D(cn−1))

)
ψdΣ(x, t) = 0,

which means∫
Ω

ψ(0, x)ρ0(x)− ψ(tm, x)ρ1(x) +
[
ρn(tm, x) + r

(
∂tφ(tm, x)− an−1(tm, x) + χdiv(cn−1(tm, x))

)]
ψ(tm, x)

−
[
ρn(0, x) + r

(
∂tφ(0, x)− an−1(0, x) + χdiv(cn−1(0, x))

)]
ψ(0, x)dx+

∫ tm

0

∫
∂Ω

n·(mn+r(∇φ−bn−1))ψ(x, t)dσdt = 0

Since we assumed periodic boundary conditions in space, the last integral vanishes (we could also have
expressed there a Neumann condition), and we get as initial and final conditions on φn:

r∂tφ
n(0, x) = r(an−1(0, x)− χdiv(cn−1(0, x))) + ρ0(x)− ρn(0, x)

r∂tφ
n(tm, x) = r(an−1(tm, x)− χdiv(cn−1(tm, x))) + ρ1(x)− ρn(tm, x).

Step 2: Similarly, the differentiation of the Lagrangian with respect to c reads formally

dLr(φ, q, c, µ)(ψ′) = H(ψ′) + 〈ρ, χdiv(ψ′)〉+ r 〈∂tφ− a+ χdiv(c), χdiv(ψ′)〉 .

Taking first ψ′ with compact support in Qm and values in the unit ball B, so that H(ψ′) = 0, we
get the PDE to be verified by the minimizer c̃ in Qm:

rχ∇ div(c) = −∇(ρn−1 + r∂tφ
n − ran−1).

The operator ∇div being difficult to deal with, we rather consider Uzawa’s algorithm which gives,
for an algorithmic timestep τ > 0:

cn = PB(cn−1 − τ∇cLr(φn, qn−1, cn−1, µn)),

where PB is the projection on the unit ball B. Hence the computation of cn is done in two steps. The
first update is given with the following explicit scheme:

c̃ = cn−1 + τ∇(ρn + r(∂tφ
n − ran−1 + χdiv(cn−1))),

and cn is finally obtained as the projection of c̃ onto the unit ball so that cn = c̃ if |c̃| ≤ 1 and cn = c̃
|c̃|

otherwise.
Step 3: Is identical close to step 2 of [3]. The coefficients a and b being first updated as:

ã = ∂tφ
n + χdiv(cn) +

ρn

r
, b̃ = ∇φn +

mn

r
.

The vector q̃ = (ã, b̃) being projected onto K to obtain an and bn.
Step 4: Corresponds to the update of µ through Uzawa algorithm involving the algorithmic timestep τ

(taken as τ = r in [3]):

ρn+1 = ρn + r(∂tφ
n − an + χdiv(cn)), mn+1 = mn + r(∇φn − bn).
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2.2. Numerical experiments

To be able to produce numerical estimates and also for the practical purpose of stopping the computation
we need to define a convergence criterium. The optimality conditions (7) are useful for that purpose. We can
indeed use the residual of the Hamilton-Jacobi equation, namely

resn = ∂tφ
n +
|∇φn|2

2
+ χdiv(cn)

which is a by-product of the algorithm. This quantity converges to 0 as we approach the solution of problem.
The normalized convergence criterium used is

critn =

√√√√ ∫ tm
0

∫
Ω
ρn|resn|∫ tm

0

∫
Ω
ρn|∇φn|2

.

Concerning the algorithmic timestep τ used in the updates of c and µ, we have to choose it according to the
value of χ. We take in practice τ = r = 0.1 if χ < 1 and τ = r = 1

10χ otherwise.
We present in Figures 2 and 3 numerical tests performed on the unit square with periodic boundary conditions
in space. The space-time domain is discretized using a regular 64 × 64 × 64 grid. In order to get a good
convergence of the algorithm, we impose a number of iterations about 3000.
Figure 2 displays the optimal transportation to the gaussian for the classical Benamou-Brenier algorithm i.e for
χ = 0. Because of the periodic boundary conditions, the optimal transfer is not a simple translation (see [3])
but a splitting of the gaussian function into two pieces. Figure 3 shows the optimal way for the same gaussian
when we associate the surface tension to the kinetic energy. We remark that this generalization still allows to
the gaussian to split into two. This stems from the fact that |∇ρ| measures only the length of level sets of the
density and so minimizing such quantity leads to a mass flattening.

Remark 2.1. Let us explain more precisely what is occuring on a simple but illustrative example. Assume for
instance that the density ρ is a smooth variation from a constant density ρi inside a closed curve of length `
to a constant density ρo outside that curve. Let φ be a signed distance function to this curve, negative inside.
One way to express this variation is using a smooth increasing function H such that H = 0 on (−∞,−1),
H = 1 on (1,+∞). Let ζ be its derivative (which is a cut-off function). Set ρ = ρoH(φε ) + ρi(1 −H(φε )) with
ε > 0 which gives a transition of length 2ε between the two constants values. The energy considered so far was∫

Ω
|∇ρ|dx = (ρo−ρi)

∫
Ω
|∇φ| 1εζ(φε )dx. A quick analysis which is standard in the level-set setting shows that the

last integral is equivalent to ` as ε → 0. Therefore the energy considered is essentially ` × (ρo − ρi). Creating
two copies of the same curve with half jump would therefore give the same energy. This is what we observe
on our tests. However, in contrast, in the incompressible case, the conservation equation being a transport
equation, area of level sets of ρ should be conserved. This would prevent this decomposition to occur, and the
penalization of |∇ρ| therefore would, as expected, prevent the density from splitting.

Therefore, in order to preserve the specificity of initial data, we consider in the next sections others energies
which will allow a better representation to physical objects of images.

In Figure 4 we check the convergence of iteration process for this algorithm for χ = 0 and χ = 0.1. We
consider runs over large number of iterations and we analyze the Wassertein distance and the L2-distance for
the surface tension:

dwass =

∫
Ω

∫ T

0

|m|2

2ρ
dxdt, d2 =

∫
Ω

∫ T

0

|∇ρ| dxdt. (9)

Numerical tests indicate a convergence of our new functional. Note that the presence of the surface tension
leads to a deterioration of the convergence rate in comparison to Benamou-Brenier algorithm.
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ρ(0) = ρ0 ρ(0.25) ρ(0.5) ρ(0.75) ρ(1) = ρ1

Figure 2. Plot of the isolevels of the density ρ(t) along the optimal path computed with the
approach of [3].

ρ(0) = ρ0 ρ(0.25) ρ(0.5) ρ(0.75) ρ(1) = ρ1

Figure 3. Plot of the isolevels of the density ρ(t) along the optimal path computed with the
surface tension penalization and χ = 0.05. The new term does not prevent from mass splitting
and also flatten the mass.

Figure 4. Convergence of the iterative process with (in red) and without (in blue) the surface
tension term.

3. Optimal transportation with incompressibility constraint

The aim of this section is to generalize the optimal transportation by taking into account incompressibility
condition. Hence, the functional to minimize is still given by:



TITLE WILL BE SET BY THE PUBLISHER 9

inf
ρ,m,v

tm

∫
RN

∫ tm

0

|m|2

2ρ
dxdt, (10)

under the well-known constraint (3). The difference is that new constraints are added, namely:{
ρv = m,
div v = 0,

(11)

that link the velocity to the previous state variables and impose the incompressibility of the flow. In the case
where div v = 0, the constraint (3) becomes

∂tρ+ v · ∇ρ = 0, (12)

where the solution of this continuity equation is given by

ρ(t, x) = ρ0(Y (t, x)), (13)

where Y designs a characteristic curve. So, in particular the measure of level sets of ρ should be conserved.
This will be validated in our numerical tests (see figure 7).

Let us remark that the incompressibility constraint involves reintroducing the velocity v and linking it with
the variables (ρ,m). As a consequence, the functional will not be convex anymore with respect to (ρ,m, v) so
that we will only be able to compute a local minima of the problem. One could for instance extend the formu-
lation with the surface tension and minimize |∇m|, without reintroducing the velocity v in order to stay convex
in (ρ,m). However, even considering piecewise constant functions ρ, the obtained solution is not satisfying in
practice with such constraint on m. As above, we consider the augmented lagrangian method. Formulation of
the saddle point problem being similar, we just give the main steps of the algorithm.

First of all, we introduce two new dual lagrangian variables to deal with the two new constraints defined in
(11) Introducing s = (s1, s2), the constraint m = ρv will be imposed by maximizing over s:

sup
s

(ρv −m)s = sup
s
〈µ,E(v, s)〉 , (14)

where

E(v, s) =

[
< v, s >
−s

]
.

Similarly, the incompressibility constraint div v = 0 will be treated with a scalar variable p. It can be noted
that: ∫

Ω

p div vdx = −
∫

Ω

v · ∇pdx,

the boundary conditions vanishing, as we consider either a periodic domain or dirichlet conditions (with a
slipping flow on the frontier) for the velocity v. Hence, the associated Lagrangian reads:

L(φ, ρ,m, v, s, p) =

∫ tm

0

∫
Ω

|m|2

2ρ
+p div v+ 〈µ,E(v, s)〉−∂tφρ−∇φ ·mdxdt−

∫
Ω

φ(0, x)ρ0(x)−φ(tm, x)ρ1(x)dx.

(15)
As above, the minimization problem consists in solving the following saddle-point problem

inf
ρ,m,v

sup
φ,s,p

L(φ, ρ,m, v, s, p), (16)



10 TITLE WILL BE SET BY THE PUBLISHER

for two densities given ρ0 and ρ1.
Arguing as previously and with the same notations, this saddle point problem can be written as

sup
µ,v

inf
φ,q,s,p

F (q) +G(φ) +H(s) + 〈µ,∇t,xφ− q − E(v, s)〉 − p div v. (17)

We then consider, for r > 0, the following augmented Lagrangian:

Lr(φ, q, µ, v, s, p) = F (q) +G(φ) +H(s) + 〈µ,∇t,xφ− q − E(v, s)〉 − p div v

+
r

2
〈∇t,xφ− q − E(v, s),∇t,xφ− q − E(v, s)〉+

r

2
〈∇p,∇p〉 ,

where another augmented term as been added to deal with the incompressibility constraint.

3.1. Algorithm

Therefore, the algorithm can be summarized as follow: from (φn, qn−1, µn, vn, sn−1, pn−1), the next iteration
is given by
Step 1 sn = arg minLr(φ

n−1, qn−1, µn, vn, . , pn−1)
Step 2 φn = arg minLr( . , q

n−1, µn, vn, sn, pn−1)
Step 3 qn = arg minLr(φ

n, . , µn, vn, sn, pn−1)
Step 4 pn = arg minLr(φ

n, qn, µn, vn, sn, . )
Step 5 vn+1 = arg maxLr(φ

n, qn, µn, . , sn+1, pn)
Step 6 sn = arg minLr(φ

n, qn, cn, µn, vn+1, . , pn)
Step 7 µn+1 = arg maxLr(φ

n, qn, . , vn+1, sn, pn)

Let us give an idea of resolutions to these optimization problems.
Step 1 The differentiation of the augmented Lagrangian with respect to s gives

dLr(φ, q, µ, v, s, p)(s
′) = H(s′) +

〈
µ+ r (∇t,xφ− q − E(v, s)) ,−

[
< v, s′ >
−s′

]〉
. (18)

Taking s′ such that H(s′) = 0, the minimizer sn verifies:

(ρ+ r(∂tφ− a− < v, sn >)) v = (m+ r(∇xφ− b+ sn)) , (19)

which gives:

rλ(Id+ v ⊗ v)sn = (ρ+ r(∂tφ− a) v − (m+ r(∇xφ− b)) , (20)

so the update is:

sn = (Id+ vn ⊗ vn)−1
(ρnvn −mn)

r
+
(
∇tφn − an−1

)
vn −∇xφn + bn−1

)
, (21)

Step 2 Differentiating the augmented lagrangian with respect to φ, the minimizer must be verify the following
Poisson equation:

− r∆t,xφ
n = divt,x

(
µn − rqn−1 − rE(vn, sn)

)
, (22)

with the following boundary conditions:

r∂tφ
n(0, x) = r(an−1(0, x) + vn(0, x) · sn(0, x)) + ρ0(x)− ρn(0, x)

r∂tφ
n(tm, x) = r(an−1(tm, x) + vn(tm, x) · sn(tm, x)) + ρ1(x)− ρn(tm, x).
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Step 3 To update q, we first compute

ã = ∂tφ
n − vn · sn +

ρn

r
, b̃ = ∇φn + sn +

mn

r
, (23)

and we next project the vector (ã, b̃) onto K to get qn.

Step 4 The differentiation of the augmented Lagrangian with respect to p gives simply ∆xp = − 1
r div v. We

therefore have to solve a 2D Poisson equation for each time step t to obtain pn.

Step 5 The differentiation of the augmented Lagrangian with respect to v gives

dLr(φ, q, µ, v, s, p)(v
′) =< −ρs−∇p+ r(∂tφ− q − λv · s), v′ > . (24)

We then perform a gradient descent over v using this differentiation:

vn+1 = vn + τ (−ρns+∇pn + r(∂tφ
n − qn − vn · sn)sn) , (25)

where τ > 0 is a time step.
Step 6 Identical to step 1. Second update of s to impose the constraint m = ρv after updating v.

Step 7 We finish by updating µ as follow:

ρn+1 = ρn + τ(∂tφ
n − an− < vn, sn >), mn+1 = mn + τ(∇φn − bn + sn). (26)

3.2. Numerical results

Note that from now on, we will consider Dirichlet conditions in the experiments, so that periodicity will not
be involved anymore in the eventual mass splitting. In Figure 5, we show that such conditions prevents the
method of [3] from mass splitting in the case of a single Gaussian to transport.

ρ(0) = ρ0 ρ(0.25) ρ(0.5) ρ(0.75) ρ(1) = ρ1

Figure 5. Plot of the isolevels of the density ρ(t) along the optimal path computed with the
method of [3] and Dirichlet conditions, which prevents from mass splitting.

We therefore consider a more complex example including two Gaussian in each density, as illustrated in
the introduction of the paper in Figure 1. The parameters of the algorithm are here set to τ = r = 1. It is
important to recall that the obtained results depend on the initialization, as the model is no more convex. As
we do not want to use complex initialization models, we observed that a slight modification of the energy allows
converging to more suitable local minima. In practice, the Wasserstein distance is minimized in parallel with
the verification of the constraints. By multiplying the Wasserstein distance defined in (10) with a parameter
0 < β < 1, we can allow the constraints to be fulfilled in priority, the Wasserstein distance being minimized
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latter in the iterations. The influence of the parameter β is illustrated in figure 6. It shows that even if the
algorithm is parameter free, the non convexity implies an appropriate tuning of β to obtain a completion of the
incompressibility constraint.

ρ(0) = ρ0 ρ(1/8) ρ(1/4) ρ(3/8) ρ(1/2) ρ(5/8) ρ(3/4) ρ(7/8) ρ(1) = ρ1

Figure 6. Two gaussian experiments with incompressibility constraint. Plot of the isolevels
of the density ρ(t) along the optimal path computed with the incompressibility constraint. The
three lines correspond to experiments realized with β = 1, β = 10−2 and β = 10−3.

An important property of incompressible flow is that the level lines of the transported density must be
preserved along time. Hence, we give in Figure 7 a sketch of the evolution of the length of the upper level lines
of the density ρ obtained for different values of β. It shows that decreasing β allows reaching constant level
lines. In addition with the norm of the divergence of the velocity, given in Figure 8, one can see that the process
almost allows approximate computation of divergence free transports.

Finally note that the convergence criteria obtained from the Hamilton-Jacobi residual is here no more per-
tinent to check the convergence of the process. As consequence, we just use a threshold on the norm between
successive values of the variables (ρ,m, v).

Method of [3] β = 1 β = 10−2 β = 10−3

Figure 7. Two gaussian experiments with incompressibility constraint. Evolution of the
length of the upper level lines of the estimated density along time t: |ρ(x, t) > i/10|, for
i = 1 · · · 9 . The left plot is the optimal transport of [3] shown in Figure 1, and the other
ones correspond to the proposed approach with an incompressibility constraints and decreasing
values of β. Decreasing β allows better completion of the constraint since the level lines are
more and more preserved along the computed path.
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Figure 8. Two gaussian experiments with incompressibility constraint. The evolution of the
norm of the divergence of the estimated velocity v is given for decreasing values of β.

Remark

Note that the constraint m = ρv can be relaxed by adding the term λ|m−ρv| to the energy (28) to minimize,
with λ > 0. This can be done using the dual formulation:

λmax
s∈Z

(m− ρv)s,

which involve a projection PZ of the previously introduced variable s in the unit ball at each update:

PZ(s) =

{
s if ||s|| < 1
s/||s|| otherwise (27)

As the problem is separately convex in (ρ,m) and in v, such penalization allows to ensure the convergence of
the minimization process [11], whereas the convergence is not guaranteed with the strict constraint. However,
we observed in all our experiments that the dual formulation of the constraint does not avoid the algorithm
from converging (see Figure 9) and it also prevents from fixing an additional parameter λ.

Figure 9. Plot of the transport energy (in blue) and the norm of the divergence of v (in
green) along the iterations. The process numerically converges.
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4. Regularizing the transport map through penalization

In this section, we generalize optimal transportation by taking into account others physicals criterion. Another
way to treat the physical conditions consists in penalizing a specific norm derived from the velocity v. This
is a relaxed approach with respect to the previous lagrangian formulation of the constraints. Denoting as
v = (v1, v2), we can mention the following penalized models M(v):

• Incompressibility with the norm of the divergence of v, M(v) = ||div v||2

• Rigidity with the norm of the deformation tensor of v, M(v) =
∣∣∣∣∣∣∇v+∇vt

2

∣∣∣∣∣∣2
• Translation with the norm of the gradients of v: M(v) =

∑
i ||∇vi||2, that allows obtaining continuous

C1 velocity field v
• Piecewise translations with the total variation of v, M(v) =

∑
i |∇vi|

Such approach will lead to minimize

inf
ρ,m,v

tm

∫
RN

∫ tm

0

(
|m|2

2ρ
+ αM(v)

)
dxdt, (28)

under the constraints (3) and m = ρv and where the parameter α > 0 monitors the penalization weight. Hence,
depending on what should be preserved during optimal transportation on specific data, one can choose among
these formulations. Of course, it is also possible to associate others terms to the kinetic energy but globally the
methods of numerical resolutions remain the same.

4.1. The algorithm

Let us detail the modifications involved with such penalization model M(v). The associated lagrangian is

L(φ, ρ,m, v, s) =

∫ tm

0

∫
Ω

|m|2

2ρ
+αM(v) + 〈µ,E(v, s)〉− ∂tφρ−∇φ ·mdxdt−

∫
Ω

φ(0, x)ρ0(x)−φ(tm, x)ρ1(x)dx.

(29)
As in the previous section, we rewrite the saddle-point problem and next consider the associated augmented

lagrangian. Globally, the algorithm to solve the saddle problem is similar to the previous one. The step 4 is
removed as there is no longer a dual variable p for the divergence constraint, and the update of v in step 5
becomes:

vn+1 = vn + τ (−ρns− α∂M∗∂Mvn) + r(∂tφ
n − qn − λvn · sn)sn) , (30)

where ∂M∗ is the adjoint operator of ∂M , the linear tangent operator of M . We can now give example of
∂M∗∂M for the different models previously introduced.

• Incompressibility: M(v) = ||div v||2, so that ∂M∗∂Mv = −∇(div v). With respect to the previous
strict constraint on incompressibility, we no more have to solve the Poisson equation −∆p = div v for
each time step t, which makes the approach faster. Nevertheless, the strong incompressibility constraint
without penalization allows a better conservation to level sets as can be seen in Figure 11.

• Rigidity: M(v) =
∣∣∣∣∣∣∇v+∇vt

2

∣∣∣∣∣∣2, ∂M∗∂Mv = −[v1xx; v2yy]− [v2; v1]xy − [v2;v1]xy

2

• Translation: M(v) =
∑
i ||∇vi||2, and ∂M∗∂Mv = −∆xv

• Piecewise translations: M(v) =
∑
i |∇vi|. The dual formulation of the total variation is here needed to

minimize such term. We recall that

|∇vi| = sup
ξi∈Z
∇viξi = sup

ξi∈Z
−vi div(ξi) (31)

where ξi = (ξ1
i , ξ

2
i ) ∈ Z = {z = (z1, z2), |z| ≤ 1}. We then have an additional step to update this new

dual variable ξi with ξn+1
i = ξni + τ∇vi and finally obtain ∂M∗∂Mvi = −div(ξi).
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4.2. Numerical results

For the penalization approach, we chose large values of α (typically 103 or more) to see the desired effect
on the estimations. The parameters are then chosen as τ = r = 1

10α to have a stable process. As in the
previous section, the residual of the Hamilton-Jacobi equations is not pertinent to check the convergence of the
process. First of all, we compare in Figure 10 the results obtained with the incompressible, translation and rigid
penalizations.

ρ(0) = ρ0 ρ(1/8) ρ(1/4) ρ(3/8) ρ(1/2) ρ(5/8) ρ(3/4) ρ(7/8) ρ(1) = ρ1

Figure 10. Two gaussian experiments with penalization. Plot of the isolevels of the density
ρ(t) along the optimal path computed with the different penalization models. The top line
is realized with incompressibility penalization and the second with a translation penalization
(through the minimization of the L2 norm of each component of the velocity field) and the last
one with a rigid penalization.

With respect to the previous estimation with the incompressible constraints, the results obtained with the
incompressible penalization are visually more satisfying as the instabilities that were appearing (Figure 6) with
large values of β are not present in this relaxed approach. The previous constraint method also presents the
drawback to be more time consuming, as 2D Poisson equations have to be solved at each iteration. Nevertheless,
it can be observed in Figure 11 that the constrained approach allows a better conservation of the level set
measures than the incompressible penalization.

Incompressible constraint Incompressible penalization Translation penalization Rigid penalization

Figure 11. Two gaussian experiment. Evolution of the length of the upper level lines of
the estimated density along time t: |ρ(x, t) > i/10|, for i = 1 · · · 9 . The left plot is obtained
with the incompressible constraint (already seen in Figure 7), the middle one is with an in-
compressible penalization and the right one corresponds to a rigid penalization. Even if the
penalization methods gives better visual results, the level lines are better preserved with the
strong incompressible constraint.
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It is also important to underline that both translation and rigid penalizations allow conserving the exact
shapes of the two Gaussians along time. Furthermore, one can see in Figure 12 representing both computed
paths, that the rigid penalization really performs a rotation and not a translation, so that the optimal path is
no more composed of straight lines.

Translation penalization Rigid penalization

Figure 12. Two gaussian experiment. Plot of the whole trajectory computed with the trans-
lation (on the left) and the rigid (on the right) penalization models. The rigidity here involves
a real rotation.

Next, we show in Figure 13 a comparison between the approach of [3] and a piecewiese translation penalization
for an example showing three Gaussians. This shows that the proposed approach is able to connect properly
the different objects composing the scene.

ρ(0) = ρ0 ρ(1/8) ρ(1/4) ρ(3/8) ρ(1/2) ρ(5/8) ρ(3/4) ρ(7/8) ρ(1) = ρ1

Figure 13. Three gaussian experiment. Plot of the isolevels of the density ρ(t) along the
optimal path computed with different approaches. The first line is the optimal transport of [3],
the second is the proposed approach with a piecewise translation penalization that allows
conserving the nature of the three transported objects.

In the example of Figure 14 that presents a rotating bar, the rigid penalization allows to recover a quasi-
rotation, which better preserves the prior physics with respect to pure optimal transport. It can also be observed
in Figure 15 that the level lines of the estimated density are preserved with the penalization approaches. The
same observations can be made in the experiments of Figures 16 and the corresponding level line length of
Figures 17.
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However, if we slightly modify these data, the penalization process is never able to preserve the shape
contained in the data (see Figure 18). The β trick used in the previous section is here not able to provide
satisfying solutions. This is due to the fact that the energy to minimize is non convex and the path we would
like to estimate is too far from the optimal transport.

ρ(0) = ρ0 ρ(1/8) ρ(1/4) ρ(3/8) ρ(1/2) ρ(5/8) ρ(3/4) ρ(7/8) ρ(1) = ρ1

Figure 14. Bar experiment. Plot of the isolevels of the density ρ(t) along the optimal path
computed with different approaches. The first line is the optimal transport of [3], the second
is the proposed approach with an incompressible penalization and the last one with a rigid
penalization that allows conserving the nature of the object to transport.

Method of [3] Incompressible penalization Rigid penalization

Figure 15. Bar experiment. Evolution of the length of the upper level lines of the estimated
density along time t: |ρ(x, t) > i/10|, for i = 1 · · · 9 . The left plot is the optimal transport
of [3], the middle one is the proposed approach with an incompressible penalization and the
right one corresponds to the proposed approach with a rigid penalization. Penalization allows
the level lines to be preserved along the computed path.

5. Conclusion and perspectives

In this paper, we study generalized optimal transport models which attach a multiphysics model to the im-
ages to be interpolated or registrated. This investigation has been necessary as, in lot of applications to image
interpolation, the results obtained using a simple minimization of a kinetic energy under some constraints do
not preserve image characteristics along the optimal interpolation path, which is not physic. We then pro-
pose numerical methods to solve these new optimization problems, where the augmented Lagrangian numerical
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ρ(0) = ρ0 ρ(1/8) ρ(1/4) ρ(3/8) ρ(1/2) ρ(5/8) ρ(3/4) ρ(7/8) ρ(1) = ρ1

Figure 16. Curve experiment. Plot of the isolevels of the density ρ(t) along the optimal path
computed with different approaches. The first line is the optimal transport of [3], the second
is the proposed approach with an incompressible penalization and the last one with a rigid
penalization that allows conserving the nature of the object to transport.

Method of [3] Incompressible penalization Rigid penalization

Figure 17. Curve experiment. Evolution of the length of the upper level lines of the estimated
density along time t: |ρ(x, t) > i/10|, for i = 1 · · · 9 . The left plot is the optimal transport
of [3], the middle one is the proposed approach with an incompressible penalization and the
right one corresponds to the proposed approach with a rigid penalization. Penalization allows
the level lines to be preserved along the computed path.

method introduced by Benamou-Brenier has been adapted. These generalizations are not limited by the par-
ticular expressions we consider here. Indeed, others physical terms can also be considered taking into account
more complex physics.

This work is a part of the ANR project TOMMI (Transport Optimal et Modèles Multiphysiques de l’Image).
Another goal of this project consists of developing efficient algorithms and numerical schemes for these models.
In particular, we here used the framework of Benamou-Brenier, but other minimization schemes are currently
studied in order to better control the convergence of the process and have a better control on he obtained local
minimas.
Acknowledgment: This work is supported by French Agence Nationale de la Recherche, ANR Project TOMMI
(ANR 2011 BS01 014 01) and by Joseph Fourier University, through MSTIC grant MENTOL.
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ρ(0) = ρ0 ρ(1/8) ρ(1/4) ρ(3/8) ρ(1/2) ρ(5/8) ρ(3/4) ρ(7/8) ρ(1) = ρ1

Figure 18. Curve experiment 2. Plot of the isolevels of the density ρ(t) along the optimal
path computed with two approaches. The first line is the optimal transport of [3], the second
is the proposed method with a rigid penalization that is here not able to rotate the shape.
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