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Abstract—Sequential and variational assimilation methods al-
low tracking physical states using dynamic prior together with
external observation of the studied system. However, when dense
image satellite observations are available, such approaches realize
a correction of the amplitude of the different state values but
do not incorporate the spatial errors of structure positions. In
the case of the position of a vortex, for example, when there is
misfit between state and observation, the processes can be long
to converge and even diverge when high dimensional state spaces
are treated with few iterations of the assimilation methods as it
is the case in operational algorithms. In this paper, we tackle this
issue by proposing an alignment method based on modern object
detection methods that uses visual correspondences between the
physical state model and the structural information given by a
sequence of image observing the phenomena.

I. INTRODUCTION

Analysis and forecast of atmospheric and oceanic processes

is of great scientific and practical interest. A large amount

of satellite data that can be used towards that goal has been

made available during the last decades. Efficient use of these

data and particularity in parallel with an appropriate physics

model is a challenging research topic. A main advantage

of the satellite images comes from the spatial structure of

the data. In particular, such spatial observations can be used

to correct the error of positions of structures contained in

the physics of interest. For example satellite imagery (e.g.

SST, color) of the oceans can be used to characterize its

dynamics since surface contour statistics extracted from these

images are related to the underlying flow [13]. Therefore,

automatic detection of geophysical structures is very important

for many applications such as climate monitoring, forecasting,

and ecosystem assessment.

A common situation in many assimilation problems where

a grid state representation is used is that several coherent

structures exist in both state and observation spaces but are not

aligned. The proposed solution to this problem is to include

displacement variables, this way displacement and amplitude

errors can be handled simultaneously by the assimilation

framework [21]. Here we propose to perform the alignment in

a local object level by aligning the positions of the detected ob-

servation structures with the corresponding model structures.

By working on the object level, we exploit the information rich

areas of the image observations that are related with these

structures and on the same time we discard noisy spurious

features that commonly exist throughout the image. Before

going into further details, let us briefly review the different

existing methods in the domains of image assimilation and

feature detection.

A. Image assimilation

In the literature, the assimilation of image data has been

considered in different ways, that may be classified in three

main categories: Pseudo observation, direct observation, and

assimilation with state alignment.

Pseudo observation There are many works that try to estimate

velocity fields from a series of image sequences through

image processing optical flow methods [6], [25]. These kind

of approaches have several limitations. Firstly, they require a

series of images without missing data. Additionally, as they

can only estimate the projection of the field on the gradient of

the image intensity, the problem is ill-posed and a regularity

prior is needed in order to close the problem and reconstruct

the 2D velocity field.

Data assimilation techniques can be used to overcome the

aforementioned limitations. These methods consider a hidden

state to represent the field that has to be estimated, a dynamic

model for the state, and a measurement model that links the

state with the observation. Hence, the popular 4D-Var ap-

proach has been used in [12] for estimating the ocean surface

velocity field. This technique uses Sea surface Temperature

(SST) images and consider an Extended Image Model driven

by a shallow water approximation for the dynamics of the

velocity field. The output of this procedure (the estimated

velocity field) has been used as pseudo-observation in an

operational oceanic model.

Direct observation Modeling the error of pseudo-

observations is a hard task, since they include data noise

and image processing errors and the direct assimilation of

images is preferable in practice [20], [24]. As a consequence,

sequential and variational assimilation methods have been used

for the direct estimation of the underlying dynamics given

a sequence of images. Numerous works including Ensemble

Kalman Filter [8] or 4D-var [20] have then been proposed

to directly link the dynamics of the image sequence with the

velocity of the physical model. Such approaches use the optical

flow relations based on the conservation of the luminance

along the image sequence. A main advantage is that the

spatial consistency of the velocity field is here induced by

the underlying dynamics and the regularity prior of optical

flow techniques is no more needed.

These methods use a simple dynamic model to assimilate

the data which might not be a good approximation to the

observed system. In [24], another approach which directly

assimilates the observation into the complete physical model is

presented. The authors propose to increase the state dimension



with a passive tracer corresponding to the quantity observed in

the image sequence. Instead of working at the pixel level, they

extract and assimilate high level structures such as fronts or

eddies (with curvelet transform). This technique allows to filter

out the noise that exist on the raw data level and preserve the

information rich areas. The link between physical quantities

computed from the model (Lyapunov coefficients) and spatial

gradients of chlorophyll satellite images have also been studied

in [7] to solve the image assimilation problem.

Assimilation with state alignment All the prevous methods

just assimilate the amplitude of the observed variables and

do not allow dealing correctly with the misfits of structure

positions. Hence, another class of approaches to assimilate

structured image information is to consider a state space that

includes displacement parameters. Using these parameters the

background state structures can be displaced to match the

detected image structures. The ’bogussing’ technique used in

operational forecast centers is such an approach [26]. In [9], a

methodology to include pseudo-observations of the potential

vorticity (PV) field in an operational system using 4D-Var is

presented. The pseudo-observations are computed by experts

and are used to correct the background field of the model.

In [14], an analysis of different types of errors, including

alignment and amplitude errors is performed. The authors

prove that considering both types of errors and performing

a two-step estimation approach renders the nature of the

amplitude errors gaussian. In [10], a variational technique is

used that includes displacement and amplitude errors. The

technique is further improved in [18] where an approach in

order to regularize the solution is also proposed. In [21], a

two steps assimilation procedure is proposed. The first step

performs a field alignment to align the model state with

the observation. The second step is the amplitude adjustment

where classical data assimilation is performed. To do so a

displacement vector for each grid cell is added to the state and

estimated to provide the required alignment. In [16], pseudo-

observations are used to align detected dry intrusions structures

in water vapor (WV) images with the (PV) field.

B. Atmospheric-Oceanic Features Detection

In order to realize a correction of structure positions, the de-

tection of image features describing the coherent structures is a

crucial step. The approaches to detect features and in particular

oceanic features such as fronts or eddies can be grouped into

the following categories: gradient based edge detection [3],

statistical edge detection methods [5], wavelet analysis [23]

[27], level-set [1],surface fitting [11]. Let us describe these

different approaches with respect to their applicative context.

The detection of fronts, namely in chlorophyll images, can

be done using edge detection after the application of a context

aware median filter [3] or with a histogram based method [4].

Let us also mention the work of [23], where a multi-resolution

wavelet decomposition is employed to filter the image, before

detecting fine edges. To deal with occlusions, fronts in cloudy

regions are detected in [17] using multiple images over a short

period of time and superimposing the detection using several

heuristics. A method based on Canny algorithm to detect fronts

using edge detection has also been proposed in [19], where an

interpolation technique is finally used to fill sparse data. In the

specific case of SST images, a maximum likelihood approach

has been proposed in [11] to detect fronts. Local curvature

statistics along the level-lines of SST images can also be used

as descriptors of the geometry of the front regions [1].

The detection of general oceanic features has also been

investigated. In [27] a method to detect oceanic features

using synthetic aperture radar (SAR) observations is proposed.

Screening of grayscale histograms is performed for feature

detection, wavelet analysis for feature extraction, and classi-

fication based on texture analysis. The specific detection of

coastal upwelling and filaments has been studied in [15]. The

method has two stages, an initial coarse segmentation followed

by structure growing to detect all the details. Such approaches

based on a high-level description of the image features seem

promising for a assimilation of general structures.

C. Outline of the paper

In this work, we propose a two steps assimilation method

with field alignment. The first step performs the spatial align-

ment which is achieved through additional displacement state

parameters. The second step corrects the amplitude of the

state variables. To link the detected structures with the model

variables, we increase the state dimension with a passive tracer

corresponding to the quantity observed in the images. For the

amplitude correction, standard techniques such as the Ensem-

ble Kalman Filter or variational assimilation can be used. In

this work we demonstrate the potential of the approach using

optimal interpolation for amplitude corrections.

The main novelty of the method is the detection and

matching of high level structures between the observation

image and the synthetic model image. This technique allows

us to use the most informative image regions to calculate the

field alignment parameters, thus guarantying the robustness of

the method. An interpolation scheme follows to complete the

displacement field. To align the structures, we use the SURF

[2] gradient based local descriptor which is a new approach to

this end. Although, the global appearance of the structures that

have to be detected varies significantly, it follows some general

norms (e.g. eddies are expected to have a spiral-like form).

This property renders the use of gradient based descriptors a

suitable approach. The descriptor divides the region of interest

into subregions and computes local histograms of gradients

in each of these subregions. This way geometric information

is preserved but on the same time the use of histograms in

each subregion adds a considerable amount of flexibility by

allowing local appearance variations.

The paper is organized as follows. In section II, we first

recall the data assimilation problem. Then, we propose a the-

oretical alignment method in section III, describe the feature

extraction and matching in section IV and finally demonstrate

the potential of the approach in the experimental section V.



II. DATA ASSIMILATION BACKGROUND

A. Model Definition

Let by x denote the n-dimensional state vector and by z the

p-dimensional observation vector. The analysis and forecast

state at time k are denoted by xk and x−k . The evolution of

the model state is expressed in the discrete case as:

x−k = M(xk−1) + em (1)

where em is the model error and M is a (non) linear operator

describing the temporal evolution of the state variable. The

model state is linked to the observations through the observa-

tion operator H . The observation operator links the state space

X of dimension n to the observation space Zof dimesion p:

zk = H(xk) + eo, (2)

where eo is the observation noise characterized by the covari-

ance matrix R = E[eoeTo ].

B. Probabilistic Formulation

From the bayesian perspective, the probability of the state

xk at time k given the measurements from time 0 to k+n is:

p(xk|z0:k+n) ∝ p(zk:k+n|xk)p(xk|z0:k−1) (3)

where we assume that for every k the observation zk given xk
is independent from the rest of the states and observations:

zk⊥z1:k−1, x1:k−1|xk. Under the assumption of markovian

dynamics i.e. xk⊥x0:k−2|xk−1) we get:

p(xk|z0:k−1) =

∫

p(xk|xk−1)p(xk−1|z0:k−1)dxk−1 (4)

The state evolution distribution p(xk|z0:k−1) is also referred

to as background distribution and denoted as p(xb,k).

C. BLUE Estimator

In this section the least squares estimation (Best linear

unbiased estimator) is presented. If the state evolution and

measurement distributions of Section II-A are gaussian then

the BLUE estimator is equal to the mean of the posterior of

(3). The estimator performs a linearization of operator H:

H(x) − H(xb) = H(x − xb) where H is the tangent linear

operator of H . The BLUE estimate is given by:

xk = x−k + K(zk −H(x−k ))

K = BHT (HBHT +R)−1
(5)

where B is the covariance matrix of the model error em.

III. ASSIMILATION USING OBJECT ALIGNMENT

The state vector x is defined over a regular grid. Let x[a]
denote the state of each grid cell and x[q] define a translation

for each cell. We denote by z[q] the set of features that are used

for the calculation of the displacement and by z[a] the set of

features that are used for the calculation of the amplitudes.

The measurement vector now is: z = [z[q], z[a]]
T .

The goal is to jointly estimate the state and the displacement

given the available measurements. By including the displace-

ment vector in (3) we get:

p(x[a]k, x[q]k|z0:k+n) ∝ p(zk:k+n|x[a]k, x[q]k)p(x[a]k, x[q]k|z0:k−1)

The observation model p(zk:k+n|x[a]k, x[q]k) implies the trans-

lation of the initial field x[a]k by x[q]k and then the standard

calculation of the amplitude discrepancy between the trans-

lated state and the observations. The observation model can

now be decomposed as:

p(zk:k+n|x[a]k, x[q]k) =p(z[a]k:k+n|x[a]k, x[q]k)·

p(z[q]k:k+n|x[a]k, x[q]k)
(6)

If we consider that the appearance of the detected structures

does not change rapidly we can make the following approxi-

mation:

p(z[q]k:k+n|x[a]k, x[q]k) ≈ p(z[q]k:k+n|x[a]k−1, x[q]k) (7)

With this approximation we can decouple the calculation of
the x[a] and x[q] as:

p(x[a]k, x[q]k|z0:k+n) ∝p(z[a]k:k+n|x[a]k, x[q]k)p(x[a]k|x[q]k, z0:k−1)·

p(z[q]k:k+n|x[a]k−1, x[q]k)p(x[q]k|z0:k−1)
(8)

where: p(x[a]k|x[q]k, z0:k−1) is the amplitude prior and

p(x[q]k|z0:k−1) is the displacement prior. The last two terms of

(8) are used to calculate xq which is performed approximately

using a parametric structure description of lower dimension.

An interpolation scheme is then used to calculate the complete

displacement field, using as input the calculated structures

displacements as described in Sec. IV. The updated xq is then

used to calculate xa. For the alignment step which is performed

at a low dimension space a suitable method such as particle

filtering can be used. For the amplitude update step, which

is in a much higher dimension a variational scheme is more

appropriate. The distribution p(x[a]k|x[q]k, z0:k−1) is the new

background distribution for the amplitudes.

IV. OBJECT ALIGNMENT METHOD

The object alignment requires the detection and matching

of structures between the observation image and the synthetic

model image contained in (or extracted from) the state variable

x. Gradient information is appropriate for the detection and

the description of the structures since high gradients are

commonly related to interesting geophysical formations. The

structures are detected in the observation image and then a

search for a match takes place in the synthetic image. Finally

to calculate the alignment field an interpolation scheme is

employed.

The proposed approach for structure detection has the

following steps: (i) Computation of the gradient image, (ii)

binarization of the gradient image using thresholding in order

to locate high gradient regions, (iii) blob extraction from the

binary image using size and convexity constraints appropriate

for the application, (iv) calculation of the bounding box for

each extracted blob.

The output of the detection is the list of the N detected

image structures. Let by sio denote the state of the i-th detected

structure. In this work we consider rectangular shapes so

their state is a 3-dimensional vector containing the x,y-image

position and the size.



The next step is to find an appropriate descriptor in order

to characterize the detected structures and match them with

the synthetic image. Here we use the SURF [2] descriptor

which relies on the distribution of the first order Haar wavelet

responses in x and y direction. The descriptor of an image

structure sio is an 64-d feature vector fio.

For each detected image structure we look for an appropriate

match in the synthetic model image with state vector sm and

descriptor fm. The search for each observation structure is

performed using a sliding window approach on a dense grid of

the synthetic image. Let each possible grid position be denoted

by b and s
(b)
m be the corresponding structure. The match is

given by:

bmatch = argmin
b

‖f
(b)
m − f

i
o‖2 (9)

The match is accepted if the norm between the descriptors is

below a predefined threshold value. The displacement for the

structure i, is given by: xi
[q] = sio − s

(bmatch)
m

The set of computed displacement calculated from the

matched structures is used to calculate the displacement field

using irregular data interpolation [22]. The formula for com-

puting the displacement value at a given position p is:

x[q](p) =

∑N

i=1
wi(p)x

i
[q]

∑N

j=1
wj(p)

(10)

where the weight wi(p) of a structure i for a position p is

inversely proportional to the distance between the position and

the structure.

V. EXPERIMENTS

To experimentally evaluate our approach we performed two

series of experiments. In the first one we evaluate the structure

detector/matcher using noisy observation from our experimen-

tal platform images and the corresponding numerical model

output. In the second series we use simulated data which we

assimilate with and without alignment. First of all, let us define

the model and observation considered in our experiments.

A. Experimental framework

The experimental framework we considered to test the

assimilation method is based on a Shallow-Water model 1

describing the evolution of a flow with a small depth. With

respect to lake or river modeling, this representation includes

the 2D surface velocity vector field (u, v) and the water height

h. The dynamics of such variables is then given by the set of

following hyperbolic partial differential equations:






∂th+ ∂x(hu) + ∂y(hv) = 0
∂t(hu) + ∂x(hu

2) + ∂y(huv) +
g

2∂x(h
2) = 0

∂t(hv) + ∂x(huv) + ∂y(hv
2) + g

2∂y(h
2) = 0

(11)

We then enriched the state with an additional tracer T . In

real applications, such tracer can be a passive pollutant at the

surface of the water. It can also represent the concentration of a

product injected to a fluid in fluid mechanics experiments. The

tracer can therefore be observed by external imaging processes

1http://verdandi.gforge.inria.fr

(satellite or cameras). As the tracer is passive, its dynamics is

driven by the surface velocity of our 2D model. By assuming

that the mass of the tracer is preserved along time, its temporal

evolution is given by the following PDE:

∂tT + ∂x(Tu) + ∂y(Tv) = 0. (12)

With respect to previous notations, the model state is defined

as: xk = [hk, uk, vk, Tk] and the dynamic operator M defined

in relation (1) is given by equations (11) and (12).

Simulations of this model give us observations zk = Tk, that

can be assimilated with the corresponding linear observation

operator H = [0, 0, 0, 1].
Remark Satellite images of the ocean such as Sea Surface

Height (SSH) could be used in real applications. In this case,

the passive tracer model is useless as we can directly observe

h. However, as the shallow-water model is a rough approx-

imation of the ocean dynamic, we rather not consider SSH

data. In this paper, we prefer focusing on tracer observation to

demonstrate the potential of our approach in a configuration

that is coherent in terms of numerical model (2D shallow-

water) and data (images of a tracer in a thin layer of water).

B. Structure Detection and Matching

To show the robustness of the detector we used the ob-

servation of our experimental platform and a correspond-

ing shallow-water model synthetic image. The CORIOLIS

(Grenoble, France) platform, simulates the evolution of a

vortex in the atmosphere using a turntable which re-creates

the effect of the Coriolis force on a thin layer of water.

A complete rotation of the tank takes 60 seconds which

corresponds to one Earth rotation. The vortex is created by

stirring the water and made visible thanks to the addition

of a passive tracer T . Photographs of the vortex are taken

from above the turntable which constitute the observed image

sequence. In this configuration, the evolution of the fluid can

be represented with the shallow-water equations involving

the surface velocity(u, v), where u and v are the zonal and

meridional components of the velocity, and the water elevation

h. Fig. 1 shows the detection and the matched structure using

the methodology of Sec. IV. We observe that even though

the images are noisy and the structures are not identical they

are properly detected and matched. The two threshold values

that concern the gradient magnitude image binarization and

the acceptance of a possible match were manually set. These

values are application specific and can be learn from a set of

images with annotated structures.

C. Assimilation Experiments

As the experiment realized with the platform contain a

single vortex, the situation is too simple for an interesting

analysis. We therefore considered a synthetic example with

two vortex (see Fig. 2) and applied the optimal interpolation

method to estimate the dynamics of the system (u, v, h).
We chose to initialize the system with a spatial shift of the

variables (u, v, h, T ) that would correspond in practice to

a misfit of structure position (see first columns of Fig. 3



Fig. 1. Structures detection. Top left: Observation image z with the detected
structure. Top right: Passive tracer T of the model with the matched structure.
Bottom left: Gradient magnitude of the observation image. Bottom right:
Thresholded gradient.

and 4). When assimilating observations of the passive tracer

without state alignment, the process is long to converge. It

also creates new structures by taking the mean of state tracer

and observed tracer, as illustrated on the middle row of Fig.

3 and 4. On the other hand, one can observe on the last

rows of these figures that the use of structure detection and

of state alignment procedure allow a very accurate correction

of the state variables, even after the assimilation of the first

observation. From a qualitative point of view the structure

information is perfectly recovered with the state alignment

approach. On this synthetic experiment, the ground truth is

known and a quantitative analysis can also be realized. To

that end, we computed the Root Mean Square Error (RMSE)

of the physic variables u, v and h estimated with and without

state alignment. Fig. 5 then illustrates that the state alignment

procedure allows a faster decrease of the RMSE.

(a) Structures Detection (b) Displacement in x and y axis.

Fig. 2. (a) Detected structures on the measurement image and matched
structures on the model image. (b) The resulting x-y displacement field. White
color represents positive displacement values and black negative ones.

VI. CONCLUSION AND PERSPECTIVES

In this paper, we studied the use of computer vision tools

in order to perform the alignment of physical state for assim-

ilation purposes. The first results obtained on experimental

data are very promising and show the feasibility of the use of

structure of interest in satellite images to monitor numerical

models. By extracting and matching features from observed

images and model outputs, we propose a high level interpre-

tation of the image content which remains robust to noise.

t = 0 t = 1 t = 5 t = 10

Fig. 3. State evolution of the water height h of the shallow water model on
80x80 domain. Top row: measurements. Middle row: optimal interpolation
assimilation. Bottom row: optimal interpolation with state alignment. The
tracer structures are initialized at bad locations (first column). When no
state alignment is performed, the process realizes an interpolation between
model structure and observed structures (middle row). The initial misfit of the
structure position is corrected in one time step thanks to the state alignment
process, which allows a faster convergence of the estimation (Fig. 5).

Fig. 5. RMS error evolution over 15 time steps for the height hand the
u-v components of the velocity. The blue and green curve represents the
evolution of the error with and without state alignment respectively. We note
the sharp decrease of the error in the case with alignment on the first time
step, where the alignment takes place. The method directly assimilates height
values therefore the decrease of height error is sharp. The velocity is corrected
indirectly, through the height, therefore its convergence rate is slower.

As a perspective, the learning of the image characteristics of

the different physical structures that exist in reality in ocean

satellite images (front, vortex...) will be a first task to identify

and match better model to data.

In order to go towards operational problem, the next step

will be to test the approach on real scenario. From the

assimilation point of view, using strategies like Ensemble

Kalman Filter instead of Optimal interpolation will also be

the natural extension to this work.
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