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This document is a supplementary material to the article "Nonparametric estimation using partially observed Markov chains". It provides additional proofs of some technical results given in the original paper. Section 1 recalls the model, the definitions and the assumptions used in the paper. Section 2 provides proofs of some results stated in the paper and Section 3 gives details on the algorithm used to perform the Expectation-Maximization based estimation.

Model and definitions

In this section, we recall the model and the assumptions given in [START_REF] Dumont | Nonparametric estimation in hidden Markov models[END_REF]. Comments on these assumptions can be found in [Dumont and Le Corff, 2012, Section 2]. Let and m be positive integers and K be a subset of R m . The main statistical problem considered in this paper is the estimation of an unknown target function f : K → R when observing a process {Y k } k∈N such that for any k ≥ 0, Y k belongs to R and satisfies

Y k def = f (X k ) + k .
{ k } k∈N is assumed to be an i.i.d Gaussian process with common distribution N (0, σ 2 I ), I being the identity matrix of size and σ 2 a fixed positive parameter. Denote by ϕ the probability distribution of 0 , i.e.

∀z ∈ R , ϕ(z) def = 2πσ 2 -/2 exp - z 2 2σ 2 ,
where • is the euclidean norm on R m . {X k } k∈N is assumed to be a non observed Markov chain, taking its values in K and independent of { k } k∈N . In

= C a (x)q x -x a , (1) 
where q is a known, positive, continuous and strictly monotone function on R + and where

C a (x) def = K q x -x a dx -1 , ( 2 
)
where dx is a shorthand notation for µ(dx ). The Markov transition kernel associated with q a is denoted by Q a . Assume the existence of an unknown parameter a > 0 such that H1 {X k } k∈Z is a stationary Markov chain with transition kernel Q a .

Assume the following statement on the set K:

H2 (i) K is compact. (ii) K is homeomorphic to a convex subset of R m .
(iii) K has a local Lipschitz boundary.

As an immediate consequence of the compactness of K and of the continuity of q, there exists 0 < σ -(a) < σ + (a) < +∞ such that, for all x, x ∈ K, σ -(a) ≤ q a (x, x ) ≤ σ + (a) .

(3)

For any a > 0, Q a is a ψ-irreducible and recurrent Markov kernel and then, it has a unique invariant probability distribution, see [Meyn and Tweedie, 2009, Theorem 10.0.1]. By the symmetry of the kernel (x, x ) → q x-x a , the finite measure on K with density function x → C -1 a (x) is Q a -invariant. Therefore, the unique invariant probability of Q a has a density given by

∀x ∈ K, ν a (x) def = K q x -x a dx K 2 q x -x a dx dx . ( 4 
)
Let s ∈ N and p ≥ 1.

Remark 1.1. i) By H2(iii) and the Stein Theorem [Adams and Fournier, 2003, Theorem 5.24], there exists a positive constant C such that any bounded [Adams and Fournier, 2003, Theorem 6.3], assuming that K satisfies H2(i) and H2(iii) and s > m/p+k, W s,p (K, R) is compactly embedded into the subspace of bounded functions in

function f in C 1 ( • K) can be extended by a function f in C 1 (R m ), with f C 1 (R m ) ≤ C f 0, by
C k ( • K), • C k ( • K)
. Provided that s > m/p + 1, and arguing component by component, W s,p is compactly embedded into the subspace of bounded functions C 1 ( • K, R ). Moreover, the identity function id : W s,p → C 1 ( • K, R ) being linear and continuous, there exists a positive coefficient κ such that, for any f ∈ W s,p ,

f C 1 ( • K,R ) ≤ κ f W s,p , ( 5 
) thus f is a bounded function in C 1 ( • K, R
) and, by i), can be extended by a function in C 1 (K, R ) shortly denoted by C 1 , and

f C 1 ≤ κ f W s,p . (6) 
H3 s > m/p + 1.

For any f ∈ C 1 and any x ∈ K, the Jacobian of f at x, is defined by

J 2 f (x) def = Det D f (x) T D f (x) ,
where D f (x) is the ×m gradient matrix of f at x defined, for any j ∈ {1, . . . , } and any i ∈ {1, . . . , m}, by

D f (x) j,i def = ∂f j ∂x i (x) . H4 (i) f ∈ W s,p . (ii) f : K → Im(f ) is a diffeomorphism.
Consider the following assumption on υ.

H5 υ > 2 .

Additional proofs

This section is devoted to the proof of [Dumont and Le Corff, 2012, Propositon 5.1]. First of all, for any M ≥ 1 the Sobolev ball of radius M centred in 0 is denoted by W s,p M . Recall that, for any probability density function p on R 2 ,

g p def = 1 2 ln p + p f ,a 2p f ,a .
Define the following collections of functions on R 2 :

G M def = g p f,a ; f ∈ W s,p M , a > 0 and G M def = {g -E [g(Y 0 , Y 1 )] ; g ∈ G M } ,
where E is the expectation under the distribution P . Under H1, H2(i), H2(iii), H4(i) and H3, [Dumont and Le Corff, 2012, Propositon 5.1] states that there exist some positive constants K 1 , K 2 , C and c, depending on f and a such that, for any M ≥ 1, any n ≥ 1 and any t ≥ Cn -1/2 , P sup

g∈G M |ν n (g)| ≥ cE sup g∈G M |ν n (g)| + M t ≤ K 1 e -K2t 2 + e -K2t . (7) Let Z def = {Z k } k≥0 be the Markov chain, defined, for any k ≥ 0, by Z k def = (X 2k , Y 2k , X 2k+1 , Y 2k+1 ). For any z = (x, y) in K 2 × (R ) 2
, we denote by P z the conditional version of P where the starting distribution of the Markov chain Z is the Dirac distribution in z.

The proof of ( 7) is obtained by integration of the following result with respect to the invariant distribution of the Markov chain Z.

Proposition 2.1. Assume that H2(i), H4(i) and H3 hold. There exist some positive constants K 1 , K 2 , C and c, depending on f and a such that, for any Lemma 2.2 is proved in [Dumont and Le Corff, 2012, Lemma A.1].

M > 1, any z ∈ (K × R ) 2 , any n ≥ 1 and any t ≥ Cn -1/2 , P z sup g∈G M |ν n (g)| ≥ cE sup g∈G M |ν n (g)| + M t ≤ K 1 e -K2t 2 + e -K2t . (8) 
Lemma 2.2. Assume H2(i), H2(iii) H3 and H4(i).There exists a constant C > 0 such that, for any

y ∈ R 2 , G M (y) ≤ C G (1 + M y ) and G M (y) ≤ C (1 + M y ) .
Proposition 2.1 is then an application of [Adamczak and Bednorz, 2012, Theorem 7] to the class {ḡ/M ; ḡ ∈ G M }. Indeed, Lemma 2.2 gives an upper bound for G M /M which is independent from M . This allows us to apply [Adamczak and Bednorz, 2012, Theorem 7] where all the constants in the upper bound of

P z sup g∈G M |ν n (g)| ≥ cE sup g∈G M |ν n (g)| + M t not depend on M .
By [Adamczak and Bednorz, 2012, Section 3.2], it is sufficient to prove that there exists a small set D, see [Meyn and Tweedie, 2009, Section 5.2], such that i) there exists κ > 1 satisfying sup

z∈D E z [κ τ D ] < +∞, with τ D def = min{k ≥ 1; Z k ∈ D}.
ii) The extended chain satisfies a drift condition: there exists a function V :

(K × R ) 2 → R + and b > 0 such that Q a V (z) -V (z) ≤ -exp G M (y)/M + b1 D (z) ,
where Q a is the Markov transition kernel of the extended chain Z. By [Meyn and Tweedie, 2009, Theorem 14.2.3 and Theorem 14.2.4], ii) is satisfied if

sup z∈D E z τ D -1 k=0 exp G M M (Y k ) < +∞ , (9) 
where

Y k def = (Y 2k , Y 2k+1 ).
In this case, we can choose

V (z) def = E z σ D k=0 exp G M M (Y k ) ,
where σ D def = min{k ≥ 0; Z k ∈ D}. By Lemma 2.2 there exists K > 0 (independent from M ) such that the function V is upper bounded by K on D. Therefore, [Adamczak and Bednorz, 2012, Theorem 7] states the existence of constants K 1 , K 2 , c and C such that, for any t ≥ Cn -1/2 , any z ∈ (K × R ) 2 and any n > 1,

P z sup g∈G M |ν n (g)| ≥ cE sup g∈G M |ν n (g)| + M t ≤ K 1 e -K2t 2 + e -K2t √ n/ log(n) + e -K2t √ n + e -K2t ,
which concludes the proof of Proposition 2.1.

We now turn to the proof of i) and (9). By (3), it can be proved that the transition kernel Q a of the extended chain Z also satisfies a strong mixing condition. Therefore any subset of (K × R ) 2 is a small set for this extended chain. i) and ( 9) can be established by a proper choice of D. By H4(i), there exists M < +∞ such that f W s,p = M . Furthermore, by Remark 1.1, we have, for all x ∈ K, f (x) ≤ √ κM . Consider the set

D def = K × K × B(0, √ κM + ρ) × B(0, √ κM + ρ) ,
where B(0, √ κM + ρ) def = {y ∈ R ; y ≤ √ κM + ρ} and where ρ > 0 is a constant to be chosen later.

Lemma 2.3. For all k ≥ 0 and all z ∈ D,

P z {τ C > k} ≤ exp {-λ(ρ)k} , where λ(ρ) def = t 2 - 2 -ln 2 - 2 ln t 2 and t 2 def = ρ 2 σ 2 . ( 10 
)
Proof. For all i ≥ 1,

P X2i Y 2i / ∈ B(0, √ κM + ρ) = P X2i f (X 2i ) + 2i ≥ √ κM + ρ ≤ P X2i { 2i ≥ ρ} . Since 2i is N (0, σ 2 I ), if t 2 > , P X2i { 2i ≥ ρ} ≤ exp 2 ln t 2 - t 2 - 2 .
This concludes the proof.

Then, for κ > 1 and z ∈ D,

E z [κ τ D ] = k≥1 P z {τ D = k} κ k ≤ e λ(ρ) k≥1 e -(λ(ρ)-ln κ)k .
The right hand side of the last equation is finite if ρ is chosen sufficiently large. This concludes the proof of i).

Proof of (9). Let z ∈ D. By Lemma 2.2, there exists a constant C such that

E z τ D -1 k=0 exp G M M (Y k ) ≤ e C E z τ D -1 k=0 exp {C Y k } ≤ e C E z τ D exp C τ D -1 k=0 Y k ≤ e C E z τ 2 D 1/2 E z exp 2C τ D -1 k=0 Y k 1/2
. By Lemma 2.3, sup z∈D E z τ 2 D < +∞. For the second term we write

E z exp 2C τ D -1 k=0 Y k = p≥1 E z 1 τ D =p exp 2C p-1 k=0 Y k ≤ p≥1 P z {τ D = p} 1/2 E z exp 4C p-1 k=0 Y k 1/2 , (11) 
where

E z exp 4C p-1 k=0 Y k ≤ exp {4C y } × 2πσ 2 - exp - y 2 2σ 2 + y √ 2 κM σ 2 + 4C dy p-1
.

Let H be the Hausdorff measure on R 2 of order 2 -1 restricted to S 2 -1 , where

S 2 -1 def = {x ∈ R 2 ; x = 1}. Then, 2πσ 2 - exp - y 2 2σ 2 + y √ 2 κM σ 2 + 4C dy ≤ 2πσ 2 - R + ×S 2 -1 exp - ru 2 2σ 2 + ru √ 2 κM σ 2 + 4C H(du)r 2 -1 dr = H(S 2 -1 ) 2πσ 2 - R + exp - r 2 2σ 2 + r √ 2 κM σ 2 + 4C r 2 -1 dr ≤ H(S 2 -1 ) exp      √ 2 κM + 4Cσ 2 2 2σ 2      I 2 -1 √ 2 κM + 2 ,
where, for any c ∈ R, the sequence {I k (c)} ∞ k=1 is given by :

I k (c) = 2πσ 2 - R + exp - 1 2σ 2 [r -c] 2 r k dr .
If ξ denotes a Gaussian random variable with mean c and variance σ 2 , we have

I k (c) = (2πσ 2 ) -+1/2 E ξ k 1 ξ>0 ≤ E |ξ| k .
Then,

I k (c) ≤ (2πσ 2 ) -+1/2 E |ξ -c + c| k ≤ (2πσ 2 ) -+1/2 k i=0 k i c i E |ξ -c| k-i . If B(k) def = (2πσ 2 ) -+1/2 max 0≤i≤k E |ξ -c| k-i (which is independent from c), then I k (c) ≤ B(k) k i=0 k i c i ≤ B(k)(1 + c) k .
This yields,

E z exp 4C p-1 i=0 Y i ≤ exp {4C y } B(2 -1)H(S 2 -1 ) p-1 × exp ( √ 2 κM + 4Cσ 2 ) 2 2σ 2 p (1 + √ 2 κM + 4Cσ 2 ) (2 -1)p .
Finally, for all p ≥ 1 and all z def = (x, y) ∈ C,

E z exp 4C p-1 i=0 Y i ≤ exp {4C y } exp {η(4C)(p -1)} ,
where

η(4C) def = ln(κ( )) + √ 2 κM + 4Cσ 2 2 2σ 2 + (2 -1) ln 1 + √ 2 κM + 4Cσ 2
(12) and where κ( ) is a constant depending only on . Therefore, by ( 11) and Lemma 2.3, this concludes the proof for a sufficiently large ρ.

Numerical experiments

Let n be a positive integer, in this section, we denote by f the estimator defined as a maximizer the function T defined by

T : W s,2 → R f → 1 n n-1 k=0 log p f,a (Y 2k , Y 2k+1 ) -λ 2 n ||f || 2 W s,2 .
The HMM framework suggests to use an Expectation-Maximization (EM) type procedure, see [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF]. This algorithm iteratively produces a sequence of estimates { f p } p≥0 . Assume the current parameter estimate is given by f p . The estimate f p+1 is defined as one of the maximizer of the function Q defined by

f → Q(f, f p ) def = 1 n n-1 k=0 E f p log p f,a (X 2k , Y 2k , X 2k+1 , Y 2k ) Y 2k , Y 2k+1 -λ 2 n ||f || 2 W s,2
, where E f p [•] denotes the expectation under the law of the stationary HMM parameterized by f p and where

p f,a (x, y, x , y ) = ν a (x)q a (x, x )ϕ(y -f (x))ϕ(y -f (x )) . The differential of f → Q(f, f p ) is given, for any f, h ∈ W s,2 , by d f Q(•, f p )(h) = S n,1 ( f p , f, h) + S n,2 ( f p , f, h) -2λ 2 n 0≤|α|≤s D α f, D α h L2 ,
where

S n,1 ( f p , f, h) def = 1 nσ 2 n-1 k=0 E f p [ h(X 2k ), f (X 2k ) -Y 2k |Y 2k:2k+1 ] , S n,2 ( f p , f, h) def = 1 nσ 2 n-1 k=0 E f p [ h(X 2k+1 ), f (X 2k+1 ) -Y 2k+1 |Y 2k:2k+1 ] .
f p+1 is then defined as the function f ∈ W s,2 such that for any h ∈ W s,2 , d f Q( f p , •)(h) = 0. In the sequel, we choose s = 2 and K = [0, 1], therefore, this implies, for any h ∈ W ([0, 1], R),

S n,1 ( f p , f, h) + S n,2 ( f p , f, h) -2λ 2 n 2 α=0 f (α) , h (α) L2 = 0 . ( 13 
)
This equation can be applied to any function h in W 2,2 0 def = {h ∈ W ([0, 1], R); h(0) = h(1) = 0}. Using integration by parts, this yields, for any component f j and any x ∈ [0, 1],

1 + 1 2nλ 2 n σ 2 n-1 k=0 φ f p ,a 2k|2k:2k+1 (x) + φ f p ,a 2k+1|2k:2k+1 (x) f j (x) -f (2) j (x)+f (4) j (x) = 1 2nλ 2 n σ 2 n-1 k=0 Y 2k φ f p ,a 2k|2k:2k+1 (x) + Y 2k+1 φ f p ,a 2k+1|2k:2k+1 (x) , (14) 
where φ f p ,a 2k|2k:2k+1 and φ f p ,a 2k+1|2k:2k+1 are the filtering distributions defined by

φ f p ,a 2k|2k:2k+1 (x) def = ν a (x)q a (x, x )ϕ(Y 2k -f p (x))ϕ(Y 2k+1 -f p (x ))dx p f p ,a (Y 2k , Y 2k+1 ) , φ f p ,a 2k+1|2k:2k+1 (x ) def = ν a (x)q a (x, x )ϕ(Y 2k -f p (x))ϕ(Y 2k+1 -f p (x ))dx p f p ,a (Y 2k , Y 2k+1 ) .

Numerical approximations

Let N ≥ 1 be an integer. The differential system ( 14) is solved using a discretization of the state space [0, 1] by i N N i=0 . Let q a be the transition probability associated to this discretization: for any i

, j ∈ {0, • • • , N }, q a (i, j) def = q a ( i N , j N ) N j=0 q a ( i N , j N )
and ν a the invariant distribution of q a on {0, . . . , N }. Define ν a as the invariant distribution of q a on {0, . . . , N }. The filtering distributions φ , defined by

φ f p ,a k (x) def = N -1 i=0 1 [ i N , i+1 N [ (x) ϕ f p i,k and φ f p ,a k (x) def = N -1 i=0 1 [ i N , i+1 N [ (x) ϕ f t i,k ,
where, for any i, j ∈ {0, . . . , N -1},

ϕ f p i,k def = N -1 j=0 ν a (i) q a (i, j)ϕ f p i N -Y 2k ϕ f p j N -Y 2k+1 N -1 i ,j =0 ν a (i ) q a (i , j )ϕ f p i N -Y 2k ϕ f p j N -Y 2k+1 , (15) 
ϕ f p j,k def = N -1 i=0 ν a (i) q a (i, j)ϕ f p i N -Y 2k ϕ f p j N -Y 2k+1 N -1 i ,j =0 ν a (i ) q a (i , j )ϕ f p i N -Y 2k ϕ f p j N -Y 2k+1 . (16) 
The equation ( 14) is solved on each interval

[ i N , i+1 N [, i ∈ {0, • • • , N -1}
, which is straightforward since the coefficients are constant and the equation is linear.

Computation of f p+1

Let i ∈ {0, • • • , N -1} and j ∈ {1, • • • , }. We denote by f i the solution of ( 14) on i N , i+1 N . We have, for each component f j , j ∈ {1, • • • , },

f (4) j,i (x) -f (2) j,i (x) + (1 + α i ) f j,i (x) = β j,i ,
where

α i def = 1 2nλ 2 n σ 2 n-1 k=0 ϕ f n i,k + ϕ f n i,k , β j,i def = 1 2nλ 2 n σ 2 n-1 k=0 Y 2k,j ϕ f n i,k + Y 2k+1,j ϕ f n j,k
.

Therefore, there exist c i,1 , c i,2 , s i,1 and s i,2 such that, for any x ∈ i N , i+1 N , f j,i (x) = e ηix [c 1,i cos (γ i x) + s 1,i sin (γ i x)]

+ e -ηix [c 2,i cos (γ i x) + s 2,i sin (γ i x)] + β j,i 1 + α i , where, if

r i def = √ 1 + α i η i def = √ 1 + 2r i 2 and γ i def = √ 2r i -1 2 .
Therefore, 4N parameters have to be chosen to uniquely determine the solution

f p+1 j = N -1 i=0 1 [ i N , i+1
N [ f j,i . The C 3 -regularity conditions for each boundary provides 4(N -1) equations: for any i ∈ {0, • • • , N -2},

f j,i i + 1 N = f j,i+1 i + 1 N , f j,i i + 1 N = f j,i+1 i + 1 N , f (2) j,i i + 1 N = f (2) j,i+1 i + 1 N , f (3) j,i i + 1 N = f (3) j,i+1 i + 1 N , (17) 

  Proposition 2.1 is an application of[Adamczak and Bednorz, 2012, Theorem 7] and relies on an intermediate lemma on the envelope functions of the sets G M and G M defined, for any y ∈ R 2 , by G M (y) def = sup g∈G M g(y) and G M (y)

where, for any x ∈ i N , i+1 N ,

Solving (13) with h(x) = 1, h(x) = x, h(x) = x 2 and h(x) = x 3 leads to four other linear equations which conclude the computation of f p+1 j .