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Abstract

The computation of the model parameters of a Canonical Polyadic Decom-

position (CPD), also known as the parallel factor (PARAFAC) or canonical

decomposition (CANDECOMP) or CP decomposition, is typically done

by resorting to iterative algorithms, e.g. either iterative alternating least

squares type or descent methods. In many practical problems involving

tensor decompositions such as signal processing, some of the matrix factors

are banded. First, we develop methods for the computation of CPDs with

one banded matrix factor. It results in best rank-1 tensor approximation

problems. Second, we propose methods to compute CPDs with more than

one banded matrix factor. Third, we extend the developed methods to also

handle banded and structured matrix factors such as Hankel or Toeplitz.

Computer results are also reported.
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(CANDECOMP), parallel factor (PARAFAC), CP decomposition, Banded

matrices, Hankel matrices, Toeplitz matrices.

1. Introduction

Tensor decompositions with banded matrix factors and possibly also

(block-) Toeplitz/Hankel structures have found application in signal pro-

cessing, in particular in cumulant based blind identification of convolutive

mixtures [4], [20], [1], [2], [10], [11] and in tensor based blind equalization

of wireless communication systems [8], [18]. In this case the banded struc-

ture of the matrix factors are directly related to the filter orders of the given

system we attempt to identify.

It also occurs in blind separation of communication signals [23] and

in computational multilinear algebra [7] involving triangular structured

matrix factors. Hence, the development of methods to deal with CPDs

with banded and possibly also structured matrix factors such as Hankel or

Toeplitz must be considered important.

Recently an approach to address structured CPDs was proposed in [5].

However, it was mainly concerned with deriving necessary uniqueness

conditions. In this paper we limit the discussion to tensors with banded

matrix factors, but also provide sufficient uniqueness conditions for CPDs

with banded and possibly also structured matrix factors such as Hankel or

Toeplitz. Second, we develop numerical methods for the computation of

CPDs with banded and possibly also structured matrix factors.

The results presented in this paper are also valid for more general tensor

decompositions with banded matrix factors such as the Tucker decompo-
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sition [22] or the family of block tensor decompositions [9].

The paper is organised as follows. In the rest of the introduction, the

applied notation will be presented followed by a brief review of the CPD

decomposition. Section 3 provides uniqueness results for CPD decom-

positions with banded matrix factors while section 4 present numerical

methods to compute them. Next, in section 5 we provide uniqueness re-

sults for CPD decompositions with banded and structured matrix factors

while section 6 present numerical methods to compute them. In section

7, some numerical experiments are reported. We end the paper with a

conclusion in section 8.

2. Notation

Vectors, matrices and tensors are denoted by lower case boldface, upper

case boldface and upper case calligraphic letters, respectively. The symbol

⊗ denotes the Kronecker product

A ⊗ B =




a11B a12B . . .

a21B a22B . . .

...
...
. . .



,

where (A)mn = amn. The symbol ⊙ denotes the Khatri-Rao product

A ⊙ B =

[
a1 ⊗ b1 a2 ⊗ b2 . . .

]
,

where ar and br denote the rth column vector of A and B, respectively. Let

◦ denote the outer product of N vectors a(n) ∈ CIn such that

(
a(1) ◦ a(2) ◦ · · · ◦ a(N)

)
i1i2...iN

= a(1)

i1
a(2)

i2
· · · a(N)

iN
.
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Further, (·)T, (·)∗, (·)H, (·)†, ‖ · ‖F, Col (·) and Row (·) denote the trans-

pose, conjugate, conjugate-transpose, one-sided inverse, Frobenius norm,

column space and row space of a matrix, respectively.

Let A ∈ CI×J, then Vec (A) ∈ CIJ denotes the column vector defined

by (Vec (A))i+( j−1)I = (A)i j. Given a ∈ CIJ, then the reverse operation is

Unvec (a) = A ∈ CI×J such that (a)i+( j−1)I = (A)i j.

Matlab index notation will be used to denote submatrices of a given

matrix. For example, A(1 : k, :) denotes the submatrix of A consisting of

the rows from 1 to k. The anti-identity matrix is denoted by JR ∈ C
R×R and

it is equal to

JR =




0 · · · 0 1

... . .
.
. .
.

0

0 1 . .
. ...

1 0 · · · 0




∈ CR×R.

Let a be a column vector, then we say that a is lower bounded by bL (a) if

its entries satisfy abL(a) , 0 and abL(a)+n = 0, ∀n > 0. Similarly, we say that a

is upper bounded by bU (a) if its entries satisfy abU(a) , 0 and abU(a)−n = 0,

∀n > 0.

We say that a matrix A = [a1, . . . , aR] ∈ CI×R is banded if bU (am) , bU (an)

and bU (am) > 1, or bL (am) , bL (an) and bL (am) < I, for some m, n ∈ [1,R].

Furthermore, we say that A is lower banded if bU (a1) < · · · < bU (aR)

and anti-lower banded if bU (a1) > · · · > bU (aR). Similarly, we say that

A is upper banded if bL (a1) < · · · < bL (aR) and anti-upper banded if

bL (a1) > · · · > bL (aR). Note that this definition of banded matrices is less

restrictive than the standard definitions such as in [12].
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2.1. Canonical Polyadic Decomposition (CPD)

An Nth order rank-1 tensorX ∈ CI1×···×IN is defined as the outer product

of some non-zero vectors a(n) ∈ CIn, n ∈ [1,N], such that Xi1 ...iN =
∏N

n=1 a(n)

in
.

The rank of a tensor X is equal to the minimal number of rank-1 tensors

that yield X in a linear combination. Assume that the rank of X is R, then

it can be written as

X =

R∑

r=1

a
(1)
r ◦ · · · ◦ a

(N)
r , (1)

where a(n)
r ∈ C

In . The decomposition (1) is sometimes referred to as the

polyadic decomposition [14], PARAFAC decomposition [13], CANDE-

COMP decomposition [3] or CP decomposition [15], [21], [16]. In this paper

it will be referred to as the Canonical Polyadic Decomposition (CPD) ofX.

Let us stack the vectors {a(n)
r } into the matrices

A(n) =

[
a

(n)

1
, · · · , a

(n)

R

]
∈ CIn×R, n ∈ [1,N]. (2)

The matrices A(n) in (2) will be referred to as the matrix factors of the tensor

X in (1). Furthermore, we say that the tensor X is partially symmetric if

A(m) = A(n) for some m , n. Similarly, we say that the tensor X is partially

Hermitian symmetric if A(m) = A(n)∗ for some m , n.

The following two matrix representations of the CPD of an Nth order

tensor will be used throughout the paper. First, consider T ∈ CI1×···×IN with

rank R and let the row vectors t(i1 ,...,ip−1 ,ip+1,...,iN) ∈ C1×Ip , where p ∈ [1,N], be

constructed such that t
(i1 ,...,ip−1 ,ip+1,...,iN)

ip
= Ti1 ,...,iN , then

t(i1 ,...,iP−1 ,iP+1 ,...,iN) =

IP∑

iP=1

Ti1 ...iN e(IP)T

iP
=

R∑

r=1

N∏

n=1
n,P

a(n)

inr
a(P)T

r
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where a(n)

inr
= A(n)(in, r) and e(IP)

iP
∈ CIP is a unit vector with unit element

at entry iP and zero elsewhere. Stack the vectors {t(i1,...,iP−1 ,iP+1 ,...,iN)} into the

matrix

C
∏N

n=1,n,P In×IP ∋ T[P] ,




t(1,...,1,1,...,1)

t(1,...,1,1,...,2)

...

t(I1,...,IP−1 ,IP+1,...,IN)




=
(
A(1) ⊙ · · · ⊙A(P−1) ⊙A(P+1) ⊙ · · · ⊙A(N)

)
A(P)T.

Second, we will also apply the matrix representation

C
∏P

m=1 Im×
∏N

n=P+1 In ∋ T[P]
,




T1,...,1,1,...,1 T1,...,1,1,...,2 · · · T1,...,1,IP+1 ,...,IN

T1,...,2,1,...,1 T1,...,2,1,...,2 · · · T1,...,2,IP+1 ,...,IN

...
...

. . .
...

TI1 ,...,IP,1,...,1 TI1,...,IP,1,...,2 · · · TI1 ,...,IP,IP+1,...,IN




=
(
A(1) ⊙ · · · ⊙A(P)

) (
A(P+1) ⊙ · · · ⊙A(N)

)T
.

The CPD of X in (1) is said to be essentially unique if all the N-tuplets(
A

(1)
, . . . ,A

(N)
)

satisfying (1) are related via

A
(n)
= A(n)Π∆A(n) , ∀n ∈ [1,N],

whereΠ is a permutation matrix and {∆A(n)} are diagonal matrices satisfying
∏N

n=1 ∆A(n) = IR [17].

If the matrix factor A(P) is known up to a permutation and scaling of

its column vectors and has full column rank, then the other matrix factors

follow in an essentially unique manner from the decoupled rank-1 tensor

approximation problems

F = T[P]

(
A(P)T

)†
= A(1) ⊙ · · · ⊙A(P−1) ⊙A(P+1) ⊙ · · · ⊙A(N). (3)
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Indeed, the Khatri-Rao product structure of (3) indicates that each column

vector of F corresponds to a vectorized version of a rank-1 tensor.

Similarly, assume that the matrix factors {A(n)}P
n=1

are known up to a per-

mutation and scaling of their column vectors and the matrix A(1)⊙· · ·⊙A(P)

has full column rank, then the remaining matrix factors follow in an es-

sentially unique manner from the decoupled rank-1 tensor approximation

problems

G =

((
A(1) ⊙ · · · ⊙A(P)

)†
T[P]
)T
= A(P+1) ⊙ · · · ⊙A(N). (4)

Again, the Khatri-Rao product structure of (4) indicates that each column

vector of G corresponds to a vectorized version of a rank-1 tensor.

To summarize, if some of the matrix factors of a CPD are known and

the matrix of Khatri-Rao products of them is a full column rank, then

the remaining matrix factors for this CPD follow from decoupled rank-1

tensor approximation problems. This observation is the foundation of the

numerical methods presented in this paper.

The problem of solving best rank-1 tensor approximation problems is

well-posed. Furthermore, when N = P + 1 or N = P + 2, then the problem

reduces to linear system solving and best rank-1 matrix approximation

problems, respectively, which can be solved by standard numerical linear

algebra methods. This is in contrast to iterative methods such as Alter-

nating Least Squares (ALS) which can be prone to local minima and slow

convergence.
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3. Uniqueness of CPDs with Banded Matrix Factors

In this section we present a uniqueness result for Nth order CPDs

exploiting that P < N of the involved matrix factors are banded matrices.

More precisely, it allows us to identify the banded matrix factors from

Col
(
T[P]
)
.

Proposition 3.1. Consider T ∈ CI1×···×IN with rank R and matrix representation

T[P] =
(
A(1) ⊙ · · · ⊙ A(P)

) (
A(P+1) ⊙ · · ·A(N)

)T
where P < N. Assume that the

matrices A(1) ⊙ · · · ⊙ A(P) and A(P+1) ⊙ · · · ⊙ A(N) have full column rank and the

matrix A(1) ⊙ · · · ⊙ A(P) satisfies

1 ≤ bU

(
a

(1)

1
⊗ · · · ⊗ a

(P)

1

)
< · · · < bU

(
a

(1)
R
⊗ · · · ⊗ a

(P)
R

)
, (5)

bL

(
a

(1)

1
⊗ · · · ⊗ a

(P)

1

)
< · · · < bL

(
a

(1)

R
⊗ · · · ⊗ a

(P)

R

)
≤

P∏

n=1

In (6)

up to a permutation of its rows and columns, i.e., there exist permutation matrices

Π1 ∈ C
∏P

n=1 ×
∏P

n=1 and Π2 ∈ C
R×R such that Π1

(
A(1) ⊙ · · · ⊙ A(P)

)
Π2 satisfies the

inequalities (5) and (6). Let Â
(1)
⊙ · · · ⊙ Â

(P)
be another matrix with same struc-

ture as A(1) ⊙ · · · ⊙ A(P), then Col
(
Â

(1)
⊙ · · · ⊙ Â

(P)
)
⊆ Col

(
A(1) ⊙ · · · ⊙ A(P)

)
=

Col
(
T[P]
)

if and only if Â
(1)
⊙ · · · ⊙ Â

(P)
=
(
A(1) ⊙ · · · ⊙ A(P)

)
Π2DΠT

2 , where D is

a nonsingular diagonal matrix.

P. Assume that Â
(1)
⊙ · · · ⊙ Â

(P)
=
(
A(1) ⊙ · · · ⊙ A(P)

)
Π2DΠT

2 , where Π2 is

a permutation matrix and D is a nonsingular diagonal matrix, then obviously

Col
(
Â

(1)
⊙ · · · ⊙ Â

(P)
)
⊆ Col

(
A(1) ⊙ · · · ⊙ A(P)

)
= Col

(
T[P]
)
. Conversely, assume

that Col
(
Â

(1)
⊙ · · · ⊙ Â

(P)
)
⊆ Col

(
A(1) ⊙ · · · ⊙A(P)

)
= Col

(
T[P]
)
, then there exists

a nonsingular matrix M ∈ CR×R such that
(
Â

(1)
⊙ · · · ⊙ Â

(P)
)

M = A(1) ⊙ · · · ⊙ A(P). (7)
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By assumption we also assume that there exist permutation matrices Π1 and Π2

such that Π1

(
A(1) ⊙ · · · ⊙ A(P)

)
Π2 satisfies the inequalities (5) and (6). Hence,

from (7) we get

Π1

(
Â

(1)
⊙ · · · ⊙ Â

(P)
)
Π2M = Π1

(
A(1) ⊙ · · · ⊙ A(P)

)
Π2,

whereΠ1

(
Â

(1)
⊙ · · · ⊙ Â

(P)
)
Π2 andΠ1

(
A(1) ⊙ · · · ⊙ A(P)

)
Π2 are banded matrices

satisfying (5) and (6) and M = ΠT
2 MΠ2 is a nonsingular matrix. Due to property

(5) the matrix M must be lower triangular and due to property (6) the matrix M

must also be upper triangular. Hence, the matrix M must be diagonal.

We notice from proposition 3.1 that if only one banded matrix factor

is exploited, then it is required to be upper and lower banded. However,

if several of the matrix factors are banded, then from proposition 3.1 we

only require that the Khatri-Rao product of the banded matrix factors is

upper and lower banded. This means, by exploiting the structure of several

banded matrix factors, we obtain more relaxed uniqueness results.

4. Computation of CPDs with Banded Matrix Factors

In this section we develop numerical methods to compute CPDs con-

taining banded matrix factors. To simplify the discussion, let us only

consider computational methods exploiting that one or two of the matrix

factors are banded. The presented method can be generalized in such a

way that it is capable of jointly exploiting that three or more of the matrix

factors are banded. Subsection 4.1 and 4.2 provide numerical methods

to compute a CPD exploiting that one and two of the matrix factors are

banded, respectively.
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4.1. Exploiting one Banded Matrix Factor

The method outlined in this section will be referred to as CPBAND1.

Let T ∈ CI1×···×IN with rank R and let T[N] =
(
A(1) ⊙ · · · ⊙A(N−1)

)
A(N)T be its

matrix representation. Assume that the matrices A(1)⊙ · · ·⊙A(N−1) and A(N)

have full column rank. Let T[N] = UΣVH denote the compact SVD of T[N],

then there exists a nonsingular matrix N ∈ CR×R such that

UΣN−1 = A(1) ⊙A(2) ⊙ · · · ⊙A(N−1) (8)

V∗N = A(N) (9)

Assume also that A(N) is a banded matrix with 1 ≤ bU

(
a

(N)

1

)
< · · · < bU

(
a

(N)

R

)

and bL

(
a(N)

1

)
< · · · < bL

(
a(N)

R

)
≤ IN up to a permutation of its rows and

columns, then according to proposition 3.1, we can find N and A(N) from

Row
(
T[N]

)
.

Let the rth column vector of A(N) be parameterized as

a(N)
r =

bL

(
a

(N)
r

)
∑

m=bU

(
a

(N)
r

)
ame(IN)

m ,

where e(IN)
m ∈ CIN is the unit vector which is equal to one at entry m and zero

elsewhere. The linear system (9), then decouples into the R linear systems

V∗n(r) =

bL

(
a

(N)
r

)
∑

m=bU

(
a

(N)
r

)
ame(IN)

m

=

[
e(IN)

bU

(
a

(N)
r

), . . . , e(IN)

bL

(
a

(N)
r

)

]
a(N)

r , r ∈ [1,R] , (10)

where n(r) is the rth column vector of N and the vector a(N)
r ∈ CbL

(
a

(N)
r

)
−bU

(
a

(N)
r

)
+1

10



contains the coefficients used to construct the rth column of A(N). Let

E(r) =

[
e(IN)

bU

(
a

(N)
r

), . . . , e(IN)

bL

(
a

(N)
r

)

]
∈ CIN×

(
bL

(
a

(N)
r

)
−bU

(
a

(N)
r

)
+1
)
, r ∈ [1,R] ,

then equation (10) can be written as

V∗n(r) = E(r)a(N)
r ⇔

[
V∗,−E(r)

]



n(r)

a(N)
r


 = 0 , r ∈ [1,R] . (11)

From proposition 3.1 we know that the solution to (11) is essentially unique.

The Least Squares (LS) solution to (11) is given by the right singular vector

of the matrix
[
V∗,−E(r)

]
associated with its smallest singular value. Let

x ∈ CR+bL

(
a

(N)
r

)
−bU

(
a

(N)
r

)
+1 be the solution to the system (11), then

n(r) = x(1 : R) , r ∈ [1,R]

a
(N)
r = x

(
R + 1 : R + 1 + bL

(
a

(N)
r

)
− bU

(
a

(N)
r

))
, r ∈ [1,R]

Once A(N) and N have been obtained, then from (8) we have the relation

F = UΣN−1 = A(1) ⊙ A(2) ⊙ · · · ⊙ A(N−1). Thus, we can find the remaining

unknown matrix factors from the R decoupled best rank-1 tensor approx-

imation problems

min
a

(1)
r ,...,a

(N−1)
r

∥∥∥fr − a
(1)
r ⊗ · · · ⊗ a

(N−1)
r

∥∥∥2

F
, r ∈ [1,R], (12)

where fr and a
(n)
r denote the rth column vector of F and A(n), respectively.

To numerically solve the best rank-1 tensor approximation problems (12)

the higher-order power method [6] could for instance be used.

Remark that if N = 2, then T[2] = A(1)A(2)T and we directly obtain A(1)

from A(1) = T[2]

(
A(2)T

)†
or alternatively A(1) = UΣN−1. Furthermore, if

11

One could also cite the Kofidis-Regalia paper:

@INPROCEEDINGS{KofiR00:ams,
AUTHOR = {E. Kofidis and P. A. Regalia},
TITLE = {Tensor Approximation and Signal Processing Applications},
BOOKTITLE = {AMS Conf. on Structured Matrices in Operator theory, Numerical Analysis, Control, Signal and Image Processing},
PUBLISHER = {AMS Publ.},
YEAR = 2000
}



N = 3, then T[3] =
(
A(1) ⊙A(2)

)
A(3)T and F = UΣN−1 = A(1) ⊙ A(2). We have

fr = a(1)
r ⊗ a(2)

r and Fr = Unvec (fr) = a(2)
r a(1)T

r , where fr, a(1)
r and a(2)

r denotes

the rth column vector of F, A(1) and A(2), respectively. The matrices A(1)

and A(2) can therefore be found from the R decoupled best rank-1 matrix

approximation problems

min
a

(1)
r ,a

(2)
r

∥∥∥Fr − a(2)
r a(1)T

r

∥∥∥2

F
, r ∈ [1,R],

which can be solved by standard numerical linear algebra methods.

Assume that the matrices A(p), 1 ≤ p ≤ P ≤ N are lower and upper

banded matrix factors. If the matrix representations T[p] only consist of

full column rank matrices ∀p ∈ [1,P], then we can successively compute

the banded matrix factor A(p) from Row
(
T[p]

)
in a non-iterative way ∀p ∈

[1,P]. This is done by repeating the procedure just outlined above in this

subsection.

Let us discuss this approach in more detail when P = 2. Assume that

A(1) and A(2) are banded matrices satisfying the conditions stated in propo-

sition 3.1. Assume also that the matrices A(1), A(2),
(
A(2) ⊙A(3) ⊙ · · · ⊙A(N)

)
,

(
A(1) ⊙A(3) ⊙ · · · ⊙A(N)

)
and
(
A(3) ⊙A(4) ⊙ · · · ⊙A(N)

)
have full column rank.

We first compute A(1). Let T[1] = UΣVH denote the compact SVD of T[1],

then there exists a nonsingular matrix N ∈ CR×R such that V∗N = A(1). By

applying the procedure described in this subsection we obtain A(1) from

Row
(
T[1]

)
.

Next, we compute A(2). Let T[2] = UΣVH denote the compact SVD of

T[2], then there exists a nonsingular matrix N ∈ CR×R such that V∗N = A(2).

Again, by applying the procedure described in this subsection we obtain

A(2) from Row
(
T[2]

)
.

12



In the final step we find the remaining matrix factors. Let

T[2] =
(
A(1) ⊙A(2)

) (
A(3) ⊙ · · · ⊙A(N)

)T
= UΣV

H

denote the compact SVD of T[2], then there exists a nonsingular matrix

M ∈ CR×R such that UM =
(
A(1) ⊙A(2)

)
⇔ M = U

H (
A(1) ⊙A(2)

)
. Let

F = V
∗
ΣM−T = A(3) ⊙ · · · ⊙ A(N), then the remaining matrix factors follow

from the R decoupled best rank-1 tensor approximation problems

min
a

(3)
r ,...,a

(N)
r

∥∥∥fr − a(3)
r ⊗ · · · ⊗ a(N)

r

∥∥∥2
F
, r ∈ [1,R],

where fr and a(n)
r denote the rth column vector of F and A(n), respectively.

Remark that if N = 3, then T[3] =
(
A(1) ⊙A(2)

)
A(3)T and we directly ob-

tain A(3)T =
(
A(1) ⊙A(2)

)†
T[3] or alternatively A(3) = V∗ΣM−T. Furthermore,

if N = 4, then T[2] =
(
A(1) ⊙A(2)

) (
A(3) ⊙A(4)

)T
and F = V∗ΣM−T = A(3)⊙A(4).

We have fr = a
(3)
r ⊗ a

(4)
r and Fr = Unvec (fr) = a

(4)
r a

(3)T
r , where fr, a

(3)
r and a

(4)
r

denote the rth column vector of F, A(3) and A(4), respectively. The matrices

A(3) and A(4) can then be found from the R decoupled best rank-1 matrix

approximation problems

min
a

(3)
r ,a

(4)
r

∥∥∥Fr − a(4)
r a(3)T

r

∥∥∥2

F
, r ∈ [1,R] ,

which can be solved by standard numerical linear algebra methods.

4.2. Exploiting two Banded Matrix Factors

In this subsection we present a method for computing a CPD which

jointly exploits that two of the matrix factors are banded. It is referred to

as CPBAND2.

13
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Let T ∈ CI1×···×IN with rank R and matrix representation

T[2] =
(
A(1) ⊙A(2)

) (
A(3) ⊙A(4) ⊙ · · · ⊙A(N)

)T
.

Assume that the matrices A(1) ⊙ A(2) and A(3) ⊙ A(4) ⊙ · · · ⊙ A(N) have full

column rank. Note that this condition does not require that the matrix

factors {A(n)} to have full column rank. Furthermore, assume that A(1) and

A(2) are banded matrices satisfying the conditions stated in proposition

3.1. Let T[2] = UΣVH denote the compact SVD of T[2], then there exists a

nonsingular matrix M ∈ CR×R such that

UM = A(1) ⊙A(2) (13)

V∗ΣM−T = A(3) ⊙A(4) ⊙ · · · ⊙A(N) (14)

According to proposition 3.1, we can find M, A(1) and A(2) from Col
(
T[2]
)
.

Let the rth column vector of A(1) ⊙A(2) be parameterized as

a(1)
r ⊗ a(2)

r =

bL

(
a

(1)
r

)
∑

m=bU

(
a

(1)
r

)

bL

(
a

(2)
r

)
∑

n=bU

(
a

(2)
r

)
a(1)

mra
(2)
nr e(I1)

m ⊗ e(I2)
n ,

where a
(p)
mr = A(p) (m, r) and e(In)

m ∈ CIn is the unit vector which is equal to

one at entry m and zero elsewhere. The system of equations (13), then

decouples into R independent systems of equations

Um(r) =

bL

(
a

(1)
r

)
∑

m=bU

(
a

(1)
r

)

bL

(
a

(2)
r

)
∑

n=bU

(
a

(2)
r

)
a(1)

mra
(2)
nr e

(I1)
m ⊗ e

(I2)
n

=

[
e

(I1)

bU

(
a

(1)
r

) ⊗ e
(I2)

bU

(
a

(2)
r

), . . . , e(I1)

bL

(
a

(1)
r

) ⊗ e
(I2)

bL

(
a

(2)
r

)

]
a

(1)
r ⊗ a

(2)
r , r ∈ [1,R] , (15)

14



where m(r) is the rth column vector of M and the vector a(n)
r ∈ C

bL

(
a

(n)
r

)
−bU

(
a

(n)
r

)
+1

contains the coefficients for the basis vectors used to construct the rth

column vector of A(n). Let

E(r) =

[
e(I1)

bU

(
a

(1)
r

) ⊗ e(I2)

bU

(
a

(2)
r

), . . . , e(I1)

bL

(
a

(1)
r

) ⊗ e(I2)

bL

(
a

(2)
r

)

]
∈ CI1I2×

(
bL

(
a

(1)
r

)
−bU

(
a

(1)
r

)
+1
)(

bL

(
a

(2)
r

)
−bU

(
a

(2)
r

)
+1
)
,

where r ∈ [1,R], then equation (15) can be written as

Um(r) = E(r)
(
a

(1)
r ⊗ a

(2)
r

)
⇔
[
U,−E(r)

]



m(r)

a(1)
r ⊗ a(2)

r


 = 0 , r ∈ [1,R] . (16)

From proposition 3.1 we know that the solution to (16) is essentially unique.

In order to solve the system (16) we ignore the Kronecker product struc-

ture a(1)
r ⊗ a(2)

r . Remark this relaxation may affect uniqueness of the prob-

lem. However, numerical experiments indicate that this relaxation step

does not seem to affect the uniqueness of the solution. The LS solu-

tion to the relaxed version of (16) is given by the right singular vector

of the matrix
[
U,−E(r)

]
associated with its smallest singular value. Let

x ∈ CR+
(
bL

(
a

(1)
r

)
−bU

(
a

(1)
r

)
+1
)(

bL

(
a

(2)
r

)
−bU

(
a

(2)
r

)
+1
)

be the LS solution to the relaxed ver-

sion of the system (16), then we set

n(r) = x(1 : R) ,

yr = a(1)
r ⊗ a(2)

r

= x
(
R + 1 : R +

(
bL

(
a

(1)
r

)
− bU

(
a

(1)
r

)
+ 1
) (

bL

(
a

(2)
r

)
− bU

(
a

(2)
r

)
+ 1
))
,

where r ∈ [1,R]. Let Yr = Unvec
(
yr

)
= a

(2)
r a

(1)T
r , then {a(1)

r } and {a(2)
r } follow

from the R decoupled best rank-1 matrix approximation problems

min
a

(1)
r ,a

(2)
r

∥∥∥Yr − a(2)
r a(1)T

r

∥∥∥2

F
, r ∈ [1,R].
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Remark that this method is able to take a partial symmetry a(1)
r = a(2)

r or a

partial Hermitian symmetry a
(1)
r = a

(2)∗
r into account.

Once the matrices M, A(1) and A(2) have been found, then from (14)

we have the relation F = V∗ΣM−T = A(3) ⊙ A(4) ⊙ · · · ⊙ A(N). Hence, the

remaining matrix factors follow from the R decoupled best rank-1 tensor

approximation problems

min
a

(3)
r ,...,a

(N)
r

∥∥∥fr − a(3)
r ⊗ · · · ⊗ a(N)

r

∥∥∥2
F
, r ∈ [1,R],

where fr and a(n)
r denotes the rth column vector of F and A(n), respectively.

Again, remark that if N = 3, then A(3)T =
(
A(1) ⊙A(2)

)†
T(1) or alterna-

tively A(3) = V∗ΣM−T. Furthermore, if N = 4, then T[2] =
(
A(1) ⊙A(2)

) (
A(3) ⊙A(4)

)T

and F = V∗ΣM−T = A(3) ⊙ A(4). We have fr = a
(3)
r ⊗ a

(4)
r and CI4×I3 ∋ Fr =

Unvec (fr) = a(4)
r a(3)T

r , where fr, a(3)
r and a(4)

r denotes the rth column vector

of F, A(3) and A(4), respectively. Thus, the matrices A(3) and A(4) follow

from the solutions of the R decoupled best rank-1 matrix approximation

problems

min
a

(3)
r ,a

(4)
r

∥∥∥Fr − a
(4)
r a

(3)T
r

∥∥∥2

F
, r ∈ [1,R] ,

which can be solved by standard numerical linear algebra methods.

5. Uniqueness of CPDs with Banded and Structured Matrix Factors

We say that a matrix A ∈ CI×R is structured if it can be written as

A =
∑L

l=1 alEl where the matrices El are given, and L < IR [5]. Examples

of such matrices are banded Hankel or Toeplitz matrices which will be

discussed in more details. Let A be a structured matrix, then dim (A)

16
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denotes the dimension of the subspace of structured matrices consisting of

matrices with the same structure as A.

For instance, let A ∈ CI×R be a banded Hankel matrix with bU (ar) =

bU (a1) + r − 1 and bL (ar) = bL (a1) + r − 1. Let {El} be a basis for the

banded Hankel matrix A with predefined values for bU (a1) and bL (a1),

then A =
∑L

l=1 alEl, where L = dim (A) = bL (a1) − bU (a1) + 1. In particular,

basis matrices of the form

(El)i j =



1, i = bU (a1) + l − j

0, otherwise

will be used in section 7.

As another example, let A ∈ CI×R be a banded Toeplitz matrix with

bU (ar) = bU (a1)− r+ 1 and bL (ar) = bL (a1)− r+ 1. Let {El} be a basis for the

banded Toeplitz matrix A with predefined values for bU (a1) and bL (a1),

then A =
∑L

l=1 alEl, where L = dim (A) = bL (a1) − bU (a1) + 1. Again, basis

matrices of the form

(El)i j =



1, i = bU (a1) + l + j − 2

0, otherwise

will be used in section 7.

In subsection 5.1 we extend the uniqueness result from section 3 con-

cerning tensor decompositions with banded matrix factors to the case of

tensor decompositions with banded and structured matrix factors. Next,

in subsection 5.2 we provide some uniqueness results valid for tensor de-

compositions with a banded Hankel or Toeplitz matrix factor.
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5.1. Banded and Structured Matrix Factors

The following proposition 5.2 presented in this subsection is an exten-

sion of proposition 3.1 to the case when the matrix factors under consider-

ation are banded and structured. In order to prove proposition 5.2 we will

make use of lemma 5.1.

Lemma 5.1. Let A(n) ∈ CIn×R belong to a subspace of structured matrices of

dimension Ln and n ∈ [1,N]. Let Â
(n)

have the same structure as A(n) and assume

that

Â
(1)
⊙ · · · ⊙ Â

(N)
=
(
A(1) ⊙ · · · ⊙ A(N)

)
D,

where D ∈ CR×R is a nonsingular diagonal matrix up to a possible permutation

of its rows and columns. If there exist orthogonal bases {E(n)

ln
} such that A(n) =

∑Ln

ln=1
a(n)

ln
E

(n)

ln
with properties

(
E

(n)

ln

)
pq
∈ {0, 1}, ∀ln, n, p, q, and ∀n ∈ [1,N] ∃ln ∈

[1, Ln] such that ∀r ∈ [1,R], ∃ir ∈ [1, In],
(
E

(n)

ln

)
irr
= 1 , i.e. for every n, there

exists at least one basis matrix E
(n)

ln
having a 1 in each column, then D = αIR ,

α ∈ C.

P. Assume that

N∑

n=1

Ln∑

ln=1

â(1)

l1
· · · â(N)

lN

(
E

(1)

l1
⊙ · · · ⊙ E

(N)

lN

)
=

N∑

n=1

Ln∑

ln=1

a(1)

l1
· · · a(N)

lN

(
E

(1)

l1
⊙ · · · ⊙ E

(N)

lN

)
D,

where D ∈ CR×R is a nonsingular diagonal matrix up to a possible permuta-

tion of its rows and columns. Since there exist orthogonal bases {E(n)

ln
} with

properties
(
E

(n)

ln

)
pq
∈ {0, 1}, ∀ln, n, p, q, and ∀n ∈ [1,N] ∃ln ∈ [1, Ln] such that

∀r ∈ [1,R], ∃ir ∈ [1, In],
(
E

(n)

ln

)
irr
= 1, we first notice that there exists a basis

matrix E
(1)

l1
⊙ · · · ⊙ E

(N)

lN
containing a unit entry in each of its column vectors.

This means that a(1)

l1
· · · a(N)

lN
must appear in each column of this particular matrix

18



a(1)

l1
· · · a(N)

lN

(
E

(1)

l1
⊙ · · · ⊙ E

(N)

lN

)
. Second, since {E(n)

ln
} are orthogonal bases, then due

to the property of the Khatri-Rao product the set {E(1)

l1
⊙ · · · ⊙ E

(N)

lN
} is also an or-

thogonal basis. Third, the basis matrices {E(n)

ln
} are constructed such that

(
E

(n)

ln

)
pq
∈

{0, 1}, ∀ln, n, p, q and therefore
(
E

(1)

l1
⊙ · · · ⊙ E

(N)

lN

)
pq
∈ {0, 1}, ∀l1, . . . , lN, p, q. Due

to orthogonality, Vec
(
E

(1)

l1
⊙ · · · ⊙ E

(N)

lN

)H
Vec
(
E

(1)

l′
1

⊙ · · · ⊙ E
(N)

l′
N

)
= 0 when ln , l′n

for some n. The last two facts imply that if
(
E

(1)

l1
⊙ · · · ⊙ E

(N)

lN

)
pq
= 1 then

(
E

(1)

l′
1

⊙ · · · ⊙ E
(N)

l′
N

)

pq
= 0 when ln , l′n for some n. Hence, in order to preserve

the Khatri-Rao product structure of the linearly structured matrices {E(n)

ln
} the

diagonal matrix must be D = αIR, where α ∈ C.

Proposition 5.2. Consider T ∈ CI1×···×IN with rank R and matrix representation

T[P] =
(
A(1) ⊙ · · · ⊙ A(P)

) (
A(P+1) ⊙ · · · ⊙ A(N)

)T
where P < N. Assume that the

matrices
(
A(1) ⊙ · · · ⊙ A(P)

)
and
(
A(P+1) ⊙ · · · ⊙ A(N)

)
have full column rank. As-

sume also that A(n), n ∈ [1,P], belong to a subspace of structured matrices of

dimension Ln and satisfying the assumptions made in proposition 3.1. Moreover,

assume that there exist orthogonal bases {E(n)

ln
} such that A(n) =

∑Ln

ln=1
a(n)

ln
E

(n)

ln
∀n ∈

[1,P] with properties
(
E

(n)

ln

)
pq
∈ {0, 1},∀p, q, ln, n and∀n ∈ [1,P]∃ln ∈ [1, Ln] such

that ∀r ∈ [1,R], ∃ir ∈ [1, In],
(
E

(n)

ln

)
irr
= 1. Let Â

(n)
be matrices with same struc-

tures as A(n), ∀n ∈ [1,P], then Col
(
Â

(1)
⊙ · · · ⊙ Â

(P)
)
⊆ Col

(
A(1) ⊙ · · · ⊙ A(P)

)
=

Col
(
T[P]
)

if and only if Â
(n)
= A(n)αn, where αn ∈ C, ∀n ∈ [1,P].

P. Let Â
(n)
= A(n)αn, whereαn ∈ C,∀n ∈ [1,P], then obviously Col

(
Â

(1)
⊙ · · · ⊙ Â

(P)
)
⊆

Col
(
A(1) ⊙ · · · ⊙A(P)

)
= Col

(
T[P]
)
. Conversely, assume that Col

(
Â

(1)
⊙ · · · ⊙ Â

(P)
)
⊆

Col
(
A(1) ⊙ · · · ⊙A(P)

)
= Col

(
T[P]
)
, then there exists a nonsingular matrix M ∈

CR×R such that

Â
(1)
⊙ · · · ⊙ Â

(P)
=
(
A(1) ⊙ · · · ⊙ A(P)

)
M.

19



Due to proposition 3.1 we know that M must be equal to a diagonal matrix D up

to a possible permutation of its rows and columns. From lemma 5.1 we know that

D = αIR, where α ∈ C.

5.2. Banded Toeplitz or Hankel Matrix Factor

The following proposition 5.3 shows that we can identify an upper

banded Toeplitz matrix factor or a lower banded Toeplitz matrix factor A(P)

from Row
(
T[P]

)
. Similarly, proposition 5.4 explains that we can identify an

anti-upper banded Hankel matrix factor or an anti-lower banded Hankel

matrix factor A(P) from Row
(
T[P]

)
.

Proposition 5.3. Consider T ∈ CI1×···×IN with rank R and matrix representation

T[P] =
(
A(1) ⊙ · · · ⊙ A(P−1) ⊙ A(P+1) ⊙ · · · ⊙A(N)

)
A(P)T. Assume that the matrices

A(P) and
(
A(1) ⊙ · · · ⊙ A(P−1) ⊙ A(P+1) ⊙ · · · ⊙A(N)

)
have full column rank and A(P)

is an upper or lower banded Toeplitz matrix with

bL

(
a

(P)

R

)
≤ IP and bL

(
a

(P)

R

)
− R ≥ 1 (17)

or

bU

(
a

(P)

1

)
≥ 1 and bU

(
a

(P)

1

)
+ R ≤ IP (18)

in the respective cases. Let Â
(P)

be another matrix with same structure as A(P),

then Row
(
Â

(P)T
)
⊆ Row

(
A(P)T

)
= Row

(
T[P]

)
if and only if Â

(P)
= A(P)α, where

α ∈ C.

P. Assume that Â
(P)
= A(P)α for some α ∈ C, then obviously Row

(
Â

(P)T
)
⊆

Row
(
A(P)T

)
= Row

(
T[P]

)
. Conversely, assume that bU

(
a

(P)

1

)
≥ 1, bU

(
a

(P)

1

)
+R ≤

IP and Row
(
Â

(P)T
)
⊆ Row

(
A(P)T

)
= Row

(
T[P]

)
. Then there exists a nonsingular
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matrix M ∈ CR×R such that

Â
(P)
= A(P)M.

According to (18) the matrices Â
(P)

and A(P) are lower banded and therefore M

must be lower triangular.

We have that â
bU

(
a

(P)
1

)
+i−1,i

= a
bU

(
a

(P)
1

)
+i−1,i

mi,i, ∀i ∈ [1,R] which together with

the relations â
bU

(
a

(P)
1

)
+i−1,i

= â
bU

(
a

(P)
1

)
,1

, a
bU

(
a

(P)
1

)
+i−1,i

= a
bU

(
a

(P)
1

)
,1

, ∀i ∈ [1,R] implies

that mi,i = mR,R, ∀i ∈ [1,R]. Since the lower triangular matrix M is nonsingular

we also have that mR,R , 0 and hence mi,i , 0, ∀i ∈ [1,R].

Next, we have that â
bU

(
a

(P)
1

)
+i,i
= â

bU

(
a

(P)
1

)
+1,1

and a
bU

(
a

(P)
1

)
+i,i
= a

bL

(
a

(P)
1

)
+1,1

, ∀i ∈

[1,R], and

â
bU

(
a

(P)
1

)
+i,i
=


a

bU

(
a

(P)
1

)
+i,i

mi,i + a
bU

(
a

(P)
1

)
+i,i+1

mi+1,i , i ∈ [1,R − 1]

a
bU

(
a

(P)
1

)
+i,i

mi,i , i = R

The fact that mi,i = m1,1, ∀i ∈ [1,R] and the assumption a
bU

(
a

(P)
1

)
+i,i+1

, 0,

∀i ∈ [1,R − 1] implies that mi+1,i = 0, ∀i ∈ [1,R − 1].

Furthermore, we have that that â
bU

(
a

(P)
1

)
+i+1,i

= â
bU

(
a

(P)
1

)
+2,1

and a
bU

(
a

(P)
1

)
+i+1,i

=

a
bU

(
a

(P)
1

)
+2,1

, ∀i ∈ [1,R − 1], and

â
bU

(
a

(P)
1

)
+i+1,i

=


a

bU

(
a

(P)
1

)
+i+1,i

mi,i + a
bU

(
a

(P)
1

)
+i+1,i+2

mi+2,i , i ∈ [1,R − 2]

a
bU

(
a

(P)
1

)
+i+1,i

mi,i , i = R − 1

The fact that mi,i = m1,1, ∀i ∈ [1,R] and the assumption a
bU

(
a

(P)
1

)
+i+1,i+2

, 0,

∀i ∈ [1,R− 2] implies that mi+2,i = 0, ∀i ∈ [1,R− 2]. By repeating this procedure

we can conclude that M must be upper triangular. Thus, Â
(P)
= A(P)α, where

α ∈ C.
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The proof for the case when A(P) is an upper banded Toeplitz matrix satisfying

the assumptions (17) is analogue. Notice that JIP
A(P)JR is a lower banded Toeplitz

matrix satisfying the assumptions (18). Hence the result also follows directly from

the above reasoning.

Proposition 5.4. Consider T ∈ CI1×···×IN with rank R and matrix representation

T[P] =
(
A(1) ⊙ · · · ⊙ A(P−1) ⊙ A(P+1) ⊙ · · · ⊙A(N)

)
A(P)T. Assume that the matrices

A(P) and
(
A(1) ⊙ · · · ⊙ A(P−1) ⊙ A(P+1) ⊙ · · · ⊙A(N)

)
have full column rank and A(P)

is an anti-upper or anti-lower banded Hankel matrix with

bL

(
a

(P)

1

)
≤ IP and bL

(
a

(P)

1

)
− R ≥ 1 (19)

or

bU

(
a

(P)

R

)
≥ 1 and bU

(
a

(P)

R

)
+ R ≤ IP (20)

in the respective cases. Let Â
(P)

be another matrix with same structure as A(P),

then Row
(
Â

(P)T
)
⊆ Row

(
A(P)T

)
= Row

(
T[P]

)
if and only if Â

(P)
= A(P)α, where

α ∈ C.

P. Assume that Â
(P)
= A(P)α for some α ∈ C, then obviously Row

(
Â

(P)T
)
⊆

Row
(
A(P)T

)
= Row

(
T[P]

)
. Conversely, assume that bL

(
a

(P)

1

)
≤ IP, bL

(
a

(P)

1

)
− R ≥

1 and Row
(
Â

(P)T
)
⊆ Row

(
A(P)T

)
= Row

(
T[P]

)
. Then there exists a nonsingular

matrix M ∈ CR×R such that

Â
(P)
= A(P)M.

We have

Â
(P)

JR = A(P)JRJT
RMJR = A(P)JRM ,
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where M = JT
RMJR is a nonsingular matrix. Since Â

(P)
JR and A(P)JR are upper

banded Toeplitz matrices satisfying the inequalities (17) the result follows from

proposition 5.3.

The proof for the case when A(P) is an anti-lower banded Hankel matrix sat-

isfying the assumptions (20) is analogue. In fact, since A(P)JR is a lower banded

Toeplitz matrix satisfying the inequalities (18) the result follows from proposition

5.3.

6. Computation of CPDs with Banded and Structured Matrix Factors

Subsection 6.1 and 6.2 explains how to compute a Nth order CPD by

exploiting that one or two of the matrix factors are banded and structured

matrix factors, respectively. The presented method can be generalized in

such a way that it is capable of jointly exploiting that three or more of the

matrix factors are banded and structured.

6.1. Exploiting one Banded and Structured Matrix Factor

In this subsection we propose a method which exploits that one of the

matrix factors is banded and structured. When the structured matrix factor

is Toeplitz or Hankel structured, then the method will be referred to as

CPTOEP1 and CPHANK1, respectively. Let T ∈ CI1×···×IN with rank R and

let T[N] =
(
A(1) ⊙ · · · ⊙A(N−1)

)
A(N)T be its matrix representation. Assume

that the matrices A(1)⊙ · · · ⊙A(N−1) and A(N) have full column rank and that

A(N) is a banded and structured matrix with dim
(
A(N)
)
= LN. Let T[N] =

UΣVH denote the compact SVD of T[N], then there exists a nonsingular

23
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matrix M ∈ CR×R such that

UΣM−1 = A(1) ⊙A(2) ⊙ · · · ⊙A(N−1) (21)

MVH = A(N)T. (22)

If A(N) is a banded and structured matrix satisfying the assumptions stated

in proposition 5.2, 5.3 or 5.4, then we can find M and A(N) from Row
(
T[N]

)
.

Equation (22) can be written as

MVH = A(N)T =

LN∑

l=1

a(N)

l
E(N)T

l
, (23)

where V ∈ CIN×R and {E(N)

l
} is an orthonormal basis for the matrix A(N)

and a(N) =
[
a(N)

1
, . . . , a(N)

LN

]T
∈ CLN is its coefficient vector. Equation (23) is

equivalent to

(V∗ ⊗ IR) Vec (M) =
[
Vec
(
E(N)T

1

)
, . . . ,Vec

(
E(N)T

LN

)]
a(N)

and

G




Vec (M)

a(N)


 = 0. (24)

where

G =
[
V∗ ⊗ IR,−Vec

(
E(N)T

1

)
, . . . ,−Vec

(
E(N)T

LN

)]
∈ CINR×(R2+LN).

From proposition 5.2, 5.3 or 5.4 we know that the solution to (24) is unique

up to a scaling ambiguity. The LS solution to (24) is given by the right

singular vector of the matrix G associated with its smallest singular value.

Let x ∈ CR2+LN be the LS solution to the system (24), then

Vec (M) = x
(
1 : R2

)

a(N) = x
(
R2 + 1 : R2 + 1 + LN

)
.
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Let F = UΣM−1, then from (21) the remaining matrix factors follow

from the R decoupled best rank-1 tensor approximation problems

min
a

(1)
r ,...,a

(N−1)
r

∥∥∥fr − a
(1)
r ⊗ · · · ⊗ a

(N−1)
r

∥∥∥2

F
, r ∈ [1,R], (25)

where fr and a
(n)
r denotes the rth column vector of F and A(n), respectively.

When N = 2, then T[2] = A(1)A(2)T and we get A(1) = T[2]

(
A(2)T

)†
or alter-

natively A(1) = UΣM−1. When N = 3, then (25) reduces to solving the R

decoupled best rank-1 matrix approximation problems

min
a

(1)
r ,a

(2)
r

∥∥∥fr − a
(1)
r ⊗ a

(2)
r

∥∥∥2

F
, r ∈ [1,R] ,

which can be solved by standard numerical linear algebra methods.

If the CPD contains several banded and structured matrix factors, then

under certain conditions we can compute them in a successive manner

as follows. Consider T ∈ CI1×···×IN with rank R. Assume that the matrix

factors A(p), 1 ≤ p ≤ P ≤ N are banded and structured and they satisfy the

assumptions stated in proposition 5.2, 5.3 or 5.4. Furthermore, assume that

the involved matrices of the matrix representations T[p] only consist of full

column rank matrices ∀p ∈ [1,P]. By applying the procedure described

in this subsection we can obtain A(p) from Row
(
T[p]

)
. By repeating this

procedure the remaining banded and structured matrix factors can be

found. Once the banded and structured matrix factors have been found,

then the remaining unstructured matrix factors follow from R decoupled

best rank-1 tensor approximation problems as earlier explained.

Let us be more specific for the case P = 2. Assume that A(1) and

A(2) are banded and structured and satisfying the assumptions stated
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in proposition 5.2, 5.3 or 5.4. Assume also that the matrices A(1), A(2),
(
A(2) ⊙A(3) ⊙ · · · ⊙A(N)

)
,
(
A(1) ⊙A(3) ⊙ · · · ⊙A(N)

)
and
(
A(3) ⊙A(4) ⊙ · · · ⊙A(N)

)

have full column rank.

We first compute A(1). Let T[1] = UΣVH denote the compact SVD of T[1],

then there exists a nonsingular matrix N ∈ CR×R such that V∗N = A(1). By

applying the procedure described in this subsection we obtain A(1) from

Row
(
T[1]

)
.

Next, we compute A(2). Let T[2] = UΣVH denote the compact SVD of

T[2], then there exists a nonsingular matrix N ∈ CR×R such that V∗N = A(2).

Again, by applying the procedure described in this subsection we obtain

A(2) from Row
(
T[2]

)
.

In the final step we find the remaining matrix factors. Let

T[2] =
(
A(1) ⊙A(2)

) (
A(3) ⊙ · · · ⊙A(N)

)T
= UΣV

H

denote the compact SVD of T[2], then there exists a nonsingular matrix

M ∈ CR×R such that UM =
(
A(1) ⊙A(2)

)
⇔ M = U

H (
A(1) ⊙A(2)

)
. We have

F = V
∗
ΣM−T = A(3) ⊙ · · · ⊙ A(N) and the remaining matrix factors follow

from the R decoupled rank-1 tensor approximation problems

min
a

(3)
r ,...,a

(N)
r

∥∥∥fr − a
(3)
r ⊗ · · · ⊗ a

(N)
r

∥∥∥2

F
, r ∈ [1,R] ,

where fr and a
(n)
r denotes the rth column vector of F and A(n), respectively.

Remark that when N = 3, then A(3) follows from A(3)T =
(
A(1) ⊙A(2)

)†
T[2] or

alternatively A(3) = V
∗
ΣM−T. When N = 4, then F = V

∗
ΣM−T = A(3) ⊙ A(4)

which means that A(3) and A(4) follows from solving the R decoupled rank-1
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matrix approximation problems

min
a

(3)
r ,a

(4)
r

∥∥∥fr − a(3)
r ⊗ a(4)

r

∥∥∥2

F
, r ∈ [1,R] ,

which can be solved by standard numerical linear algebra methods.

6.2. Exploiting two Banded and Structured Matrix Factors

In this subsection we propose a method which exploits that two of the

matrix factors are banded and structured. When both the structured matrix

factors are Toeplitz or Hankel structured, then the method will be referred

to as CPTOEP2 and CPHANK2, respectively.

LetT ∈ CI1×···×IN with rank R and let T[2] =
(
A(1) ⊙A(2)

) (
A(3) ⊙ · · · ⊙A(N)

)T

be its matrix representation. Assume that the matrices A(1) ⊙ A(2) and

A(3) ⊙ · · · ⊙ A(N) have full column rank. Assume also that A(1) and A(2) are

banded and structured matrices with dim
(
A(1)
)
= L1, dim

(
A(2)
)
= L2 and

satisfying the assumptions stated in proposition 5.2. According to propo-

sition 5.2 we can find the matrix factors A(1) and A(2) from Col
(
T[2]
)
. Let

T[2] = UΣVH denote the compact SVD of T[2], then there exists a nonsingu-

lar matrix M ∈ CR×R such that

UM = A(1) ⊙A(2) (26)

V∗ΣM−T = A(3) ⊙ · · · ⊙A(N). (27)

Let {E
(p)

lp
} be an orthonormal basis for A(p) and a(p) =

[
a

(p)

1
, . . . , a

(p)

Lp

]T
∈ CLp be

its coefficient vector such that A(p) =
∑Lp

lp=1
a

(p)

lp
E

(p)

lp
, where p ∈ {1, 2}. Equation

(26) can now be written as

(IR ⊗U) Vec (M) =
[
Vec
(
E

(1)

1
⊙ E

(2)

1

)
, . . . ,Vec

(
E

(1)

L1
⊙ E

(2)

L2

)] (
a(1) ⊗ a(2)

)
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and

G




Vec (M)

a(1) ⊗ a(2)


 = 0, (28)

where

G =
[
IR ⊗U,−Vec

(
E(1)

1
⊙ E(2)

1

)
, . . . ,−Vec

(
E(1)

L1
⊙ E(2)

L2

)]
∈ CI1I2R×(R2+L1L2).

From proposition 5.2 we know that solution to (28) is unique up to a

scalar ambiguity. In order to solve the system (28) we will ignore the

Kronecker product structure a(1) ⊗ a(2). Remark this relaxation may affect

the uniqueness of the problem. However, numerical experiments indicate

that this relaxation step does not seem to affect the uniqueness of the

solution. The LS solution to the relaxed version of (28) is given by the right

singular vector of the matrix G associated with its smallest singular value.

Let x ∈ CR2+L1L2 be the LS solution to the relaxed version of the system (28),

then we set

Vec (M) = x
(
1 : R2

)

y = x
(
R2 + 1 : R2 + L1L2

)
= a(1) ⊗ a(2).

Let CL2×L1 ∋ Y = Unvec
(
x
(
R2 + 1 : R2 + L1L2

))
, then we find the unknown

coefficient vectors a(1) and a(2) up to scale factor ambiguities from the rank-1

matrix approximation problem

min
a(1),a(2)

∥∥∥Y − a(2)a(1)T
∥∥∥2

F
,

which can be solved by standard numerical linear algebra methods. Re-

mark that this method is able to take a partial symmetry a(1) = a(2) or a

partial Hermitian symmetry a(1) = a(2)∗ into account.
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Once the matrices M, A(1) and A(2) have been found, then from (27)

we have F = V∗ΣM−T = A(3) ⊙ · · · ⊙ A(N). This implies that the remaining

matrix factors follow from the R decoupled rank-1 tensor approximation

problems

min
a

(3)
r ,...,a

(N)
r

∥∥∥fr − a(3)
r ⊗ · · · ⊗ a(N)

r

∥∥∥2

F
, r ∈ [1,R] ,

where fr and a
(n)
r denotes the rth column vector of F and A(n), respectively.

Again, remark that if N = 3, then A(3) follows from A(3)T =
(
A(1) ⊙A(2)

)†
T[2]

or alternatively A(3) = V∗ΣM−T. When N = 4, then F = V∗ΣM−T = A(3)⊙A(4)

which means that A(3) and A(4) follow from solving the R decoupled rank-1

matrix approximation problems

min
a

(3)
r ,a

(4)
r

∥∥∥fr − a(3)
r ⊗ a(4)

r

∥∥∥2

F
, r ∈ [1,R] ,

which can be solved by standard numerical linear algebra methods.

7. Numerical Experiments

Let us restrict the simulation study to tensors of order N = 3. The

real and imaginary entries of all the involved matrix factors and tensors

are randomly drawn from a uniform distribution with support [− 1
2
, 1

2
].

Let T ∈ CI1×I2×I3 with rank R denote the structured tensor we attempt to

estimate from the observed tensor X = T + βN , where N ∈ CI1×I2×I3 is a

perturbation tensor and β ∈ R. The following Signal-to-Noise Ratio (SNR)

measure will be used

SNR [dB] = 10 log



‖T ‖

2
F∥∥∥βN
∥∥∥2

F


 .
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Furthermore, when the matrix A(n) ∈ CIn×R is banded, the following per-

formance measure will also be used

PΛ
(
A(n)
)
= min

Λ

∥∥∥∥A(n) − Â
(n)
Λ

∥∥∥∥
F∥∥∥A(n)

∥∥∥
F

,

where Â
(n)

denotes the estimated matrix factor and Λ denotes a diagonal

matrix. When the matrix A(n) ∈ CIn×R is banded and Hankel or Toeplitz

structured, we will use the following function

Pα
(
A(n)
)
= min
α∈C

∥∥∥∥A(n) − Â
(n)
α
∥∥∥∥

F∥∥∥A(n)
∥∥∥

F

,

as a performance measure. To measure the elapsed time in second used to

execute the algorithms in MATLAB, the built-in functions tic(·) and toc(·)

is used.

We compare the presented methods with the popular ALS method. The

ALS method is randomly initialized and we decide that the ALS method

has converged when the applied cost function at iteration k and k + 1 has

changed less than ǫALS = 10−8 or the number of iterations has exceeded

2000. For the ALS method we will use the following performance measure

PΠΛ
(
A(n)
)
= min
ΠΛ

∥∥∥∥A(n) − Â
(n)
ΠΛ

∥∥∥∥
F∥∥∥A(n)

∥∥∥
F

,

where Â
(n)

denotes the estimated matrix factor, Π a permutation matrix

and Λ denotes a diagonal matrix. In order to find Π and Λ the greedy LS

column matching algorithm between A(n) and Â
(n)

proposed in [19] is used.
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7.1. Banded Matrix Factors

In all the simulations in this subsection we set I1 = 10, I2 = 7, I3 = 5

and R = 5, the data is complex, i.e., T ,N ∈ C10×7×5, and the matrix factor

A(3) ∈ C5×5 is an unstructured matrix. When the CPBAND1 and CPBAND2

methods are followed by an ALS refinement step of at most 200 ALS

iterations, then the refined CPBAND1 and CPBAND2 methods will be

referred to as CPBAND1-ALS and CPBAND2-ALS, respectively.

Case 1. Let A(1) and A(2) be narrow lower and upper banded matrices of

the form

A(1) =




0 0 0 0 0

x 0 0 0 0

x x 0 0 0

x x x 0 0

x x x x 0

0 x x x x

0 0 x x x

0 0 0 x x

0 0 0 0 x

0 0 0 0 0




∈ C10×5, A(2) =




0 0 0 0 0

x 0 0 0 0

x x 0 0 0

0 x x 0 0

0 0 x x 0

0 0 0 x x

0 0 0 0 x




∈ C7×5,

where x denotes a non-zero entry. Remark that since the matrix factors

are lower and upper banded both CPBAND1 and CPBAND2 are valid

methods. The mean and standard deviation (std) PΠΛ
(
A(n)
)
, PΛ
(
A(n)
)

and

time values over 100 trials as a function of SNR can be seen in the left

column of figure 1. We notice that the CPBAND2 method works better

than the CPBAND1 method. At low SNR the CPBAND2 method also
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works better than the ALS method while at high SNR the ALS method

performs better than the CPBAND2 method. However, the ALS method

is also more costly than the CPBAND2 method. We also notice that the

CPBAND1-ALS and CPBAND2-ALS methods yield a similar performance

as the ALS method but at a lower computational cost.

Case 2. Let the matrix factor A(1) be a upper banded matrix and let the A(2)

be a lower banded matrix of the forms

A(1) =




x x 0 0 0

x x x 0 0

x x x x 0

x x x x x

x x x x x

0 x x x x

0 0 x x x

0 0 0 x x

0 0 0 0 x

0 0 0 0 0




∈ C10×5, A(2) =




x 0 0 0 0

x x 0 0 0

x x x 0 0

x x x x 0

x x x x x

0 x x x x

0 x x x x




∈ C7×5,

where x denotes a non-zero entry. Remark that the matrix factors are not

lower and upper banded, but the Khatri-Rao product of them is still lower

and upper banded. This means that the CPBAND1 method is not valid

while the CPBAND2 method still is. The mean and standard deviation (std)

PΠΛ
(
A(n)
)
, PΛ
(
A(n)
)

and time values over 100 trials as a function of SNR can

be seen in the right column of figure 1. As expected, we first notice that the

CPBAND2 method works better while the CPBAND1 method does not.

The CPBAND2-ALS and the ALS methods yield a similar performance.

However, the CPBAND2-ALS method is less costly than the ALS method.
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7.2. Banded Toeplitz Matrix Factors

In all the simulations in this subsection we set I1 = 8, I2 = 9, I3 = 10

and R = 6, the data is complex, i.e., T ,N ∈ C8×9×10, and the matrix factor

A(3) ∈ C10×6 is an unstructured matrix.

Case 1. Let A(1) be narrow lower and upper banded Toeplitz matrix and let

the A(2) be lower banded Toeplitz matrix of the forms

A(1) =




a
(1)
1

0 0 0 0 0

a
(1)
2

a
(1)
1

0 0 0 0

0 a
(1)
2

a
(1)
1

0 0 0

0 0 a
(1)
2

a
(1)
1

0 0

0 0 0 a
(1)
2

a
(1)
1

0

0 0 0 0 a
(1)
2

a
(1)
1

0 0 0 0 0 a
(1)
2

0 0 0 0 0 0




∈ C8×6, A(2) =




0 0 0 0 0 0

0 0 0 0 0 0

a
(1)
1

0 0 0 0 0

a
(1)
2

a
(1)
1

0 0 0 0

a
(1)
3

a
(1)
2

a
(1)
1

0 0 0

0 a
(1)
3

a
(1)
2

a
(1)
1

0 0

0 0 a
(1)
3

a
(1)
2

a
(1)
1

0

0 0 0 a
(1)
3

a
(1)
2

a
(1)
1

0 0 0 0 a
(1)
3

a
(1)
2




∈ C9×6.

Remark that the conditions stated in propositions 5.2 and 5.3 are satisfied.

The mean and std PΠΛ
(
A(1)
)
, PΛ
(
A(1)
)

and time values over 100 trials as

a function of SNR can be seen in the left column of figure 2. We notice

that CPTOEP2 method performs better than the CPTOEP1 method which

in turn performs better than the ALS method. We also notice that the ALS

method is more costly than the CPTOEP1 and CPTOEP2 methods.
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Case 2. Let A(1) and A(2) be lower banded Toeplitz matrices of the form

A(1) =




0 0 0 0 0 0

a
(1)
1

0 0 0 0 0

a
(1)
2

a
(1)
1

0 0 0 0

a
(1)
3

a
(1)
2

a
(1)
1

0 0 0

a
(1)
4

a
(1)
3

a
(1)
2

a
(1)
1

0 0

a
(1)
5

a
(1)
4

a
(1)
3

a
(1)
2

a
(1)
1

0

0 a
(1)
5

a
(1)
4

a
(1)
3

a
(1)
2

a
(1)
1

0 0 a
(1)
5

a
(1)
4

a
(1)
3

a
(1)
2




∈ C8×6, A(2) =




0 0 0 0 0 0

0 0 0 0 0 0

a
(2)
1

0 0 0 0 0

a
(2)
2

a
(2)
1

0 0 0 0

a
(2)
3

a
(2)
2

a
(2)
1

0 0 0

a
(2)
4

a
(2)
3

a
(2)
2

a
(2)
1

0 0

a
(2)
5

a
(2)
4

a
(2)
3

a
(2)
2

a
(2)
1

0

0 a
(2)
5

a
(2)
4

a
(2)
3

a
(2)
2

a
(2)
1

0 0 a
(2)
5

a
(2)
4

a
(2)
3

a
(2)
2




∈ C9×6.

Remark that the condition stated in proposition 5.2 and 5.3 are satisfied.

The mean and std PΠΛ
(
A(1)
)
, PΛ
(
A(1)
)

and time values over 100 trials as

a function of SNR can be seen in the right column of figure 2. We notice

that CPTOEP2 method performs better than the ALS method which in turn

performs better than the CPTOEP1 method. Again, we notice that the ALS

method is more costly than the CPTOEP1 and CPTOEP2 methods.

7.3. Banded Hankel Matrix Factors and a Partial Symmetry

In all the simulations in this subsection we set I1 = 8, I2 = 8, I3 = 10 and

R = 6, the data is real, i.e.,T ,N ∈ R8×8×10, and the matrix factor A(3) ∈ R10×6

is an unstructured matrix.
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Case 1. Let the A(1) and A(2) be anti-lower and anti-upper banded Hankel

matrices of the form

A(1) =




0 0 0 0 0 a
(1)
1

0 0 0 0 a
(1)
1

a
(1)
2

0 0 0 a
(1)
1

a
(1)
2

a
(1)
3

0 0 a
(1)
1

a
(1)
2

a
(1)
3

0

0 a
(1)
1

a
(1)
2

a
(1)
3

0 0

a
(1)
1

a
(1)
2

a
(1)
3

0 0 0

a
(1)
2

a
(1)
3

0 0 0 0

a
(1)
3

0 0 0 0 0




∈ R8×6, A(2) = A(1).

Note that the conditions stated in propositions 5.2 and 5.4 are satisfied.

The mean and std PΠΛ
(
A(1)
)
, PΛ
(
A(1)
)

and time values over 100 trials as a

function of SNR can be seen in the left column of figure 3. We notice that

the CPHANK2 method performs better than CPHANK1 method which in

turn performs better than the ALS method. We also notice that the ALS

method is more costly than the CPHANK1 and CPHANK2 methods.

Case 2. Let the A(1) and A(2) be anti-upper banded Hankel matrices of the

form

A(1) =




0 a
(1)
1

a
(1)
2

a
(1)
3

a
(1)
4

a
(1)
5

a
(1)
1

a
(1)
2

a
(1)
3

a
(1)
4

a
(1)
5

0

a
(1)
2

a
(1)
3

a
(1)
4

a
(1)
5

0 0

a
(1)
3

a
(1)
4

a
(1)
5

0 0 0

a
(1)
4

a
(1)
5

0 0 0 0

a
(1)
5

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




∈ R8×6, A(2) = A(1).
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Remark that the conditions stated in propositions 5.2 and 5.4 are not sat-

isfied. The mean and std PΠΛ
(
A(1)
)
, PΛ
(
A(1)
)

and time values over 100

trials as a function of SNR can be seen in the right column of figure 3.

We notice that CPHANK2 performs better than ALS method while the

CPHANK1 fails. Again, we notice that the ALS method is more costly

than the CPHANK1 and CPHANK2 methods.

8. Conclusion

We first presented uniqueness results for CPDs with a banded and

possibly also structured matrix factor. Furthermore, procedures for the

computation of a CPD containing a banded and possibly also structured

matrix factors were provided. It resulted in best rank-1 tensor approxima-

tion problems.

Next, we presented uniqueness results for CPDs with several banded

and possibly also structured matrix factor. More relaxed uniqueness results

were obtained when taking the structure of several of the matrix factors

into account. Procedures for the computation of a CPD containing several

banded and possibly also structured matrix factors were also provided.

The results presented in this paper are also valid for more general tensor

decompositions with banded matrix factors such as the Tucker decompo-

sition [22] or the family of block tensor decompositions [9].

Numerical experiments showed that often an increase of performance

can be expected when several of the banded and possibly also structured

matrix factors are taken into account in the computation of the structured

CPDs. In the case of banded matrix factors the numerical experiments

36
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indicated that the proposed methods can be used to speed up the popular

ALS method. For the case of banded and structured matrix factors such as

Toeplitz or Hankel, then by comparing the proposed methods with the ALS

method, the numerical experiments indicated that the proposed methods

yield a good performance.

In the proposed methods for computing a tensor decomposition with

two or more banded or structured matrix factors a relaxation of the prob-

lem was applied. The impact of this relaxation on the uniqueness of the

problem will be a subject of future research.

In the linearly structured tensor decomposition problems, we assume

that the matrix factors are upper or/and lower banded. Generalization

of the proposed methods to deal with non-banded matrix factors will be

another subject of future work.
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and PΛ
(
A(1)
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(b) Mean and std PΠΛ
(
A(2)
)

and PΛ
(
A(2)
)
.
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(c) Mean and std PΠΛ
(
A(2)
)

and PΛ
(
A(2)
)
.
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(d) Mean and std PΠΛ
(
A(2)
)

and PΛ
(
A(2)
)
.
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(e) Mean and std time.
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(f) Mean and std time.

Figure 1: Mean and std PΠΛ
(
A(n)
)

and PΛ
(
A(n)
)

and time values over 100 trials while SNR

is varying from −10 to 30 dB for the banded simulation cases. Case 1 on the left column

and case 2 on the right column of the figure.
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(a) Mean and std PΠΛ
(
A(1)
)

and Pα
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A(1)
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(b) Mean and std PΠΛ
(
A(2)
)

and Pα
(
A(2)
)
.
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(c) Mean and std PΠΛ
(
A(2)
)

and Pα
(
A(2)
)
.
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(d) Mean and std PΠΛ
(
A(2)
)

and Pα
(
A(2)
)
.
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(e) Mean and std time.
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(f) Mean and std time.

Figure 2: Mean and std PΠΛ
(
A(n)
)

and Pα
(
A(n)
)

and time values over 100 trials while SNR

is varying from −10 to 30 dB for the banded Toepliz simulation cases. Case 1 on the left

column and case 2 on the right column of the figure.
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(a) Mean and std PΠΛ
(
A(1)
)

and Pα
(
A(1)
)
.
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(b) Mean and std PΠΛ
(
A(2)
)

and Pα
(
A(2)
)
.
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(c) Mean and std time.
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(d) Mean and std time.

Figure 3: Mean and std PΠΛ
(
A(n)
)

and Pα
(
A(n)
)

and time values over 100 trials while SNR

is varying from −10 to 30 dB for the banded Hankel simulation cases. Case 1 on the left

column and case 2 on the right column of the figure.
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