
HAL Id: hal-00740518
https://hal.science/hal-00740518v1

Submitted on 10 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Complexity of Parameterized Reachability in
Reconfigurable Broadcast Networks

Giorgio Delzanno, Arnaud Sangnier, Riccardo Traverso, Gianluigi Zavattaro

To cite this version:
Giorgio Delzanno, Arnaud Sangnier, Riccardo Traverso, Gianluigi Zavattaro. On the Complexity of
Parameterized Reachability in Reconfigurable Broadcast Networks. 2012. �hal-00740518�

https://hal.science/hal-00740518v1
https://hal.archives-ouvertes.fr

On the Complexity of Parameterized Reachability

in Reconfigurable Broadcast Networks

Giorgio Delzanno

DIBRIS

University of Genova

Italy

Arnaud Sangnier

LIAFA

Univ Paris Diderot

Sorbonne Paris Cité, CNRS

France

Riccardo Traverso

DIBRIS

University of Genova

Italy

Gianluigi Zavattaro

INRIA - FOCUS Research Team

University of Bologna

Italy

Abstract

We investigate the impact of dynamic topology reconfiguration on the

complexity of verification problems for models of protocols with broadcast

communication. We first consider reachability of a configuration with

a given set of control states and show that parameterized verification

is decidable with polynomial time complexity. We then move to richer

queries and show how the complexity changes when considering properties

with negation or cardinality constraints.

1 Introduction

Broadcast communication is often used in networks in which individual nodes
have no precise information about the underlying connection topology (e.g. ad
hoc wireless networks). As shown in [4, 13, 14, 16, 19, 20], this type of commu-
nication can naturally be specified in models of computation in which a network
configuration is represented as a graph and in which individual nodes run an
instance of a common protocol. A protocol typically specifies a sequence of con-
trol states in which a node can send a message (emitter role), wait for a message
(receiver role), or perform an update of its internal state.

Already at this level of abstraction, verification of protocols with broad-
cast communication turns out to be a very difficult task. A formal account of
this problem is given in [3, 4], where parameterized control state reachability is
proved to be undecidable in an automata-based protocol model in which con-
figurations are arbitrary graphs. The parameterized control state reachability
problem consists in verifying the existence of an initial network configuration
(with unknown size and topology) that may evolve into a configuration in which
at least one node is in a given control state. If such a control state represents
a protocol error, then this problem naturally expresses (the complement of) a

1

safety verification task in a setting in which nodes have no information a priori
about the size and connection topology of the underlying network.

In presence of non-deterministic reconfigurations of the network topology
during an execution, parameterized control state reachability becomes decidable
[3]. Reconfiguration models spontaneous node movement, i.e. each node can
dynamically connect (resp. disconnect) to (resp. from) any other node in the
network. Furthermore, it also models the dynamic addition (resp. removal) of
nodes by means of connection to the network of a previously disconnected idle
node (resp. the definitive disconnection of a previously connected node). The
decidability proof in [3] does not give exact complexity bounds of the problem;
it simply gives a reduction to Petri net coverability, an ExpSpace-complete
problem [12, 21]. The precise complexity of parameterized reachability was left
as an open problem in [3].

In this paper we present a comprehensive analysis of the complexity of reach-
ability problems for reconfigurable broadcast networks. We start by generalizing
the problem by considering reachability queries defined over assertions that: (i)
check the presence or absence of control states in a given configuration gener-
ated by some initial configuration, and (ii) cardinality queries that define lower
and upper bounds for the number of occurrences of control states in a reachable
configuration. In any case the problems require, at least in principle, the explo-
ration of an infinite-state space. Indeed they are formulated for arbitrary initial
configurations, and upper bounds to the number of processes per control state
are not mandatory in case (ii). We then move to the analysis of the complexity
of the considered problems by showing that reachability queries for constraints
that only check for the presence of a control state can be checked in polynomial
time. When considering both constraints for checking presence and absence of
control states the problem turns out to be NP-complete. Finally, we show that
the problem becomes PSpace-complete for cardinality queries.

Related Work. As mentioned in the introduction no precise complex-
ity bounds were given for the parameterized control state reachability problem
proved decidable in [3] via a reduction to Petri net marking coverability. In the
present paper we attack this problem for different types of reachability queries.
The interreducibility of control state reachability in models with dynamic recon-
figuration, spontaneous mobility, and node-, message-, or link-failures has been
formally studied in [5]. Based on the results in [5], the PTime-algorithm pre-
sented in the current paper can be applied not only to reconfigurable networks
but also to a variety of protocols models with failures.

Symbolic backward exploration procedures for network protocols specified
in graph rewriting have been presented in [10] (termination guaranteed for ring
topologies) and [18] (approximations without termination guarantees). Decid-
ability issues for broadcast communication in unstructured concurrent systems
(or, equivalently, in fully connected networks) have been studied, e.g., in [7],
whereas verification of unreliable communicating FIFO systems has been stud-
ied, e.g., in [1].

To our knowledge, exact algorithms (and relative complexity) for parameter-
ized verification has not been studied in previous work on graph-based models
of synchronous or asynchronous broadcast communication like [17, 19, 20, 16,
6, 8, 9, 13, 14, 15, 18, 10].

Notes. Sketches of the proofs are included in the body of the paper; detailed
proofs are given in appendix.

2

2 A Model for Reconfigurable Broadcast Net-

works

2.1 Syntax and semantics

Our model for reconfigurable broadcast networks is defined in two steps. We first
define graphs used to denote network configurations and then define protocols
running on each node. The label of a node denotes its current control state.
Finally, we give a transition system for describing the interaction of a vicinity
during the execution of the same protocol on each node.

Definition 1 A Q-graph is a labeled undirected graph γ = 〈V,E, L〉, where V
is a finite set of nodes, E ⊆ V ×V \ {〈v, v〉 | v ∈ V } is a finite set of edges, and
L is a labeling function from V to a set of labels Q.

We use L(γ) to represent all the labels present in γ (i.e. the image of the
function L). The nodes belonging to an edge are called the endpoints of the
edge. For an edge 〈u, v〉 in E, we use the notation u ∼γ v and say that the
vertices u and v are adjacent one to another in the graph γ. We omit γ, and
simply write u ∼ v, when it is made clear by the context.

Definition 2 A process is a tuple P = 〈Q,Σ, R,Q0〉, where Q is a finite set of
control states, Σ is a finite alphabet, R ⊆ Q × ({!!a, ??a | a ∈ Σ}) × Q is the
transition relation, and Q0 ⊆ Q is a set of initial control states.

The label !!a [resp. ??a] represents the capability of broadcasting [resp. receiv-
ing] a message a ∈ Σ. For q ∈ Q and a ∈ Σ, we define the set Ra(q) = {q′ ∈
Q | 〈q, ??a, q′〉 ∈ R} which contains the states that can be reached from the
state q when receiving the message a. We assume that Ra(q) is non empty for
every a and q, i.e. nodes always react to broadcast messages. Local transitions
(denoted by the special label τ) can be derived by using a special message mτ

such that 〈q, ??mτ , q
′〉 ∈ R implies q′ = q for every q, q′ ∈ Q (i.e. receivers do

not modify their local states).
Given a process P = 〈Q,Σ, R,Q0〉, in the corresponding Reconfigurable

Broadcast Network (RBN) a configuration is a Q-graph and an initial configura-
tion is a Q0-graph. We use Γ [resp. Γ0] to denote the set of configurations [resp.
initial configurations] associated to P . Note that even if Q0 is finite, there are
infinitely many possible initial configurations (the number of Q0-graphs). We
assume that each node of the graph is a process that runs a common predefined
protocol defined by a communicating automaton with a finite set Q of control
states. Communication is achieved via selective broadcast, which means that a
broadcasted message is received by the nodes which are adjacent to the sender.
Non-determinism in reception is modeled by means of graph reconfigurations.
We next formalize this intuition.

Given a process P = 〈Q,Σ, R,Q0〉, a reconfigurable broadcast network is
defined by the transition system RBN(P) = 〈Γ,→,Γ0〉 where the transition
relation →⊆ Γ×Γ is such that: for γ, γ′ ∈ Γ with γ = 〈V,E, L〉, we have γ → γ′

iff γ′ = 〈V,E′, L′〉 and one of the following conditions holds:

Broadcast E′ = E and ∃v ∈ V s.t. 〈L(v), !!a, L′(v)〉 ∈ R and L′(u) ∈ Ra(L(u))
for every u ∼ v, and L(w) = L′(w) for any other node w.

3

Graph reconfiguration E′ ⊆ V × V \ {〈v, v〉 | v ∈ V } and L = L′.

We use →∗ to denote the reflexive and transitive closure of →. RBN is an ade-
quate formalism to abstractly represent broadcast communication with features
like spontaneous mobility, node-, message- and link-failures.

2.2 Parameterized Reachability Problems

Given a process P = 〈Q,Σ, R,Q0〉, a cardinality constraint ϕ over P is a formula
which defines lower and upper bounds for the number of occurrences of each
control state in a configuration. The formulae are defined by the following
grammar, where a ∈ N, q ∈ Q, and b ∈ (N \ {0}) ∪ {+∞}:

ϕ ::= a ≤ #q < b | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ

We denote by CC the class of cardinality constraints, by CC[≥ 1] the class in
which negation is forbidden and atomic proposition have only the form #q ≥ 1
(there exists at least one occurrence of q), and finally by CC[≥ 1,= 0] the class
of cardinality constraints as in CC[≥ 1] but where atoms can also be of the
form #q = 0. Given a configuration γ = 〈V,E, L〉 of P and q ∈ Q, we denote
by #γ(q) the number of vertices in γ labeled by q, that is #γ(q) = |{v ∈ V |
L(v) = q}|. The satisfaction relation |= for atomic formulas is defined as follows
γ |= a ≤ #q < b iff a ≤ #γ(q) < b. It is defined in the natural way for
compound formulas.

We are now ready to state the cardinality reachability problem (CRP):

Input: A process P with RBN(P) = 〈Γ,→,Γ0〉 and a cardinality constraint
ϕ.

Output: Yes, if ∃γ0 ∈ Γ0 and γ1 ∈ Γ s.t. γ0 →∗ γ1 and γ1 |= ϕ; no, otherwise.

If the answer to this problem is yes, we will write P |= ♦ϕ. Note that when
dealing with the complexity of this problem we will suppose that the size of the
input is the size of the process defined by the product of the number of states
times the number of edges added to the size of the formula in which the integer
values are encoded in unary.

We use the term parameterized to remark that the initial configuration is
not fixed a priori. In fact, the only constraint that we put on the initial con-
figuration is that the nodes have labels taken from Q0 without any information
on their number or connection links. As a special case we can define the
control state reachability problems studied in [3] as the CRP for the simple
constraint #q ≥ 1 (i.e. is there a reachable configuration in which the state q
is exposed?). Similarly, we can define the target reachability problem studied
in [3] as an instance of CRP in which control states that must not occur in a
target configuration are constrained by formulas like #q = 0.

According to our semantics, the number of nodes stays constant in each
execution starting from the same initial configuration. As a consequence, when
fixing the initial configuration γ0, we obtain finitely many possible reachable
configurations. Thus, checking if there exists γ1 reachable from a given γ0 s.t.
γ1 |= ϕ for a constraint ϕ is a decidable problem. On the other hand, checking
the parameterized version of the reachability problem is in general much more
difficult. E.g. consider constraints of the form #q ≥ 1: CRP is undecidable for

4

a semantics without non-deterministic graph reconfigurations [3]. In [3] it is also
proved that CRP for the same class of constraints is decidable. However, the
proposed decidability proof is based on a reduction to the problem of coverability
in Petri nets which is known to be ExpSpace-complete [21, 12]. Since no lower-
bound was provided, the precise complexity of CRP with simple constraints was
left as an open problem that we close in this paper by showing that it is PTime-
complete.

3 CRP restricted to constraints in CC[≥ 1]

In this section, we study CRP restricted to CC[≥ 1]. These constraints charac-
terize configurations in which a given set of control states is present but they
cannot express neither the absence of states nor the number of their occurrences.
We first give a lower bound for this problem.

Proposition 1 CRP restricted to CC[≥ 1] is PTime-hard.

Sketch of proof. The idea for the proof is based on a LogSpace-reduction from
the Circuit Value Problem (CVP), which is know to be PTime-complete [11].
The protocol P built from the CVP instance has an initial state for each of the
input variables which broadcasts its truth assignment, and another one for each
gate of the input circuit. In the sub-protocol associated to individual gates, a
process waits for messages representing inputs and then broadcasts messages
representing outputs in such a way that CVP is satisfied iff P |= ♦#ok ≥ 1,
where ok is a state reached only when the last gate produces the expected
output. �

We now show that CRP restricted to CC[≥ 1] is in PTime. We first observe
that, in order to decide if control state q can be reached, we can focus our
attention on initial configurations in which the topology is fully connected (i.e.
graphs in which all pairs of nodes are connected). Indeed, graph reconfigurations
can be applied to non-deterministically transform a topology into any other one.

Another key observation is that if the control state q is reached once from
the initial configuration γ0, then it can be reached an arbitrary number of times
by considering larger and larger initial configurations γ′0. More specifically, the
initial configuration γ′0 is obtained by replicating several times the initial graph
γ0. The replicated parts are then connected in all possible ways (to obtain a
fully connected topology). We can then use dynamic reconfiguration in order to
mimic parallel executions of the original system and reach a configuration with
several repeated occurrences of state q.

For what concerns constraints in CC[≥ 1] this property of CRP avoids the
need of counting the occurrences of states. We just have to remember which
states can be generated by repeatedly applying process rules. As a consequence,
in order to define a decision procedure for checking control state reachability we
can take the following assumptions: (i) forget about the topology underlying the
initial configuration; (ii) forget about the number of occurrences of control states
in a configuration; (iii) consider a single symbolic path in which at each step we
apply all possible rules whose preconditions can be satisfied in the current set
and then collect the resulting set of computed states.

We now formalize the previous observations. Let P = 〈Q,Σ, R,Q0〉 be a
process with RBN(P) = 〈Γ,→,Γ0〉 and let Reach(P) be the set of reachable

5

Algorithm 1: Computing the set of control states reachable in a RBN
Input : P = 〈Q,Σ, R,Q0〉 a p r oc e s s
Output : S ⊆ Q the s e t o f r eachab l e con t r o l s t a t e s in RBN(P)

S := Q0

oldS := ∅
while S 6= oldS do

oldS := S

for a l l 〈q1, !!a, q2〉 ∈ R such that q1 ∈ oldS do

S := S ∪ {q2} ∪ {q′ ∈ Q | 〈q, ??a, q′〉 ∈ R ∧ q ∈ oldS}
end for

end while

control states equals to {q ∈ Q | ∃γ ∈ Γ0.∃γ′ ∈ Γ. s.t. γ →∗ γ′ and q ∈ L(γ′)}.
We will now prove that Algorithm 1 computes Reach(P). Let S be the result
of the Algorithm 1 (note that this algorithm necessarily terminates because the
while-loop is performed at most |Q| times). We have then the following lemma.

Lemma 1 The two following properties hold:

(i) There exist two configurations γ0 ∈ Γ0 and γ ∈ Γ such that γ0 →∗ γ and
L(γ) = S.

(ii) S = Reach(P).

Proof: We first prove (i). We denote by S0, S1, . . . , Sn the content of S after
each iteration of the loop of the Algorithm 1. We recall that an undirected
graph γ = 〈V,E, L〉 is complete if 〈v, v′〉 ∈ E for all v, v′ ∈ V . We will now
consider the following statement: for all j ∈ {0, . . . , n}, for all k ∈ N, there
exists a complete graph γj,k = 〈V,E, L〉 in Γ verifying the two following points:

1. L(γj,k) = Sj and for each q ∈ Sj , the set {v ∈ V | L(v) = q} has more
than k elements (i.e. for each element q of Sj there are more than k nodes
in γj,k labeled with q),

2. there exits γ0 ∈ Γ0 such that γ0 →∗ γj,k.

To prove this statement we reason by induction on j. First, for j = 0, the
property is true, because for each k ∈ N, the graph γ0,k corresponds to the
complete graphs where each of the initial control states appears at least k
times. We now assume that the property is true for all naturals smaller than
j (with j < n) and we will show it is true for j + 1. We define Ca as the set
{〈〈q1, !!a, q2〉, 〈q, ??a, q′〉〉 ∈ R×R | q1, q ∈ Sj} and M its cardinality. Let k ∈ N

and let N = k+2 ∗ k ∗M . We consider the graph γj,N where each control state
present in Sj appears at least N times (such a graph exists by the induction hy-
pothesis). From γj,N , we build the graph γj+1,k obtained by repeating k times
the following operations:

• for each pair 〈〈q1, !!a, q2〉, 〈q, ??a, q′〉〉 ∈ Ca, select a node labeled by q1
and one labeled by q and update their label respectively to q2 and q′

(this simulates a broadcast from the node labeled by q1 received by the
node labeled q in the configuration in which all the other nodes have
been disconnected thanks to the reconfiguration and reconnected after).
Note that the two selected nodes can communicate because the graph is
complete.

6

By applying these rules it is then clear that γj,N →∗ γj+1,k and also that
γj+1,k verifies the property 1 of the statement. Since by induction hypothesis,
we have that there exists γ0 ∈ Γ0 such that γ0 →∗ γj,N , we also deduce that
γ0 →∗ γj+1,k, hence the property 2 of the statement also holds. From this we
deduce that (i) is true.

To prove (ii), from (i) we have that S ⊆ Reach(P) and we now prove that
Reach(P) ⊆ S. Let q ∈ Reach(P). We show that q ∈ S by induction on the
minimal length of an execution path γ0 →∗ γ such that γ0 ∈ Γ0 and q ∈ L(γ).
If the length is 0 then q ∈ Q0 hence also q ∈ S. Otherwise, let γ′ → γ be
the last transition of the execution. We have that there exists q1 ∈ L(γ′) such
that 〈q1, !!a, q〉 ∈ R [or q1, q2 ∈ L(γ′) such that 〈q1, !!a, q3〉, 〈q2, ??a, q〉 ∈ R]. By
induction hypothesis we have that q1 ∈ S [or q1, q2 ∈ S]. By construction, we can
conclude that also q ∈ S. � Since constraints in CC[≥ 1] check only the presence
of states and do not contain negation, given a configuration γ and a constraint
ϕ in CC[≥ 1] such that γ |= ϕ, we also have that γ′ |= ϕ for every γ′ such
that L(γ) ⊆ L(γ′). Moreover, given a process P , by definition of Reach(P) we
have that L(γ) ⊆ Reach(P) for every reachable configuration γ, and by Lemma 1
there exists a reachable configuration γf such that L(γf) = Reach(P). Hence, to
check P |= ♦ϕ it is sufficient to verify whether γf |= ϕ for such a configuration
γf . This can be done algorithmically as follows: once the set Reach(P) is
computed, check if the boolean formula obtained from ϕ by replacing each
atomic constraint of the form #q ≥ 1 by true if q ∈ Reach(P) and by false
otherwise is valid. This allows us to state the following theorem.

Theorem 1 CRP restricted to CC[≥ 1] is PTime-complete.

Proof: The lower bound is given by Proposition 1. To obtain the upper bound, it
suffices to remark that the Algorithm 1 is in PTime since it requires at most |Q|
iterations each one requiring at most |R|2 look-ups (of active broadcast/receive
transitions) for computing new states to be included, and also that evaluating
the validity of a boolean formula can be done in polynomial time. �

4 CRP restricted to constraints in CC[≥ 1,= 0]

We consider now decidability and complexity of CRP for constraints in CC[≥
1,= 0]. This kind of queries can be used to specify that a given control state is
not present in a configuration (using atomic constraints of the form #q = 0).

Proposition 2 CRP for constraints in CC[≥ 1,= 0] is NP-hard.

Sketch of proof. The proof is based on a reduction of the boolean satisfiability
problem (SAT), which is known to be NP-complete. The encoding of the SAT
instance for a boolean formula Φ with variables in V is based on a protocol with
only local transitions from a single initial state into states that encode truth
assignments in {v, v | v ∈ V }. A CC[≥ 1,= 0] query is then built in order to
guarantee that there are no contradicting assignments to variables. The query
also ensures that the selected assignments satisfy the formula Φ, where positive
literals v are replaced by #v ≥ 1 and negative literals ¬v are replaced by #v = 0.
�

We will now give an algorithm in NP to solve CRP for constraints in
CC[≥ 1,= 0]. As for Algorithm 1, this new algorithm works on sets of control

7

states. The algorithm works in two main phases. In a first phase it generates
an increasing sequence of sets of control states that can be reached in the con-
sidered process definition. At each step the algorithm adds the control states
obtained from the application of the process rules to the current set of labels.
Unlike the Algorithm 1, this new algorithm does not merge different branches,
i.e. application of distinct rules may lead to different sequences of sets of control
states. In a second phase the algorithm only removes control states applying
again process rules in order to reach a set of control states that satisfies the
given constraint.

Algorithm 2: Solving CRP for constraints in CC[≥ 1,= 0]
Input : P = 〈Q,Σ, R,Q0〉 a p r oc e s s and ϕ a con s t r a i n t over P i n

CC[≥ 1,= 0]
Output : Does P |= ♦ϕ ?

guess S0, . . . , Sm, T1, . . . , Tn ⊆ Q with m,n ≤ |Q|
i f S0 6⊆ Q0 then return fa l se

for a l l i ∈ {0, . . . ,m− 1} do

i f Si+1 6∈ postAdd(P, Si) then return fa l se

end for

T0 = Sm

for a l l i ∈ {0, . . . , n− 1} do

i f Ti+1 6∈ postDel(P, Ti) then return fa l se

end for

I f Tn s a t i s f i e s ϕ then return true else return fa l se

For a process P = 〈Q,Σ, R,Q0〉 and a set S ⊆ Q, we define the operator
postAdd(P , S) ⊆ 2Q as follows: S′ ∈ postAdd(P , S) if and only if the two
following conditions are satisfied: (i) S ⊆ S′ and (ii) for all q′ ∈ S′ \ S, there
exists a rule 〈q, !!a, q′〉 ∈ R such that q ∈ S (q′ is produced by a broadcast) or
there exist rules 〈p, !!a, p′〉 and 〈q, ??a, q′〉 ∈ R such that q, p ∈ S and p′ ∈ S′ (q′

is produced by a reception). In other words, all the states in S′ ∈ postAdd(P , S)
are either in S or states obtained from the application of broadcast/reception
rules to labels in S. Similarly, we define the operator postDel(P , S) ⊆ 2Q as
follows: S′ ∈ postDel(P , S) if and only if S′ ⊆ S and one of the following
conditions hold: either S \ S′ = ∅ or [S \ S′ = {q} and there exists a rule
〈q, !!a, q′〉 ∈ R such that q′ ∈ S′] or [S \ S′ = {q} and there exist two rules
〈p, !!a, p′〉, 〈q, ??a, q′〉 ∈ R such that p, p′, q′ ∈ S′ (q is consumed by a broadcast)]
or [S \ S′ = {p, q} and there exist two rules 〈p, !!a, p′〉, 〈q, ??a, q′〉 ∈ R such that
p′, q′ ∈ S′ (p and q are consumed by a broadcast)].

Finally, we say that a set S ⊆ Q satisfies an atom #q = 0 if q 6∈ S and it
satisfies an atom #q ≥ 1 if q ∈ S; satisfiability for composite boolean formulae
of CC[≥ 1,= 0] is then defined in the natural way. We have then the following
Lemma.

Lemma 2 There is an execution of Algorithm 2 which answers YES on input
P and ϕ iff P |= ♦ϕ.

It is then clear that each check performed by the Algorithm 2 (i.e. S0 ⊆ Q0 and
Si+1 ∈ postAdd(P , Si) and Ti+1 ∈ postAdd(P , Ti) and Tn satisfies ϕ) can be
performed in polynomial time in the size of the process P and of the formula
ϕ and since m and n are smaller than the number of control states in P , we
deduce the following theorem (the lower bound being given by Proposition 2).

8

ok

okt at,p1 aackt,p1
aackt,pn−1

at,pn

aackt,pn

bt,q1backt,q1
backt,qm−1

bt,qm

τ

!!at,p1
??aackt,p1

!!at,pn

??aackt,pn

!!bt,q1??backt,q1
!!bt,qm

??backt,qm

p1 auxat,p p0
??at,p !!aackt,p

p0 auxbt,p p1
??bt,p !!backt,p

Figure 1: Simulation of a transition t with •t = {p1, . . . , pn} and t• =
{q1, . . . , qm}.

Theorem 2 CRP for constraints in CC[≥ 1,= 0] is NP-complete.

5 Complexity of CRP in Full CC

In this section we will show that CRP for the entire class of cardinality con-
straints CC is PSpace-complete. First we prove the lower bound.

Proposition 3 CRP is PSpace-hard.

Proof: We use a reduction from reachability in 1-safe Petri nets. A Petri net
N is a tuple N = 〈P, T, ~m0〉, where P is a finite set of places, T is a finite
set of transitions t, such that •t and t• are multisets of places (pre- and post-
conditions of t), and ~m0 is a multiset of places that indicates how many tokens
are located in each place in the initial net marking. Given a marking ~m, the
firing of a transition t such that •t ⊆ ~m leads to a new marking ~m′ obtained as
~m′ = ~m \• t ∪ t•. A Petri net P is 1-safe if in every reachable marking every
place has at most one token. Reachability of a specific marking ~m1 from the
initial marking ~m0 is decidable for Petri nets, and PSpace-complete for 1-safe
nets [2].

Given a 1-safe net N = 〈P, T, ~m0〉 and a marking ~m1, we encode the reach-
ability problem as a CRP problem for the process P and cardinality constraint
ϕ defined next. For each place p ∈ P , we introduce control states p1 and p0
to denote the presence or absence of the token in p, respectively. Furthermore,
we introduce a special control state ok. The control state is used to control the
net simulation. Transitions of the controller are depicted in the upper part of
Fig. 1. The first rule of the controller selects the current transition to simulate.
The simulation of the transition t with •t = {p1, . . . , pn} and t• = {q1, . . . , qm}
is defined via two sequences of messages (we denote •t and t• as sets instead of
multisets because we are considering a 1-safe net and it is hence not possible that
a transition consumes or produces more than one token for each place). The first
one is used to remove the token from p1, . . . , pn, whereas the second one is used
to put the token in q1, . . . , qm. To guarantee that every involved place reacts to
the protocol —i.e. messages are not lost— the controller waits for an acknowl-
edgement from each of them. Transitions of places are depicted in the lower part
of Fig. 1. It is not restrictive to assume that there is only one token in the initial
marking ~m0 (otherwise we add an auxiliary initial place and a transition that

9

generates ~m0 by consuming the initial token). Let p0 be such a place. We define
the initial states Q0 of the process P as {p01, ok} ∪ {p0 | p ∈ P \ {p0}}, in order
to initially admit control states representing the controller, the presence of the
initial token, and the absence of tokens in other places. The reduction does not
work if there are several copies of controller nodes and/or place representations
(i.e. p1, p0, . . .) interacting during a simulation (interferences between distinct
nodes representing controllers/places may lead to incorrect results). However we
can ensure that the reduction is accurate by checking the number of occurrences
of states exposed in the final configuration: it is sufficient to check that only one
controller and only one node per place in the net are present. Besides making
this check, the cardinality constraint ϕ should also verify that the represented
net marking coincides with ~m1. Namely, we define ϕ as follows:

ϕ =
∧

p∈ ~m1,t∈T

(

#p1 = 1 ∧#p0 = 0 ∧#auxat,p = 0 ∧#auxbt,p = 0
)

∧

∧

q 6∈ ~m1,t∈T

(

#q1 = 0 ∧#q0 = 1 ∧#auxat,q = 0 ∧#auxbt,q = 0
)

∧#ok = 1∧

∧

t∈T

(#okt = 0) ∧
∧

t∈T,q∈P

(

#at,q = 0 ∧#bt,q = 0 ∧#aackt,q = 0 ∧#backt,q = 0
)

Since the number of nodes stays constant during an execution, the post-condition
specified by ϕ is propagated back to the initial configuration. Therefore, if the
protocol satisfies CRP for ϕ, then in the initial configuration there must be one
single controller node with state ok, and for each place p one single node with
either state p1 or state p0. Under this assumption, it is easy to check that a
run of the protocol corresponds precisely to a firing sequence in the 1-safe net.
Thus an execution run satisfies ϕ if and only if the corresponding firing sequence
reaches the marking ~m1. �

We now show that there exists an algorithm to solve CRP in PSpace. The
main idea is to use a symbolic representation of configurations in which the
behavior of a network is observed exactly for a fixed number of nodes only. For
all the other nodes, we only maintain the control state they are labeled with
and not their precise number.

Without loss of generality, we consider for simplicity only processes with
Q0 = {q0}, as multiple initial states can be encoded through local transitions
from q0. Given a process P = 〈Q,Σ, R, {q0}〉 and a cardinality constraint ϕ
over P we denote by val(ϕ) ∈ N the largest natural constant that appears in ϕ.
We then denote by psize(ϕ) the natural |Q| ∗ val(ϕ). Intuitively psize(ϕ) is the
number of witness nodes we keep track of: we reserve val(ϕ) processes to each
control state that may appear in ϕ.

A symbolic configuration for P and ϕ is then a pair θ = 〈v, S〉 where
v ∈ Qpsize(ϕ) is a vector of psize(ϕ) elements of Q and S ⊆ Q. For q ∈ Q,
we then write #v(q) to indicate the number of occurrences of q in the vector
v. Note that by definition 0 ≤ #v(q) ≤ psize(ϕ) for every q ∈ Q and that
∑

q∈Q #v(q) = psize(ϕ). This allows us to describe the set of configurations
[[θ]] ⊆ Γ characterized by a symbolic configuration θ = 〈v, S〉 as follows: we
have γ ∈ [[θ]] if and only #γ(q) > #v(q) for every q ∈ S and #γ(q) = #v(q)
for every q ∈ Q \ S. Hence a symbolic configuration θ = 〈v, S〉 represents all
the configurations such that the number of occurrences of a control state q is
greater than the number of occurrences of q in v if q ∈ S, or equal when q /∈ S.

10

We will say that a symbolic configuration θ satisfies the cardinality constraint
ϕ, written θ |= ϕ, iff γ |= ϕ for all γ ∈ [[θ]]. We use Θ to represent the set of
symbolic configurations.

We make the following non restrictive assumptions: there is no constraint
on the unique initial state q0 in the cardinality constraints, the only outgoing
transitions from the state q0 are local transitions (labelled with τ), in the sym-
bolic configurations 〈v, S〉 we always have q0 ∈ S, and the initial configuration
θ0 is 〈(q0, . . . , q0), {q0}〉. The most important assumption is the first one about
the absence of constraints on q0: it is needed to guarantee the correctness of our
symbolic procedure. For instance, consider a process P = 〈{q0},Σ, R, {q0}〉 and
a cardinality constraint ϕ of the form 1 ≤ #q0 < 2. We have then psize(ϕ) = 2
and the symbolic configurations are of the form 〈(q0, q0), S〉. It is then obvious
that all the symbolic configurations do not satisfy ϕ while the initial concrete
configuration with only one node does. The above assumptions are not restric-
tive because given a process P = 〈Q,Σ, R, {q0}〉 and a cardinality constraint ϕ,
we can define a new process P ′ = 〈Q′,Σ, R′, {qinit}〉 where Q′ = Q∪{qinit} and
R′ = R ∪ {〈qinit, τ, q0〉}, i.e. qinit is a new initial state from which the process
is enabled to go to q0 thanks to a local transition. As there is no constraint in
ϕ about qinit it is immediate to prove the following Lemma:

Lemma 3 P |= ♦ϕ if and only if P ′ |= ♦ϕ.

We now define a relation on the symbolic configurations to represent the ef-
fect that process rules have on symbolic configurations. Let P = 〈Q,Σ, R, {q0}〉
be a process, ϕ a cardinality constraint and θ the associated set of symbolic
configurations. For each rule r ∈ R of form 〈q, !!a, q′〉, we define the symbolic
transition relation r⊆ Θ×Θ as follows, we have 〈v, S〉 r 〈v′, S′〉 if and only
if at least one of the two following conditions holds:

1. (broadcast from a state in v) there exists i ∈ {1, . . . , psize(ϕ)} such that
v[i] = q and v′[i] = q′ (i.e. the sending process switches state according
to r) and:

• for all j ∈ {1, . . . , psize(ϕ)} \ {i} we have either v[j] = v′[j] or there
exists 〈qr, ??a, q′r〉 ∈ R such that v[j] = qr and v′[j] = q′r (i.e. other
processes in the pool may or may not react to the broadcast);

• for each qs ∈ Q \ {q0}:

– if qs ∈ S′ \ S then there exists q′s ∈ S and 〈q′s, ??a, qs〉 ∈ R,

– if qs ∈ S \ S′ then there exists q′s ∈ S′ and 〈qs, ??a, q′s〉 ∈ R.

2. (broadcast from a state in S) we have q ∈ S and q′ ∈ S′ (note that we
could have that q ∈ S′ or q /∈ S′), and the following conditions hold:

• for all j ∈ {1, . . . , psize(ϕ)} we have either v[j] = v′[j] or there exists
〈qr, ??a, q′r〉 ∈ R such that v[j] = qr ∧ v′[j] = q′r;

• for each qs ∈ Q \ {q, q′}, we have:

– if qs ∈ S′ \ S then there exists 〈q′s, ??a, qs〉 ∈ R with q′s ∈ S,

– if qs ∈ S \ S′ then there exists 〈qs, ??a, q′s〉 ∈ R with q′s ∈ S′.

11

We denote by ⊆ Θ× Θ the relation such that θ θ′ if and only if there
exists a rule r ∈ R such that θ r θ′, and ∗ represents its reflexive and
transitive closure. The intuition behind this construction is that we do not
perform any abstraction on the states present in the vector v but only on the
states present in S, this because the states present in v are used as witnesses to
satisfy the cardinality constraint ϕ.

As an example, for psize(ϕ) = 5, let 〈(q1, q2, q0, q0, q0), {q0, q1, q2}〉 be a
symbolic configuration, and 〈q1, !!a, q′1〉 and 〈q2, ??a, q′2〉 be two transition rules.
With a broadcast from a process in the vector we may reach, among others,
〈(q′1, q2, q0, q0, q0), {q0, q1, q2}〉, 〈(q′1, q

′
2, q0, q0, q0), {q0, q1, q2, q

′
2}〉, or 〈(q′1, q

′
2, q0,

q0, q0), {q0, q1, q
′
2}〉, whereas a broadcast from a process in the set may lead to

〈(q1, q2, q0, q0, q0), {q0, q1, q2, q′1}〉, 〈(q1, q2, q0, q0, q0), {q0, q1, q′1, q
′
2}〉, 〈(q1, q′2, q0,

q0, q0), {q0, q1, q2, q′1, q
′
2}〉, or 〈(q1, q

′
2, q0, q0, q0), {q0, q

′
1, q

′
2}〉.

We will now prove that the symbolic configurations are well-suited to solve
CRP. First, we show that if a symbolic configuration which satisfies ϕ is reach-
able from the initial symbolic configuration, then there is a concrete configura-
tion reachable from an initial configuration in γ0 which also satisfies ϕ. This
ensures a sound reasoning on symbolic configurations.

Lemma 4 If there exists θ ∈ Θ such that θ0
∗ θ and θ |= ϕ, then P |= ♦ϕ.

Sketch of proof. For a symbolic θ = 〈v, S〉 in Θ and N ∈ N, we denote by
[[θ]]N = {γ ∈ [[θ]] | ∀q ∈ S.#γ(q) > (N +#v(q))}, i.e. the set of configurations
which belong to [[θ]] in which for each q ∈ S, there are at least N vertices
(in addition to those already in the vector v). Note that with this definition
[[θ]]0 = [[θ]]. We then can prove the following property: given θ ∈ Θ such that
θ0

∗ θ, there exists N ∈ N such that for all γ ∈ [[θ]]N , there exists an initial
configuration γ0 ∈ Γ0 such that γ0 →∗ γ. To show that this property is true, we
reason by induction on the length of the execution choosing the N adequately
at each step of the induction. Then if there exists θ ∈ Θ such that θ0

∗ θ and
θ |= ϕ, then there exists γ0 ∈ θ0 and γ ∈ [[θ]] such that γ0 →∗ γ, and by the
definition of |= for symbolic configuration we deduce also that γ |= ϕ. Hence
P |= ♦ϕ.�

We will now show that a reasoning on symbolic configurations leads to com-
pleteness, in other words that if there is a reachable configuration that satisfies
the cardinality constraint ϕ, then there is a reachable symbolic configuration
that satisfies ϕ.

Lemma 5 If P |= ♦ϕ, then there exists θ ∈ Θ such that θ0
∗ θ and θ |= ϕ.

Sketch of proof. In order to prove this Lemma, we need to introduce some
auxiliary notations. Given a configuration γ ∈ Γ, we define ↑q0 γ as the set
{γ′ ∈ Γ | ∀q ∈ Q \ {q0}. #γ′(q) = #γ(q)}. The above definition is needed
because we could reach a configuration γ which does not have enough processes
to be represented by a symbolic configuration, but we can complete it by adding
new vertices labelled by the initial state q0 in order to solve the problem. We
can then prove the following property by induction on the length of the concrete
execution: for γ0 ∈ Γ0 and γ ∈ Γ such that γ0 →∗ γ, for all θ ∈ Θ verifying
↑q0 γ ∩ [[θ]] 6= ∅, we have θ0

∗ θ. Basically, this property stipulates that given
a reachable configuration γ, each symbolic configuration θ whose semantics [[θ]]
contains γ (modulo processes in state q0) is also reachable.

12

The next step consists in proving that if γ ∈ Γ is a configuration satisfying
γ |= ϕ then there exists θ ∈ Θ such that ↑q0 γ ∩ [[θ]] 6= ∅ and θ |= ϕ. This can be
proved providing an algorithm that builds θ = 〈v, S〉 such that, for each q ∈ Q,
either the processes in state q can be exactly represented within v only when
#γ(q) ≤ val(ϕ), or #v(q) = val(ϕ) and q ∈ S when #γ(q) > val(ϕ) (i.e. v is
not large enough, recall that, apart for the states q0 used to fill the ”holes” in v,
we reserve only up to val(ϕ) processes per state in v). Consider, e.g., a process
with states Q = {q0, q1, q2}, the formula ϕ = 0 ≤ #q1 < 3 ∧ 1 ≤ #q2 < +∞
and the configuration with five processes γ = 〈q1, q2, q2, q2, q2〉 such that γ |= ϕ.
The symbolic configuration θ obtained is then 〈(q1, q2, q2, q2, q0, q0, q0, q0, q0),
{q0, q2}〉.

Since P |= ♦ϕ, there exists an initial configuration γ0 ∈ Γ0 and a configu-
ration γ ∈ Γ such that γ0 →∗ γ and γ |= ϕ. By the second property we know
there exists θ ∈ Θ such that ↑q0 γ ∩ [[θ]] 6= ∅ and θ |= ϕ, and the first property
allows us to say that θ0

∗ θ. �

We will now explain why CRP is in PSpace. The main idea is that we
can reason on the graph of symbolic configurations. Note that by definition,
since Θ = Qpsize(ϕ) × 2Q, the total number of symbolic configurations is |Θ| =

|Q|psize(ϕ) ∗ 2|Q|. Furthermore, checking whether a symbolic configuration sat-
isfies a cardinality constraint can be done in PTime and checking whether two
symbolic configurations belong to the symbolic transition relation can also
be done in PTime. The PSpace algorithm (which is in reality an NPSpace

algorithm) at each step guesses a new symbolic configuration, checks whether
it is reachable from the previous guessed one and verifies whether it satisfies
ϕ. When it encounters a symbolic configuration that satisfies ϕ, it returns that
P |= ♦ϕ. Note that this algorithm needs only to store the number of configu-

rations it has seen until now, and when this number reaches |Q|psize(ϕ) ∗ 2|Q|,
it means that the algorithm have seen all the symbolic configurations. Hence
to store this number and the current and next symbolic configurations, the al-

gorithm needs polynomial space (a number smaller than |Q|psize(ϕ) ∗ 2|Q| can
be stored into a counter which requires at most psize(ϕ) ∗ log (|Q|) + |Q| log (2)
space). Finally, lemmas 4 and 5 ensure us that such an algorithm is sound and
complete and from Proposition 3 we have also a lower bound for CRP. Hence
we deduce the main result of this paper.

Theorem 3 CRP is PSpace-complete.

References

[1] Abdulla, P. A., Jonsson, B.: Verifying programs with unreliable channels.
Inf. Comput. 127(2): 91–101 (1996)

[2] Cheng, A., Esparza, J., Palsberg, J.: Complexity Results for 1-Safe Nets.
Theor. Comput. Sci. 147(1&2): 117-136 (1995)

[3] Delzanno, G., Sangnier, A., Zavattaro, G.: Parameterized verification of
Ad Hoc Networks. CONCUR’10: 313–327

[4] Delzanno, G., Sangnier, A., Zavattaro, G.: On the Power of Cliques in the
Parameterized verification of Ad Hoc Networks. FOSSACS’11: 441–455

13

[5] Delzanno, G., Sangnier, A., Zavattaro, G.: Verification of Ad Hoc Networks
with Node and Communication Failures. FORTE’12: 235-250

[6] Ene, C., Muntean, T.: A broadcast based calculus for Communicating
Systems. IPDPS’01: 149

[7] Esparza, J., Finkel, A., Mayr, R.: On the verification of Broadcast Proto-
cols. LICS’99: 352–359

[8] Fehnker, A., van Hoesel, L., Mader, A.: Modelling and verification of the
LMAC protocol for wireless sensor networks. IFM’07: 253–272

[9] Godskesen, J.C.: A calculus for Mobile Ad Hoc Networks. COORDINA-
TION’07: 132–150

[10] S. Joshi, B. König: Applying the Graph Minor Theorem to the Verification
of Graph Transformation Systems. CAV’08: 214-226

[11] Ladner, R. E.: The circuit value problem is logspace complete for P.
SIGACT News: 18–20 (1977)

[12] Lipton R.J.: The Reachability Problem Requires Exponential Space. De-
partment of Computer Science. Research Report. Yale University. (1976)

[13] Merro, M.: An observational theory for Mobile Ad Hoc Networks. Inf.
Comput. 207(2): 194–208 (2009)

[14] Merro, M., Ballardin, F., Sibilio, E. A timed calculus for wireless systems.
TCS, 412(47): 6585-6611 (2011)

[15] Lanese, I., Sangiorgi, D.: An operational semantics for a calculus for wire-
less systems. TCS, 411(19): 1928-1948 (2010)

[16] Nanz, S., Hankin, C.: A Framework for security analysis of mobile wireless
networks. TCS, 367(1–2):203-227 (2006)

[17] Prasad, K.V.S.: A Calculus of Broadcasting Systems. SCP, 25(2–3): 285–
327 (1995)

[18] Saksena, M., Wibling, O., Jonsson, B.: Graph grammar modeling and
verification of Ad Hoc Routing Protocols. TACAS’08: 18–32

[19] Singh, A., Ramakrishnan, C. R., Smolka, S. A.: A process calculus for
Mobile Ad Hoc Networks. COORDINATION’08: 296–314

[20] Singh, A., Ramakrishnan, C. R., Smolka, S. A.: Query-Based model check-
ing of Ad Hoc Network Protocols. CONCUR ’09: 603–619

[21] Rackoff C.: The Covering and Boundedness Problems for Vector Addition
Systems. TCS, 6:223-231 (1978)

14

A Proofs

A.1 Proof of Proposition 1

The proof is based on a LogSpace-reduction from the Circuit Value Problem
(CVP) which is know to be PTime-complete [11]. CVP is defined as follows:
given an acyclic Boolean circuit with k input variables, m boolean gates (of
type and, or, not), a single output variable and a truth assignment for the input
variables, is the value of the output equal to a given boolean value?

Assume an instance of CVP C with input/output/intermediate value names
taken from a finite set V N . We denote by v1, . . . , vk ∈ V N the inputs and by
v ∈ V N the output. Furthermore, each gate g is represented by its signature
g(⊙, i1, i2, o) with i1, i2, o ∈ V N and ⊙ ∈ {∨,∧} or by g(¬, i, o) with i, o ∈ V N .
Finally, let b1, . . . , bk ∈ {true, false} be a truth assignment for the inputs and
b ∈ {true, false} the value for the output to be tested.

The process PC associated to C has two types of initial states: q0 (init
nodes), and g (gate nodes) for each gate g of C. A node in state q0 broadcasts
(an arbitrary number of) messages that model the initial assignments to input
variables. Since the assignment is fixed, broadcasting these messages several
times (or receiving them from different initial nodes) does not harm the cor-
rectness of the encoding. When receiving an evaluation for their inputs (from
an initial node or another gate node), a gate node evaluates the corresponding
boolean function and then repeatedly broadcasts the value of the corresponding
output. Since C is acyclic, once computed, the output value remains always
the same (i.e. recomputing it does not harm). Finally, reception of a value v
for output z sends a q0 node into state ok. Reachability of an output value v
reduces then to CRP for the process PC with ok the control state to be reached.

Formally, the process rules are defined as follows. For i ∈ {1, . . . , k}, we have
rules 〈q0, !!(vi = bi), q0〉 and 〈q0, ??(v = b), ok〉. They model the assignment of
value vi to input xi and reception of output value v.

For gate g(⊙, i1, i2, o) and for each assignment α = 〈b′1, b
′
2〉 (with b′1, b

′
2 ∈

{true, false}) of values to 〈i1, i2〉 (a constant number for each gate), we associate
the following subprotocol:

g

gα1

gα2

gαf

??(i1 = b′1) ??(i2 = b′2)

??(i2 = b′2) ??(i1 = b′1)

!!(o = b′1 ⊙ b′2)

(Self-loops associated to receptions for which there are no explicit rules are
omitted). We use a similar encoding for a not gate.

Consider now the resulting processPC = 〈Q,Σ, R, {q0}∪{g | g is a gate in C}〉
with corresponding transition system RBN = 〈Γ,→,Γ0〉. There exists γ ∈ Γ0

and γ′ in Γ s.t. γ →∗ γ′ and γ′ |= #ok ≥ 1 iff b is the value for v in C with
input values b1, . . . , bk. �

15

A.2 Proof of Proposition 2

The proof is based on a reduction of the boolean satisfiability problem (SAT)
which is known to be NP-complete. Let Φ be a boolean formula in conjunctive
normal form over the set of variables V = {v1, . . . , vk}. We define a process P
with initial state q0 and the following set of rules R = {〈q0, τ, v〉 | v ∈ V } ∪
{〈q0, τ, v〉 | v ∈ V }. From Φ, we build a constraint ϕ∧ψ where ϕ is the formula
obtained from Φ by replacing each positive literal v by #v ≥ 1 and each negative
literal ¬v by #v ≥ 1 and ψ =

∧k
i=1(#vi ≥ 1 ∧#vi = 0) ∨ (#vi = 0 ∧#vi ≥ 1).

The former constraint is the natural encoding of the input propositional formula
whereas the latter assigns a consistent interpretation to the control state labels
vi and vi as assignments to the propositional variable vi. The constraint ϕ ∧ ψ
is a formula in CC.

A node in the initial state q0 makes a guess for the boolean valuation of a
variable v by moving to state v [resp. to v] if the associated chosen value is
true [resp. false]. The formula ψ ensures that no contradictory valuation is
generated by stating that for each variable v in V only one type of control state
v or v is chosen. Assume that the formula Φ is satisfiable and let {b1, . . . , bk} ∈
{true, false}k be an interpretation over the variables {v1, . . . , vk} that satisfies
it. From an initial configuration γ0 with k nodes, it is possible to reach a
configuration γ such that γ |= ψ and for all 1 ≤ i ≤ k if bi = true then
γ′ |= #vi ≥ 1 else γ′ |= #vi = 0. γ |= ϕ ∧ ψ clearly holds here. Vice versa, if
there exists a computation that reaches a configuration that satisfies ϕ∧ψ, then
we have m ≥ k nodes whose labels correspond to a consistent interpretation of
the variables in V and which satisfies Φ. �

A.3 Proof of Lemma 2

Let P = 〈Q,Σ, R,Q0〉 a process with RBN(P) = 〈Γ,→,Γ0〉 and ϕ a constraint
over P in CC. First we assume that the Algorithm 2 answers YES on input P
and ϕ. This means that there exists S0, . . . , Sm, T0, T1, . . . , Tn such that 1 ≤
m,n ≤ |Q| and S0 ⊆ Q0, and for all i ∈ {0, . . . ,m− 1}, Si+1 ∈ postAdd(P , Si)
and T0 = Sm and for all i ∈ {0, . . . , n− 1}, Ti+1 ∈ postDel(P , Ti). We will now
prove that there exists two configurations γ0 ∈ Γ0 and γ ∈ Γ such that γ0 →∗ γ
and L(γ) = Tn. First, as reasoning the same way we did in the proof of Lemma
1, we can deduce that for any k ∈ N \ {0}, there exists γ0 ∈ Γ0 and a complete
graph γk = 〈V,E, L〉 in Γ such that L(γk) = Sm and for every q ∈ Sm the set
{v ∈ V | L(v) = q} has more than k elements. Now we are going to prove that
for any j ∈ {0, . . . , n}, for all k ∈ N \ {0}, there is a complete graph γj,k such
that:

1. L(γj,k) = Tj and for each q ∈ Sj , the set {v ∈ V | L(v) = q} has more
than k elements (i.e. for each element q of Sj there are more than k nodes
in γj,k labelled with q),

2. there exits γ0 ∈ Γ0 such that γ0 →∗ γj,k.

To prove this statement we reason by induction on j. For j = 0, since the
statement holds for Sm, it holds also for T0 = Sm. We now assume that the
property is true for all naturals smaller than j (with j < n) and we will show it
is true for j + 1. We consider now the set Tj \ Tj+1 (assuming it is not empty,

16

otherwise the property trivially holds). By property of the operator postDel,
we have Tj+1 ⊆ Tj. Now let k ∈ N, the graph γj+1,k is obtained from γj,k+1 as
follows:

• if Tj+1\Tj = {q} and there exists a rule 〈q, !!a, q′〉 ∈ R such that q′ ∈ Tj+1],
then this rule is applied to all the nodes labelled by q; first each node is
isolated with the reconfiguration rule, then the broadcast rule is performed
and then the complete graph is rebuilt. Note that the application of this
rule consecutively will only increase the number of nodes labelled by q′

which were already present in γj,N ;

• if Tj+1 \Tj = {q} and there exist two rules 〈p, !!a, p′〉, 〈q, ??a, q′〉 ∈ R such
that p, p′, q′ ∈ Tj+1 (q is consumed by a broadcast), then all the nodes
labelled by q are isolated together with a node labelled by p so that all
these nodes are connected, then p broadcast a sending all the other nodes
in q′ and finally the complete graph is rebuilt; as a consequence there is
no more nodes labelled by q, the number of nodes labelled by q′ and p′

have increased and the number of nodes labelled by p has decreased of one
unit;

• if Tj+1\Tj = {p, q} and there exist two rules 〈p, !!a, p′〉, 〈q, ??a, q′〉 ∈ R such
that p′, q′ ∈ Tj+1 (p and q are consumed by a broadcast), then as for the
second case, we first eliminate all the nodes labelled by q by isolating them
together with one node labelled by p, and then all the nodes labelled by p
can be eliminated the same way it is done in the first case we considered.

By applying these rules it is then clear that γj,k+1 →∗ γj+1,k and also that
γj+1,k verifies the property 1 of the statement. Since by induction hypothesis,
we have that there exists γ0 ∈ Γ0 such that γ0 →∗ γj,k+1, we also deduce
that γ0 →∗ γj+1,k, hence the property 2 of the statement also holds. Hence if
the Algorithm 2 returns YES on input P and ϕ, we deduce that there exist a
reachable configuration γ ∈ Γ such that L(γ) = Tn and since Tn satisfies ϕ, we
also have that γ |= ϕ, hence P |= ♦ϕ.

We now assume that there exists two configurations γ0 ∈ Γ0 and γ ∈ Γ
such that γ0 →+ γ (the case γ0 = γ can be easily verified) and γ |= ϕ. Hence
there exists γ1, . . . , γk ∈ Γ such that γ0 →+ γ1 . . . →+ γk with γk = γ and
for all i ∈ {1, . . . , k}, exactly one broadcast rule has been applied between γi
and γi+1. From this execution we build a sequence of set of control states
(S′

i)0≤i≤k such that S′
0 = L(γ0) and for all 0 ≤ i ≤ k − 1, S′

i+1 = S′
i ∪ L(γi)

. By definition of the broadcast rule and of the operator postAdd, we deduce
that S′

i+1 ∈ postAdd(P , S′
i). From this sequence, we can furthermore extract a

subsequence (Si)0≤i≤m such that for all 0 ≤ i ≤ m− 1, Si+1 ∈ postAdd(P , Si)
and Si+1 6= Si and for all 0 ≤ j ≤ k, there exists 0 ≤ i ≤ m such that S′

j = Si.
Since we have Si ⊂ Si+1 for all 0 ≤ i ≤ m − 1, we deduce that necessarily
m ≤ |Q|. Now we build another sequence of control states (T ′

i)0≤i≤k such that
T ′
0 = Sm and for all 0 ≤ i ≤ k − 1, T ′

i+1 = T ′
i \ Ei where for all 0 ≤ i ≤ k − 1,

Ei = {q ∈ L(γi) |6 ∃j > i s.t. q ∈ L(γj)}. In other words, to build T ′
i+1 from T ′

i

we delete the control states q that are present in γi and will never be present
in any γj for j > i. We recall that by construction for all 1 ≤ i ≤ k, we
have L(γi) ⊆ T ′

0 and hence by construction of the sequence (T ′
i)0≤i≤k we have

necessarily L(γ) = T ′
k. By definition of the broadcast rule and of the operator

17

postDel, we also deduce that T ′
i+1 ∈ postDel(P , T ′

i). From this sequence, we
can furthermore extract a subsequence (Ti)0≤i≤n such that for all 0 ≤ i ≤ n−1,
Ti+1 ∈ postDel(P , Ti) and Ti+1 6= Ti and for all 0 ≤ j ≤ k, there exists
0 ≤ i ≤ n such that T ′

j = Ti. Since we have Ti+1 ⊂ Ti for all 0 ≤ i ≤ n− 1, we
deduce that necessarily n ≤ |Q| and also we have T (n) = L(γ). Since γ |= ϕ,
we deduce that Tn satisfies ϕ and consequently we have proved that there is an
execution of Algorithm 2 which answers YES on input P and ϕ. �

A.4 Proof of Lemma 3

Assume P |= ♦ϕ, then there are a configuration γ0 and a configuration γ of
P such that γ0 →∗ γ and γ |= ϕ. In P ′ we can take the initial configuration
γ′0 with the same number of nodes as in γ0, assume that all the node begin to
fire the transition 〈qinit, τ, q0〉 (hence all the nodes will be labeled by q0) and
then perform the same execution as in P , hence P ′ |= ♦ϕ. Now assume that
P ′ |= ♦ϕ, hence there are an initial configuration γ′0 and a configuration γ′ of
P ′ such that γ′0 →∗ γ′ and γ′ |= ϕ. It is possible to simulate in P almost the
same execution (without the use of the rule 〈qinit, τ, q0〉) by taking as initial
configuration in P the configurations which have as cardinality the number of
γ′ which are not labelled by qinit and thus obtaining an execution which leads
to a configuration which satisfies φ. �

A.5 Proof of Lemma 4

For a symbolic θ = 〈v, S〉 in Θ and N ∈ N, we denote by [[θ]]N = {γ ∈ [[θ]] | ∀q ∈
S.#γ(q) > (N + #v(q))}, i.e. the set of configurations which belong to [[θ]] in
which for each q ∈ S, there are at least N vertices (in addition to those already
in the vector v). Note that with this definition [[θ]]0 = [[θ]]. We then have the
following lemma.

Lemma 6 For all θ ∈ Θ such that θ0
∗ θ, there exists N ∈ N such that for

all γ ∈ [[θ]]N , there exists an initial configuration γ0 ∈ Γ0 such that γ0 →∗ γ.

Proof: Let θ ∈ Θ such that θ0
∗ θ. Then there exists θ1, . . . , θm in Θ such that

θ0 θ1 . . . θm and θm = θ. We will prove the statement of the Lemma by
induction on the length of this symbolic execution. The base case, when m = 0,
is obvious since we have [[θ0]] ⊆ Γ0, it is then sufficient to take N = 0. Now let
m > 0 and assume the property is true for all i ∈ {0, . . . ,m−1}, we will prove it
holds for θm. First, by hypothesis of induction, we have that there exists Nm−1

such that for all γ ∈ [[θm−1]]Nm−1
, there exists an initial configuration γ0 ∈ Γ0

such that γ0 →∗ γ. Since θm−1 θm, there exists a rule r ∈ R of the form
〈q1, !!a, q2〉 such that θm−1 r θm. We now proceed by a case analysis on the
application of the rule r to obtain the symbolic configuration θm = 〈v′, S′〉 from
θm−1 = 〈v, S〉.

First, assume the sending process is in the vector v. There exists i ∈
{1, . . . , psize(ϕ)} such that v[i] = q1 and v′[i] = q2. Let Nm = (Nm−1 +
1) ∗ (|S \ S′| + 1) (where |S \ S′| denotes the cardinality of the set S \ S′).
Note that Nm > Nm−1. We will prove that for all γ′ ∈ [[θm]]Nm

there exists
γ ∈ [[θm−1]]Nm−1

such that γ →+ γ′. From γ′, we will build a configuration γ in

[[θm−1]]Nm−1
such that γ →+ γ′. First, we need to divide the set of control states

Q in different subsets. For each q′ ∈ S′ \S, we know there exists 〈q, ??a, q′〉 ∈ R

18

with q ∈ S; note that there might exist more than one such transition, but
among them we choose one and we denote by origin(q′) the corresponding state
q. Similarly for each q ∈ S \ S′, we know there exists 〈q, ??a, q′〉 ∈ R with
q′ ∈ S′; note that there might exist more than one such transition, but among
them we choose one and we denote by destination(q) the corresponding state
q′. For q ∈ S, we then define the set From(q) = {q′ ∈ S′ \ S | q = origin(q′)}.
Intuitively this set characterizes the control states which are newly appearing
in S′ and their presence is due to the reception of a from a vertex in state q.
Similarly for q′ ∈ S′ we define To(q′) = {q′′ ∈ S \ S′ | q′ = destination(q′′)},
which intuitively characterizes the control state that disappears from S and
their associated vertex changes their state to q′. The configuration γ should
then verify the following requirements, for each q ∈ Q:

1. If q ∈ S ∩ S′, then:

#γ(q) = #v(q)+#γ′(q)−#v′(q)+
∑

q′∈From(q)

[(#γ′(q′)−#v′(q′))−|To(q′)|∗(Nm−1+1)]

2. If q ∈ S \ S′, then:

#γ(q) = #v(q)+(Nm−1+1)+
∑

q′∈From(q)

[(#γ′(q′)−#v′(q′))−|To(q′)|∗(Nm−1+1)]

3. If q /∈ S, then #γ(q) = #v(q)

Note that the number of labels of vertices labelled by a given control state q ∈ Q
is the only relevant information that need to be considered because then thanks
to the reconfiguration rule of the RBN, we can obtain any labeled graphs (i.e.
the topology can be changed in any wished direction).

Let us now check that the requirements for γ ensure that γ ∈ [[θm−1]]Nm−1
,

that is that we have for each q ∈ Q, if q /∈ S, then #γ(q) = #v(q) (this is
guaranteed by the requirement 3. on γ) and if q ∈ S, then #γ(q) > (Nm−1 +
#v(q)). We will now prove this last point. Let q ∈ S. First we will show that
∑

q′∈From(q)[(#γ
′(q′)−#v′(q′))− |To(q′)| ∗ (Nm−1+1)] ≥ 0. Let q′ ∈ From(q),

since q′ ∈ S′, we have that #γ′(q′) −#v′(q′) > Nm, hence by definition of Nm

we deduce that #γ′(q′) −#v′(q′) > (Nm−1 + 1) ∗ (|S \ S′| + 1), consequently
[(#γ′(q′)−#v′(q′))−|To(q′)|∗(Nm−1+1)] > (Nm−1+1)∗(|S\S′|+1−|To(q′)|).
But since To(q′) ⊆ (S \S′), this allows us to deduce that [(#γ′(q′)−#v′(q′))−
|To(q′)| ∗ (Nm−1 + 1)] > 0. We can now prove that for all q ∈ S, we have
#γ(q) > (Nm−1 + #v(q)). If q ∈ S \ S′, thanks to requirement 2. and the
previous consideration, it is obvious that #γ(q) > (Nm−1 + #v(q)). If q ∈
S ∩ S′, then thanks to requirement 1. and to the previous consideration, we
have that #γ(q) > #v(q) + #γ′(q) − #v′(q), but since q ∈ S′, we have that
#γ′(q)−#v′(q) > Nm > Nm−1, hence #γ(q) > #v(q) > Nm−1. This allows us
to deduce that the configuration γ ∈ [[θm−1]]Nm−1

.

It remains now to check that γ →+ γ′. The main idea is that first we begin
to use the non-deterministic reconfiguration to obtain a graph as we want in
order to make the nodes react correctly to the broadcast. We will now explain
why requirements 1. to 3. ensure that γ →+ γ′. We will focus our attention on
the vertices labelled with control states in S. Assume there is a control state q

19

in S but not in S′ (i.e. we analyze requirement 2.) For this control state we put
at least #v(q) + (Nm−1 + 1), one assumption we made is that the (Nm−1 + 1)
will change their label to destination(q), consequently thanks to this we are
sure that there are at least |To(destination(q))| ∗ (Nm−1 + 1) vertices labelled
by destination(q) in γ′. Then however it might be the case that in γ, we need
more nodes labelled by q because these nodes will change their label into some
node q′ that do not belong to S but to S′. This is the case for the nodes q′ such
that q = origin(q ′), and the quantity of nodes labelled by q we need to add is
precisely for each such label q′: [(#γ′(q′) − #v′(q′)) − |To(q′)| ∗ (Nm−1 + 1)],
i.e. the number of nodes labelled by q′ in γ′ to which is subtracted the number
of nodes in γ labelled by a state in S \ S′ that change their state to q′ (this
quantity being |To(q′)| ∗ (Nm−1 + 1) as we have already mentioned). For the
control state q ∈ S ∩ S′, the reasoning is similar. Hence what we have shown is
that we choose the requirements 1. and 2. to ensure that γ →+ γ′. Finally since
γ ∈ [[θm−1]]Nm−1

, by induction hypothesis, we have that there exists γ0 ∈ Γ0

such that γ0 →∗ γ and consequently we also deduce that γ0 →∗ γ′.
The case where the broadcast is performed by a node whose control state is

taken from S can be treated in a similar way. �
We can now prove Lemma 4. Assume there exists θ ∈ Θ such that θ0

∗ θ
and θ |= ϕ. From Lemma 6, we know that there exists γ0 ∈ θ0 and γ ∈ [[θ]] such
that γ0 →∗ γ, and by the definition of |= for symbolic configuration we deduce
also that γ |= ϕ. Consequently we have P |= ♦ϕ.

A.6 Proof of Lemma 5

Given a configuration γ ∈ θ, we define ↑q0 γ as the set {γ′ ∈ Γ | ∀q ∈ Q \
{q0}. #γ′(q) = #γ(q)}. The following lemma then holds.

Lemma 7 Let γ0 ∈ Γ0 and γ ∈ Γ such that γ0 →∗ γ. Then for all θ ∈ Θ such
that ↑q0 γ ∩ [[θ]] 6= ∅, we have θ0

∗ θ.

Proof: Let γ0 ∈ Γ0 and γ ∈ Γ such that γ0 →∗ γ. Then there exists γ1, . . . , γm
in Γ such that γ0 → γ1 → . . . → γm and γm = γ. We will prove the statement
of the Lemma by induction on the length of this symbolic execution. The base
case, when m = 0, is obvious since if ↑q0 γ0 ∩ [[θ]] 6= ∅ implies that θ = θ0 (in
fact, we know that the only control state present in γ0 is q0).

Now let m > 0 and assume the property is true for all i ∈ {0. . . . ,m− 1}, we
will prove it holds for γm. Let θm such that ↑q0 γm∩[[θm]] 6= ∅. Since γm−1 → γm,
either a reconfiguration rule or broadcast rule is applied to go from γm−1 to γm.
Assume a reconfiguration rule is applied, then only the edges change between
γm−1 and γm, hence we have ↑q0 γm−1 ∩ [[θm]] 6= ∅ and by induction hypothesis
we deduce that θ0

∗ θ.
We now suppose that there exists a rule r = 〈q, !!a, q′〉 ∈ R such that

γm−1 →r γm. We assume that θm = 〈vm, Sm〉, γm−1 = 〈V,E, L〉 and γm =
〈V ′, E′, L′〉 and we will now build a symbolic configuration θm−1 = 〈vm−1, Sm−1〉
such that ↑q0 γm−1 ∩ [[θm−1]] 6= ∅ using that ↑q0 γm ∩ [[θm]] 6= ∅ and that
γm−1 →r γm . First we need to introduce some notations. Since we have
↑q0 γm ∩ [[θm]] 6= ∅, for each i ∈ {1, . . . , psize(ϕ)}, if vm[i] 6= q0, we can associate
a unique vertex node(i) in V ′ to it such that L′(node(i)) = vm[i] (on the domain
of the elements of v different than q0 the function node is hence injective). Note

20

that since γm−1 →r γm, we have by definition of the transition relation in RBN,
V = V ′ and E = E′. We build the vector vm−1 ∈ Qpsize(ϕ), as follows, for each
i ∈ {1, . . . , psize(ϕ)}:

• If vm[i] = q0 then vm−1[i] = q0;

• Otherwise, vm−1[i] = L(node(i)).

After we build the set Sm−1 ⊆ Q as follows: Sm−1 = {q0} ∪ {q ∈ Q \ {q0} |
#γm−1(q) > #vm−1(q)}. By construction and using the definitions of → and
 , we deduce easily the two following properties: ↑q0 γm−1 ∩ [[θm−1]] 6= ∅ and
θm−1 θm. Hence using the hypothesis of induction, we have also θ0

∗ θm−1

which allows us to deduce that θ0
∗ θm. �

Basically, Lemma 7 says that given a reachable configuration γ, each sym-
bolic configuration θ whose semantics [[θ]] contains γ (modulo processes in state
q0) is also reachable. We next formalize that such a θ actually exists whenever
γ satisfies ϕ.

Lemma 8 Let γ ∈ Γ be a configuration such that γ |= ϕ. There exists θ ∈ Θ
such that ↑q0 γ ∩ [[θ]] 6= ∅ and θ |= ϕ.

Proof: Given a process P = 〈Q,Σ, R, {q0}〉, a formula ϕ, and a configuration
γ ∈ Γ such that γ |= ϕ, we build a symbolic configuration θ = (v, S) ∈ Θ where
S = {q0} ∪ {q ∈ Q | q 6= q0, #γ(q) > val(ϕ)}, v has size psize(ϕ), #v(q0) ≥ 0,
and for all q ∈ Q \ {q0}, #v(q) = val(ϕ) if q ∈ S, or #v(q) = #γ(q) otherwise.
It is straightforward, by construction, that psize(ϕ) = |Q| ∗val(ϕ) is big enough
to let the vector v contain all the generated processes, because each q ∈ Q\{q0}
will occur at most val(ϕ) times, and q0 will fill in the rest. Furthermore, for
each γ′ ∈ [[θ]], #γ′(q0) > 0 and for every q ∈ Q \ {q0}, either q /∈ S and
#γ′(q) = #γ(q), or q ∈ S and #γ(q) > #v(q), meaning that ↑q0 γ ∩ [[θ]] 6= ∅.
We will now proceed by induction on the structure of the formula to show that
γ |= ϕ if and only if θ |= ϕ.

Atom Let ϕ = a ≤ #q < b. By definition we have that γ |= ϕ iff a ≤ #γ(q) <
b. If a ≤ #γ(q) < b, then, for all γ′ ∈ [[θ]], either #γ(q) ≤ val(ϕ) and
#v(q) = #γ(q) = #γ′(q), or #γ′(q) > val(ϕ) ≥ a and b = +∞; in both
cases, a ≤ #γ′(q) < b (i.e. θ |= ϕ). If θ |= ϕ, then for every γ′ ∈ [[θ]],
a ≤ #γ′(q) < b. By construction, #γ′(q) is either equal to #γ(q) when
b 6= +∞, or it is greater or equal than #γ(q) otherwise, meaning that
a ≤ #γ(q) < b.

Conjunction Let ϕ = ϕ1 ∧ ϕ2. By definition, γ |= ϕ iff γ |= ϕ1 and γ |= ϕ2,
but from the inductive hypothesis γ |= ϕ1 iff θ |= ϕ1 and γ |= ϕ2 iff
θ |= ϕ2, thus θ |= ϕ iff γ |= ϕ.

Disjunction The proof is almost identical to the one for conjunction.

Negation By definition, γ |= ¬ϕ1 iff γ 6|= ϕ1. We conclude that γ 6|= ϕ1 iff
θ 6|= ϕ1 by application of the inductive hypothesis.

�

We can now prove Lemma 5. Since P |= ♦ϕ, there exist an initial configu-
ration γ0 ∈ Γ0 and a configuration γ ∈ Γ such that γ0 →∗ γ and γ |= ϕ. By
Lemma 8 we know there exists θ ∈ Θ such that ↑q0 γ ∩ [[θ]] 6= ∅ and θ |= ϕ and
thanks to Lemma 7 we have that θ0

∗ θ.

21

A.7 Proof of Theorem 3

In order to solve CRP we provide Algorithm 3.

Algorithm 3: Solving CRP

Input : A p r oc e s s P = 〈Q,Σ, R, {q0}〉 , a formula ϕ over P .
Output : Does P |= ♦ϕ?

θ← θ0

for i = 0 to |Q|psize(ϕ) ∗ 2|Q|

guess θ′ ∈ Θ
i f θ θ′ then

i f θ′ |= ϕ

return true

else

θ← θ′

end i f

end i f

end for

return fa l se

Before to analyze the correctness and complexity of this Algorithm, we need
the following Lemma.

Lemma 9 (i) For any θ ∈ Θ and any formula ϕ, θ |= ϕ can be decided in
PTime. (ii) For all θ, θ′ ∈ Θ, θ θ′ is decidable in PTime.

Proof: We first prove part (i) of the Lemma. Let ψ = a ≤ #q < b be an atom of
ϕ, and let θ = (v, S) ∈ Θ. Then, θ |= ψ if b 6= +∞, q /∈ S, and a ≤ #v(q) < b or
if b = +∞ and #v(q) ≥ a. All of these tests can be done in PTime in the size
of ϕ. After assigning a truth value to each atom, the truth of the whole formula
can be computed in PTime, as an instance of the Circuit Value Problem.

Let us now proceed to prove part (ii). The proof will follow the definition
of ⊆ Θ × Θ. Let θ = (v, S) and θ′ = (v′, S′) be two symbolic configurations,
and let 〈q, !!a, q′〉 ∈ R be a broadcast rule. First, let us consider the case of a
broadcast from the vector v.

For all i ∈ {1, . . . , psize(ϕ)}, there are three possibilities: v[i] is the only
sending process such that v[i] = q and v′[i] = q′ (constant time); there exists a
rule 〈qr, ??a, q

′
r〉 ∈ R such that v[i] = qr and v′[i] = q′r (linear in |R|); v[i] = v′[i]

(constant time). Checking the conditions on all the elements in vector v takes
overall no more than |R|∗psize(ϕ) steps. For each qs ∈ Q, we have two conditions
to check on the sets S and S′: if qs ∈ S′ \ S, then there is a q′s ∈ S such that
〈q′s, ??a, qs〉 ∈ R; if qs ∈ S \S′, then there is a q′s ∈ S such that 〈qs, ??a, q′s〉 ∈ R.
Both membership of states and existence of rules can be computed in linear
time in the size of the process, thus checking the conditions for S and S′ is in
PTime too. The case of a broadcast from the set S can be handled in a similar
way. The Lemma follows from observing that all we need to do, is to repeat the
PTime check for all broadcast rules r ∈ R. �

We know, thanks to lemmas 4 and 5, that we are able to reach a symbolic
configuration which satisfies a given cardinality constraint ϕ if and only if P |=
♦ϕ. Being Θ = Qpsize(ϕ) × 2Q, the total number of symbolic states is |Θ| =

|Q|psize(ϕ) ∗ 2|Q|, namely all possible configurations of the vector multiplied by
the number of subsets of Q. The space needed to encode θ ∈ Θ is the logarithm

22

of |Θ|, which simplifies in psize(ϕ) ∗ log (|Q|) + |Q| log (2), i.e. polynomial in
the size of Q and ϕ. Algorithm 3 uses two variables to encode the symbolic
configurations θ and θ′, and one counter i that increments up to |Θ|; because of
the previous considerations, the local variables are encoded in polynomial space.
Thanks to Lemma 9 we can conclude that the algorithm works in NPSpace =
PSpace, and therefore, because of Proposition 3, CRP is PSpace-complete.

23

