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Abstract

This paper aims to take a step forwards making the term “intrinsic motivation”
from reinforcement learning theoretically well founded, focusing on curiosity-
driven learning. To that end, we consider the setting where, a fixed partition P of
a continuous space X being given, and a process ν defined on X being unknown,
we are asked to sequentially decide which cell of the partition to select as well as
where to sample ν in that cell, in order to minimize a loss function that is inspired
from previous work on curiosity-driven learning. The loss on each cell consists of
one term measuring a simple worst case quadratic sampling error, and a penalty
term proportional to the range of the variance in that cell. The corresponding
problem formulation extends the setting known as active learning for multi-armed
bandits to the case when each arm is a continuous region, and we show how an
adaptation of recent algorithms for that problem and of hierarchical optimistic
sampling algorithms for optimization can be used in order to solve this problem.
The resulting procedure, called Hierarchical Optimistic Region SElection driven
by Curiosity (HORSE.C) is provided together with a finite-time regret analysis.

1 Introduction

In this paper, we focus on the setting of intrinsically motivated reinforcement learning (see Oudeyer
and Kaplan [2007], Baranes and Oudeyer [2009], Schmidhuber [2010], Graziano et al. [2011]),
which is an important emergent topic that proposes new difficult and interesting challenges for the
theorist. Indeed, if some formal objective criteria have been proposed to implement specific notions
of intrinsic rewards (see Jung et al. [2011], Martius et al. [2007]), so far, many - and only - experi-
mental work has been carried out for this problem, often with interesting output (see Graziano et al.
[2011], Mugan [2010], Konidaris [2011]) but unfortunately no performance guarantee validating a
proposed approach. Thus proposing such an analysis may have great immediate consequences for
validating some experimental studies.

Motivation. A typical example is the work of Baranes and Oudeyer [2009] about curiosity-driven
learning (and later on Graziano et al. [2011], Mugan [2010], Konidaris [2011]), where a precise
algorithm is defined together with an experimental study, yet no formal goal is defined, and no
analysis is performed as well. They consider a so-called sensory-motor spaceX def

= S×M ⊂ [0, 1]d

where S is a (continuous) state space andM is a (continuous) action space. There is no reward, yet
one can consider that the goal is to actively select and sample subregions of X for which a notion of
“learning progress” - this intuitively measures the decay of some notion of error when successively
sampling into one subregion - is maximal. Two key components are advocated in Baranes and
Oudeyer [2009], in order to achieve successful results (despite that success is a fuzzy notion):

• The use of a hierarchy of regions, where each region is progressively split into sub-regions.
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• Splitting leaf-regions in two based on the optimization of the dissimilarity, amongst the
regions, of the learning progress. The idea is to identify regions with a learning complex-
ity that is a globally constant in that region, which also provides better justification for
allocating samples between identified regions.

We believe it is possible to go one step towards a full performance analysis of such algorithms, by
relating the corresponding active sampling problem to existing frameworks.

Contribution. This paper aims to take a step forwards making the term “intrinsic motivation” from
reinforcement learning theoretically well founded, focusing on curiosity-driven learning. We in-
troduce a mathematical framework in which a metric space (which intuitively plays the role of the
state-action space) is divided into regions and a learner has to sample from an unknown random func-
tion in a way that reduces a notion of error measure the most. This error consists of two terms, the
first one is a robust measure of the quadratic error between the observed samples and their unknown
mean, the second one penalizes regions with non constant learning complexity, thus enforcing the
notion of curiosity. The paper focuses on how to choose the region to sample from, when a partition
of the space is provided.

The resulting problem formulation can be seen as a non trivial extension of the setting of active
learning in multi-armed bandits (see Carpentier et al. [2011] or Antos et al. [2010]), where the main
idea is to estimate the variance of each arm and sample proportionally to it, to the case when each
arm is a region as opposed to a point. In order to deal with this difficulty, the maximal and minimal
variance inside each region is tracked by means of a hierarchical optimization procedure, in the spirit
of the HOO algorithm from Bubeck et al. [2011]. This leads to a new procedure called Hierarchical
Optimistic Region SElection driven by Curiosity (HORSE.C) for which we provide a theoretical
performance analysis.

Outline. The outline of the paper is the following. In Section 2 we introduce the precise setting and
define the objective function. Section 3 defines our assumptions. Then in Section 4 we present the
HORSE.C algorithm. Finally in Section 5, we provide the main Theorem 1 that gives performance
guarantees for the proposed algorithm.

2 Setting: Robust region allocation with curiosity-inducing penalty.
Let X assumed to be a metric space and let Y ⊂ Rd be a normed space, equipped with the Euclidean
norm || · ||. We consider an unknown Y-valued process defined on X , written ν : X → M+

1 (Y),
where M+

1 (Y) refers to the set of all probability measures on Y , such that for all x ∈ X , the random
variable Y ∼ ν(x) has mean µ(x) ∈ Rd and covariance matrix Σ(x) ∈ Md,d(R) assumed to be

diagonal. We thus introduce for convenience the notation ρ(x)
def
= trace(Σ(x)), where trace is

the trace operator (this corresponds to the variance in dimension 1). We call X the input space or
sampling space, and Y the output space or value space.

Intuition Intuitively when applied to the setting of Baranes and Oudeyer [2009], then X def
= S ×A

is the space of state-action pairs, where S is a continuous state space and A a continuous action
space, ν is the transition kernel of an unknown MDP, and finally Y def

= S. This is the reason why
we consider Y ⊂ Rd and not only Y ⊂ R as would seem more natural. One difference is that
we assume (see Section 3) that we can sample anywhere in X , which is a restrictive yet common
assumption in the reinforcement learning literature. How to get rid of this assumption is an open
and challenging question that is left for future work.

Sampling error and robustness Let us consider a sequential sampling process on X , i.e. a process
that samples at time t a value Yt ∼ ν(Xt) at point Xt, where Xt ∈ F<t is a measurable function of
the past inputs and outputs {(Xs, Ys)}s<t. It is natural to look at the following quantity, that we call
average noise vector ηt:

ηt
def
=

1

t

t∑
s=1

Ys − µ(Xs) ∈ Rd .

One interesting property is that this is a martingale difference sequence, which means that the norm
of this vector enjoys a concentration property. More precisely (see Lemma 1 in the appendix), we
have for all deterministic t > 0

E[ ||ηt||2 ] =
1

t
E
[1

t

t∑
s=1

ρ(Xs)
]
.
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A similar property holds for a region R ⊂ X that has been sampled nt(R) times, and in order to be
robust against a bad sampling strategy inside a region, it is natural to look at the worst case error,
that we define as

eR(nt)
def
=

supx∈R ρ(x)

nt(R)
.

One reason for looking at robustness is that for instance, in the case we work with an MDP, we are
generally not completely free to choose the sample Xs ∈ S ×A: we can only choose the action and
the next state is generally given by Nature. Thus, it is important to be able to estimate this worst
case error so as to prevent from bad situations.

Goal Now let P be a fixed, known partition of the space X and consider the following game. The
goal of an algorithm is, at each time step t, to propose one point xt where to sample the space
X , so that its allocation of samples {nt(R)}R∈P (that is, the number of points sampled in each
region) minimizes some objective function. Thus, the algorithm is free to sample everywhere in
each region, with the goal that the total number of points chosen in each region is optimal in some
sense. A simple candidate for this objective function would be the following

LP(nt)
def
= max

{
eR(nt) ; R ∈ P

}
,

however, in order to incorporate a notion of curiosity, we would also like to penalize regions that
have a variance term ρ that is non homogeneous (i.e. the less homogeneous, the more samples we
allocate). Indeed, if a region has constant variance, then we do not really need to understand more
its internal structure, and thus its better to focus on an other region that has very heterogeneous
variance. For instance, one would like to split such a region in several homogeneous parts, which
is essentially the idea behind section C.3 of Baranes and Oudeyer [2009]. We thus add a curiosity-
penalization term to the previous objective function, which leads us to define the pseudo-loss of an
allocation nt

def
= {nt(R)}R∈P in the following way:

LP(nt)
def
= max

{
eR(nt) + λ|R|(max

x∈R
ρ(x)−min

x∈R
ρ(x)) ; R ∈ P

}
. (1)

Indeed, this means that we do not want to focus just on regions with high variance, but also trade-off
with highly heterogeneous regions, which is coherent with the notion of curiosity (see Oudeyer and
Kaplan [2007]). For convenience, we also define the pseudo-loss of a region R by

LR(nt)
def
= eR(nt) + λ|R|(max

x∈R
ρ(x)−min

x∈R
ρ(x)) .

Regret The regret (or loss) of an allocation algorithm at time T is defined as the difference between
the cumulated pseudo-loss of the allocations nt = {nR,t}R∈P proposed by the algorithm and that
of the best allocation strategy n?t = {n?R,t}R∈P at each time steps; we define

RT
def
=

T∑
t=|P|

LP(nt)− LP(n?t ) ,

where an optimal allocation at time t is defined by

n?t ∈ argmin
{
LP(nt) ; {nt(R)}R∈P is such that

∑
R∈P

nt(R) = t
}
.

Note that the sum starts at t = |P| for a technical reason, since for t < |P|, whatever the allocation,
there is always at least one region with no sample, and thus LP(nt) =∞.

Example 1 In the special case when X = {1, . . . ,K} is finite with K � T , and when P is the
complete partition (each cell corresponds to exactly one point), the penalization term is canceled.
Thus the problem reduces to the choice of the quantities nt(i) for each arm i, and the loss of an
allocation simply becomes

L(nt)
def
= max

{
ρ(i)

nt(i)
; 1 ≤ i ≤ K

}
.

This almost corresponds to the already challenging setting analyzed for instance in Carpentier et al.
[2011] or Antos et al. [2010]. The difference is that we are interested in the cumulative regret of
our allocation instead of only the regret suffered for the last round as considered in Carpentier et al.
[2011] or Antos et al. [2010]. Also we directly target ρ(i)

nt(i)
whereas they consider the mean sampling

error (but both terms are actually of the same order). Thus the setting we consider can be seen as
a generalization of these works to the case when each arm corresponds to a continuous sampling
domain.
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3 Assumptions

In this section, we introduce some mild assumptions. We essentially assume that the unknown
distribution is such that it has a sub-Gaussian noise, and a smooth mean and variance functions.
These are actually very mild assumptions. Concerning the algorithm, we consider it can use a
partition tree of the space, and that this one is essentially not degenerated (a typical binary tree that
satisfies all the following assumptions is such that each cell is split in two children of equal volume).
Such assumptions on trees have been extensively discussed for instance in Bubeck et al. [2011].

Sampling At any time, we assume that we are able to sample at any point in X , i.e. we assume we
have a generative model1 of the unknown distribution ν.

Unknown distribution We assume that ν is sub-Gaussian, meaning that for all fixed x ∈ X

∀λ ∈ Rd lnE exp[〈λ, Y − µ(X)〉] ≤ λTΣ(x)λ

2
,

and has diagonal covariance matrix in each point2.

The function µ is assumed to be Lipschitz w.r.t a metric `1, i.e. it satisfies
∀x, x′ ∈ X ||µ(x)− µ(x′)|| ≤ `1(x, x′) .

Similarly, the function ρ is assumed to be Lipschitz w.r.t a metric `2, i.e. it satisfies
∀x, x′ ∈ X |ρ(x)− ρ(x′)| ≤ `2(x, x′) .

Hierarchy We assume that Y is a convex and compact subset of [0, 1]d. We consider an infinite
binary tree T whose nodes correspond to regions of X . A node is indexed by a pair (h, i), where
h ≥ 0 is the depth of the nodes in T and 0 ≤ i < 2h is the position of the node at depth h. We write
R(h, i) ⊂ X the region associated with node (h, i). The regions are fixed in advance, are all assumed
to be measurable with positive measure, and must satisfy that for each h ≥ 1, {R(h, i)}0≤i<2h is a

partition of X that is compatible with depth h− 1, where R(0, 0)
def
= X ; in particular for all h ≥ 0,

for all 0 ≤ i < 2h, then
R(h, i) = R(h+ 1, 2i) ∪R(h+ 1, 2i+ 1) .

In dimension d, a standard way to define such a tree is to split each parent node in half along the
largest side of the corresponding hyper-rectangle, see Bubeck et al. [2011] for details.

For a finite sub-tree Tt of T , we write Leaf(Tt) for the set of all leaves of Tt. For a region (h, i) ∈
Tt, we denote by Ct(h, i) the set of its children in Tt, and by Tt(h, i) the subtree of Tt starting with
root node (h, i).

Algorithm and partition The partition P is assumed to be such that each of its regions R corre-
sponds to one region R(h, i) ∈ T ; equivalently, there exists a finite sub-tree T0 ⊂ T such that
Leaf(T0) = P . An algorithm is only allowed to expand one node of Tt at each time step t. In the
sequel, we write indifferently P ∈ T and (h, i) ∈ T or P and R(h, i) ⊂ X to refer to the partition
or one of its cell.

Exponential decays Finally, we assume that the `1 and `2 diameters of the region R(h, i) as well as
its volume |R(h, i)| decay at exponential rate in the sense that there exists positive constants γ, γ1,
γ2 and c, c1, c2 such that for all h ≥ 0, then |R(h, i)| ≤ cγh,

max
x′,x∈R(h,i)

`1(x, x′) ≤ c1γh1 and max
x′,x∈R(h,i)

`2(x, x′) ≤ c2γh2 .

Similarly, we assume that there exists positive constants c′ ≤ c, c′1 ≤ c1 and c′2 ≤ c2 such that for
all h ≥ 0, then |R(h, i)| ≥ c′γh,

max
x′,x∈R(h,i)

`1(x, x′) ≥ c′1γh1 and max
x′,x∈R(h,i)

`2(x, x′) ≥ c′2γh2 .

This assumption is made to avoid degenerate trees and for general purpose only. It actually holds
for any reasonable binary tree.

1using the standard terminology in Reinforcement Learning.
2this assumption is only here to make calculations easier and avoid nasty technical considerations that

anyway do not affect the order of the final regret bound but only concern second order terms.
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4 Allocation algorithm

In this section, we now introduce the main algorithm of this paper in order to solve the problem
considered in Section 2. It is called Hierarchical Optimistic Region SElection driven by Curiosity.
Before proceeding, we need to define some quantities.

4.1 High-probability upper-bound and lower-bound estimations

Let us consider the following (biased) estimator

σ̂2
t (R)

def
=

1

Nt(R)

t∑
s=1

||Ys||2I{Xs ∈ R} − ||
1

Nt(R)

t∑
s=1

YsI{Xs ∈ R}||2 .

Apart from a small multiplicative biased by a factor Nt(R)−1
Nt(R) , it has more importantly a positive bias

due to the fact that the random variables do not share the same mean; this phenomenon is the same
as the estimation of the average variance for independent but non i.i.d variables with different means
{µi}i≤n, where the bias would be given by 1

n

∑n
i=1[µi− 1

n

∑n
j=1 µj ]

2 (see Lemma 5). In our case,
it is thus always non negative, and under the assumption that µ is Lipschitz w.r.t the metric `1, it is
fortunately bounded by d1(R)2, the diameter of R w.r.t the metric `1.

We then introduce the two following key quantities, defined for all x ∈ R and δ ∈ [0, 1] by

Ut(R, x, δ)
def
= σ̂2

t (R) + (1 + 2
√
d)

√
d ln(2d/δ)

2Nt(R)
+
d ln(2d/δ)

2Nt(R)
+

1

Nt(R)

t∑
s=1

`2(Xs, x)I{Xs ∈ R},

Lt(R, x, δ)
def
= σ̂2

t (R)− (1 + 2
√
d)

√
d ln(2d/δ)

2Nt(R)
− d1(R)2 − 1

Nt(R)

t∑
s=1

`2(Xs, x)I{Xs ∈ R} .

Note that we would have preferred to replace the terms involving ln(2d/δ) with a term depending
on the empirical variance, in the spirit of Carpentier et al. [2011] or Antos et al. [2010]. However,
contrary to the estimation of the mean, extending the standard results valid for i.i.d data to the case
of a martingale difference sequence is non trivial for the estimation of the variance, especially due
to the additive bias resulting from the fact that the variables may not share the same mean, but also
to the absence of such results for U-statistics (up to the author’s knowledge). For that reason such
an extension is left for future work.

The following results (the proof of which is provided in Appendix A.3) show that Ut(R, x, δ) is a
high probability upper bound on ρ(x) while Lt(R, x, δ) is a high probability lower bound on ρ(x).

Proposition 1 Under the assumptions that Y is a convex subset of [0, 1]d, ν is sub-Gaussian, ρ is
Lipschitz w.r.t. `2 and R ⊂ X is compact and convex, then

P
(
∀x ∈ X ; Ut(R, x, δ) ≤ ρ(x)

)
≤ tδ .

Similarly, under the same assumptions, then

P
(
∀x ∈ X ; Lt(R, x, δ) ≤ ρ(x)− b(x,R,Nt(R), δ)

)
≤ tδ ,

where we introduced for convenience the quantity

b(x,R, n, δ)
def
= 2 max

x′∈R
`2(x, x′) + d1(R)2 + 2(1 + 2

√
d)

√
d ln(2d/δ)

2n
+
d ln(2d/δ)

2n
.

Now on the other other hand, we have that following inequalities (see the proof in Appendix A.3.)

Proposition 2 Under the assumptions that Y is a convex subset of [0, 1]d, ν is sub-Gaussian, µ is
Lipschitz w.r.t. `1, ρ is Lipschitz w.r.t. `2 and R ⊂ X is compact and convex, then

P
(
∀x ∈ X ; Ut(R, x, δ) ≥ ρ(x) + b(x,R,Nt(R), δ)

)
≤ tδ .

Similarly, under the same assumptions, then

P
(
∀x ∈ X ; Lt(R, x, δ) ≥ ρ(x)

)
≤ tδ .

5



4.2 Hierarchical Optimistic Region SElection driven by Curiosity (HORSE.C).

The pseudo-code of the HORSE.C algorithm is presented in Figure 1 below. This algorithm relies
on the estimation of the quantities maxx∈R ρ(x) and minx∈R ρ(x) in order to define which point
Xt+1 to sample at time t + 1. It is chosen by expanding a leaf of a hierarchical tree Tt ⊂ T , in an
optimistic way, starting with a tree T0 with leaves corresponding to the partition P .

The intuition is the following: let us consider a node (h, i) of the tree Tt expanded by the algorithm
at time t. The maximum value of ρ in R(h, i) is thus achieved for one of its children node (h′, i′) ∈
Ct(h, i). Thus if we have computed an upper bound on the maximal value of ρ in each child, then
we have an upper bound on the maximum value of ρ in R(h, i). Proceeding in a similar way for the
lower bound, this motivates the following two recursive definitions:

ρ̂+
t (h, i; δ)

def
= min

{
max

x∈R(h,i)
Ut(R(h, i), x, δ) , max

{
ρ̂+
t (h′, i′; δ) ; (h′, i′) ∈ Ct(h, i)

}}
,

ρ̂−t (h, i; δ)
def
= max

{
min

x∈R(h,i)
Lt(R(h, i), x, δ) , min

{
ρ̂−t (h′, i′; δ) ; (h′, i′) ∈ Ct(h, i)

}}
.

These values are used in order to build an optimistic estimate of the quantity LR(h,i)(Nt) in region
(h, i) (step 4), and then to select in which cell of the partition we should sample (step 5). Then the
algorithm chooses where to sample in the selected region so as to improve the estimations of ρ̂+

t and
ρ̂−t . This is done by alternating (step 6.) between expanding a leaf following a path that is optimistic
according to ρ̂+

t (step 7,8,9), or according to ρ̂−t (step 11.)

Thus, at a high level, the algorithm performs on each cell (h, i) ∈ P of the given partition two
hierarchical searches, one for the maximum value of ρ in region R(h, i) and one for its minimal
value. This can be seen as an adaptation of the algorithm HOO from Bubeck et al. [2011] with the
main difference that we target the variance and not just the mean (this is more difficult). On the other
hand, there is a strong link between step 5, where we decide to allocate samples between regions
{R(h, i)}(h,i)∈P , and the CH-AS algorithm from Carpentier et al. [2011].

5 Performance analysis of the HORSE.C algorithm

In this section, we are now ready to provide the main theorem of this paper, i.e. a regret bound on
the performance of the HORSE.C algorithm, which is the main contribution of this work. To this
end, we make use of the notion of near-optimality dimension, introduced in Bubeck et al. [2011],
and that measures a notion of intrinsic dimension of the maximization problem.

Definition (Near optimality dimension) For c > 0, the c-optimality dimension of ρ restricted to
the region R with respect to the pseudo-metric `2 is defined as

max

{
lim sup
ε→0

ln(N (Rcε, `2, ε))

ln(ε−1)
, 0

}
where Rcε

def
=

{
x ∈ R ; ρ(x) ≥ max

x∈R
ρ(x)− ε

}
,

and where N (Rcε, `2, ε) is the ε-packing number of the region Rcε.

Let d+(h0, i0) be the c-optimality dimension of ρ restricted to the region R(h0, i0) (see e.g. Bubeck
et al. [2011]), with the constant c def

= 4(2c2 + c21)/c′2. Similarly, let d−(h0, i0) be the c-optimality
dimension of −ρ restricted to the region R(h0, i0). Let us finally define the biggest near-optimality
dimension of ρ over each cell of the partition P to be

dρ
def
= max

{
max

{
d+(h0, i0), d−(h0, i0)

}
; (h0, i0) ∈ P

}
.

Theorem 1 (Regret bound for HORSE.C) Under the assumptions of Section 3 and if moreover
γ2

1 ≤ γ2, then for all δ ∈ [0, 1], the regret of the Hierarchical Optimistic Region SElection driven by
Curiosity procedure parameterized with δ is bounded with probability higher than 1−2δ as follows.

RT ≤
T∑

t=|P|

max
(h0,i0)∈P

(
1

n?t (h0, i0)
+ 2λcγh0

)
B
(
h0, n

?
t (h0, i0), δt

)
,

6



Algorithm 1 The HORSE.C algorithm.
Require: An infinite binary tree T , a partition P ⊂ T , δ ∈ [0, 1], λ ≥ 0

1: Let T0 be such that Leaf(T0) = P , and δi,t = 6δ
π2i2(2t+1)|P|t3 .

2: Let t := 0.
3: while true do
4: define for each region (h, i) ∈ Tt the estimated loss

L̂t(h, i)
def
=

ρ̂+
t (h, i; δ)

Nt(R(h, i))
+ λ|R(h, i)|

(
ρ̂+
t (h, i; δ)− ρ̂−t (h, i; δ)

)
,

where δ = δNt(R(h,i)),t, where by convention L̂t(h, i) if it is undefined.
5: choose the next region of the current partition P ⊂ T to sample

(Ht+1, It+1)
def
= argmax

{
L̂t(h, i) ; (h, i) ⊂ P

}
.

6: if Nt(R(h, i)) = n is odd then
7: sequentially select a path of children of (Ht+1, It+1) in Tt defined by (H0

t+1, I
0
t+1)

def
=

(Ht+1, It+1), and

(Hj+1
t+1 , I

j+1
t+1 )

def
= argmax

{
ρ̂+
t (h, i; δn,t) ; (h, i) ∈ Ct(Hj

t+1, I
j
t+1)

}
,

until j = jt+1 is such that (H
jt+1

t+1 , I
jt+1

t+1 ) ∈ Leaf(Tt).
8: expand the node (H

jt+1

t+1 , I
jt+1

t+1 ) in order to define Tt+1 and then define the candidate child

(ht+1, it+1)
def
= argmax

{
ρ̂+
t (h, i; δn,t) ; (h, i) ∈ Ct+1(H

jt+1

t+1 , I
jt+1

t+1 )
}
.

9: sample at point Xt+1 and receive the value Yt+1 ∼ ν(Xt+1), where

Xt+1
def
= argmax

{
Ut(R(ht+1, it+1), x, δn,t) ; x ∈ R(ht+1, it+1)

}
,

10: else
11: proceed similarly than steps 6,7,8 with ρ̂+

t replaced with ρ̂−t .
12: end if
13: t := t+ 1.
14: end while

where δt is a shorthand notation for the quantity δn?t (h0,i0),t−1, where n?t (h0, i0) is the optimal
allocation at round t for the region (h0, i0) ∈ P and where

B(h0, k, δk,t)
def
= min

h0≤h

{
2c2γ

h
2 + c21γ

2h
1 + 2(1 + 2

√
d)

√
d ln(2d/δk,t)

2Nh0(h, k)
+
d ln(2d/δk,t)

2Nh0(h, k)

}
,

in which we have used the following quantity

Nh0
(h, k)

def
=

1

C(c′2γ
h
2 )−dρ

(
k − 2h−h0 [2 + 4

√
d+

√
d ln(2d/δk,t)/2]2

d ln(2d/δk,t)

2(2c2γh2 + c21γ
2h
1 )2

)
.

Note that the assumption γ2
1 ≤ γ2 is only here so that dρ can be defined w.r.t the metric `2 only.

We can remove it at the price of using instead a metric mixing `1 and `2 together and of much
more technical considerations. Similarly, we could have expressed the result using the local values
d+(h0, i0) instead of the less precise dρ (neither those, nor dρ need to be known by the algorithm).
The full proof of this theorem is reported in the appendix. The main steps of the proof are as follows.
First we provide upper and lower confidence bounds for the estimation of the quantities Ut(R, x, δ)
and Lt(R, x, δ). Then, we lower-bound the depth of the subtree of each region (h0, i0) ∈ P that
contains a maximal point argmaxx∈R(h0,i0) ρ(x), and proceed similarly for a minimal point. This
uses the near-optimality dimension of ρ and −ρ in the region R(h0, i0), and enables to provide an
upper bound on ρ̂+

t (h, i; δ) as well as a lower bound on ρ̂−t (h, i; δ). This then enables us to deduce
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bounds relating the estimated loss L̂t(h, i) to the true loss LR(h,i)(Nt). Finally, we relate the true
loss of the current allocation to the one using the optimal one n?t+1(h0, i0) by discussing whether a
region has been over or under sampled. This final part is closed in spirit to the proof of the regret
bound for CH-AS in Carpentier et al. [2011].

In order to better understand the gain in Theorem 1, we provide the following corollary that gives
more insights about the order of magnitude of the regret.

Corollary 1 Let β def
= 1+ln

(
max{2, γ−dρ2 }

)
. Under the assumptions of Theorem 1, assuming that

the partition P of the space X is well behaved, i.e. that for all (h0, i0) ∈ P , then n?t+1(h0, i0) grows

at least at speed O
(

ln(t)
(

1
γ2

)2h0β
)

, then for all δ ∈ [0, 1], with probability higher than 1− 2δ we
have

RT = O

( T∑
t=|P|

max
(h0,i0)∈P

( 1

n?t (h0, i0)
+ 2λcγh0

)( ln(t)

n?t (h0, i0)

) 1
2β

)
.

This regret term has to be compared with the typical range of the cumulative loss of the optimal
allocation strategy, that is given by

T∑
t=|P|

LP(n?t ) =

T∑
t=|P|

max
(h0,i0)∈P

(
ρ+

(h0,i0)

n?t (h0, i0)
+ 2λcγh0(ρ+

(h0,i0) − ρ
−
(h0,i0))

)
,

where ρ+
(h0,i0)

def
= maxx∈R(h0,i0) ρ(x), and similarly ρ−(h0,i0)

def
= minx∈R(h0,i0) ρ(x). Thus,

this shows that, after normalization, the relative regret on each cell (h0, i0) is roughly of order
1

ρ+(h0,i0)

( ln(t)
n?t (h0,i0)

) 1
2β , i.e. decays at speed n?t (h0, i0)

− 1
2β . This shows that we are not only able

to compete with the performance of the best allocation strategy, but we actually achieve the exact
same performance with multiplicative factor 1, up to a second order term. Note also that, when
specified to the case of Example 1, the order of this regret is competitive with the standard results
from Carpentier et al. [2011].

The lost of the variance term ρ+(h0, i0)−1 (that is actually a constant) here comes from the fact
that we are only able to use Hoeffding’s like bounds for the estimation of the variance. In order
to remove it, one would need empirical Bernstein’s bounds for variance estimation in the case of
martingale difference sequences. This is postponed to future work.

6 Discussion
In this paper, we have provided an algorithm together with a regret analysis for a problem of online
allocation of samples in a fixed partition, where the objective is to minimize a loss that contains a
penalty term that is driven by a notion of curiosity. A very specific case (finite state space) already
corresponds to a difficult question known as active learning in the multi-armed bandit setting and
has been previously addressed in the literature (e.g. Antos et al. [2010], Carpentier et al. [2011]). We
have considered an extension of this problem to a continuous domain where a fixed partition of the
space as well as a generative model of the unknown dynamic are given, using our curiosity-driven
loss function as a measure of performance. Our main result is a regret bound for that problem,
that shows that our procedure is first order optimal, i.e. achieves the same performance as the best
possible allocation (thus with multiplicative constant 1).

We believe this result contributes to filling the important gap that exists between existing algorithms
for the challenging setting of intrinsic reinforcement learning and a theoretical analysis of such, the
HORSE.C algorithm being related in spirit to, yet simpler and less ambitious the RIAC algorithm
from Baranes and Oudeyer [2009]. Indeed, in order to achieve the objective that tries to address
RIAC, one should first remove the assumption that the partition is given: One trivial solution is to
run the HORSE.C algorithm in episodes of doubling length, starting with the trivial partition, and to
select at the end of each a possibly better partition based on computed confidence intervals, however
making efficient use of previous samples and avoiding a blow-up of candidate partitions happen to
be a challenging question; then one should relax the generative model assumption (i.e. that we can
sample wherever we want), a question that shares links with a problem called autonomous explo-
ration. Thus, even if the regret analysis of the HORSE.C algorithm is already a strong, new result
that is interesting independently of such difficult specific goals and of the reinforcement learning
framework (no MDP structure is required), those questions are naturally left for future work.
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A Technical details: Concentration results

In the sequel, we use the notation yk in order to refer to the k-th component of vector y. The norm

of some element y ∈ Y is denoted by ||y|| def
=
( d∑
k=1

y2
k

)1/2

.

A.1 Expectations

Lemma 1 Let us consider a process on X that samples at time t a value Yt ∼ ν(Xt) at point Xt,
where Xt ∈ F<t is a measurable function of the past inputs and outputs {(Xs, Ys)}s<t. Then the
noise vector ηt defined by

ηt
def
=

1

t

t∑
s=1

Ys − µ(Xs) ∈ Rd ,

satisfies the following equality for all deterministic t > 0

E[ ||ηt||2 ] =
1

t
E
[1

t

t∑
s=1

ρ(Xs)
]
.

Proof: For a vector y ∈ Rd, let us write yk ∈ R is k-th component. With this notation, we thus
have the following rewriting,

||ηt||2 =
1

t2

d∑
k=1

t∑
s=1

(Yk,s − µk(xs))
2 +

2

t2

d∑
k=1

t∑
s=1

s−1∑
s′=1

(Yk,s − µk(xs))(Yk,s′ − µk(x′s)) ,

from which we deduce the result immediately by taking expectation, using the assumption that Σ(x)
is diagonal and using the martingale structure.

�

A.2 Mean estimation

Let us first provide the following results for independent random variables, in order to provide more
intuition about the more involved case of a martingale difference sequence.

Lemma 2 Let Y1, . . . , Yn ∈ Rd be n random variables, independent and all sub-Gaussian in the
sense that for all i ≤ n, the random variable Yi has mean µi, covariance matrix Σi and satisfies
that

∀λ ∈ Rd lnE exp[〈λ, Yi − µi〉] ≤
λTΣiλ

2
.

Assume moreover that each Σi is diagonal. Then, the sum of these random variables has the follow-
ing concentration property. For all δ ∈ [0, 1],

P
(
||

n∑
i=1

(Yi − µi)|| ≥
√

2nρn ln(2d/δ)
)
≤ δ ,

where ρn
def
= 1

n

∑n
i=1 trace(Σi) is the average trace of the covariance matrices.

Proof: For a vector y ∈ Rd, let us write yk ∈ R is k-th component. First, by using the definition of
the norm and a union bound, we get that for all {εk}k≤d such that

∑d
k=1 ε

2
k = ε2, then

P
(
||

n∑
i=1

(Yi − µi)|| ≥ ε
)

= P
( d∑
k=1

[ n∑
i=1

(Yk,i − µk,i)
]2 ≥ ε2 )

≤
d∑
k=1

P
( n∑
i=1

(Yk,i − µk,i) ≥ εk
)

+

d∑
k=1

P
( n∑
i=1

(µk,i − Yk,i) ≥ εk
)
,
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where we used the fact that the event |Yk,i−µk,i| ≤ εk is equivalent to having at the same time both
Yk,i − µk,i ≤ εk and µk,i − Yk,i ≤ εk.

Then, for all positive λk > 0 we have by Markov’s inequality that

P
( n∑
i=1

(Yk,i − µk,i) ≥ εk
)

= P
(

exp
(
λk

n∑
i=1

(Yk,i − µk,i)
)
≥ exp(λkεk)

)
≤ exp(−λkεk)E

[
exp

(
λk

n∑
i=1

(Yk,i − µk,i)
)]

= exp(−λkεk)

n∏
i=1

E
[

exp
(
λk(Yk,i − µk,i)

)]
,

where we used the independence of the random variables in the last line. Now using the sub-
Gaussian assumption with λ = (0, . . . , 0, λk, 0, . . . , 0)T ∈ Rd where λk is at position k, then we
deduce that

P
( n∑
i=1

(Yk,i − µk,i) ≥ εk
)
≤ exp(−λkεk)

n∏
i=1

exp
(λ2

k

2
Σk,k,i

)
= exp(−λkεk +

λ2
k

2

n∑
i=1

Σk,k,i ,

where Σk,k,i is the value of element (k, k) of the matrix Σi. After optimizing this quantity with the

choice λk
def
= εk∑n

i=1 Σk,k,i
and proceeding in a similar way for the symmetric term, we get

P
(
||

n∑
i=1

(Yi − µi)|| ≥ ε
)
≤ 2

d∑
k=1

exp
(
− ε2k

2
∑n
i=1 Σk,k,i

)
.

Now let us choose ε2k
def
= 2

∑n
i=1 Σk,k,i ln(2d/δ) so that with the notation of the lemma, we have

exactly ε2 = 2nρn ln(2d/δ). We conclude from the fact that with our definition of ε2k, then

2

d∑
k=1

exp(− ε2k
2
∑n
i=1 Σk,k,i

) = δ .

�

In the case of a martingale difference sequence, we replace the average trace of the covariance
matrices with the supremum of ρ over the domain of the variables.

Lemma 3 Let us consider a sequential sampling process on X that samples at time i ≤ n a value
Yi ∼ ν(Xi) at point Xi, where Xi ∈ F<i is a measurable function of the past inputs and out-
puts {(Xj , Yj)}j<i. Assume that for all i, Yi is sub-Gaussian with conditional mean µ(Xi) and
conditional covariance matrix Σ(Xi), in the sense that

∀λ ∈ Rd lnE
(

exp[〈λ, Yi − µ(Xi)〉]
∣∣∣Xi

)
≤ λTΣ(Xi)λ

2
a.s .

Assume moreover that each Σ(Xi) is diagonal. Then, the sum of these random variables has the
following concentration property. For all δ ∈ [0, 1],

P
(
||

n∑
i=1

(Yi − µ(Xi))|| ≥
√

2ndρ? ln(2d/δ)
)
≤ δ ,

where ρ? = supx∈X trace(Σ(x)) is the supremum of the trace.

Note that we loose here an additional factor
√
d compared to the independent case. This additional

factor would not appear if we replace the `2 norm with the `1 norm, however we do not know
whether it can be removed for the `2 norm or whether this is a restriction due to our analysis.
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Proof: For a vector y ∈ Rd, let us write yk ∈ R is k-th component. First, by using the definition of
the norm and a union bound, we get that for all {εk}k≤d such that

∑d
k=1 ε

2
k = ε2, then

P
(
||

t∑
s=1

(Ys − µ(Xs))|| ≥ ε
)

= P
( d∑
k=1

[ t∑
s=1

(Yk,s − µk(Xs))
]2 ≥ ε2 )

≤
d∑
k=1

P
( t∑
s=1

(Yk,s − µk(Xs)) ≥ εk
)

+

d∑
k=1

P
( t∑
s=1

(µk(Xs)− Yk,s) ≥ εk
)
,

where we used the fact that the event |Yk,s − µk(Xs)| ≤ εk is equivalent to having at the same time
both Yk,s − µk(Xs) ≤ εk and µk(Xs)− Yk,s ≤ εk.

Then, for all positive λk > 0 we have by Markov’s inequality that

P
( n∑
i=1

(Yk,i − µk(Xi)) ≥ εk
)

= P
(

exp
(
λk

n∑
i=1

(Yk,i − µk(Xi))
)
≥ exp(λkεk)

)
≤ exp(−λkεk)E

[
exp

(
λk

n∑
i=1

(Yk,i − µk(Xi))
)]
.

Now by using the conditional independence property, and the sub-Gaussian assumption, we get

E
[
eλk

∑n
i=1(Yk,i−µk(Xi))

]
= E

[
E
[
eλk(Yk,n−µk(Xn)) |Xn,F<n

]
E
[ n−1∏
i=1

eλk(Yk,i−µk(Xi)) |Xt,F<t
]]

= E
[
E
[
eλk(Yk,n−µk(Xn)) |Xn

] n−1∏
i=1

eλk(Yk,i−µk(Xi))
]

≤ E
[

exp
(λ2

k

2
Σk,k(Xn)

) n−1∏
i=1

eλk(Yk,i−µk(Xi))
]
,

where Σk,k(Xn) is the value of element (k, k) of the matrix Σ(Xn). At this point we need a uniform
control on Σk,k(Xn) due to the dependency of Xn with the past random variables in order to derive

a useful bound. We thus introduce the quantity ρ? def
= maxx∈X trace(Σ(x)). Since Σ is a positive

matrix, then for any x ∈ X , Σk,k(x) ≤ trace(Σ(x)) ≤ ρ?. Thus we get by applying the same kind
of transformations as above recursively

P
( n∑
i=1

(Yk,i − µk(Xi)) ≥ εk
)
≤ exp(−λkεk) exp

(λ2
k

2
Σ?k,k

)
E
[ n−1∏
i=1

eλk(Yk,i−µk(Xi))
]

≤ exp
(
− λkεk +

λ2
k

2
nρ?
)
.

After optimizing this quantity with the choice λk
def
= εk

nρ? and proceeding in a similar way for the
symmetric term, we get

P
(
||

n∑
i=1

(Yi − µ(Xi))|| ≥ ε
)
≤ 2

d∑
k=1

exp
(
− ε2k

2nρ?
)
.

Finally we choose ε2k
def
= 2nρ? ln(2d/δ) so that ε2 = 2ndρ? ln(2d/δ).

�

Finally, we provide a standard Azuma’s inequality for bounded martingale difference sequence with
d-dimensional variables.

Lemma 4 Let us consider a sequential sampling process on X that samples at time i ≤ n a value
Yi ∼ ν(Xi) at point Xi, where Xi ∈ F<i is a measurable function of the past inputs and outputs
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{(Xj , Yj)}j<i. Assume that for all t, Yi ⊂ [0, 1]d with conditional mean µ(Xi) and diagonal
conditional covariance matrix Σ(Xi). Then, the sum of these random variables has the following
concentration property. For all δ ∈ [0, 1],

P
(
|| 1
n

n∑
i=1

Yi −
1

n

n∑
i=1

µ(Xi)|| ≥
√

2d ln(2d/δ)

n

)
≤ δ .

Proof: For a vector y ∈ Rd, let us write yk ∈ R is k-th component. First, by using the definition of
the norm and a union bound, we get that for all {εk}k≤d such that

∑d
k=1 ε

2
k = ε2, then

P
(
|| 1
n

n∑
i=1

Yi −
1

n

n∑
i=1

µ(Xi)|| ≥ ε
)

= P
( d∑
k=1

[ 1

n

n∑
i=1

(Yk,i − µk(Xi))
]2 ≥ ε2 )

≤
d∑
k=1

P
( 1

n

n∑
i=1

(Yk,i − µk(Xi)) ≥ εk
)

+

d∑
k=1

P
( 1

n

n∑
i=1

(µk(Xi)− Yk,i) ≥ εk
)
,

where we used the fact that the event |Yk,i − µk(Xi)| ≤ εk is equivalent to having at the same time
both Yk,i − µk(Xi) ≤ εk and µk(Xi)− Yk,i ≤ εk.

Then, for all positive λk > 0 we have by Markov’s inequality that

P
( 1

n

n∑
i=1

(Yk,i − µk(Xi)) ≥ εk
)

= P
(

exp
(
λk

n∑
i=1

(Yk,i − µk(Xi))
)
≥ exp(λknεk)

)
≤ exp(−λknεk)E

[
exp

(
λk

n∑
i=1

(Yk,i − µk(Xi))
)]
.

Now since by the bounded assumption Yk,n ⊂ [0, 1], we have that Yk,n − µk(Xn) ∈ [−1, 1], then
by an application of Hoeffding’s Lemma we get

lnE
[
eλk(Yk,n−µk(Xn)) |Xn

]
,≤ λ2

2
,

and thus we deduce by using the conditional independence property that

E
[
eλk

∑n
i=1(Yk,i−µk(Xi))

]
= E

[
E
[
eλk(Yk,n−µk(Xn)) |Xn,F<n

]
E
[ n−1∏
i=1

eλk(Yk,i−µk(Xi)) |Xn,F<n
]]

= E
[
E
[
eλk(Yk,n−µk(Xn)) |Xn

] n−1∏
i=1

eλk(Yk,i−µk(Xi))
]

≤ E
[

exp
(λ2

k

2

) n−1∏
i=1

eλk(Yk,i−µk(Xi))
]
.

Thus we get by applying the same kind of transformations as above recursively

P
( 1

n

n∑
i=1

(Yk,i − µk(Xi)) ≥ εk
)
≤ exp(−λknεk) exp

(λ2
k

2

)
E
[ n−1∏
i=1

eλk(Yk,i−µk(Xi))
]

≤ exp
(
− λknεk +

λ2
k

2
n
)
.

After optimizing this quantity with the choice λk
def
= εk and proceeding in a similar way for the

symmetric term, we get

P
(
|| 1
n

n∑
i=1

(Yi − µ(Xi))|| ≥ ε
)
≤ 2

d∑
k=1

exp
(
− nε2k

2

)
.

Finally we choose ε2k
def
= 2 ln(2d/δ)

n so that ε2 = 2d ln(2d/δ)
n .

�
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A.3 Variance estimation

We now analyze an upper-bound estimation of the variance. Note that there is an important differ-
ence between the iid case and the case of a martingale difference sequence. The main reason is that
the standard estimator of the variance is biased when the mean of the variables considered do not
have the same mean, which happens for a martingale difference sequence.

Lemma 5 Let {Xi}1≤i≤n be independent real-valued random variables, with mean µi and vari-
ance σ2

i . Let the following estimator

σ̂2
n

def
=

1

n− 1

n∑
i=1

(
Xi −

1

n

n∑
j=1

Xj

)2
,

satisfies that

E
[
σ̂2
n

]
=

1

n

n∑
i=1

σ2
i +

1

n− 1

n∑
i=1

(
µi −

1

n

n∑
j=1

µj
)2
.

Proof: By construction, we have that

E
[
σ̂2
n

]
= E

[
n

n− 1

(
1

n

n∑
i=1

(Xi − µi)−
1

n

n∑
j=1

(Xj − µj)
)2]

+
1

n− 1

n∑
i=1

(
µi −

1

n

n∑
j=1

µj
)2

= E
[

n

n− 1

(
1

n

n∑
i=1

(Xi − µi)2 −
( 1

n

n∑
j=1

Xj − µj
)2
)]

+
1

n− 1

n∑
i=1

(
µi −

1

n

n∑
j=1

µj
)2

=
n

n− 1

(
1

n

n∑
i=1

σ2
i −

1

n2

n∑
i=1

σ2
i

)
+

1

n− 1

n∑
i=1

(
µi −

1

n

n∑
j=1

µj
)2

=
1

n

n∑
i=1

σ2
i +

1

n− 1

n∑
i=1

(
µi −

1

n

n∑
j=1

µj
)2
.

�

A.3.1 Hoeffding-like upper bounds

The next lemma provides a result “a la Hoeffding” for the variance estimation of a martingale dif-
ference sequence.

Lemma 6 Let us consider a sequential sampling process on R ⊂ X that samples at time i ≤ n a
value Yi ∼ ν(Xi) at point Xi ∈ R, where Xi ∈ F<i is a measurable function of the past inputs
and outputs {(Xj , Yj)}j<i. Assume that for all t, Yi ⊂ [0, 1]d with conditional mean µ(Xi) and
diagonal conditional covariance matrix Σ(Xi). Then the following estimator (note that it is biased)

σ̂2
s =

1

n

n∑
i=1

||Yi||2 − ||
1

n

n∑
i=1

Yi||2 .

satisfies the property that for all δ ∈ [0, 1],

P
( 1

n

n∑
i=1

ρi − σ̂2
n ≥ (1 + 2

√
d)

√
d ln(2d/δ)

2n
+
d ln(2d/δ)

2n

)
≤ δ .

Proof: Since ρi = E[||Yi||2|Xi]− ||µ(Xi)||2, we deduce the following rewriting

1

n

n∑
i=1

ρi − σ̂2
n =

( 1

n

n∑
i=1

E[||Yi||2|Xi]− ||Yi||2
)
− 1

n

n∑
i=1

||µ(Xi)||2 + || 1
n

n∑
j=1

Yj ||2 .

Now, we use the fact that on the one hand, we have the equality

|| 1
n

n∑
j=1

Yj ||2 = || 1
n

n∑
j=1

Yj −
1

n

n∑
i=1

µ(Xi)||2 − ||
1

n

n∑
i=1

µ(Xi)||2 + 2〈 1
n

n∑
i=1

Yi,
1

n

n∑
k=1

µ(Xk)〉 ,

14



and on the other hand we have the equality

1

n

n∑
i=1

||µ(Xi)||2 =
1

n

n∑
i=1

||µ(Xi)−
1

n

n∑
j=1

µ(Xj)||2 + || 1
n

n∑
i=1

µ(Xi)||2 ,

to deduce the following bound:

1

n

n∑
i=1

ρi − σ̂2
n =

( 1

n

n∑
i=1

E[||Yi||2|Xi]− ||Yi||2
)

+ || 1
n

n∑
i=1

Yi −
1

n

n∑
i=1

µ(Xi)||2

+2〈 1
n

n∑
i=1

Yi −
1

n

n∑
i=1

µ(Xi),
1

n

n∑
k=1

µ(Xk)〉 − 1

n

n∑
i=1

||µ(Xi)−
1

n

n∑
j=1

µ(Xj)||2

≤
( 1

n

n∑
i=1

E[||Yi||2|Xi]− ||Yi||2
)

+ || 1
n

n∑
i=1

Yi −
1

n

n∑
i=1

µ(Xi)||2 + 2
√
d|| 1
n

n∑
i=1

Yi −
1

n

n∑
i=1

µ(Xi)|| ,

where we used in the last line Cauchy-Schwarz’s inequality and he fact that || 1n
∑n
i=1 µ(Xi)|| ≤

√
d

since Y ⊂ [0, 1]d by assumption.

We now take care of these three terms. By an application of Hoeffding-Azuma’s inequality for the
random variables {||Yi||2}i≤n that belongs to the interval [0, d] since by assumption Y ⊂ [0, 1]d, we
first deduce that for all δ ∈ [0, 1],

P
( 1

n

n∑
i=1

E
[
||Yi||2|Xi

]
− ||Yi||2 ≥

√
d ln(1/δ)

2n

)
≤ δ .

Similarly, by application of Lemma 4, then for all δ ∈ [0, 1],

P
(
|| 1
n

n∑
i=1

Yi −
1

n

n∑
i=1

µ(Xi)|| ≥
√
d ln(2d/δ)

2n

)
≤ δ .

Thus, by using a union bound over the two events, we deduce that with probability higher than
1− 2δ, then

1

n

n∑
i=1

ρi − σ̂2
n ≤

√
d ln(1/δ)

2n
+
d ln(2d/δ)

2n
+ 2d

√
ln(2d/δ)

2n

≤ (1 + 2
√
d)

√
d ln(2d/δ)

2n
+
d ln(2d/δ)

2n
.

�

This Lemma enables us to prove the following upper confidence bound on the value ρ?(R) of a
region R.

Proposition 1 Under the assumptions that Y is a convex subset of [0, 1]d, ν is sub-Gaussian, ρ is
Lipschitz w.r.t. `2 and R ⊂ X is compact and convex, then

P
(
∀x ∈ X ; Ut(R, x, δ) ≤ ρ(x)

)
≤ tδ

The proof of the bound for the quantity Lt(R, x, δ) results from a straightforward adaptation of this
proof.

Proof: Let us introduce the following notation

b(n, δ)
def
= (1 + 2

√
d)

√
d ln(2d/δ)

2n
+
d ln(2d/δ)

2n
.

Since ρ is Lipschitz, then we deduce that for all x ∈ X
t∑

s=1

(ρ(Xs) + `2(Xs, x)− ρ(x))I{Xs ∈ R} ≥
t∑

s=1

(−`2(Xs, x) + `2(Xs, xR))I{Xs ∈ R} ≥ 0 .

15



Thus, using this remark and the above notation, we deduce the following bound

P
(
∀x ∈ X ; Ut(R, x, δ) ≤ ρ(x) and Nt(R) ≥ 1

)
= P

(
∀x ∈ X ; σ̂2

t (R) + b(Nt(R), δ) +
1

Nt(R)

t∑
s=1

`2(Xs, x)I{Xs ∈ R} ≤ ρ(x) and Nt(R) ≥ 1
)

= P
(
Nt(R)σ̂2

t (R) + [

t∑
s=1

(`2(Xs, x)− ρ?(x))I{Xs ∈ R}] ≤ −b(Nt(R), δ)Nt(R) and Nt(R) ≥ 1
)

≤ P
( t∑
s=1

ρ(Xs)I{Xs ∈ R} −Nt(R)σ̂2
t (R) ≥ b(Nt(R), δ)Nt(R) and Nt(R) ≥ 1

)
.

We handle this last term thanks to a concentration result for sequences of martingale difference. Let
us introduce the stopping times {τi}i≥1 corresponding to the times when an arm falls intoR, defined
by

τi
def
= min{t : Nt(R) = i} .

We then denote X̃i
def
= Xτi the ith samples in region R, and its associated value Ỹi

def
= Yτi . First,

note that using this definition, we have on the event {Nt(R) = s} the rewriting

σ̂2
t (R) =

1

s

s∑
i=1

||Ỹi||2 − ||
1

s

s∑
j=1

Ỹj ||2 ,

that we define to be σ̃2
s(R) for convenience. Then, we plug this equality in the main term, and using

the fact that Nt(R) ≤ t we get

P
( t∑
s=1

ρ(Xs)I{Xs ∈ R} −Nt(R)σ̂2
t (R) ≥ b(Nt(R), δ)Nt(R) and Nt(R) ≥ 1

)

= P
(Nt(R)∑

i=1

ρ(X̃i)−Nt(R)σ̂2
t (R) ≥ b(Nt(R), δ)Nt(R) and Nt(R) ≥ 1

)
=

t∑
s=1

P
( s∑
i=1

ρ(X̃i)− sσ̃2
s(R) ≥ sb(s, δ)

)
≤

t∑
s=1

δ ,

where we used in the last line an application of Lemma 6, thanks to an application of Azuma’s
inequality for bounded martingale difference sequence and of Lemma 4.

�

A.3.2 Hoeffding-like lower bounds

Lemma 7 Let us consider a sequential sampling process on R ⊂ X that samples at time i ≤ n a
value Yi ∼ ν(Xi) at point Xi ∈ R, where Xi ∈ F<i is a measurable function of the past inputs
and outputs {(Xj , Yj)}j<i. Assume that for all t, Yi ⊂ [0, 1]d with conditional mean µ(Xi) and
diagonal conditional covariance matrix Σ(Xi). Then the following estimator (note that it is biased)

σ̂2
s =

1

n

n∑
i=1

||Yi||2 − ||
1

n

n∑
i=1

Yi||2 .

satisfies the property that for all δ ∈ [0, 1],

P
(
σ̂2
n −

1

n

n∑
i=1

ρi ≥ (1 + 2
√
d)

√
d ln(2d/δ)

2n
+ d1(R)2

)
≤ δ .
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Proof: We start as for the proof of Lemma 6 and thus directly consider derive the following
inequality

σ̂2
n −

1

n

n∑
i=1

ρi =
( 1

n

n∑
i=1

||Yi||2 − E[||Yi||2|Xi]
)
− || 1

n

n∑
i=1

Yi −
1

n

n∑
i=1

µ(Xi)||2

+2〈 1
n

n∑
i=1

Yi −
1

n

n∑
i=1

µ(Xi),
1

n

n∑
k=1

µ(Xk)〉+
1

n

n∑
i=1

||µ(Xi)−
1

n

n∑
j=1

µ(Xj)||2

≤
( 1

n

n∑
i=1

||Yi||2 − E[||Yi||2|Xi]
)

+ 2
√
d|| 1
n

n∑
i=1

Yi −
1

n

n∑
i=1

µ(Xi)||+ d1(R)2 ,

where we used in the last line the fact that by Cauchy-Schwarz’s inequality, by the assumption that
µ is Lipschitz w.r.t `1, and since Xi ∈ R for all i ≤ n,

||µ(Xi)−
1

n

n∑
j=1

µ(Xj)||2 ≤ 1

(n− 1)2

n∑
j,k 6=i=1

||µ(Xi)− µ(Xj)|| ||µ(Xi)− µ(Xk)||

≤ d1(R)2 .

We conclude similarly to Lemma 6

�

We finally prove the following lower bound for a region R ⊂ Tt.

Proposition 2 Under the assumptions that Y is a convex subset of [0, 1]d, ν is sub-Gaussian, µ is
Lipschitz w.r.t. `1, ρ is Lipschitz w.r.t. `2 and R ⊂ X is compact and convex, then

P
(
∀x ∈ X ; Ut(R, x, δ) ≥ ρ(x)+2 max

x′∈R
`2(x, x′)+d1(R)2+2(1+2

√
d)

√
d ln(2d/δ)

2Nt(R)
+
d ln(2d/δ)

2Nt(R)

)
≤ tδ

The proof of the bound for the quantity Lt(R, x, δ) results from a straightforward adaptation of this
proof.

Proof: Indeed, we first get the following bound by definition and by the assumption that ρ Lipschitz
w.r.t. `2, for all x ∈ X

Ut(R, x, δ) = σ̂2
t (R) + b(Nt(R), δ) +

1

Nt(R)

t∑
s=1

`2(Xs, x)I{Xs ∈ R}

= σ̂2
t (R)− 1

Nt(R)

t∑
s=1

ρ(Xs)I{Xs ∈ R}+ b(Nt(R), δ)

+
1

Nt(R)

t∑
s=1

ρ(Xs)I{Xs ∈ R}+
1

Nt(R)

t∑
s=1

`2(Xs, x)I{Xs ∈ R}

≤ σ̂2
t (R)− 1

Nt(R)

t∑
s=1

ρ(Xs)I{Xs ∈ R}+ b(Nt(R), δ) + ρ(x) + 2 max
x′∈R

`2(x, x′) ,

where we remind that by definition

b(n, δ)
def
= (1 + 2

√
d)

√
d ln(2d/δ)

2n
+
d ln(2d/δ)

2n
.

We now proceed as for the proof Proposition 1, by introducing the stopping times and the variables
X̃i and Ỹi. With these notations, we thus deduce that

P
(
∀x ∈ X ; Ut(R, x, δ) ≥ ρ(x)+2 max

x′∈R
`2(x, x′)+d1(R)2+2(1+2

√
d)

√
d ln(2d/δ)

2Nt(R)
+
d ln(2d/δ)

2Nt(R)
and Nt(R) ≥ 1

)
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≤
t∑

s=1

P
(
sσ̃2
s(R)−

s∑
i=1

ρ(X̃i) ≥ −sb(s, δ) + sd1(R)2 + 2(1 + 2
√
d)
√
ds ln(2d/δ)/2 + ds ln(2d/δ)/2

)
≤

t∑
s=1

P
(
σ̃2
s(R)− 1

s

s∑
i=1

ρ(X̃i) ≥ (1 + 2
√
d)

√
d ln(2d/δ)

2s
+ d1(R)2

)
≤

t∑
s=1

δ .

�

B Main regret bound

B.1 Hierarchical Optimistic Sampling

In this subsection, we now provide properties of the tree expanded by the HORSE.C algorithm.

Let us consider (h0, i0) ∈ P and let us define for all (h, i) ∈ T (h0, i0) in the sub tree of Tt with
root (h0, i0) the following quantity called respectively the max-gap and the min gap

∆+
h0,i0

(h, i)
def
= max

x∈R(h0,i0)
ρ(x)− max

x∈R(h,i)
ρ(x) and ∆−h0,i0

(h, i)
def
= min

x∈R(h,i)
ρ(x)− min

x∈R(h0,io)
ρ(x) .

A node (h, i) is called (h0, i0)-max-optimal if it holds that ∆+
h0,i0

(h, i) = 0, and similarly it is
called (h0, i0)-min-optimal in the case when ∆−h0,i0

(h, i) = 0.

Lemma 8 Under the assumptions of Section 3, and for the tree Tt grown by the HORSE.C algo-
rithm, for all (h, i) ∈ Tt(h0, i0) such that ∆+

h0,i0
(h, i) > 2c2γ

h
2 + c21γ

2h
1 , then there exists an event

Ω(h, i) of probability higher than 1−
∑k−1
j=1 (2j + 1)2δ2j+1,t such that on Ω(h, i) ∩ {Nt(h0, i0) =

2k + 1}, then

Nt(h, i) ≤ [2 + 4
√
d+

√
d ln(2d/δ2k+1,t)/2]2

d ln(2d/δ2k+1,t)

2(∆+
h0,i0

(h, i)− 2c2γh2 − c21γ2h
1 )2

.

Proof: The proof follows the same steps as in Lemma 14 of Bubeck et al. [2011]. Let us consider
some path of (h0, i0)-optimal nodes starting from the root {(h, i?h)}h≥h0 . Let (h, i) ∈ T (h0, i0)
where h = h0 + k be such that ∆+

h0,i0
(h, i) > 2c2γ

h
2 + c21γ

2h
1 , and h0 ≤ h? ≤ h − 1 with

k? = h? − h0 be the largest depth such that (h?, i?h?) is on the path from (h0, i0) to (h, i).

Step 1. Let us consider a round t + 1 such that (Ht+1, It+1) = (h0, i0) and the event
Nt(R(h0, i0)) = n = 2n0 + 1 for some integers n, n0. Thus Nt(R(h0, i0)) is odd. Now if
(ht+1, it+1) ∈ T (h, i), then this is because ρ̂+

t (Hk?+1
t+1 , Ik

?+1
t+1 ; δn,t) ≥ ρ̂+

t (h? + 1, i?h?+1; δn,t).
Moreover, on the path {(Hj

t+1, I
j
t+1)}j≥0, the value of ρ̂+

t can only increase. Indeed, we have by
definition of the algorithm

ρ̂+
t (Hj

t+1, I
j
t+1; δn,t) ≤ max{ρ̂+

t (h, i; δn,t); (h, i) ∈ Ct(Hj
t+1, I

j
t+1)}

≤ ρ̂+
t (Hj+1

t+1 , I
j+1
t+1 ; δn,t) .

Thus, we deduce that ρ̂+
t (h? + 1, i?h?+1; δn,t) ≤ ρ̂+

t (h, i; δn,t) ≤ maxx∈R(h,i) Ut(R(h, i), x, δn,t),
by using the definition of ρ̂+

t (h, i; δn,t). Now by property of the optimal path, we also have the
useful recursive equality

ρ̂+
t (h?+1, i?h?+1; δn,t) = min{ max

x∈R(h?+1,i?
h?+1

)
Ut(R(h?+1, i?h?+1), x, δn,t) , ρ̂

+
t (h?+2, i?h?+2; δn,t) } .
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Then, at round t + 1 we know that no more than Nt(h0, i0) = 2n0 + 1 nodes have been played in
T (h0, i0), thus the node (n, i?n) has not been sampled and ρ̂+

t (n, i?n; δn,t) =∞. This proves that

P
(

(ht+1, it+1) ∈ T (h, i) and Nt(h0, i0) = 2n0 + 1
)
≤

2n0∑
h=1

P
(

max
x∈R(h,i?h)

Ut(R(h, i?h), x, δn,t) ≤ max
x∈R(h0,i0)

ρ(x) and Nt(h0, i0) = 2n0 + 1
)

+ P
(

max
x∈R(h,i)

Ut(R(h, i), x, δn,t) > max
x∈R(h0,i0)

ρ(x) and Nt(h0, i0) = 2n0 + 1
)

Step 2. Now note that since for all h ≤ Nt(h0, i0) − 1 = 2n0, we have that (h, i?h) is an (h0, i0)-
optimal node and that Nt(h, i?h) ≤ Nt(h0, i0) = n, then we deduce that

P
(

max
x∈R(h,i?h)

Ut(R(h, i?h), x, δn,t) ≤ max
x∈R(h0,i0)

ρ(x) and Nt(h0, i0) = 2n0 + 1
)
≤ nδn,t ,

Since ∆+
h0,i0

(h, i) > 2c2γ
h
2 + c21γ

2h
1 , let us define some integer un > 0 such that

un ≥ [2 + 4
√
d+

√
d ln(2d/δn,t)/2]2

d ln(2d/δn,t)

2(∆+
h0,i0

(h, i)− 2c2γh2 − c21γ2h
1 )2

.

Using the fact that
√
x ≤ x for x ≤ 1, such an integer satisfies that

∆+
h0,i0

(h, i)− 2c2γ
h
2 − c21γ2h

1 ≥ 2(1 + 2
√
d)

√
d ln(2d/δn,t)

2un
+
d ln(2d/δn,t)

2un
.

Now let us introduce as a shorthand the notation Ut
def
= maxx∈R(h,i) Ut(R(h, i), x, δn,t) as well as

En
def
= {Nt(h0, i0) = n = 2n0 + 1}. With these notations, we deduce that for k ≥ n, we have

P
(
Ut > max

x∈R(h0,i0)
ρ(x) and En and Nt(R(h, i)) > uk

)
= P

(
Ut > ∆+

h0,i0
(h, i) + max

x∈R(h,i)
ρ(x) and En and Nt(R(h, i)) > uk

)
≤ P

(
Ut > max

x∈R(h,i)
ρ(x) + 2c2γ

h
2 + c21γ

2h
1 + 2(1 + 2

√
d)

√
d ln(2d/δk,t)

2uk

+
d ln(2d/δk,t)

2uk
and En and Nt(R(h, i)) > uk

)
≤ P

(
Ut > max

x∈R(h,i)
ρ(x) + 2c2γ

h
2 + c21γ

2h
1 + 2(1 + 2

√
d)

√
d ln(2d/δn,t)

2Nt(R(h, i))
+
d ln(2d/δn,t)

2Nt(R(h, i))
and En

)
≤ nδn,t .

Thus we have shown that for any k ≥ n, then

P
(

(ht+1, it+1) ∈ T (h, i) and Nt(h0, i0) = 2n0 + 1 and Nt(h, i) > uk

)
≤ nδn,t + (n− 1)nδn,t

= n2δn,t .

Step 3.

Let us introduce the stopping times sj corresponding to the first round τ + 1 such that Nτ (h0, i0) =
2j + 1, and note that we thus have (Hsj+1, Isj+1) = (h0, i0) at this round. Let us use the notation

nt
def
= dNt(h0,i0)−1

2 e. Thus, we have the following rewriting

Nt(h, i) =

t−1∑
s=0

I{(Hs+1, Is+1) = (h0, i0)}I{(hs+1, is+1) ∈ T (h, i)}

=

nt−1∑
j=0

I{(hsj+1, isj+1) ∈ T (h, i)} .
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Now for any u > 0, since Nsj (h, i) + 1 ≤ Nsj+1
(h, i), on the one hand we deduce that

nt−1∑
j=0

I{(hsj+1, isj+1) ∈ T (h, i)}I{Nsj (h, i) ≤ u} ≤ u ,

and on the other hand, since Nsj+1
(h, i) ≤ Nsj (h, i) + 2, we deduce that

nt−1∑
j=0

I{(hsj+1, isj+1) ∈ T (h, i)}I{Nsj (h, i) > u} ≤
nt−1∑

j=du+1
2 e

I{(hsj+1, isj+1) ∈ T (h, i)}I{Nsj (h, i) > u} .

Moreover, using the result of Step 2, we know that for each j ≤ k, there exists an event Ωj of
probability higher than 1− (2j + 1)2δ2j+1,t such that on this event, then

I{(hsj+1, isj+1) ∈ T (h, i) and Nsj (h0, i0) = 2j + 1}I{Nsj (h, i) > uk} = 0 .

Thus, by combining those result with a union bound, we deduce that there exists an event Ω(h, i) of
probability higher than 1 −

∑k−1
j=1 (2j + 1)2δ2j+1,t such that on Ω(h, i) ∩ {Nt(h0, i0) = 2k + 1},

then

Nt(h, i) ≤ [2 + 4
√
d+

√
d ln(2d/δ2k+1,t)/2]2

d ln(2d/δ2k+1,t)

2(∆+
h0,i0

(h, i)− 2c2γh2 − c21γ2h
1 )2

.

�

Lemma 9 Let I+
h0,i0

(h) be the set of all nodes at depth h ≥ h0 satisfying

∆+
h0,i0

(h, i) ≤ 4c2γ
h
2 + 2c21γ

2h
1 .

Then the number of elements of I+
h0,i0

(h) is bounded, for all d′ ≥ d+(h0, i0) where d+(h0, i0) is
the near-optimality dimension of ρ in region R(h0, i0) has

|I+
h0,i0

(h)| ≤ C(c′2γ
h
2 )−d

′
.

where C is a constant depending only on γ1, γ2, c1, c2, c
′
1, c
′
2 and d+(h0, i0).

Proof: First, using a similar argument as for Lemma 3 of Bubeck et al. [2011], then we have that
all arms in (h, i) are 2(4c2γ

h
2 + 2c21γ

2h
1 ) optimal w.r.t node (h0, i0). Now by the assumption that the

diameter in `2 is lower bounded and that γ2
1 ≤ γ2 then we deduce, following second step of the proof

of Theorem in Bubeck et al. [2011] that there exists a constant depending only on γ1, γ2, c1, c2, c
′
1, c
′
2

and d(h0, i0) such that for all d′ ≥ d+(h0, i0) where d+(h0, i0) is the near-optimality dimension of
ρ in region R(h0, i0), then

|I+
h0,i0

(h)| ≤ C(c′2γ
h
2 )−d

′
.

�

Lemma 10 For all (h, i) ∈ P , for all k = 2ko+1 ≥ 0, there exists an event Ω(h0, i0) of probability
higher than 1−(2k+1)

∑ko−1
j=1 (2j+1)2δ2j+1,t such that on the event Ω(h0, i0)∩{Nt(h0, i0) = k},

then the following inequalities hold

ρ̂+
t (h0, i0; δk,t)− max

x∈R(h0,i0)
ρ(x) ≤ min

h0≤h≤h+(k)

{
2c2γ

h
2 + c21γ

2h
1 + 2(1 + 2

√
d)

√
d ln(2d/δk,t)

2N+
(h0,i0)(h, k)

+
d ln(2d/δk,t)

2N+
(h0,i0)(h, k)

}
where

N+
(h0,i0)(h, k)

def
=

1

|I+
h0,i0

(h)|

(
k − 2h[2 + 4

√
d+

√
d ln(2d/δk,t)/2]2

d ln(2d/δk,t)

2(2c2γh2 + c21γ
2h
1 )2

)
.

and h+(k)
def
= max

{
h ≥ h0 ; N+

(h0,i0)(h, k) ≥ 1
}
.
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Proof: Step 1. Since I+
h0,i0

(h) and its complementary in T (h0, i0) form a partition of the region
R(h0, i0), then we first have the property that for all t∑

(h,i)∈I+h0,i0 (h)

Nt(h, i) +
∑

(h,i)∈I+h0,i0 (h)∩T (h0,i0)

Nt(h, i) = Nt(h0, i0) .

Thus, using the result of Lemma 8 on the |Tt(h0, i0)| = 2(2k + 1) + 1 nodes of Tt(h0, i0) on the
event {Nt(h0, i0) = k = 2ko+1}, we deduce that there exists an event Ω of probability higher than
1− (2k + 1)

∑ko−1
j=1 (2j + 1)2δ2j+1,t such that on Ω ∩ {Nt(h0, i0) = k = 2ko + 1}, then

|I+
h0,i0

(h)| max
(h,i)∈I+h0,i0 (h)

Nt(h, i) ≥ k−(2h−h0−|I+
h0,i0

(h)|)[2+4
√
d+
√
d ln(2d/δk,t)/2]2

d ln(2d/δk,t)

2(2c2γh2 + c21γ
2h
1 )2

,

and thus, on this event, we have that

max
(h,i)∈I+h0,i0 (h)

Nt(h, i) ≥ N+
(h0,i0)(h, k)

def
=

1

|I+
h0,i0

(h)|

(
k−2h−h0 [2+4

√
d+
√
d ln(2d/δk,t)/2]2

d ln(2d/δk,t)

2(2c2γh2 + c21γ
2h
1 )2

)
.

Moreover, note that by construction of the tree Tt, then each leaf of Tt, and thus of any Tt(h, i)
contains at most one sample. Indeed this holds for the tree T0, now at round t+ 1, if each leaf of Tt
contains at most one sample, let us consider the leaf (H

jt+1

t+1 , I
jt+1

t+1 ) ∈ Tt. If it contains no sample,
then it is split in two, one of which is sampled, thus each leaf of Tt+1 contains at most one sample.
Now if it already contains one sample, it is split in two, and the chosen leaf (ht+1, it+1) ∈ Tt+1 is
the one that contains no sample, since it satisfies that ρ̂+

t (h, i) =∞ or ρ̂−t (h, i) = −∞. Thus each
leaf of Tt+1 contains at most one sample.

Now, as long as the term on the right-hand side of the previous inequality is positive, this means
that there exists one near-optimal node that has been sampled at depth h. Thus, we introduce the
following depth defined by

h+(k)
def
= max

{
h ≥ h0 ; N+

(h0,i0)(h, k) ≥ 1
}
.

Step 2.

For the corresponding node (h+(k), i(k)), we can now consider the path {(h, ih)}h0≤h≤h+(k) lead-
ing to it from the root (h0, i0) at the last round τ + 1 when it is sampled. From the previous step,
we deduce that on the previous event Ω ∩ {Nτ (h0, i0) = k = 2ko + 1}, then

ρ̂+
t (h0, i0; δk,t) ≤ min{ρ̂+

t (h, ih; δk,t);h0 ≤ h ≤ h+(k)}
≤ min{ max

x∈R(h,i)
Ut(R(h, ih), x, δk,t);h0 ≤ h ≤ h+(k)} ,

from which we deduce, using the property that for (h, i) ∈ Tt(h0, i0) then we have
maxx∈R(h,i) ρ(x) ≤ maxx∈R(h0,i0) ρ(x), that

ρ̂+
t (h0, i0; δk,t)− max

x∈R(h0,i0)
ρ(x) ≤ min

h0≤h≤h+(k)

{
2c2γ

h
2 + c21γ

2h
1 + 2(1 + 2

√
d)

√
d ln(2d/δk,t)

2N+
(h0,i0)(h, k)

+
d ln(2d/δk,t)

2N+
(h0,i0)(h, k)

}

�

The following result provides precise upper and lower bounds on the quantity L̂t(R(h, i)) defined
in the algorithm in Figure 1, depending on the number of times Nt(R(h, i)) the region R(h, i) has
been sampled up to time t. It is a simple consequence of Proposition 10 and its counter part for
ρ̂−t (h0, i0; δk,t).

Proposition 3 Let dρ
def
= max{max{d+(h0, i0), d−(h0, i0)} ; (h0, i0) ∈ P } be the biggest near-

optimality dimension of ρ over each cell of the partition P . Under the assumptions of Section 3 and

21



if moreover γ2
1 ≤ γ2, then there exists an event Ω of probability higher than 1− 2δ such that on this

event, simultaneously for all t ≤ T , for all (h, i) ∈ Tt we have

L̂t(R(h0, i0)) ≥ LR(h0,i0)(Nt(R(h0, i0))) ,

and also simultaneously for all |P| − 1 ≤ t ≤ T , for all (h, i) ∈ Tt we have if Nt(R(h0, i0)) ≥ k

L̂t(R(h0, i0)) ≤ LR(h0,i0)(k) + (
1

k
+ 2λcγh0)B(h0, k, δk,t) .

where we introduced

B(h0, k, δk,t)
def
= min

h0≤h

{
2c2γ

h
2 + c21γ

2h
1 + 2(1 + 2

√
d)

√
d ln(2d/δk,t)

2N(h, k)
+
d ln(2d/δk,t)

2N(h, k)

}
where N(h, k)

def
=

1

C(c′2γ
h
2 )−dρ

(
k− 2h−h0 [2 + 4

√
d+

√
d ln(2d/δk,t)/2]2

d ln(2d/δk,t)

2(2c2γh2 + c21γ
2h
1 )2

)
.

Proof: Step 1. Union bounds For each region (h0, i0) ∈ P , using a union bound for the max-gap
and the min-gap, we look at the quantity

(2(2k + 1) + 1)

k−1∑
j=1

(2j + 1)2δ2j+1,t + (2(2k) + 1)

k−1∑
j=1

(2j)2δ2j,t ≤ (2n+ 1)

n∑
p=1

p2δp,t .

Now, note that Nt(R(h0, i0)) ≤ t, so that by a union bound over all (h0, i0) ∈ P and all t ≤ T we
finally get that there exists an event Ω of probability higher than 1−

∑T
t=1

∑t
i=1 i

2δi,t(2t+ 1)|P|,
then we simultaneously have that for all (h0, i0) ∈ P and all t ≤ T , if Nt(R(h0, i0)) ≥ k, then

ρ̂+
t (h0, i0; δNt(R(h0,i0)),t)−ρ+(h0, i0) ≤ min

h0≤h≤h+(k)

{
2c2γ

h
2 +c21γ

2h
1 +2(1+2

√
d)

√
d ln(2d/δk,t)

2N+
(h0,i0)(h, k)

+
d ln(2d/δk,t)

2N+
(h0,i0)(h, k)

}
on the one hand, and on the other hand

ρ−(h0, i0)−ρ̂−t (h0, i0; δNt(R(h0,i0)),t) ≤ min
h0≤h≤h−(k)

{
2c2γ

h
2 +c21γ

2h
1 +2(1+2

√
d)

√
d ln(2d/δk,t)

2N−(h0,i0)(h, k)
+
d ln(2d/δk,t)

2N−(h0,i0)(h, k)

}

where we introduced ρ+(h0, i0)
def
= maxx∈R(h0,i0) ρ(x) as well as the quantity ρ−(h0, i0)

def
=

minx∈R(h0,i0) ρ(x) as shorthand notations, and where we used the following two quantities

N+
(h0,i0)(h, k)

def
=

1

|I+
h0,i0

(h)|

(
k − 2h−h0 [2 + 4

√
d+

√
d ln(2d/δk,t)/2]2

d ln(2d/δk,t)

2(2c2γh2 + c21γ
2h
1 )2

)
,

N−(h0,i0)(h, k)
def
=

1

|I−h0,i0
(h)|

(
k − 2h−h0 [2 + 4

√
d+

√
d ln(2d/δk,t)/2]2

d ln(2d/δk,t)

2(2c2γh2 + c21γ
2h
1 )2

)
.

Now, by definition of L̂t(R(h0, i0)), we have the following bound

L̂t(R(h0, i0))− LR(h0,i0)(Nt(R(h0, i0))) =
ρ̂+
t (h0, i0; δNt(R(h0,i0),t)− ρ+(h0, i0)

Nt(R(h0, i0)

+ λ|R(h0, i0)|
(
ρ̂+
t (h0, i0; δNt(R(h0,i0),t)− ρ+(h0, i0) + ρ−(h0, i0)− ρ̂−t (h0, i0; δNt(R(h0,i0),t)

)
,

Step 2. Near optimality Let us introduce dρ
def
= max{max{d+(h0, i0), d−(h0, i0)} ; (h0, i0) ∈

P }, the biggest near-optimality dimension over each cell of the partition P . We now make use of
the assumption that γ2

1 ≤ γ2 that simplifies the bound on the |I+
h0,i0

(h)|. Indeed, in that case it can
be shown that for all d′ ≥ dρ, there exist a constant C such that

max{max{|I+
h0,i0

(h)|, |I−h0,i0
(h)|} ; (h0, i0) ∈ P } ≤ C(c′2γ

h
2 )−d

′
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Thus, if we naturally introduce the notation

B(h0, k, δk,t)
def
= min

h0≤h

{
2c2γ

h
2 + c21γ

2h
1 + 2(1 + 2

√
d)

√
d ln(2d/δk,t)

2N(h, k)
+
d ln(2d/δk,t)

2N(h, k)

}
where N(h, k)

def
=

1

C(c′2γ
h
2 )−d′

(
k − 2h−h0 [2 + 4

√
d+

√
d ln(2d/δk,t)/2]2

d ln(2d/δk,t)

2(2c2γh2 + c21γ
2h
1 )2

)
,

then we deduce that there exists an event Ω of probability higher than 1 −
∑T
t=1

∑t
i=1 i

2δi,t(2t +
1)|P|, such that simultaneously for all (h0, i0) ∈ P and all t ≤ T , if Nt(R(h0, i0)) ≥ k, then

L̂t(R(h0, i0)) ≤ LR(h0,i0)(k) + (
1

k
+ 2λcγh0)B(h0, k, δk,t) .

We conclude by the fact that

T∑
t=1

t∑
i=1

i2δi,t(2t+ 1)|P| =
T∑
t=1

6δ

π2t2
≤ δ

�

B.2 Proof of the main Theorem

Theorem 1 (Regret bound for HORSE.C) Under the assumptions of Subsection 3, then the regret
of the Hierarchical Optimistic Region SElection driven by Curiosity procedure is bounded with
probability higher than 1− 2δ as follows.

RT ≤
T−1∑

t=|P|−1

max
(h0,i0)∈P

(
1

n?t+1(h0, i0)
+ 2λcγh0

)
B(h0, n

?
t+1(h0, i0), δn?t+1(h0,i0),t)

where n?t+1(h0, i0) is the optimal allocation at round t+ 1 for the region (h0, i0) ∈ P and where

B(h0, k, δk,t)
def
= min

h0≤h

{
2c2γ

h
2 + c21γ

2h
1 + 2(1 + 2

√
d)

√
d ln(2d/δk,t)

2N(h, k)
+
d ln(2d/δk,t)

2N(h, k)

}
in which we have used the following quantity

N(h, k)
def
=

1

C(c′2γ
h
2 )−dρ

(
k − 2h−h0 [2 + 4

√
d+

√
d ln(2d/δk,t)/2]2

d ln(2d/δk,t)

2(2c2γh2 + c21γ
2h
1 )2

)
.

Proof: Step 1. The regret of the algorithm at time T is given by definition by

RT =

T−1∑
t=|P|−1

max
R∈P
LR(Nt+1(R))−max

R∈P
LR(n?t+1(R;P)) .

For each t + 1 ∈ [1, T ], let Rt+1
def
= argmax{LR(Nt+1(R)) ; R ∈ P} be a region of highest loss.

Then, either this region is over-pulled or it is under-pulled at the end of round t+ 1. We control the
contribution to the regret in the first case in Step 2, and in the second case in Step 3 below.

Step 2 Rt+1 is over-pulled. In that case, then Nt+1(Rt+1) > n?t+1(Rt+1;P), thus by definition of
the loss, this means that

LRt+1
(Nt+1(Rt+1)) < LRt+1

(n?t+1(Rt+1;P)) ≤ max
R∈P
LR(n?t+1(R;P)) ,

Thus, the contribution to the regret is negative in that case.

Step 3 Rt+1 is under-pulled. In that case, then Nt+1(Rt+1) < n?t+1(Rt+1;P), thus by definition
of the loss, this means that

LRt+1
(Nt+1(Rt+1)) > LRt+1

(n?t+1(Rt+1;P)) .
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Since Rt+1 is under-pulled, from the constraint that
∑
R∈P

Nt+1(R) = t+ 1, we deduce that there

exists a region R′ ∈ P that is over-pulled, i.e. satisfies Nt+1(R′) > n?t+1(R′;P). Let τ(R′) + 1
be the last round when a point in R′ was pulled; we have precisely Nτ(R′)+1(R′) = Nt+1(R′) and
Nτ(R′)(R

′) = Nt+1(R′)− 1.

Now at the end of round t+ 1 ≥ |P|, then all regions R′ have been pulled at least once thus satisfies
τ(R′) + 1 ≥ 1. In that case, in the corresponding round τ(R′) + 1 we have for all R ∈ P first by
definition of the algorithm and then on an event Ω of probability higher than 1− 2δ that

L̂τ(R′)(R
′) ≥ L̂τ(R′)(R) ≥ LR(Nτ(R′)(R)) .

In particular, this happens for R being the region Rt+1. Now, for all t′ ≥ τ(R′) and all region R we
have the property that l(R,Nτ(R′)(R)) ≥ l(R,Nt′(R)) and thus we deduce that on Ω

L̂τ(R′)(R
′) ≥ LRt+1

(Nt+1(Rt+1)) .

On the other hand, if we now introduce for a region R = R(h, i) the notation

εt+1(R(h, i), n) =
( 1

n
+ 2λcγh

)
B(h0, n, δn,t) ,

then on Ω we have the following property

L̂τ(R′)(R
′) ≤ LR′(Nτ(R′′)(R

′)) + ετ(R′′)+1(R′, Nτ(R)(R
′))

= LR′(Nt+1(R′)− 1) + εt+1(R′, Nt+1(R′)− 1)

≤ LR′(n?t+1(R′;Pi)) + εt+1(R′, n?t+1(R′;Pi)) ,
where we used in the last line the fact that Nt+1(R′) ≥ n?t+1(R′;Pi) + 1.

By combining the last two inequalities together, we thus proved that on the event Ω, then

LRt+1
(Nt+1(Rt+1))− max

R∈Pi
LR(n?t+1(R;Pi)) ≤ max

R∈Pi
εt+1(R,n?t+1(R;Pi)) . (2)

Step 4. Summary So far, by the results of Step 2 and Step 3 we thus have proved that the following
upper bound on the regret holds on the event Ω of probability higher than 1− 2δ

RT ≤
T−1∑

t=|P|−1

max
R∈P

εt+1(R,n?t+1(R;P)) .

We now use the definition of the εt+1 and the result of Proposition 3 in order to get

RT ≤
T−1∑

t=|P|−1

max
(h0,i0)∈P

(
1

n?t+1(h0, i0)
+ 2λcγh0

)
B
(
h0, n

?
t+1(h0, i0), δn?t+1(h0,i0),t

)
�

Corollary 1 Let β def
= 1 + ln(max{2, γ−dρ2 }). Under the assumptions of Theorem 1, assuming that

the partition P of the space X is well behaved, i.e. that for all (h0, i0) ∈ P , then n?t+1(h0, i0) grows

at least as speed O(ln(t)
(

1
γ2

)2h0β
), then with probability higher than 1− 2δ we have

RT = O
( T∑
t=|P|

max
(h0,i0)∈P

( 1

n?t (h0, i0)
+ 2λcγh0

)( ln(t)

n?t (h0, i0)

) 1
2β

)

Proof: First, note that under the assumption that γ2
1 ≤ γ2, then

B(h0, k, δk,t) ≤ min
h0≤h

{
(2c2 + c21)γh2 +

√
Cd(k, t)

Nh,k

}
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where we introduce for convenience the quantity

Cd(k, t)
def
= (2 + 4

√
d+

√
d ln(2d/δk,t)/2)2d ln(2d/δk,t)/2 ,

and where we remind that

Nh,k
def
=

1

C(c′2γ
h
2 )−dρ

(
k − 2h−h0

Cd(k, t)

(2c2 + c21)2γ2h
2

)
.

With these notations, we note that the inequality (2c2 + c21)γh2 ≥
√

Cd(k,t)
Nh,k

is equivalent to having
the condition,

k
(2c2 + c21)2

Cd(k, t)
γ2h

2 ≥ 2h−h0 + C(c′2γ
h
2 )−dρ ,

that is satisfied as soon as h ≥ h0 is such that

k
(2c2 + c21)2

Cd(k, t)
≥
( 1

γ2
2

max{2, γ−dρ2 }
)h

max{2−h0 , Cc′2
−dρ} i.e. h ≤ h+ def

=
ln
(
k

(2c2+c21)2

Cd(k,t) max{2−h0 ,Cc′2
−dρ}

)
ln
(

1
γ2
2

max{2, γ−dρ2 }
) .

For such a h+, then (up to rounding effects), we thus deduce that the following order holds

γh
+

2 =
(
k

(2c2 + c21)2

Cd(k, t) max{2−h0 , Cc′2
−dρ}

)− 1
2

ln(1/γ22)

ln

(
1
γ22

max{2,γ
−dρ
2 }

)

= O
(( ln(t)

k

) 1
2

1

1+ln(max{2,γ
−dρ
2 })

)
.

Thus, from the condition that h+ ≥ h0 and the definition of B, we deduce that as soon as

n?t+1(h0, i0) ≥ c ln(t)

(
1

γ2

)2h0(1+ln(max{2,γ−dρ2 }))

,

for some constant c then we have the following upper bound that concludes the proof

B(h0, n
?
t+1(h0, i0), δn?t+1(h0,i0),t) = O

(( ln(t)

n?t+1(h0, i0)

) 1
2

1

1+ln(max{2,γ
−dρ
2 })

)
.
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