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Gradient schemes for two-phase flow in heterogeneous porous media and Richards equation

The gradient scheme family, which includes the conforming and mixed finite elements as well as the mimetic mixed hybrid family, is used for the approximation of Richards equation and the two-phase flow problem in heterogeneous porous media. We prove the convergence of the approximate saturation and of the approximate pressures and approximate pressure gradients thanks to monotony and compactness arguments under an assumption of non-degeneracy of the phase relative permeabilities. Strong convergence results stem from the convergence of the norms of the gradients of pressures, which demand handling the nonlinear time term. Numerical results show the efficiency on these problems of a particular gradient scheme, called the Vertex Approximate Gradient scheme.

Introduction

We are interested here in the approximation of (u, v), solution to the incompressible two-phase flow problem in the space domain Ω over the time period (0, T ): Φ(x)∂ t S(x, p(x, t)) -div(k 1 (x, S(x, p(x, t)))Λ(x)(∇u(x, t) + g 1 )) = f 1 (x, t), (1a) Φ(x)∂ t (1 -S(x, p(x, t))) -div(k 2 (x, S(x, p(x, t)))Λ(x)(∇v(x, t) + g 2 )) = f 2 (x, t), (1b) p(x, t) = u(x, t) -v(x, t), for (x, t) ∈ Ω × (0, T ),

where u (resp. v) denotes the pressure of the phase 1, called the wetting phase (resp. of the phase 2, which is the nonwetting phase), p is the difference between the two pressures, called the capillary pressure, the saturation of the phase 1 is denoted by S(x, p) (it is called the "water content" in the framework of Richards' equation), and where Φ, Λ, k i , g i and f i (i = 1, 2) respectively denote the porosity, the absolute permeability, the mobility, the gravity and the source terms. Notice that the mobility k i is defined as the ratio between the relative permeability and the viscosity, and that the gravity term g i includes the density of the phase. Problem (1) is considered with the following initial condition: S(x, p(x, 0)) = S(x, p ini (x)), for a.e. x ∈ Ω,

together with the non-homogeneous Dirichlet boundary conditions: u(x, t) = ū(x) and v(x, t) = v(x) on ∂Ω × (0, T ),

under the following assumptions:

• Ω is an open bounded connected polyhedral subset of R d , d ∈ N and T > 0, (4a) • Φ is a measurable function from Ω to R with Φ(x) ∈ [Φ min , Φ max ], Φ max ≥ Φ min > 0, (4b) • Λ is a measurable function from Ω to M d (R), where M d (R) denotes the set of d × d matrices, such that for a.e. x ∈ Ω, Λ(x) is symmetric, and the set of its eigenvalues is included in [λ, λ],

with 0 < λ ≤ λ, (4c) 
• p ini ∈ L 2 (Ω), (4d) • S(x, q) ∈ [0, 1] for all (x, q) ∈ Ω × R with S(x, q) = S j (q) for a.e. x ∈ Ω j and all q ∈ R, where S j is a non decreasing Lipschitz continuous function with constant L S , (Ω j ) j∈J is a family of disjoint connected polyhedral open sets such that j∈J Ω j = Ω where J is a finite set , (4e)

• f i ∈ L 2 (Ω × (0, T )), i = 1, 2, (4f) • k i (x, s) ∈ [k min , k max ] for (x, s) ∈ Ω × [0, 1] with k max ≥ k min > 0 and k i (•, s) measurable, k i (x, •) continuous, i = 1, 2, (4g) 
• g i ∈ R d , i = 1, 2, (4h) 
• ū, v ∈ H 1 (Ω). (4i) 
Assumptions ( 4) are quite general, except for k min > 0 in Hypothesis (4g). This assumption is needed in the mathematical part of this paper (the influence of this parameter is studied numerically, see Section 5). Assumption (4e) is compatible with the so-called Van Genuchten model S j (p) = 1/((max(-p, 0)/p j ) nj + 1) mj , with real parameters p j , n j , m j > 0. The hypothesis that the function S(x, p) is defined by given functions in a partition of the domain is classical. Problem (1)-( 2)-( 3) is considered in this paper under the following weak sense.

u -ū, v -v ∈ L 2 (0, T ; H 1 0 (Ω)), p = u -v, T 0 Ω (-Φ(x)S(x, p(x, t))∂ t ϕ(x, t) + k 1 (x, S(x, p(x, t)))Λ(x)(∇u(x, t) + g 1 ) • ∇ϕ(x, t)) dxdt

- Ω Φ(x)S(x, p ini (x))ϕ(x, 0)dx = T 0 Ω f 1 (x, t)ϕ(x, t)dxdt, ∀ϕ ∈ C ∞ c (Ω × [0, T )), T 0 Ω
(Φ(x)S(x, p(x, t))∂ t ϕ(x, t) + k 2 (x, S(x, p(x, t)))Λ(x)(∇v(x, t) + g 2 ) • ∇ϕ(x, t)) dxdt

+ Ω Φ(x)S(x, p ini (x))ϕ(x, 0)dx = T 0 Ω f 2 (x, t)ϕ(x, t)dxdt, ∀ϕ ∈ C ∞ c (Ω × [0, T )), (5) 
where we denote by C ∞ c (Ω × [0, T )) the set of the restrictions of functions of C ∞ c (Ω × (-∞, T )) to Ω × [0, T ). Alternately, we also consider the case of Richards' equation, which can be obtained from [START_REF] Angelini | Finite volume approximation of a diffusiondissolution model and application to nuclear waste storage[END_REF] in two ways. One can replace (1a) by u(x, t) = ū(x) for (x, t) ∈ Ω × (0, T ), [START_REF] Brenner | Finite volume approximation for an immiscible two-phase flow in porous media with discontinuous capillary pressure[END_REF] or one can replace (1b) by v(x, t) = v(x) for (x, t) ∈ Ω × (0, T ).

Then the corresponding weak formulation of the problem is obtained by replacing in [START_REF] Brenner | A convergent finite volume scheme for two-phase flows in porous media with discontinuous capillary pressure field[END_REF] the first equation by [START_REF] Brenner | Finite volume approximation for an immiscible two-phase flow in porous media with discontinuous capillary pressure[END_REF] or the second one by [START_REF] Cancès | Finite volume scheme for two-phase flows in heterogeneous porous media involving capillary pressure discontinuities[END_REF]. Note that this sense is an extension of the condition classically used in hydrogeological studies, which prescribes a constant condition with respect to time and space for the air pressure. As we show in the numerical examples, this extension allows to use Richards' equation as a good approximation of the full two phase flow problem in other engineering frameworks.

The existence of a weak solution to Problem [START_REF] Angelini | Finite volume approximation of a diffusiondissolution model and application to nuclear waste storage[END_REF], under various hypotheses, is studied in [START_REF] Arbogast | The existence of weak solutions to single porosity and simple dual-porosity models of two-phase incompressible flow[END_REF][START_REF] Cancès | An existence result for multidimensional immiscible two-phase flows with discontinuous capillary pressure field[END_REF][START_REF] Chen | Degenerate two-phase incompressible flow: I. existence, uniqueness and regularity of a weak solution[END_REF][START_REF] Gagneux | Analyse mathématique de modèles non linéaires de l'ingénierie pétrolière[END_REF] for example. Some mathematical results of convergence have been obtained for several approximations of this problem. Some use the notion of global pressure, introduced by [START_REF] Chavent | The global pressure, a new concept for the modelization of compressible two-phase flows in porous media[END_REF]; let us mention among these works the proof of convergence of a finite volume [START_REF] Michel | A finite volume scheme for two-phase immiscible flow in porous media[END_REF]. The standard finite volume scheme (based on a phase-by-phase upstream weighting), used in the petroleum engineering framework, was proven to converge in [START_REF] Eymard | Mathematical study of a petroleum-engineering scheme[END_REF], and generalized in [START_REF] Brenner | A convergent finite volume scheme for two-phase flows in porous media with discontinuous capillary pressure field[END_REF] in the case of discontinuous capillary pressures; in these works, the estimates on the approximate solutions are obtained thanks to the two-point flux approximation. Since our objective is the study of more general discretisation methods, we consider the formulation of the problem with two pressures, following [START_REF] Angelini | Finite volume approximation of a diffusiondissolution model and application to nuclear waste storage[END_REF]. The advantage of this formulation is that it includes both Richards problems (1b)-( 6) or (1a)- [START_REF] Cancès | Finite volume scheme for two-phase flows in heterogeneous porous media involving capillary pressure discontinuities[END_REF] in the nonhomogeneous case. Indeed, the purpose of this paper is to study the convergence of the so-called gradient schemes for the approximation of (5). These methods have been studied in [START_REF] Eymard | Small-stencil 3d schemes for diffusive flows in porous media[END_REF] for linear elliptic problems, and in [START_REF] Droniou | Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations[END_REF] in the case of nonlinear Leray-Lions-type elliptic and parabolic problems. The interest of the notion of gradient schemes is that it includes conforming finite elements with mass lumping (shown as efficient for linear [START_REF] Chen | The lumped mass finite element method for a parabolic problem[END_REF], nonlinear [START_REF] Shi | A lumped mass nonconforming finite element method for nonlinear parabolic integro-differential equations on anisotropic meshes[END_REF] parabolic equations, and Richards type degenerate parabolic equations [START_REF] Celia | A general mass-conservative numerical solution for the unsaturated flow equation[END_REF][START_REF] Tracy | An accuracy analysis of mass matrix lumping for three-dimensional, unsaturated flow, finite element, porous media computations using analytical solutions[END_REF]), mixed finite elements (applied to Richards' equation in [START_REF] Belfort | An efficient lumped mixed hybrid finite element formulation for variably saturated groundwater flow[END_REF]), hybrid mixed mimetic methods [START_REF] Droniou | A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods[END_REF][START_REF] Droniou | Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations[END_REF], some discrete duality finite volume schemes, some particular Multi-point Flux Approximation and many other schemes. It is wellknown that the monotony properties which hold when using a two-point flux approximation are no longer true for more general schemes; this is the reason why Hypothesis (4g) is required in the mathematical study. This paper is organized as follows. In Section 2, we recall the framework of gradient schemes which we use for the discretization of the problems under study. We then apply these schemes to Problem (1) in Section 3, and we prove the weak convergence of the approximate solutions. The corresponding scheme for Richards problems (1b)-( 6) or (1a)-( 7) is also studied. In Section 4, we improve this convergence by showing the strong convergence of the discrete pressures and pressure gradients. This analysis relies on an equation satisfied by a continuous solution, whose proof demands that some continuity properties with respect to time be satisfied. Numerical examples show the behaviour of the Vertex Approximate Gradient scheme, first introduced in [START_REF] Eymard | Small-stencil 3d schemes for diffusive flows in porous media[END_REF], which presents some interesting characteristics for coupled flows in porous media (see Section 5). Let us emphasize that all the convergence results shown in this paper also hold in the case of Richards' problems.

Gradient schemes for diffusion problems

A gradient scheme can be viewed as a general nonconforming approximation of elliptic or parabolic problems. We begin with the discrete elements used for space partial differential equations.

Definition 2.1 (Gradient discretisation) A gradient discretisation D for a space-dependent second order elliptic problem, with homogeneous Dririchlet boundary conditions, is defined by D = (X D , Π D , ∇ D ), where:

1. the set of discrete unknowns X D is a finite dimensional vector space on R, and X D,0 ⊂ X D stands for the subspace of X D devoted to the approximation of the homogeneous Dirichlet elliptic problem, 2. the linear mapping Π D :

X D → L 2 (Ω)
is the reconstruction of the approximate function,

the linear mapping ∇

D : X D → L 2 (Ω) d is the discrete gradient operator. It must be chosen such that ∇ D • L 2 (Ω) d is a norm on X D,0 . Remark 2.2 Let us notice that Π D • L 2 (Ω)
is not requested to be a norm on X D,0 . Indeed, in many examples that can be considered, some degrees of freedom are involved in the reconstruction of the gradient of the function, but not in that of the function itself. 

C D = max v∈X D,0 \{0} Π D v L 2 (Ω) ∇ D v L 2 (Ω) d . (8) 
A sequence (D m ) m∈N of gradient discretisations is said to be coercive if there exists

C P ∈ R + such that C Dm ≤ C P for all m ∈ N. Remark 2.4 (Discrete Poincaré inequality.) Equation (8) yields Π D v L 2 (Ω) ≤ C D ∇ D v L 2 (Ω) d .
The consistency is ensured by a proper choice of the interpolation operator and discrete gradient. 

Π D v -ϕ L 2 (Ω) + ∇ D v -∇ϕ L 2 (Ω) d . (9) 
A sequence (D m ) m∈N of gradient discretisations is said to be consistent if, for all ϕ ∈ H 1 0 (Ω), S Dm (ϕ) tends to 0 as m → ∞.

Since we are dealing with nonconforming methods, we require a "limit-conformity" of the method, i.e. that the dual of the discrete gradient be "close to" a discrete divergence in the following sense. Definition 2.6 (Limit-conformity) Let D be a gradient discretisation in the sense of Definition 2.1. We let

H div (Ω) = {ϕ ∈ L 2 (Ω) d , divϕ ∈ L 2 (Ω)} and W D : H div (Ω) → [0, +∞) be defined by ∀ϕ ∈ H div (Ω) , W D (ϕ) = max v∈X D,0 \{0} 1 ∇ D v L 2 (Ω) d Ω (∇ D v(x) • ϕ(x) + Π D v(x)divϕ(x)) dx . ( 10 
)
Note that for a conforming method such as the linear finite element method, one as W D (ϕ) = 0. A sequence (D m ) m∈N of gradient discretisations is said to be limit-conforming if, for all ϕ ∈ H div (Ω), W Dm (ϕ) tends to 0 as m → ∞.

Dealing with generic non-linearity often requires compactness properties on the scheme.

Definition 2.7 (Compactness) Let D be a gradient discretisation in the sense of Definition 2.1, and let T D : R d → R + be defined by

∀ξ ∈ R d , T D (ξ) = max v∈X D,0 \{0} Π D v(• + ξ) -Π D v L 2 (R d ) ∇ D v L 2 (Ω) d ( 11 
)
where Π D v has been extended by 0 outside Ω.

A sequence (D m ) m∈N of gradient discretisations is said to be compact if the following uniform limit holds:

lim |ξ|→0 sup m∈N T Dm (ξ) = 0.
Thanks to [START_REF] Eymard | Small-stencil 3d schemes for diffusive flows in porous media[END_REF]Lemma 2.4], we may check the consistency and limit-conformity properties of given gradient schemes, using only dense subsets of the test function spaces. 

= (X D , Π D , ∇ D , (t (n) ) n=0,...,N ) is a space-time gradient discretisation of Ω × (0, T ) if • (X D , Π D , ∇ D ) is a gradient discretisation of Ω, in the sense of Definition 2.1,
• t (0) = 0 < t (1) . . . < t (N ) = T .

We then set δt (n+ 1 2 ) = t (n+1) -t (n) , for n = 0, . . . , N -1, and δt D = max n=0,...,N -1 δt (n+ 1 2 ) .

Definition 2.9 (Space-time consistency) A sequence (D m ) m∈N of space-time gradient discretisations of Ω × (0, T ), in the sense of Definition 2.8, is said to be consistent if it is consistent in the sense of Definition 2.5 and if δt Dm tends to 0 as m → ∞.

Definition 2.10 (Piecewise constant function reconstruction) Let D = (X D , Π D , ∇ D , (t (n) ) n=0,...,N ) be a space-time discretisation in the sense of Definition 2.8, and I be the finite set of the degrees of freedom, such that X D = R I . We say that Π D is a piecewise constant function reconstruction if there exists a family of open subsets of Ω, denoted by (K i ) i∈I , such that i∈I K i = Ω, K i ∩K j = ∅ for all i = j, and Π D u = i∈I u i χ Ki for all u = (u i ) i∈I ∈ X D , where χ Ki is the characteristic function of K i .

Remark 2.11 We do not require that there exists j ∈ J such that K i ⊂ Ω j .

Remark 2.12 An important example of space-time discretisation D = (X D , Π D , ∇ D , (t (n) ) n=0,...,N ) in the sense of Definition 2.8, such that Π D is a piecewise constant function reconstruction in the sense of Definition 2.10, is the case of the mass-lumping of conforming finite elements. Indeed, assuming that (ξ i ) i∈I is the basis of some space V h ⊂ H 1 0 (Ω), we consider a family (K i ) i∈I , chosen such that

i∈I u i χ Ki - i∈I u i ξ i L 2 (Ω) ≤ h i∈I u i ∇ξ i L 2 (Ω) d , ∀u ∈ X D .
We then define Π D as in Definition 2.10, and ∇ D u = i∈I u i ∇ξ i . In the case of the linear P 1 conforming finite element, the reconstruction is obtained by splitting each simplex in subsets defined by the highest barycentric coordinate, defining K i as the union of the subsets of the simplices connected to the vertex indexed by i. Remark 2.13 Let D = (X D , Π D , ∇ D , (t (n) ) n=0,...,N ) be a space-time discretisation in the sense of Definition 2.8 such that Π D is a piecewise constant function reconstruction in the sense of Definition 2.10. Note that we have the two important following properties:

g(Π D u(x)) = Π D g(u)(x), for a.e. x ∈ Ω, ∀u ∈ X D , ∀g ∈ C(R), (12) 
where for all continuous function g ∈ C(R) and u = (u i ) i∈I ∈ X D , we classically denote by g(u) = (g

(u i )) i∈I ∈ X D and Π D u(x)Π D v(x) = Π D (uv)(x), for a.e. x ∈ Ω, ∀u, v ∈ X D , (13) 
where, for u = (u i ) i∈I and v = (v i ) i∈I ∈ X D , we denote by uv = (u i v i ) i∈I ∈ X D .

3 Approximation of the two-phase flow problem by space-time gradient discretisations

Let D = (X D , Π D , ∇ D , (t (n) ) n=0,.
..,N ) be a space-time discretisation in the sense of Definition 2.8 such that Π D is a piecewise constant function reconstruction in the sense of Definition 2.10. We define the following (implicit) scheme for the discretisation of Problem [START_REF] Brenner | A convergent finite volume scheme for two-phase flows in porous media with discontinuous capillary pressure field[END_REF]. We consider, for given p (0) , ūD , vD ∈ X D , a sequence (u (n) , v (n) ) n=1,...,N ⊂ X D such that:

s (0) D (x) = S(x, Π D p (0) (x)), p (n+1) = u (n+1) -v (n+1) (14a) u (n+1) -ūD ∈ X D,0 , v (n+1) -vD ∈ X D,0 , (14b) 
s (n+1) D (x) = S(x, Π D p (n+1) (x)), δ (n+ 1 2 ) D s D (x) = s (n+1) D (x) -s (n) D (x) δt (n+ 1 2 ) , ( 14c 
) Ω Φ(x)δ (n+ 1 2 ) D s D (x)Π D w(x) + k 1 (x, s (n+1) D (x))Λ(x)(∇ D u (n+1) (x) + g 1 ) • ∇ D w(x) dx = 1 δt (n+ 1 2 ) t (n+1) t (n) Ω f 1 (x, t)Π D w(x)dxdt, ∀w ∈ X D,0 , ∀n = 0, . . . , N -1, (14d) 
Ω -Φ(x)δ (n+ 1 2 ) D s D (x)Π D w(x) + k 2 (x, s (n+1) D (x))Λ(x)(∇ D v (n+1) (x) + g 2 ) • ∇ D w(x) dx = 1 δt (n+ 1 2 ) t (n+1) t (n) Ω f 2 (x, t)Π D w(x)dxdt, ∀w ∈ X D,0 , ∀n = 0, . . . , N -1. (14e) 
We again use the notations s D , Π D and ∇ D for the definition of space-time dependent functions, defining

s D (x, t) = s (n+1) D (x), Π D u(x, t) = Π D u (n+1) (x), Π D v(x, t) = Π D v (n+1) (x) and ∇ D u(x, t) = ∇ D u (n+1) (x), ∇ D v(x, t) = ∇ D v (n+1) (x), for a.e. (x, t) ∈ Ω × (t (n) , t (n+1) ), ∀n = 0, . . . , N -1. (15) 
We also denote

δ D s D (x, t) = δ (n+ 1 2 ) D s D (x), for a.e. (x, t) ∈ Ω × (t (n) , t (n+1) ), ∀n = 0, . . . , N -1. ( 16 
)
Remark 3.1 (The scheme for Richards' equation) The scheme is obtained by Scheme [START_REF] Droniou | Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations[END_REF], replacing (14d) by u (n+1) = ūD or (14e) by v (n+1) = vD .

In the proof of the lemma below and other lemmas later on, we shall make use of the function S defined by

S(x, p) = p 0 qS (x, q)dq, for a.e. x ∈ Ω, ∀p ∈ R, (17) 
denoting by S (x, q) = S j (q) for a.e. x ∈ Ω j , and all q ∈ R and j ∈ J. We also have S(x, p) = S j (p), for a.e. x ∈ Ω j , ∀p ∈ R, with S j (p) = p 0 qS j (q)dq, for j ∈ J and p ∈ R.

Lemma 3.2 (Discrete L 2 (0, T ; H 1 0 (Ω)) estimate and existence of a discrete solution) Under Hypotheses (4), let D = (X D , Π D , ∇ D , (t (n) ) n=0,...,N ) be a space-time gradient discretisation in the sense of Definition 2.8 such that Π D is a piecewise constant function reconstruction in the sense of Definition 2.10. Then there exists at least one solution to Scheme [START_REF] Droniou | Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations[END_REF], and there exists C 1 > 0, only depending on the data introduced in Hypotheses (4), on any C P ∈ (0, +∞) greater than C D (defined by (8)), and on

Π D p (0) -p ini L 2 (Ω) , Π D ūD - ū L 2 (Ω) , Π D vD -v L 2 (Ω) , ∇ D ūD -∇ū L 2 (Ω) d , ∇ D vD -∇v L 2 (Ω) d such that, for any solution u, v to this scheme, ∇ D u L 2 (Ω×(0,T )) d ≤ C 1 and ∇ D v L 2 (Ω×(0,T )) d ≤ C 1 . (19) 
Proof Let us first show [START_REF] Eymard | Mathematical study of a petroleum-engineering scheme[END_REF]. We take 14e), add the two such obtained equations and sum on n = 0, . . . , N . We get

w = δt (n+ 1 2 ) (u (n+1) -ūD ) in (14d), w = δt (n+ 1 2 ) (v (n+1) -vD ) in (
T 1 + T 2 + T 3 = T 4 + T 5 + T 6 with T 1 = N -1 n=0 Ω Φ(x)(s (n+1) D (x) -s (n) D (x))Π D p (n+1) (x)dx, T 2 = T 0 Ω k 1 (x, s D (x, t))Λ(x)∇ D (u -ūD )(x, t) • ∇ D (u -ūD )(x, t)dxdt, T 3 = T 0 Ω k 2 (x, s D (x, t))Λ(x)∇ D (v -vD )(x, t) • ∇ D (v -vD )(x, t)dxdt, T 4 = T 0 Ω f 1 (x, t)Π D (u -ūD )(x, t)dxdt - T 0 Ω k 1 (x, s D (x, t))Λ(x)(∇ D ūD (x) + g 1 ) • ∇ D (u -ūD )(x, t)dxdt, T 5 = T 0 Ω f 2 (x, t)Π D (v -vD )(x, t)dxdt - T 0 Ω k 2 (x, s D (x, t))Λ(x)(∇ D vD (x) + g 2 ) • ∇ D (v -vD )(x, t)dxdt,
and

T 6 = N -1 n=0 Ω Φ(x)(s (n+1) D (x) -s (n) D (x))Π D (ū D -vD )(x)dx.
With the definition (18), we have

0 ≤ S j (p) ≤ L S p 2 2 , ∀p ∈ R,
and, using the properties of the piecewise constant function Π D p (n+1) , we can write

(s (n+1) D (x) -s (n) D (x))Π D p (n+1) (x) = j∈J i∈I χ Ωj (x)χ Ki (x)(S j (p (n+1) i ) -S j (p (n) i ))p (n+1) i , for a.e. x ∈ Ω. Since b a qS j (q)dq = S j (b) -S j (a) = b(S j (b) -S j (a)) - b a (S j (q) -S j (a))dq, we get that (s (n+1) D (x) -s (n) D (x))Π D p (n+1) (x) ≥ j∈J i∈I χ Ωj (x)χ Ki (x)( S j (p (n+1) i ) -S j (p (n) i )),
which leads to

T 1 ≥ - Φ max L S 2 Ω j∈J i∈I χ Ωj (x)χ Ki (x)(p (0) i ) 2 dx = - Φ max L S 2 Π D p (0) 2 L 2 (Ω) .
Thanks to Hypothesis (4c), we have

T 2 ≥ λk min ∇ D (u -ūD ) 2 L 2 (Ω×(0,T )) ,
and

T 3 ≥ λk min ∇ D (v -vD ) 2 L 2 (Ω×(0,T ))
. Applying the Cauchy-Schwarz inequality and (8), we get

T 4 ≤ (C D f 1 L 2 (Ω×(0,T )) + k max λ √ T ( ∇ D ūD L 2 (Ω) d + |Ω||g 1 |)) ∇ D (u -ūD ) L 2 (Ω×(0,T )) ,
and

T 5 ≤ (C D f 2 L 2 (Ω×(0,T )) + k max λ √ T ( ∇ D vD L 2 (Ω) d + |Ω||g 2 |)) ∇ D (v -vD ) L 2 (Ω×(0,T )) .
Thanks to the Young inequality, we get

T 4 ≤ 1 2λk min (C D f 1 L 2 (Ω×(0,T )) + k max λ √ T ( ∇ D ūD L 2 (Ω) d + |Ω||g 1 |)) 2 + 1 2 T 2 ,
and

T 5 ≤ 1 2λk min (C D f 2 L 2 (Ω×(0,T )) + k max λ √ T ( ∇ D vD L 2 (Ω) d + |Ω||g 2 |)) 2 + 1 2 T 3 .
We have

T 6 = Ω Φ(x)(s (N ) D (x) -s (0) D (x))Π D (ū D -vD )(x)dx ≤ 2Φ max |Ω|( Π D ūD L 2 (Ω) + Π D vD L 2 (Ω) ).
Gathering the above results shows [START_REF] Eymard | Mathematical study of a petroleum-engineering scheme[END_REF]. The existence of at least one solution is then easily proved by considering the function S α (x, q) = αS(x, q), for α ∈ [0, 1], x ∈ Ω and q ∈ R, which ensures Hypotheses (4) as well. Since [START_REF] Eymard | Mathematical study of a petroleum-engineering scheme[END_REF] holds for all α ∈ [0, 1], and since the problem is linear for α = 0, a classical topological degree argument provides the existence of at least one solution to Scheme [START_REF] Droniou | Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations[END_REF].

The following semi-norm, which is a discrete equivalent of a weighted H -1 (Ω) norm, will be useful in the control of the time translates in order to prove the strong convergence of s D . Definition 3.3 (Dual semi-norm) Under Hypotheses (4), let D = (X D , Π D , ∇ D ) be a gradient discretisation of Ω in the sense of Definition 2.1. We define the following dual semi-norm on L 2 (Ω):

∀w ∈ L 2 (Ω) , |w| ,D = sup Ω Φ(x)w(x)Π D v(x)dx : v ∈ X D,0 , ∇ D v L 2 (Ω) d = 1 . ( 20 
)
Lemma 3.4 (Estimate on the dual semi-norm of the discrete time derivative of s D ) Under Hypotheses (4), let D be a space-time gradient discretisation in the sense of Definition 2.8. Let u, v, s D be such that Scheme (14) holds. Then there exists C 2 , only depending on the data introduced in Hypotheses (4), on any C P ∈ (0, +∞) greater than C D (defined by ( 8)), and on

Π D p (0) -p ini L 2 (Ω) , Π D ūD -ū L 2 (Ω) , Π D vD -v L 2 (Ω) , ∇ D ūD -∇ū L 2 (Ω) d , ∇ D vD -∇v L 2 (Ω) d , such that T 0 |δ D s D (•, t)| 2 ,D dt ≤ C 2 . ( 21 
)
Proof Let us take w ∈ X D,0 as test function in (14d). We have

Ω Φ(x)δ (n+ 1 2 ) D s D (x)Π D w(x)dx = - Ω k 1 (x, s (n+1) D (x))Λ(x)(∇ D u (n+1) (x) + g 1 ) • ∇ D w(x)dx + 1 δt (n+ 1 2 ) t (n+1) t (n) Ω f 1 (x, t)Π D w(x)dxdt,
which leads, thanks to (8), to

Ω Φ(x)δ (n+ 1 2 ) D s D (x)Π D w(x)dx ≤ k max λ( ∇ D u (n+1) L 2 (Ω) d + |Ω||g 1 |) + C D δt (n+ 1 2 ) t (n+1) t (n) f 1 (•, t)dt L 2 (Ω) ∇ D w L 2 (Ω) d .
Taking the supremum on w ∈ X D,0 such that ∇ D w L 2 (Ω) d = 1 gives an estimate on |δ

(n+ 1 2 ) D s D | ,D .
The proof is concluded by raising this estimate to the square, multiplying by δt (n+ 1 2 ) , summing on n = 0, . . . , N -1 and estimating ∇ D u L 2 (Ω×(0,T )) thanks to Lemma 3.2. Lemma 3.5 (Relative compactness result) Under Hypotheses (4), let (D m ) m∈N be a consistent sequence of space-time gradient discretisations in the sense of Definition 2.9, such that the associated sequence of approximate gradient approximations is coercive (Definition 2.3), compact (Definition 2.7), and such that, for all m ∈ N, Π Dm is a piecewise constant function reconstruction in the sense of Definition 2.10. We assume that are given p

(0) m , ūDm , vDm ∈ X Dm such that there exists C P > 0 greater than Π Dm p (0) m -p ini L 2 (Ω) , Π Dm ūDm -ū L 2 (Ω) , Π Dm vDm -v L 2 (Ω) , ∇ Dm ūDm -∇ū L 2 (Ω) d , ∇ Dm vDm -∇v L 2 (Ω) d , for all m ∈ N. Let u m , v m , s Dm be such that Scheme (14) holds for m ∈ N. Then the family (s Dm ) m∈N is relatively compact in L 2 (Ω × (0, T )).
Proof Let us prolong the functions s Dm by 0 outside of Ω × (0, T ). Let τ ∈ (0, T ). We have, for t ∈ (0, T -τ ),

Ω Φ(x)(s Dm (x, t + τ ) -s Dm (x, t)) 2 dx ≤ L S Ω Φ(x)(s Dm (x, t + τ ) -s Dm (x, t))(Π Dm p m (x, t + τ ) -Π Dm p m (x, t))dx,
which provides, thanks to Definition 3.3 and taking the square root,

Φ min s Dm (•, t + τ ) -s Dm (•, t) L 2 (Ω) ≤ L S |s Dm (•, t + τ ) -s Dm (•, t)| 1/2 ,Dm ∇ Dm (p m (t + τ ) -p m (t)) 1/2 L 2 (Ω) d .
Thanks to the Young inequality and integrating on (0, T -τ ), we get

Φ min T -τ 0 s Dm (•, t + τ ) -s Dm (•, t) L 2 (Ω) dt ≤ √ L S 2 √ τ T -τ 0 |s Dm (•, t + τ ) -s Dm (•, t)| ,Dm dt + √ L S τ 2 T -τ 0 ∇ Dm (p m (t + τ ) -p m (t)) L 2 (Ω) d dt.
We have, on one hand,

T -τ 0 ∇ Dm (p m (t + τ ) -p m (t)) L 2 (Ω) d dt ≤ 2 T 0 ( ∇ Dm u m (t) L 2 (Ω) + ∇ Dm v m (t) L 2 (Ω) )dt,
and therefore

T -τ 0 ∇ Dm (p m (t + τ ) -p m (t)) L 2 (Ω) d dt ≤ 2 √ T ( ∇ Dm u m L 2 (Ω×(0,T )) + ∇ Dm v m L 2 (Ω×(0,T )) ).
On the other hand, using the BV properties satisfied by piecewise constant functions, we have

T -τ 0 |s Dm (•, t + τ ) -s Dm (•, t)| ,Dm dt ≤ τ T 0 |δ Dm s Dm (•, t)| ,Dm dt, which gives T -τ 0 |s Dm (•, t + τ ) -s Dm (•, t)| ,Dm dt ≤ τ √ T T 0 |δ Dm s Dm (•, t)| 2 ,Dm dt 1/2 .
Applying Lemmas 3.2 and 3.4, and using 0 ≤ s Dm ≤ 1, we conclude to the existence of C 3 , such that

R s Dm (•, t + τ ) -s Dm (•, t) L 2 (Ω) dt ≤ C 3 |τ |, ∀τ ∈ R, which provides, still using 0 ≤ s Dm ≤ 1, R s Dm (•, t + τ ) -s Dm (•, t) 2 L 2 (Ω) dt ≤ C 3 |τ | |Ω|, ∀τ ∈ R.
Turning to the space translates, for all ξ ∈ R d , let us define

Ω (ξ) j = {x ∈ Ω j , x + ξ ∈ Ω j }.
Thanks to the regularity hypothesis of (Ω j ) j∈J , then there exists C 4 > 0, only depending on (Ω j ) j∈J such that

j∈J |{x ∈ Ω j , x + ξ / ∈ Ω j } ∪ {x ∈ R d \ Ω j , x + ξ ∈ Ω j }| ≤ C 4 |ξ|, ∀ξ ∈ R d .
Then, for a.e. t ∈ (0, T ), again using 0 ≤ s Dm ≤ 1,

s Dm (• + ξ, t) -s Dm (•, t) 2 L 2 (R d ) ≤ C 4 |ξ| + j∈J s Dm (• + ξ, t) -s Dm (•, t) 2 L 2 (Ω (ξ) j ) , ∀ξ ∈ R d .
We then remark that

s Dm (• + ξ, t) -s Dm (•, t) 2 L 2 (Ω (ξ) j ) = Ω (ξ) j (S j (Π Dm p m (x + ξ, t)) -S j (Π Dm p m (x, t))) 2 dx,
and therefore

s Dm (• + ξ, t) -s Dm (•, t) 2 L 2 (Ω (ξ) j ) ≤ L 2 S R d (Π Dm p m (x + ξ, t) -Π Dm p m (x, t)) 2 dx.
Using (11), we get

s Dm (• + ξ, t) -s Dm (•, t) 2 L 2 (Ω (ξ) j ) ≤ L 2 S T Dm (ξ) ∇ Dm p m 2 L 2 (Ω) d
Gathering the above results, we get

T 0 s Dm (•+ξ, t)-s Dm (•, t) 2 L 2 (R d ) dt ≤ T C 4 |ξ|+L 2 S T Dm (ξ)2( ∇ Dm u m 2 L 2 (Ω×(0,T )) + ∇ Dm v m 2 L 2 (Ω×(0,T )) ).
Thanks to the compactness hypothesis (in the sense of Definition 2.7), we conclude that the

L 2 (R d × R) norm of (s Dm -s Dm (• + ξ, • + τ ))
m∈N uniformly tends to zero as ξ, τ → 0, which proves the relative compactness of the family in L 2 (Ω × (0, T )).

Lemma 3.6 (Minty trick) Let ω be an open bounded subset of R N , N ≥ 1, and let S : ω × R → R be a Caratheodory function, such that S(•, q) is measurable for all q ∈ R and S(x, •) is a nondecreasing function such that there exist C > 0 with |S(x, q)| ≤ C for all q ∈ R and a.e. x ∈ ω.

Let (p n ) n∈N ⊂ L 2 (ω) such that (i) there exists p ∈ L 2 (ω) such that (p n ) n∈N weakly converges to p in L 2 (ω); (ii) there exists a function χ ∈ L 2 (ω) such that (s n ) n∈N converges to χ in L 2 (ω)
, where s n (x) = S(x, p n (x)) for a.e. x ∈ ω.

Then χ(x) = S(x, p(x)), for a.e. x ∈ ω.

Proof We consider, for a given q ∈ L 2 (ω),

A n = ω (S(x, p n (x)) -S(x, q(x)))(p n (x) -q(x))dx.
Since S is a nondecreasing, we have A n ≥ 0. By weak/strong convergence, we get that

lim n→∞ A n = ω (χ(x) -S(x, q(x)))(p(x) -q(x))dx ≥ 0.
The above inequality holds in particular for q = p -tϕ, with t > 0 and ϕ ∈ C ∞ c (ω). Then we get, dividing by t > 0,

ω (χ(x) -S(x, p(x) -tϕ(x)))ϕ(x)dx ≥ 0.
Letting t → 0 in the above equation, we get, by dominated convergence, that ω (χ(x) -S(x, p(x)))ϕ(x)dx ≥ 0.

Since the same inequality holds for -ϕ instead of ϕ, we get

ω (χ(x) -S(x, p(x)))ϕ(x)dx = 0.
Since the above inequality holds for all ϕ ∈ C ∞ c (ω), the conclusion of the lemma follows.

Theorem 3.7 (Convergence of the numerical scheme) Let Hypotheses (4) be fulfilled. Let (D m ) m∈N be a consistent sequence of space-time gradient discretisations in the sense of Definition 2.9, such that the associated sequence of approximate gradient approximations is coercive (Definition 2.3), limit-conforming (Definition 2.6) and compact (Definition 2.7), and such that, for all m ∈ N, Π Dm is a piecewise constant function reconstruction in the sense of Definition 2.10. We assume that are given p

(0) m , ūDm , vDm ∈ X Dm such that the sequences Π Dm p (0) m -p ini L 2 (Ω) , Π Dm ūDm -ū L 2 (Ω) , Π Dm vDm -v L 2 (Ω) , ∇ Dm ūDm -∇ū L 2 (Ω) d , ∇ Dm vDm -∇v L 2 (Ω) d tend to 0 as m → ∞. Let u m , v m ,
s Dm be such that Scheme [START_REF] Droniou | Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations[END_REF] holds for m ∈ N. Then there exist u, v ∈ L 2 (Ω × (0, T )) and p = u -v such that, up to a subsequence,

1. (Π Dm u m , Π Dm v m ) weakly converges in L 2 (Ω × (0, T )) 2 to (u, v) as m → ∞, 2. (∇ Dm u m , ∇ Dm v m ) weakly converges in (L 2 (Ω × (0, T )) d ) 2 to (∇u, ∇v) as m → ∞, 3. s Dm converges in L 2 (Ω × (0, T )) to s such that s(x, t) = S(x, p(x, t)), for a.e. (x, t) ∈ Ω × (0, T ) as m → ∞,
and (u, v) is a weak solution of Problem [START_REF] Brenner | A convergent finite volume scheme for two-phase flows in porous media with discontinuous capillary pressure field[END_REF].

Proof Thanks to Lemmas 3.2 and 3.4, we first extract a subsequence such that the convergence results stated in Lemma 3.5 and 3.6 hold, as well as the three items of the above theorem. Let us now check that (u, v) is solution to [START_REF] Brenner | A convergent finite volume scheme for two-phase flows in porous media with discontinuous capillary pressure field[END_REF]. We first remark that u -ū ∈ L 2 (0, T ; H 1 0 (Ω)), since, prolonging this function by 0 outside of Ω × (0, T ), we get that ∇u -∇ū ∈ L 2 (R d × (0, T )) using the limit-conformity of the sequence of discretisations. The same holds for v -v. 

Π D z -w L 2 (Ω) + ∇ D z -∇w L 2 (Ω) d .
We take δt (n+ 1 2 ) ϕ(t (n) )w D as test function in (14d), and we sum the resulting equation on n = 0, . . . , N -1. We get

T (m) 7 + T (m) 8 = T (m) 9 , (22) 
with

T (m) 7 = N -1 n=0 δt (n+ 1 2 ) ϕ(t (n) ) Ω Φ(x)δ (n+ 1 2 ) D s D (x)Π D w D (x)dx, T (m) 8 = N -1 n=0 δt (n+ 1 2 ) ϕ(t (n) ) Ω k 1 (x, s (n+1) D (x))Λ(x)(∇ D u (n+1) (x) + g 1 ) • ∇ D w D (x)dx, and 
T (m) 9 = N -1 n=0 ϕ(t (n) ) t (n+1) t (n) Ω f 1 (x, t)Π D w D (x)dxdt.
Writing

T (m) 7 = - T 0 ϕ (t) Ω Φ(x)s D (x, t)Π D w D (x)dxdt -ϕ(0) Ω Φ(x)S(x, Π D p (0) m (x))Π D w D (x)dx,
we get that

lim m→∞ T (m) 7 = - T 0 ϕ (t) Ω Φ(x)s(x, t)w(x)dxdt -ϕ(0) Ω S(x, p ini (x))w(x)dx.
We also immediately get that

lim m→∞ T (m) 8 = T 0 ϕ(t) Ω k 1 (x, s(x, t))Λ(x)(∇u(x, t) + g 1 ) • ∇w(x)dxdt,
and

lim m→∞ T (m) 9 = T 0 ϕ(t) Ω f 1 (x, t)w(x)dxdt.
Since the set

T = { q i=1 ϕ i (t)w i (x) : q ∈ N, ϕ i ∈ C ∞ c [0, T ), w i ∈ C ∞ c (Ω)} is dense in C ∞ c (Ω × [0, T ))
, and since this reasoning is available as well for the second equation, we conclude the proof of Theorem 3.7.

Strong convergence of (u, v)

We first state a continuity result at t = 0. Lemma 4.1 Under Hypotheses (4), let (u, v) be a solution of (5) on (0, T ) and let us define p = u -v. Let S be defined by [START_REF] Eymard | Small-stencil 3d schemes for diffusive flows in porous media[END_REF]. Then, the following properties hold: S(•, p) ∈ C 0 ([0, T ]; L 2 (Ω)) and S(x, p(x, 0)) = S(x, p ini (x)) for a.e. x ∈ Ω, and

L := lim inf h→0 1 h h 0 Ω Φ(x) S(x, p(x, t))dxdt ≥ Ω Φ(x) S(x, p ini (x))dx. ( 23 
)
Proof Let j ∈ J be given, and, for all ε > 0, let ψ

(ε) j ∈ C ∞ c (Ω j , [0, 1]) be such that the measure of the set {x ∈ Ω j , ψ (ε) j (x) < 1} is lower that ε. Let us consider the function s (ε) j : (x, t) → ψ (ε) j (x)S j (p(x, t)).
Thanks to Hypotheses (4e) and to u, v ∈ L 2 (0, T ; H 1 0 (Ω)), we get that s

(ε) j ∈ L 2 (0, T ; H 1 0 (Ω j )). Introducing ψ (ε)
j as test function in [START_REF] Brenner | A convergent finite volume scheme for two-phase flows in porous media with discontinuous capillary pressure field[END_REF] shows that Φ∂ t s (ε) j ∈ L 2 (0, T ; H -1 (Ω j )), and that we can write

T 0 Φ∂ t s (ε) j , w(t) j + Ω k 1 (S j (p))Λ(x)(∇u + g 1 ) • (ψ (ε) j ∇w + w∇ψ (ε) j )dx dt = T 0 Ω f 1 ψ (ε) j wdxdt, ∀w ∈ L 2 (0, T ; H 1 0 (Ω j )),
denoting by •, • j the duality product (H -1 (Ω j ), H 1 0 (Ω j )). Considering the continuous embedding T :

L 2 (Ω j ) → H -1 (Ω j ), such that T (u)(w) = Ω Φ(x)u(x)w(x)dx for all u ∈ L 2 (Ω j ) and w ∈ H 1 0 (Ω j ), this proves that s (ε) j ∈ C 0 ([0, T ], L 2 (Ω j )), and that s (ε) j (x, 0) = ψ (ε) j (x)S j (p ini (x)), for a.e. x ∈ Ω j .
The inequality

S j (p(•, t)) -S j (p(•, s)) 2 L 2 (Ωj ) ≤ ε + ψ (ε) j S j (p(•, t)) -ψ (ε) j S j (p(•, s)) 2 L 2 (Ωj ) proves that S j (p(•, •)) ∈ C 0 ([0, T ], L 2 (Ω j )), that S j (p(•, 0)) = S j (p ini (x)), for a.e. x ∈ Ω j ,
and that lim t→0

S j (p(•, t)) -S j (p ini ) L 2 (Ωj ) = 0.
These results yield S(•, p) ∈ C 0 ([0, T ]; L 2 (Ω)) and S(x, p(x, 0)) = S(x, p ini (x)) for a.e. x ∈ Ω.

Since the function S j is nondecreasing its inverse function S (-1) j is defined almost everywhere on

D j := A<B∈R [S j (A), S j (B)]. We then denote γ j (s) = s Sj (0) S (-1) j (t)dt, ∀s ∈ D j .
Note that the function γ j is nonnegative and continuous, and that S j (q) = γ j (S j (q)), ∀q ∈ R.

Since S(•, p) ∈ C 0 ([0, T ]; L 2 (Ω)) and S(x, p(x, 0)) = S(x, p ini (x)) for a.e. x ∈ Ω, we deduce by dominated convergence that for all n ∈ N,

lim h→0 1 h h 0 Ω Φ(x) min( S(x, p(x, t)), n)dxdt = Ω Φ(x) min( S(x, p ini (x)), n)dx, which shows that L ≥ Ω Φ(x) min( S(x, p ini (x)), n)dx, ∀n ∈ N.
By monotonous convergence, we get that

L ≥ sup n∈N Ω Φ(x) min( S(x, p ini (x)), n)dx = Ω Φ(x) S(x, p ini (x))dx,
which provides [START_REF] Shi | A lumped mass nonconforming finite element method for nonlinear parabolic integro-differential equations on anisotropic meshes[END_REF].

We can now state the following property for solutions of (5).

Lemma 4.2 Under Hypotheses (4), let (u, v) be a solution of (5) on (0, T ) and let us define p = u -v. Let S be defined by [START_REF] Eymard | Small-stencil 3d schemes for diffusive flows in porous media[END_REF]. Then the following property holds:

T 0 ϕ (t) Ω Φ(x)(S(x, p(x, t))(ū -v)(x) -S(x, p(x, t)))dxdt +ϕ(0) Ω Φ(x)(S(x, p ini (x))(ū -v)(x))dx -L + T 0 ϕ(t) Ω (k 1 (S(p))Λ(∇u + g 1 ) • ∇(u -ū) + k 2 (S(p))Λ(∇v + g 2 ) • ∇(v -v)) dxdt = T 0 ϕ(t) Ω (f 1 (u -ū) + f 2 (v -v))dxdt, ∀ϕ ∈ C ∞ c ((-∞, T )), (24) 
where L, defined in Lemma 4.1, satisfies L = lim h→0 1 h h 0 Ω Φ(x) S(x, p(x, t))dxdt (and not only "lim inf"). [START_REF] Brenner | A convergent finite volume scheme for two-phase flows in porous media with discontinuous capillary pressure field[END_REF], the test function (x, t) → 1 h t t-h w(x, s)ds, which belongs to C ∞ c (Ω × [0, T )). We obtain that

Proof Let w ∈ C ∞ c (Ω × (-∞, T )) and h ∈ (0, T ) such that w(•, t) = 0 for t ∈ [T -h, T ] be given. Let us consider, in
- T 0 Ω Φ(x)S(x, p(x, t))∂ t 1 h t t-h w(x, s) dsdxdt - Ω Φ(x)S(x, p ini (x)) 1 h 0 -h w(x, s)dsdx = T 0 1 h t t-h Ω
(f 1 (x, t)w(x, s) -k 1 (x, S(x, p(x, t)))Λ(x)(∇u(x, t) + g 1 ) • ∇w(x, s))dxdsdt, and a similar second equation. This provides, using w(

•, t) = 0 for t ∈ [T -h, T ], 1 h T 0 Ω Φ(x)(S(x, p(x, t + h)) -S(x, p(x, t)))w(x, t)dxdt - Ω Φ(x) 1 h 0 -h (S(x, p ini (x)) -S(x, p(x, s + h))w(x, s)dsdx = T 0 1 h t t-h Ω (f 1 (x, t)w(x, s) -k 1 (x, S(x, p(x, t)))Λ(x)(∇u(x, t) + g 1 ) • ∇w(x, s))dxdsdt, (25) 
and a similar second equation.

Let ϕ ∈ C ∞ c ((-∞, T ), R + ) be given, and let us define u(•, t) = ū for a.e. t < 0.

Considering h ∈ (0, T ) such that ϕ(t) = 0 for t ∈ [T -h, T ], we can approximate (u -ū)ϕ ∈ L 2 (-h, T ; H 1 0 (Ω)) by functions w ∈ C ∞ c (Ω × (-∞, T )) such that w(•, t) = 0 for any t ∈ [T -h, T ].
Hence, letting w → (u -ū)ϕ and ∇w → ∇(u -ū)ϕ in (25), we obtain

1 h T 0 Ω Φ(x)(S(x, p(x, t + h)) -S(x, p(x, t)))(u(x, t) -ū(x))ϕ(t)dxdt = T 0 1 h t t-h Ω ( f 1 (x, t)(u(x, s) -ū(x))ϕ(s)
-k 1 (x, S(x, p(x, t)))Λ(x)(∇u(x, t) + g 1 ) • (∇u(x, s) -∇ū(x))ϕ(s))dxdsdt.

We now define v(•, t) = v for a.e. t < 0. Since (v -v)ϕ ∈ L 2 (-h, T ; H 1 0 (Ω)), we can similarly let w → (v -v)ϕ in the second equation, which provides

- 1 h T 0 Ω Φ(x)(S(x, p(x, t + h)) -S(x, p(x, t)))(v(x, t) -v(x))ϕ(t)dxdt = T 0 1 h t t-h Ω ( f 2 (x, t)(v(x, s) -v(x))ϕ(s) -k 2 (x, S(x, p(x, t)))Λ(x)(∇v(x, t) + g 2 ) • (∇v(x, s) -∇v(x))ϕ(s))dxdsdt.
We then add the two above equations. We get T 10 (h) = T 11 (h) with

T 10 (h) = 1 h T 0 Ω Φ(x)(S(x, p(x, t + h)) -S(x, p(x, t)))(p(x, t) -(ū -v)(x))ϕ(t)dxdt, and 
T 11 (h) = T 0 1 h t t-h Ω ( f 1 (x, t)(u(x, s) -ū(x))ϕ(s) -k 1 (x, S(x, p(x, t)))Λ(x)(∇u(x, t) + g 1 ) • (∇u(x, s) -∇ū(x))ϕ(s))dxdsdt + T 0 1 h t t-h Ω ( f 2 (x, t)(v(x, s) -v(x))ϕ(s) -k 2 (x, S(x, p(x, t)))Λ(x)(∇v(x, t) + g 2 ) • (∇v(x, s) -∇v(x))ϕ(s))dxdsdt.
Observing that b a qS j (q)dq = S j (b) -S j (a) = a(S j (b) -S j (a)) + b a (S j (b) -S j (q))dq which implies S j (b) -S j (a) ≥ a(S j (b) -S j (a)), we get that T 10 (h) ≤ T 12 (h) with

T 12 (h) = 1 h T 0 Ω
Φ(x) ( S(x, p(x, t + h)) -S(x, p(x, t)))

-(S(x, p(x, t + h)) -S(x, p(x, t)))(ū -v)(x) ϕ(t)dxdt, which can be rewritten as

T 12 (h) = - T 0 Ω Φ(x)( S(x, p(x, t)) -S(x, p(x, t))(ū -v)(x)) 1 h (ϕ(t) -ϕ(t -h))dxdt - 1 h 0 -h Ω Φ(x)( S(x, p(x, t + h)) -S(x, p(x, t + h))(ū -v)(x))ϕ(t)dxdt,
hence leading to T 12 (h) ≥ T 11 (h). Now letting w → (u(•, t + h) -ū)ϕ in (25) and w → (v(•, t + h) -v)ϕ in the second similar equation to (25), adding the result, we get T 13 (h) -T 14 (h) = T 15 (h) with

T 13 (h) = 1 h T 0 Ω Φ(x)(S(x, p(x, t + h)) -S(x, p(x, t)))(p(x, t + h) -(ū -v)(x))ϕ(t)dxdt, T 14 (h) = Ω Φ(x) 1 h 0 -h (S(x, p ini (x)) -S(x, p(x, s + h))(p(x, s + h) -(ū -v)(x))ϕ(s)dsdx, and 
T 15 (h) = T 0 1 h t t-h Ω ( f 1 (x, t)(u(x, s + h) -ū(x))ϕ(s)
-k 1 (x, S(x, p(x, t)))Λ(x)(∇u(x, t) + g 1 ) • (∇u(x, s + h) -∇ū(x))ϕ(s))dxdsdt

+ T 0 1 h t t-h Ω ( f 2 (x, t)(v(x, s + h) -v(x))ϕ(s)
-k 2 (x, S(x, p(x, t)))Λ(x)(∇v(x, t) + g 2 ) • (∇v(x, s + h) -∇v(x))ϕ(s))dxdsdt.

Now using the inequality

b a qS j (q)dq = S j (b) -S j (a) = b(S j (b) -S j (a)) -b a (S j (q) -S j (a))dq, we get T 13 (h) ≥ T 12 (h) and therefore T 12 (h) ≤ T 15 (h) + T 14 (h). Moreover, defining T 16 (h) by

T 16 (h) = Ω Φ(x) 1 h 0 -h (S(x, p ini (x)) -S(x, p(x, s + h))(p ini (x) -(ū -v)(x))ϕ(s)dsdx,
we have

T 14 (h) = T 16 (h) - Ω Φ(x) 1 h 0 -h (S(x, p ini (x)) -S(x, p(x, s + h))(p ini (x) -p(x, s + h))ϕ(s)dsdx,
which implies T 14 (h) ≤ T 16 (h). Gathering the results, we get

T 11 (h) ≤ T 12 (h) ≤ T 15 (h) + T 16 (h). (26) 
Let us remark that, defining T 17 by

T 17 = T 0 ϕ Ω (f 1 (u -ū) + f 2 (v -v))- (k 1 (•, S(p))Λ(∇u + g 1 ) • ∇(u -ū) + k 2 (•, S(p))Λ(∇v + g 2 ) • ∇(v -v)) dxdt, we get that lim h→0 T 11 (h) = lim h→0 T 15 (h) = T 17 .
Using Lemma (4.1) and the regularity of ϕ, we get that

lim h→0 T 16 (h) = 0.
Hence we get, passing to the limit in (26), that

lim h→0 T 12 (h) = T 17 .
Since

lim h→0 T 0 Ω Φ(x)( S(x, p(x, t)) -S(x, p(x, t))(ū -v)(x)) 1 h (ϕ(t) -ϕ(t -h))dxdt = T 0 Ω Φ(x)( S(x, p(x, t)) -S(x, p(x, t))(ū -v)(x))ϕ (t)dxdt and lim h→0 1 h 0 -h Ω Φ(x)S(x, p(x, t + h))(ū -v)(x)ϕ(t)dxdt = Ω Φ(x)S(x, p ini (x))(ū -v)(x)ϕ(0)dx, we get that lim h→0 1 h 0 -h Ω Φ(x) S(x, p(x, t + h))ϕ(t)dxdt = ϕ(0) L.
Gathering the above results, we get that (24) holds for ϕ ∈ C ∞ c ((-∞, T ), R + ). Writing ϕ = max(ϕ, 0)max(-ϕ, 0) and taking regularizations, we conclude [START_REF] Tracy | An accuracy analysis of mass matrix lumping for three-dimensional, unsaturated flow, finite element, porous media computations using analytical solutions[END_REF] for all ϕ ∈ C ∞ ((-∞, T )).

Let us now state a discrete property. Lemma 4.3 Under Hypotheses (4), let D be a space-time gradient discretisation in the sense of Definition 2.8. Let u, v be such that Scheme [START_REF] Droniou | Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations[END_REF], p = u -v and let ϕ D be the function equal to ϕ(t (n) ) on the interval (t (n) , t (n+1) ), for all n = 0, . . . , N -1; then

T 0 ϕ (t) Ω Φ(x) S(x, Π D p(x, t))Π D (ū D -vD )(x) -S(x, Π D p(x, t)) dxdt + ϕ(0) Ω Φ(x) S(x, Π D p (0) (x))Π D (ū D -vD )(x) -S(x, Π D p (0) (x)) dx + T 0 ϕ D (t) Ω (k 1 (S(Π D p))Λ(∇ D u + g 1 ) •∇ D (u -ūD ) + k 2 (S(Π D p))Λ(∇ D v + g 2 )•∇ D (v -vD )) dxdt ≤ T 0 ϕ D (t) Ω (f 1 Π D (u -ūD ) + f 2 Π D (v -vD ))dxdt, ∀ϕ ∈ C ∞ c ([0, T ), R + ). ( 27 
)
Proof As in the proof of Lemma 3.2, we introduce w = δt (n+ 1 2 ) (u (n+1) -ūD )ϕ(t (n) ) and δt (n+ 1 2 ) (v (n+1) -vD )ϕ(t (n) ) as test functions in Scheme ( 14), and we use the same inequality concerning S. We may now state the strong convergence of the scheme. Theorem 4.4 (Strong convergence of the numerical scheme) Under the assumptions of Theorem 3.7, there exist u, v ∈ (L 2 (Ω × (0, T ))) 2 and p = u -v such that, for any t 0 ∈ (0, T ), up to a subsequence,

1. (Π Dm u m , Π Dm v m ) converges in L 2 (Ω × (0, t 0 )) 2 to (u, v) as m → ∞, 2. (∇ Dm u m , ∇ Dm v m ) converges in (L 2 (Ω × (0, t 0 )) d ) 2 to (∇u, ∇v) as m → ∞, 3. s Dm converges in L 2 (Ω × (0, T )) to s such that s(x, t) = S(x, p(x, t)), for a.e. (x, t) ∈ Ω × (0, T ) as m → ∞,
and (u, v) is a weak solution of Problem [START_REF] Brenner | A convergent finite volume scheme for two-phase flows in porous media with discontinuous capillary pressure field[END_REF].

Proof We first apply Theorem 3.7, which shows the weak convergence properties for (Π Dm u m , Π Dm v m ), and the strong one for s Dm . Since we have

| S j (a) -S j (b)| = b a qS j (q)dq ≤ b a S j (q)dq b a q 2 S j (q)dq 1/2 ≤ L S |S j (b) -S j (a)||b 3 -a 3 |/3 1/2 ,
we have, thanks to the Young inequality, for p, q ∈ L 2 (Ω), Passing to the limit sup as m → ∞ in (27) and subtract [START_REF] Tracy | An accuracy analysis of mass matrix lumping for three-dimensional, unsaturated flow, finite element, porous media computations using analytical solutions[END_REF]. We thus obtain, defining ϕ Dm (t) as in the statement of Lemma 4.3,

Ω | S(x, p(x)) -S(x, q(x))|dx ≤ Ω |S(x, p(x)) -S(x, q(x))| 2 dx 1/4 × Ω L S 3 |p(x) 3 -q(x) 3 | 2/3
-ϕ(0) Ω Φ(x) S(x, p ini (x))dx + lim sup m→∞ T 0 ϕ Dm (t) Ω (k 1 (S(Π Dm p m ))Λ∇ Dm u m • ∇ Dm u m + k 2 (S(Π Dm p m ))Λ∇ Dm v m • ∇ Dm v m ) dxdt ≤ -ϕ(0) L + T 0 ϕ(t) Ω (k 1 (S(p))Λ∇u • ∇u + k 2 (S(p))Λ∇v • ∇v) dxdt.
Using [START_REF] Shi | A lumped mass nonconforming finite element method for nonlinear parabolic integro-differential equations on anisotropic meshes[END_REF], we obtain

lim sup m→∞ T 0 ϕ Dm (t) Ω (k 1 (S(Π Dm p m ))Λ∇ Dm u m • ∇ Dm u m + k 2 (S(Π Dm p m ))Λ∇ Dm v m • ∇ Dm v m ) dxdt ≤ T 0 ϕ(t) Ω (k 1 (S(p))Λ∇u • ∇u + k 2 (S(p))Λ∇v • ∇v) dxdt.
On the other hand, standard properties for weak convergence show that

lim inf m→∞ T 0 ϕ Dm (t) Ω (k 1 (S(Π Dm p m ))Λ∇ Dm u m • ∇ Dm u m + k 2 (S(Π Dm p m ))Λ∇ Dm v m • ∇ Dm v m ) dxdt ≥ T 0 ϕ(t) Ω (k 1 (S(p))Λ∇u • ∇u + k 2 (S(p))Λ∇v • ∇v) dxdt,
which proves that

lim m→∞ T 0 ϕ Dm (t) Ω (k 1 (S(Π Dm p m ))Λ∇ Dm u m • ∇ Dm u m + k 2 (S(Π Dm p m ))Λ∇ Dm v m • ∇ Dm v m ) dxdt = T 0 ϕ(t) Ω (k 1 (S(p))Λ∇u • ∇u + k 2 (S(p))Λ∇v • ∇v) dxdt.
We then get that

lim m→∞ T 0 ϕ Dm (t) Ω k 1 (S(Π Dm p m ))Λ(∇ Dm u m -∇u) • (∇ Dm u m -∇u) + k 2 (S(Π Dm p m ))Λ(∇ Dm v m -∇v) • (∇ Dm v m -∇v) dxdt = 0.
Taking ϕ(t) = 1 on [0, t 0 ] for any t 0 ∈ (0, T ), this concludes the proof of the convergence in L 2 (Ω×(0, t 0 )) of the approximate gradients. Let us show that this implies the convergence of the approximate solutions (Π Dm u m , Π Dm v m ). For a.e. t ∈ (0, t 0 ), let u m (t) be defined by

u m (t) = argmin z∈X Dm,0 Π Dm z -(u(t) -ū) L 2 (Ω) + ∇ Dm z -∇(u(t) -ū) L 2 (Ω) d .
We get, using

Π Dm u m (t) -(u(t) -ū) L 2 (Ω) + ∇ Dm u m (t) -∇(u(t) -ū) L 2 (Ω) d ≤ u(t) -ū L 2 (Ω) + ∇(u(t) -ū) L 2 (Ω) d (since 0 ∈ X Dm,0 ) that T 0 Π Dm u m (t) -(u(t) -ū) 2 L 2 (Ω) dt and T 0 ∇ Dm u m (t) -∇(u(t) -ū) 2 L 2
(Ω) d dt tend to 0 by dominated convergence. We then have, thanks to the coercivity hypothesis,

Π Dm (u m -ūD -u m ) L 2 (Ω×(0,t0)) ≤ C P ∇ Dm (u m -ūD -u m ) L 2 (Ω×(0,t0)) d .
We thus get, thanks to the triangle inequality that

Π Dm u m -u L 2 (Ω×(0,t0)) ≤ u -Π Dm (ū Dm + u m ) L 2 (Ω×(0,t0)) + C P ∇ Dm (u m -ūDm -u m ) L 2 (Ω×(0,t0)) d ,
which implies, thanks again to the triangle inequality,

Π Dm u m -u L 2 (Ω×(0,t0)) ≤ u -Π Dm (ū Dm + u m ) L 2 (Ω×(0,t0)) +C P ( ∇ Dm u m -∇u L 2 (Ω×(0,t0)) d + ∇u -∇ Dm (ū Dm + u m ) L 2 (Ω×(0,t0)) d ).
We then get

lim m→∞ Π Dm u m -u L 2 (Ω×(0,t0)) = 0.
The same arguments apply for v, and concludes the proof.

Numerical examples

In the numerical tests proposed in this section, we use the Vertex Approximate Gradient scheme, denoted VAG, introduced in [START_REF] Eymard | Small-stencil 3d schemes for diffusive flows in porous media[END_REF] and developed for compositional multiphase flows in porous media in [START_REF] Eymard | Vertex-centred discretization of multiphase compositional darcy flows on general meshes[END_REF]. Following the gradient scheme framework, we first recall the construction of the VAG scheme, then we present several numerical experiments which are focused on the simulation of oil migration in a basin with discontinuous capillary pressures. Such problems are widely used in petroleum engineering for basin modeling in order to simulate oil trapping. The aim of this section is first to validate the scheme presented previously, by comparison with a classical upwind approximation of the mobility terms widely used in the oil industry. More precisely, we compare the centered approximation of the relative permeabilities corresponding to our scheme [START_REF] Droniou | Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations[END_REF], with an upwind first order approximation of the relative permeability of each phase with respect to the sign of the phase Darcy flux (see [START_REF] Aziz | Petroleum Reservoir Simulation[END_REF][START_REF] Peaceman | Fundamentals of numerical reservoir simulation[END_REF], and [START_REF] Eymard | Vertex-centred discretization of multiphase compositional darcy flows on general meshes[END_REF] in the framework of the VAG scheme). A second objective is to assess the hypothesis (4g) by comparison of the results obtained with k min > 0 with those obtained in the limit case k min = 0 which matches the physical model.

The Vertex Approximate Gradient scheme

In the VAG scheme, a primary polyhedral mesh M is given. We assume that each element K ∈ M is strictly star-shaped with respect to some point x K . We denote by E K the set of all interfaces K ∩ L, for all neighbors of K denoted by L ∈ M and, for a boundary control volume, E K also contains the element

K ∩ ∂Ω. Each σ ∈ E K is assumed to be the reunion of d -1 simplices (segments if d = 2, triangles if d = 3) denoted τ ∈ S σ .
We denote by V σ the set of all the vertices of σ, located at the boundary of σ, and by V 0 σ the set of all the internal vertices of σ. We assume that, for all v ∈ V 0 σ , there exist some coefficients

(α x v ) x∈Vσ , such that v = x∈Vσ α x v x, with x∈Vσ α x v = 1.
Therefore, if d = 2 we can simply take V 0 σ = ∅ and the d vertices of any τ ∈ S σ are elements of V 0 σ ∪ V σ . We denote by

V = K∈M σ∈E K V σ .
For any K ∈ M, σ ∈ E K , τ ∈ S σ , we denote by S K,τ the d-simplex (triangle if d = 2, tetrahedron if d = 3) with vertex x K and basis τ .

• We then define X D as the set of all families u = ((u K ) K∈M , (u v ) v∈V ) and X D,0 the set of all families u ∈ X D such that u v = 0 for all v ∈ V ∩ ∂Ω.

• The mapping Π D is defined, for any u ∈ X D , by Π D u(x) = u K , for a.e. x ∈ K.

• The mapping ∇ D is defined, for any u ∈ X D , by ∇ D u(x) = G K,τ , for all σ ∈ E K and τ ∈ S σ , and for a.e.

x ∈ S K,τ , where G K,τ ∈ R d is the gradient of the affine function whose values are u K at x K , u v at any vertex v of τ which belongs to V σ , and x∈Vσ α x v u x at any vertex v of τ which belongs to V 0 σ .

It is then proved in [START_REF] Eymard | Gradient schemes for the Stefan problem[END_REF][START_REF] Eymard | Small-stencil 3d schemes for diffusive flows in porous media[END_REF] that this scheme allows to define a consistent sequence of space-time gradient discretisations in the sense of Definition 2.9, such that the associated sequence of approximate gradient approximations is coercive (Definition 2.3), limit-conforming (Definition 2.6) and compact (Definition 2.7), and such that, for all m ∈ N, Π Dm is a piecewise constant function reconstruction in the sense of Definition 2.10.

In the case of multiphase flows simulations, we define, between a cell and one of its vertices, a Darcy flux of a phase as described in details in [START_REF] Eymard | Vertex-centred discretization of multiphase compositional darcy flows on general meshes[END_REF]. The advantage of this scheme is that it allows to eliminate all values (u K ) K∈M with respect to the values (u v ) v∈V , leading to linear systems which are well suited to domain decomposition and parallel computing.

A one dimensional test

The objective of this first test case is to study numerically the theoretical models introduced in this paper, in a framework where the set J includes two elements. Such tests have been the object of theoretical and numerical works [START_REF] Brenner | A convergent finite volume scheme for two-phase flows in porous media with discontinuous capillary pressure field[END_REF][START_REF] Cancès | Finite volume scheme for two-phase flows in heterogeneous porous media involving capillary pressure discontinuities[END_REF][START_REF] Enchéry | Numerical approximation of a two-phase flow problem in a porous medium with discontinuous capillary forces[END_REF]. We consider an immiscible incompressible two phase flow in the domain Ω = (0, 100) (oriented upwards in the vertical direction), and we consider J = {α, β} with Ω α = (0, 50) and Ω β = (50, 100). The porosity Φ(x) = 0.1, and the permeability Λ(x) = 10 -12 Id are homogeneous and the same for both subdomains. The mobility functions of the two phases, say respectively oil and water, are given by

k 1 (x, s) = s + kr min µ 1 and k 2 (x, s) = 1 -s + kr min µ 2
where µ 1 = 0.005 and µ 2 = 0.001 are the viscosities of the phases, and kr min is a strictly positive real number; hence Hypothesis (4g) is fulfilled since we have

k min = min kr min µ 1 , kr min µ 2 = kr min µ 1 ;
the influence of its value is discussed below. Notice that we impose the non-degeneracy assumption on the relative permeabilities kr i (and not the mobilities k i ) since it is the first ones which naturally vanish. Moreover these data are unit-less and take values between 0 and 1. The vectors g i are given by g i = ρ i g where g is the gravity vector (with g = 10) and ρ i is the phase density with ρ 1 = 800 and ρ 2 = 1000. The functions S j , which are the reciprocal functions of the capillary pressure of each subdomain, are defined by

S j (q) = min(max( q -b j a j , 0), 1), (29) 
with a α = a β = 10 +5 , b α = 0 and b β = 0.5 10 +5 . The Dirichlet boundary conditions v(0, t) = v 0 and u(0, t) = v 0 + 0.3a α + b α are imposed at x = 0, and the Dirichlet boundary conditions v(100, t) = v 0 -100g 2 and u(100, t) = v(100, t) + b β are imposed at x = 100, for a given value v 0 (the problem being independent of this value). The initial difference of the two pressures is defined by

p ini (x) = 0.3a α + b α if x ∈ Ω α , b β if x ∈ Ω β .
We also compute an approximate solution to Richards' equation (1b)-( 6), which is expected to provide results comparable to the full two-phase flow problem, since the water phase is the most mobile. Indeed we see in the numerical results below that in the full two-phase flow problem, the water saturation remains sufficiently high, which leads to nearly constant pressures with respect to the time variable. Two grids are used for the computations, a coarse grid with 20 cells, and a finer grid with 80 cells and two different approximations of the mobility terms are considered, the centered scheme and the upwind one. Figures 1 and2 compare at a given time the solutions obtained for the oil saturation s D along the vertical axis. Due to the imposed pressure at the boundaries, it is known that the oil should move to the top subdomain Ω β provided that the capillary pressures can achieve continuity at the interface, meaning here that the jump of the oil saturation s D at the interface must reach the value 0.5 before oil can move into the upper part. This is not achieved after 15 days of simulation, but is obtained at 60 days. We can observe that the results obtained with the upwind scheme and the centered scheme are very close, weakly dependent of the value of k min , and that they are already accurate on the coarse grid. As expected, the results obtained using the approximation of Richards' equation are also close to those obtained with the approximation of the full two-phase flow problem, as long as k min remains sufficiently large.

Oil migration in a 2D basin with two barriers

We consider the simulation of the oil migration process, within a 2D cross section Ω = (0, L) × (0, H), H = L = 100 m (see Figure 3). We denote by (x, y) the Cartesian coordinates of x. We let again J = {α, β}, with Λ(x) = 1.10 -12 Id, Φ(x) = 0. where µ i , i = 1, 2, is the viscosity of the phase i such that µ 1 = 0.005 and µ 2 = 0.001, and kr min is a positive real value discussed below and again satisfies

k min = kr min µ 1 .
The vectors g i are given by g i = ρ i g where g is the gravity vector (with g = 10) and ρ i is the phase density with ρ 1 = 800 and ρ 2 = 1000. and the functions S j (p) are given as in the 1D test case by (29) with a α = a β = 10 +5 , b α = 0 and b β = 0.5 10 +5 . Neumann homogeneous boundary conditions are imposed at the right and left sides of Ω and Dirichlet boundary conditions are imposed on the top and bottom sides with v(x, H, t) = 8.10 6 P a, u(x, H, t) -v(x, H, t) = b α P a, v(x, 0, t) = v(x, H, t) + ρ 2 gH P a, u(x, 0, t) -v(x, 0, t) = a α + b α P a (input oil). The initial condition is defined by

p ini (x) = b j , j ∈ Ω j , j ∈ J.
The solution is first computed with the upwind scheme using k min = 0 on a uniform Cartesian coarse grid of size 16 × 16 exhibited in Figure 4. In that case the capillary pressure is not uniquely defined and can be viewed as a multivalued function (see [START_REF] Cancès | An existence result for multidimensional immiscible two-phase flows with discontinuous capillary pressure field[END_REF], and [START_REF] Brenner | A convergent finite volume scheme for two-phase flows in porous media with discontinuous capillary pressure field[END_REF]). In order to obtain a unique discrete solution and to solve the nonlinear system at each time step, the discrete capillary pressure at cell centers (x = x K , K ∈ M) and at the vertices (x ∈ V) will be projected on the interval

[min {j∈J | x∈ Ωj } b j , max {j∈J | x∈ Ωj } b j + a j ].
The oil saturation s D is plotted at different times in Figure 4 on the submesh obtained by joining the midpoints of the successive edges of each cell. This submesh enables to plot all the values of s D at a fixed time. Figure 4 clearly shows that the discrete oil saturation s D satisfies the jump condition at the interface between the two rocktypes both at the entry and at the exit of the barriers. The comparison of s D on the coarse grid at final time Figure 4 with the solutions s D obtained on the refined meshes Figure 5 shows that the solution is already accurate on the coarse grid and that the results obtained on the Cartesian, quadrangular, and triangular fine meshes are very close. To close the convergence study of this test case, we have plotted on the Figure 7 the discrete L 2 (Ω) errors on each type of grids (these errors being computed at the final time). Since no analytical solution is available, we use as a reference solution the discrete solution obtained on a fine 512 × 512 Cartesian mesh. The error of each phase pressure is computed thanks to a bilinear interpolation and the saturation error is then deduced using its expression as a function of the capillary pressure. As expected, the order of convergence is at least one.

Oil migration in a 2D basin with random capillary pressure

The objective of this test case is to show the ability of the scheme to deal with many different rocktypes. The data for k i , g i , Λ and Φ are the same as in the previous example. The capillary pressure curves are given by S(x, q) = min(max( q -γ(x)10 5 10 5 , 0), 1),

where γ is a cellwise constant function with values chosen randomly in each cell in the interval [-1, 1]. Note that negative values of γ imply a change of wettability between the oil and water phases. As in the above case, we impose Neumann homogeneous boundary conditions on the right and left sides of Ω and Dirichlet boundary conditions on the top and bottom sides with v(x, H, t) = 8.10 6 P a, u(x, H, t) -v(x, H, t) = γ(x, H)10 5 P a, v(x, 0, t) = v(x, H, t) + ρ 2 gH P a, u(x, 0, t) -v(x, 0, t) = (1 + γ(x, 0))10 5 P a (input oil). The initial condition is defined by p ini (x) = γ(x)10 5 . We can check in Figure 8 that the discrete oil saturation s D follows mainly the paths of minimum γ(x). We see on this test case the efficiency of the Vertex Approximate Gradient scheme and of the pressure formulation to handle the case of capillary-driven two-phase flow in random porous media, which represents for example the case where the values in each cell are generated by a homogenization process.

Oil migration in a 2D basin with barrier and fracture

We consider again the simulation of the oil migration process within the 2D cross section Ω = (0, L) × (0, H), H = L = 100 m. We denote by (x, y) the Cartesian coordinates of x. We let again J = {α, β}, with Ω β the red barrier exhibited in Figure 9 and Ω α = Ω \ Ω β the remaining subdomain in blue including the fracture Ω f crossing the barrier. The porous media in Ω α \ Ω f is assumed to be anisotropic, with a permeability tensor given by Λ(x) = λ 0 0.82 -0.36 -0.36 0.28 .

with λ 0 = 10 -12 m 2 ; the eigenvalues of Λ are 0.1λ 0 and λ 0 and the corresponding eigenvectors are

( 1 √ 5 , 2 √ 5 ), ( 2 √ 5 , -1 √ 5 ).
In the barrier subdomain Ω β , the porous media is isotropic, with a permeability tensor Λ(x) = λ0 100 I, and in the fracture subdomain Ω f , the porous media is also assumed isotropic with a permeability tensor Λ(x) = 10λ 0 I. The vectors g i are given by g i = ρ i g where g is the gravity vector (with g = 10) and ρ i is the phase density with ρ 1 = 850 and ρ 2 = 1000. The inverse of the capillary pressure monotone graph in each subdomain Ω j , j ∈ J is defined by 

S j (q) = 0 if q < a j , (1 -s r2 )(1 -e a j -q b j ) if q ≥ a j , with 
k 1 (s) =      0 if s < 0, 1 µ1 if s > 1 -s r2 , s 2 (1-sr2) 2 µ1
else, for phase 1 (oil), and

k 2 (s) =      0 if s > 1 -s r2 , 1 µ2 if s < 0, (1-s-sr2) 2 (1-sr2) 2 µ2
else, for t phase 2 (water). Phase 1 is injected at the bottom boundary (40, 60) × {0} with imposed pressures v = 8 10 6 Pa, u = v + S -1 α (0.2) corresponding to an input phase 1 saturation s = 0.2. All remaining boundaries are assumed to be impervious. At initial time the porous media is saturated with phase 2 with a hydrostatic pressure v(x) = 8 10 6 -ρ w gy, and a phase 1 pressure defined by u(x) = v(x) + a j for x ∈ Ω j , j ∈ J. The mesh is a 100 × 100 topologically Cartesian quadrangular grid , which is refined below the barrier. Figure 9 exhibits the oil (phase 1) saturation at a final simulation time of 4000 days. We clearly see that the oil phase rises by gravity along the direction of the highest permeability and accumulates below the barrier. Due to the saturation jump condition at the barrier drain interface given by the capillary pressures functions, oil can only cross the barrier through the fracture as can be checked in Figure 9.

Oil migration in a 3D basin with barriers

This case is a 3D extension of the 2D case with again two rocktypes J = {α, β}. The mesh of the domain Ω ⊂ (0, 100m) 3 exhibited Figure 10 is hexahedral with degeneracies of some hexahedra due to erosion leading to the collapse of up to three vertical edges of the cell. It includes three barriers of rocktype β exhibited in red in Figure 10. The remaining of the domain is of rocktype α. Note that the barrier located in the middle of the domain extends on the full domain horizontally while the two others extend only on the right horizontal side of the domain. The boundary conditions are the same as for test case 5.3 except on the bottom side for which oil is injected only on the right side below the first barrier. The functions S j , j ∈ J are still defined by (29) with modified parameters a α = a β = 10 +5 , b α = 0 and b β = 1.5 10 +5 , and the densities are changed to ρ 1 = 850, ρ 2 = 1000. Other parameters are unchanged compared with test case 5.3. With this choice of the functions S j , j ∈ J, the oil saturation can pass through the barrier only if it reaches 1 below the barrier and if the difference of pressure u -v roughly given by (ρ 2 -ρ 1 )gh + a α + b α is larger than b β where h is the vertical distance between the barrier and the bottom side. It results that oil will not go through the first barrier due to insufficient gravity load but can go through the second and the third ones. This is what is observed in Figure 11 which exhibits the discrete oil saturation at final simulation time obtained for k min = 0 with the upwind scheme. Figure 12 shows the diffusive effect of the parameter k min which has a larger impact on the solution in that test case than in the previous ones due to the low saturation values at the exit of the barriers and to the large simulation time.

Conclusion

In this paper, we proved the convergence of a large class of numerical methods, namely the gradient schemes, for the two-phase flow problem. Our study includes an extended Richards model; this latter model is shown to give a precise approximation of the full two-phase flow problem for numerical examples taken from the oil engineering framework. Applications of the gradient schemes to other nonlinear problems, such as the Stefan problem, are the object of ongoing works. It is important to underline that the proof of convergence of general gradient schemes remains an open problem in the case where the estimates require the multiplication of the equations by nonlinear functions of the term involved in the discrete gradient: this is the case for instance when dealing with discontinuous capillary forces, or even for the standard two-phase flow problem but without assuming a lower bound on the relative permeabilities, or, equivalently, on the range of the saturation function. In these latter cases, the convergence proof [START_REF] Brenner | Finite volume approximation for an immiscible two-phase flow in porous media with discontinuous capillary pressure[END_REF][START_REF] Cancès | Finite volume scheme for two-phase flows in heterogeneous porous media involving capillary pressure discontinuities[END_REF][START_REF] Enchéry | Numerical approximation of a two-phase flow problem in a porous medium with discontinuous capillary forces[END_REF][START_REF] Eymard | Mathematical study of a petroleum-engineering scheme[END_REF] is known for two point flux approximations, but it relies on the maximum principle which does not hold for gradient schemes. 
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 23 Coercivity) Let D be a gradient discretisation in the sense of Definition 2.1, and let C D be the norm of the linear mapping Π D , defined by

Definition 2 . 5 (

 25 Consistency) Let D be a gradient discretisation in the sense of Definition 2.1, and let S D : H 1 (Ω) → [0, +∞) be defined by ∀ϕ ∈ H 1 0 (Ω) , S D (ϕ) = min v∈X D,0
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 28 Space-time gradient discretisation) Let Ω be an open subset of R d , with d ∈ N and let T > 0 be given. We say that D

  Let m ∈ N, and let us denote D = D m (belonging to the above subsequence) and drop some subscripts m for the simplicity of the notation. Let ϕ ∈ C ∞ c ([0, T )) and w ∈ C ∞ c (Ω), and let w D ∈ X D,0 be such that w D = argmin z∈X D,0

dx 3 / 4 .|

 34 S(x, Π Dm p m (x, t)) -S(x, p(x, t))|dxdt = 0, and lim m→∞ Ω | S(x, Π Dm p (0) m (x)) -S(x, p ini (x))|dx = 0.
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 1 Figure 1: Oil saturation along the z axis after 15 and 60 days of simulation obtained for the centered scheme and the upwind scheme denoted by "up.".
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 123 (x, s) = s 2 + kr min µ 1 and k 2 (x, s) = (1 -s) 2 + kr min µ krmin 10 -3 R. krmin 10 -1 R. krmin 10 -2 R. krmin 10 -krmin 10 -3 R. krmin 10 -1 R. krmin 10 -2 R. krmin 10 -3 (d) 60 days -fine grid
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 2 Figure 2: Oil saturation along the z axis after 15 and 60 days of simulation obtained for the centered scheme and Richards denoted by "R.".

Figure 3 :

 3 Figure 3: Test case with two barriers with rocktype β in the barrier and rocktype α outside.

Figure 4 :

 4 Figure 4: Cartesian mesh and discrete oil saturation s D at successive times computed with the upwind scheme and k min = 0 on the 16 × 16 uniform Cartesian grid.

  the parameters s r2 = 0.2, a β = 2 10 5 Pa, a α = 10 5 Pa, b β = 10 2 Pa, and b α = 10 4 Pa. The mobilities of the two phases are given by

Figure 5 :

 5 Figure 5: Comparison of the discrete oil saturation s D at final time computed with the upwind scheme and k min = 0 on the uniform Cartesian 64 × 64, grid, a random quadrangular 64 × 64 mesh, and a triangular mesh with 7297 nodes.

Figure 6 :

 6 Figure 6: Comparison of the discrete oil saturation s D at final time on the uniform Cartesian 64 × 64, mesh computed with the upwind scheme and different values of kr min = 10 -1 , 10 -2 , 10 -3 (which implies here k min = 20, 2, 0.2) from left to right.

Figure 7 :

 7 Figure 7: convergence of discrete L 2 (Ω) errors at the final time on different grids using as reference the discrete solution of the Cartesian mesh with 512 × 512 cells.

Figure 8 :

 8 Figure 8: Cellwise constant parameter γ for the rocktype on the triangular mesh with 7297 nodes (left) and discrete oil saturation s D computed with the upwind scheme for k min = 0 with this random capillary pressure.

Figure 9 :

 9 Figure 9: 2D basin with one barrier in red and a fracture crossing the barrier. Oil saturation (phase 1) after 4000 days of simulation on a 100 × 100 quadrangular mesh obtained with the upwind scheme.

Figure 10 :

 10 Figure 10: Hexahedral mesh (with degeneracies of some hexahedra due to erosion) of the domain with the three barriers in red (rocktype β in the red barriers and α outside the barriers).

Figure 11 :

 11 Figure 11: Discrete oil saturation s D at final time computed with the upwind scheme and k min = 0. On the right side plot of the oil saturation at final time for s D > 0.05

Figure 12 :

 12 Figure 12: Plot of the oil saturation at final time for s D > 0.05 computed with the upwind scheme and kr min = 10 -3 ⇒ k min = 0.2 (left) and kr min = 10 -4 ⇒ k min = 0.02 (right).
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