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Abstract 

In this paper, we integrate the three strategies that are important to most firms, namely pricing, 

lot-sizing and supplier selection. Combining the three objectives of total profit, inconsistency and 

deficiency with a set of constraints, we formulate this integrated problem as a multi-objective 

non-linear programming model, proposing a genetic algorithm (NSGA-II) that provides 

decision-makers with a number of Pareto-optimal solutions, one of which can be selected on the 

basis of the higher-level information. We analyze the trade-off between the different Pareto-

optimal solutions and discuss the results of that analysis. We then evaluate the performance of 

NSGA-II compared to SPEA2 in solving the model, which shows NSGA-II performs better. 

Finally, concluding remarks and suggestions for future research are provided.  

Keywords: lot-sizing, pricing, supplier selection, supply chain management, multi-objective 

optimization, non-linear programming, genetic algorithm, NSGA-II, SPEA2 
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A JOINT PRICING, LOT-SIZING AND SUPPLIER SELECTION MODEL 

 

Abstract 

In this paper, we integrate the three strategies that are important to most firms, namely pricing, 

lot-sizing and supplier selection. Combining the three objectives of total profit, inconsistency 

and deficiency with a set of constraints, we formulate this integrated problem as a multi-

objective non-linear programming model, proposing a genetic algorithm (NSGA-II) that 

provides decision-makers with a number of Pareto-optimal solutions, one of which can be 

selected on the basis of the higher-level information. We analyze the trade-off between the 

different Pareto-optimal solutions and discuss the results of that analysis. We then evaluate the 

performance of NSGA-II compared to SPEA2 in solving the model, which shows NSGA-II 

performs better. Finally, concluding remarks and suggestions for future research are provided.  

Keywords: lot-sizing, pricing, supplier selection, supply chain management, multi-objective 

optimization, non-linear programming, genetic algorithm, NSGA-II, SPEA2 

 

Introduction 

Wagner and Whitin (1958) are among the first researchers who formulated the lot-sizing 

problem, as one of the most important problems facing most firms. They considered a 

situation with a single product and multiple periods and solved the problem using a dynamic 

programming algorithm. However, they only considered inventory management costs. In 

recent decades, various aspects of this basic problem have been studied extensively. For 

detailed information regarding its classifications and characteristics, see, for instance, Yano 

and Lee (1995), Karimi et al. (2003), Ben-Daya et al. (2008) and Robinson et al. (2009). 

Supplier selection is another fundamental and important decision firms (buyers) have to 

make. While most studies in this area have focused on a multi-criteria framework, taking into 

account criteria like quality, delivery, price and geographical location (e.g. de Boer et al., 

2001; Wilson, 1994; Weber et al., 1991; Kannan and Haq, 2007, Ho et al., 2010), some have 

examined the problem in a multi-objective framework (e.g. Weber and Ellram, 1992; 

Ghodsypour and O’Brien, 1998; Karpak, et al., 1999; Amid et al., 2011).  
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Taking into account the increasing importance of supply chain management and 

attempting to align different strategies available to buyers, some researchers have combined 

the two important problems mentioned above (lot-sizing and supplier selection) 

(Tempelmeier, 2002; Liao and Kuhn, 2004; Basnet and Leung, 2005; Rezaei and Davoodi, 

2006, 2008, 2011; Liao and Rittscher, 2007; Cheng and Ye, 2010), bringing together 

qualitative and quantitative metrics for supplier selection, and inventory costs for lot-sizing, 

and applying mathematical programming to account for the constraints of the integrated 

system. For a review of this approach, see Aissaoui et al. (2007). 

A third important decision facing buyers involves determining the selling price or pricing. 

Abad (1994) has drawn a distinction based on two assumptions: 1) annual demand for the item 

is fixed and the buyer only has to plan his procuring (i.e. lot-sizing) policy; 2) annual demand 

is a function of the price. When the latter is the case, buyers are faced with decisions regarding 

prices and lot-size. These two areas are examined together in a number of studies (e.g. Abad, 

1994, 1996, 2001, 2003a, 2003b; Hwang and Shinn, 1997; Kim and Lee, 1998; Shinn and 

Hwang, 2003; Chen and Chen, 2004; Rezaei, 2005; Khouja, 2006; Smith et al., 2007, 2009; 

Gonzalez-Ramirez et al., 2011). 

In this paper, we combine the three problems outlined above. We consider a situation in 

which a buyer has to decide which products to order in what quantities, and from which 

suppliers and when, as well as determine the selling price of each product in each period. In 

this situation, as in most actual situations, we assume that demand for the products depends on 

selling prices, while the buyer has a limited budget at the first stage of his planning horizon. 

Based on the assumption that the buyer wants to maximize total profits and minimize total 

inconsistency and deficiency under a set of constraints - including suppliers' capacity, 

warehouse storage and budget limitations - we formulate a multi-objective non-linear mixed 

integer programming model. Because this is a problem that basically belongs to a class of NP-

hard problems (Florian et al., 1980; Bitran and Yanasse, 1982), a suitable approach to dealing 

with the problem is by using a heuristic search algorithm. In this paper, we use a robust multi-

objective genetic algorithm and introduce a new operator called Refiner operator, to satisfy 

the constraints of the problem efficiently. 
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The remainder of this paper is organized as follows. In section two, we present the details 

and mathematical modeling of the problem and discuss the heuristic genetic algorithm in 

section three. Section four contains the numerical example, discussion and comparison study. 

In section five, we present our conclusions and suggestions for future research. 

Mathematical modeling  

The mathematical model in this paper has been developed on the basis of the following 

notations and assumptions. 

Notations  

I  Number of products 

J  Number of suppliers 

T
 

Number of periods 

ijt
x  Number of product i ordered to supplier j in period t 

ijtx′
 

Number of good product i delivered by supplier j in period t 

ij

ijtijijt x
λαϕ −′=

 
Purchasing price of product i from supplier j in period t given purchased

quantity ijtx′   

ijα
 

Scaling constant of purchasing price ijtϕ  

ijλ  
Degree of economy of scale regarding purchasing price ijtϕ   

itp  Selling price of product i in period t  
l

iju
 

Late delivery rate of product i offered by supplier j 

w

iju
 

Wrong delivery rate of product i offered by supplier j 

ijδ
 

Inconsistency (late and wrong deliveries) reduction rate of product i offered by 

supplier j 

ij
q  Deficiency rate of product i offered by supplier j 

ijη
 

Deficiency reduction rate of product i offered by supplier j 

j
o  Fixed ordering cost for supplier j 

j

j ijto x
γ′

 
Variable ordering cost for supplier j 

j
τ

 
Transportation cost of supplier j per vehicle 

jtn
 

Number of vehicles assigned for supplier j in period t  

jt
y  Binary integer: 1-if the order is given to supplier j in period t , 0-otherwise 

tB
 

Total budget of buyer in period t, =0B initial budget 

ih  Holding cost of product i per period  

( )it itd p  Total demand of product i in period t given price
itp ; where 

( ) , for all ,it it it it itd p m p i tβ= − and ( ) / 0ik ik ikdd p dp < . 

itm
 

Deterministic proportion of overall demand of product i in period t, 0>itm  
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itβ
 

Sensitivity of demand of product i to selling price
itp  in period t,

 
0itβ >  

ij
c  Capacity of supplier j in production of product i per period 

iw  Space occupied by product i in the warehouse or vehicle 

W  Total storage capacity 

j
v  Vehicle capacity of supplier j 

itI
 

Inventory of product i in period t 

 

Assumptions  

1) The purchasing price depends on the purchased quantity, while the selling price 

depends on customer demand. 

2) Ordering costs are a combination of fixed costs, which are independent of the lot-size, 

and additional ordering costs, which depend on the specific lot-size. 

3) The buyer has a limited storage capacity and budget in each period. 

4) Suppliers have limited supply capacity. 

5) Initial and final inventory levels of all the products are zero. 

6) Shortage is not allowed, i.e. the demand for each product within each period should be 

completely satisfied within the same period. 

Based on these notations and assumptions, we present the details of the mathematical 

programming model, which contains three objective functions and a set of constraints. 

Objective functions 

Total profit (z1): the total profit in this situation is computed as the difference between 

total revenues and total costs, where the total revenues are earned by selling all the products in 

all periods and the total costs are the sum of the purchasing costs, ordering costs, holding 

costs, and transportation costs in all periods. The buyer wants to maximize total profits. Here, 

we elaborate on some parts of this objective function. According to Aissaoui et al. (2007), in 

modeling the problems of lot-sizing and supplier selection, there are two general situations 

with regard to purchasing price: items without discount and items with discount. Quantity 

discount is offered to maximize profits. When discount is continuous, the buyer obtains more 

information about prices, which can be used in supplier comparison (Schotanus et al. 2009). 

In this paper, the purchasing price, ij

ijtij x
λα −′ , is lot-size-supplier dependent. ijα is the scaling 

constant of purchasing price, and ij

ijtx
λ−′ indicates the effect of purchased quantity on 
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purchasing price such that the higher the purchased quantity ijtx′ , the lower the purchasing 

price. ijλ  is the degree of economy of scale regarding purchasing price. In fact it shows the 

degree to which supplier j reduces the price reacting to increasing the purchased quantity of 

product i by the buyer. It is clear that, if supplier j offers item i without discount, or 

equivalently does not react to the increasing of purchased quantity by the buyer at all, then 

0=ijλ  and ijijtij

ijx αα λ =′− . Ordering costs consist of a fixed cost jo , which is independent of 

the lot-size, and an additional (variable) ordering cost 
j

j ijto x
γ′ , which depends on the specific 

lot-size. It is clear that we include the variable ordering cost just because in this case it 

depends on the lot-size. Otherwise, it is independent of the ordering policy and can be 

excluded from the model. To formulate the fixed cost jo , we should first consider different 

possible relationships between supplier and buyer. Figure 1 shows six types of relationship 

that have been identified in literature, together with the key emphasis and focus of the 

relationship, clustered into three categories: adversarial, partnership and integrated (Hines, 

2004). Because integrated relationships imply that two firms operate as one, we do not 

consider them here. Existing literature mainly implicitly assumes that there is an arm’s length 

(adversarial) relationship between buyer and supplier, which means it has to be assumed that 

the buyer pays a fixed amount in ordering cost for every order. However, when we consider 

the commitment that exists between buyer and supplier in partnership types of relationship, it 

is wise to assume that, for a continuous period of time, the buyer pays the fixed ordering cost 

only once, rather than with every order. However, the variable ordering costs 
j

j ijto x
γ′ depend on 

the specific lot-size in each period. As the last part of the first objective function, we consider 

transportation costs, which have often been ignored in solving lot-sizing problems (Rezaei and 

Davoodi, 2011; Aissaoui et al., 2007; Ertogral et al., 2007; van Norden and van de Velde, 

2005). As mentioned by Aissaoui et al. (2007), one of the advantages of the synergy generated 

by multi-item models is the possibility of reducing transportation costs. For example, in multi-

item models, it is possible to benefit from transporting multiple items in a single vehicle, 

which is why we assume that different items purchased from a supplier can be transferred by a 

single vehicle, within the capacity of that vehicle.  

Consequently, the buyer’s total profits are formulated as follows: 
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−′+= −

−−
−

j t

jtjjtjtj

i t j

iti

j

ijtjijtij

j

itijtitit nyyoIhxoxIxIpz jij τα γλ
1

11

11 ,0maxmax

 (1)

 

INSERT FIGURE 1 ABOUT HERE 

Total inconsistency (z2): Inconsistency is defined as the percentage of late and wrong 

delivery by the supplier.  With regard to late delivery, inconsistency is the percentage of time 

delayed, whereas in the case of wrong delivery it is the percentage of goods returned 

(Beamon, 1998; Mapes et al., 2000; Chan, 2003). Service level is defined as the percentage of 

lots that are completed before or on the due date, while inconsistency rate is a measure that is 

broader than the measure of service level that has thus far been used in multi-objective 

supplier selection literature (e.g. Amid et al., 2006; Rezaei and Davoodi, 2011). In this paper, 

we define an integrated measure for the inconsistency rate of product i offered by supplier j as 

a combination of late delivery ( l

iju ) and wrong delivery ( w

iju ). Regardless the effect of long-

term relationship on late and wrong delivery, this performance criterion (inconsistency) would 

be w

ij

l

ij uu + . Several studies, however, have shown that long-term relationship helps suppliers 

reduce late and wrong deliveries (e.g. Kalwani and Narayandas, 1995; Horvath, 2001). We 

therefore make an exponential relationship between the constant level of inconsistency 

( w

ij

l

ij uu + ) and the frequency of the relationship between buyer and supplier j (∑
=

t

k

jky
1

) as 

( ) ∑
+ =

−
t

k

jkij y
w

ij

l

ij euu 1

δ

 i.e. the more frequent relationship between buyer and supplier j, the lower 

the level of supplier's inconsistency. ijδ  is the degree to which supplier j reduces 

inconsistencies (late and wrong deliveries) reacting to increasing the frequency of the 

relationship by the buyer. If the frequency of the relationship would not be important for 

supplier j to decrease the level of inconsistency at all, then 0=ijδ  and 

( ) w

ij

l

ij

y
w

ij

l

ij uueuu

t

k

jkij

+=
∑

+ =

−
1

δ

. Because it is in the buyer’s interest to minimize the total 

inconsistency with regard to all suppliers within the planning horizon, this objective function 

is constructed as follows:  
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( )∑∑∑
∑

+= =

−

i j t

ijt

y
w

ij

l

ij xeuuz

t

k

jkij

1

2min
δ

 (2) 

It is assumed that items that are delivered late are delivered by the end of the next period 

and items that are delivered wrongly are rejected both at the expense of the supplier. 

Total deficiency (z3): the buyer wants to minimize the total number of defective items 

delivered by suppliers. We define the defective rate ijq
 

as the percentage of product i 

delivered by supplier j as defective. Regardless the effect of relationship frequency on 

delivering defective items by the supplier, the performance criterion, deficiency, would be ijq . 

Deficiency indicates one important aspect of a supplier's performance, which, like other 

aspects, can be improved via a long-term relationship between buyer and supplier (Larson, 

1994). To see the effect of long-term relationship between buyer and supplier on a supplier's 

capabilities and performance, we refer to studies conducted in the area of supplier 

development (e.g. Wagner and Krause, 2009). To show this effect in this objective function, 

we make an exponential function between the constant level of a supplier's deficiency ijq , and 

the frequency of the relationship between buyer and supplier ∑
=

t

k

jky
1

as 

∑
=

−
t

k

jkij y

ijeq 1

η

which means 

that more frequent relationship between buyer and supplier may lead to lower level of 

deficiency.   ijη  is the degree to which supplier j decreases the amount of delivered defective 

item i reacting to increasing the frequency of the relationship by the buyer. If the frequency of 

the relationship would not be important for supplier j to reduce the deficiencies at all, then 

0=ijη  and ij

y

ij qeq

t

k

jkij

=
∑
=

−
1

η

. The following objective function reflects the minimization of 

total deficiency: 

∑∑∑
∑

= =

−

i j t

ijt

y

ij xeqz

t

k

jkij

1

3min
η

 (3) 

It is assumed that defective items are rejected at the expense of the supplier. 

In general, we expect that there is a trade-off between the first objective function and the 

other two objective functions. One may argue that, when trying to maximize the total profit, 
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the buyer should accept some more inconsistencies or deficiencies of the suppliers. For 

example, the buyer will prefer to purchase products from suppliers who offer their products at 

a lower price (to maximize the first objective function). In most real-world cases, however, 

this implies more late and long deliveries and more defective items (which refer to the second 

and third objective functions). In addition, while the existence of a close relationship between 

buyer and supplier may reduce a supplier's inconsistency and deficiency (refer to the 

exponential relationship between order frequency and supplier's performance in second and 

third objective functions), it may reduce the total profit, for example by increasing 

transportation costs.  

Constraints 

The following constraints apply to our model: 

Demand constraint: this constraint ensures that the demand for each product within each 

period is satisfied within the same period. 

tidx
t

k

ik

t

k j

ijk andallfor,0
11

≥−′ ∑∑∑
==

 (4) 

Ordering costs: this constraint ensures that the buyer cannot place an order without having to 

pay appropriate ordering costs. Because of the dependency of variable ordering costs on lot-

size, this constraint relates only to the fixed part of the total ordering costs. Note that this 

constraint is not in conflict with the fifth term (ordering cost) of the first objective function. 

tjixyd ijtjt

T

tk

ik and,allfor,0≥−






∑
=  (5) 

Budget limitation: This constraint shows the limitation of the buyer’s budget for purchasing, 

inventory and transportation costs. 

tBBgx
i j

tttijtij

ij allfor,011

1∑∑ =−+−′ −−
−λα

 (6)  

( tg  is defined at (26)) 

Storage capacity: Because the buyer has a limited storage space W and each product i 

occupies iw
 
of this space, only a limited number of products can be kept in storage at the end 

of each period. 
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tWIw
i

iti allfor,≤∑
 (7) 

(
itI  is defined at (27)) 

Initial and final inventory level: This constraint expresses the assumption that the initial and 

the final inventory level are zero. However, the decision-maker (buyer) can determine the 

threshold for these levels. 

iII iTi allfor,00 ==  (8) 

Demand-price function: In pricing and lot-sizing problems, two demand functions have been 

commonly been considered: (1) the constant price-elasticity function, and (2) the linear 

demand function (e.g. Abad, 1988, 1994, 2003b; Khouja, 2006; Gonzalez-Ramirez et al., 

2011). Here, we assume that the selling price of product i in period t, itp , depends on the 

demand for this product in period t as a linear demand function: 

tipmd itititit andallfor,β−=  (9) 

Supplier capacity: This constraint ensures that the number of products i ordered from supplier 

j in period t is equal to or less than the capacity of this supplier to deliver this product.  

for all ,  and
ijt ij

x c i j t≤
 (10) 

Binary and non-negativity constraints: 

tBtjix

tj
xi

xi
y

tijt

ijt

ijt

jt

allfor0andand,allfor0

,andallfor
.0:allforif,0

;0:existsthereif,1

≥≥







=

>
=

 (11) 

The resulting model looks as follows: 

{ }( )∑∑∑∑ ∑ ∑∑ +−−











−′−′−








−′+= −

−−
−

j t

jtjjtjtj

i t j

iti

j

ijtjijtij

j

itijtitit nyyoIhxoxIxIpz jij τα γλ
1

11

11 ,0maxmax

 (12) 

( )∑∑∑
∑

+= =

−

i j t

ijt

y
w

ij

l

ij xeuuz

t

k

jkij

1

2min
δ

 (13) 

∑∑∑
∑

= =

−

i j t

ijt

y

ij xeqz

t

k

jkij

1

3min
η

 (14) 
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(28) 

This problem is a typical multi-objective non-linear combinatorial problem, which we 

solve using a genetic algorithm. In the next section, we take a closer look at the proposed 

genetic algorithm. 
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Genetic algorithm  

When optimizing a single objective problem, the goal is to find the best single design 

solution. However, for multi-objective problems with several (possibly conflicting) objectives, 

no single optimal solution is usually available, which means that the decision-maker has to 

select a solution from a finite set by making compromises. Since most actual optimization 

problems involve a trade-off between various conflicting objectives, for example minimum 

inconsistency or deficiency and maximum profits, the main goal of solving a Multi-Objective 

Optimization Problem (MOOP) is to provide a set (handful) of the best trade-off solutions, or 

Pareto-optimal solutions, which are a key tool in the decision-making process. In fact, an ideal 

MOO algorithm must identify a diverse set of Pareto-optimal solutions in the objective space. 

Because classical search and optimization methods use a point-by-point approach, they obtain 

a single optimized (optimal) solution. However, in Evolutionary Algorithms (EAs), a 

population of solutions is applied in each iteration, which means that EAs are more suitable 

when it comes to realizing the twin goals of solving MOO problems (optimality and 

diversity). Genetic Algorithm (GA) is a robust EA that is applied to many MOOPs, in 

particular to production and operations management problems. For a review of the application 

of GA in production and operations management see for example Aytug et al. (2003), 

Chaudhry and Luo (2005) and Guner Goren et al. (2010). GA is a probabilistic search 

technique that is very suitable for large, complex, non-convex, discrete search space or ill-

behaved objective functions (Goldberg, 1989; Deb, 2001). 

In the last two decades, many researchers have tried to present multi-objective version of 

GA. Most well-known algorithms, like NSGA-II (Deb et al., 2000) and SPEA2 (Zitzler et al., 

2001), are based on non-domination solutions. The non-domination solution of a genetic 

population is the best solution of population such that there is no better solution with regard to 

all the objectives. By emphasizing non-domination solutions, these algorithms try to move 

toward Pareto-optimal solutions. More precisely, in an optimization (minimization) problem, a 

decision vector x S∈  is called Pareto-optimal if there is no other vector y S∈ such that Zi(y) 

≤ Zi(x) for all i = 1,…, M, and Zj(y) < Zj(x) for at least one index j. In addition, an objective 

vector is Pareto-optimal if the corresponding decision vector is Pareto-optimal. Some 
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approaches have been proposed to determine a Pareto set, for instance Deb (2001), Jensen 

(2003) and Chen et al. (2009). 

Generally speaking, Multi Objective Evolutionary Algorithms (MOEAs) use a non-

dominated principle and satisfy two orthogonal objectives simultaneously: 

• Optimality: All the points have to be non-dominated solutions and near to Pareto-

optimal fronts of problem. 

• Diversity: The set of solutions must not be limited to a subset of the Pareto frontier. 

Many algorithms that use the above-mentioned principle are described by Deb (2001). 

One of the best algorithms is elitist Non-dominated Sorting Genetic Algorithm (NSGA-II), 

which uses the non-domination rule and sorts all solutions of a genetic population and divides 

the population into various preferred levels of non-domination in each generation. Because 

this approach only satisfies the first task of MOOPs, most MOEAs use several techniques, for 

example niche operators and counting metrics. These techniques use density of solution 

around a solution in population and increase or decrease the ranking of the solution. In 

NSGA-II, after each front has been created, its members are assigned crowding distances 

(normalized distance to closest neighbors in the front in objective space). Based on Deb 

(2001), the NSGA-II procedure is outlined as follows: 

NSGA-II Algorithm 

Step 1: Combine parent and offspring populations and create t t t
R P Q= U . Perform a non-

dominated sorting to Rt and identify different fronts: Fi , i=1, 2, … , etc. 

Step 2: Set the new population t
P = ∅  and i=1.  

Until 1t iP F N+ + <  perform 1 1t t i
P P F+ += U and i=i+1. 

Step 3: For the remaining capacity in Pt+1, perform the crowding operators and fill it by some 

of the best solutions in Fi. 

Step 4: Create offspring population Qt+1 from Pt+1 by using some crossover and mutation 

operators. 

N is a population size (parent and offspring). In the following subsections, we describe GA 

operators and other aspects to solve the model. 
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 Chromosome Representation 

The representation process, which is the initial step of a GA, can have a strong influence 

on the definition and efficiency of GA operators. Generally speaking, there are two binary or 

real representations of each solution in GA. If I, J and T represent the number of products, 

suppliers and periods, respectively, each chromosome is an integer vector x by length 

I J T× × , a real vector p by length I T× and a binary vector y by length J T× , appropriate by 

each ijtx , it
p and jty . Figure 2 presents a schematic view of a chromosome used in this study. 

INSERT FIGURE 2 ABOUT HERE 

Initialize of population 

Since no useful information regarding the location of Pareto-optimal solution in search 

space is available, in the multi-dimensional optimization problems, especially in MOO 

problems, the initialization step of a GA population is completely random. However, in this 

study, we satisfy constraints (20) and (21) of our model. Since ( ) 0it itd p ≥ , we use uniform 

integer random generator in interval 0, it

itm
β 

  
 to initialize it

p and uniform integer random 

generator in set { }0,1,..., ijc  to initialize ijtx . Also, we hold this satisfaction in the GA process 

(after crossover and mutation operators). Similarly, random binary generator for y vector is 

used. 

Fitness, Constraints satisfaction and Selection strategy 

Because the selection is based on chromosome evaluation, this is a main step of a GA. 

Since feasibility is the first goal in constrained optimizations, we use an elegant method to 

satisfy the three aspects (evaluation, selection mechanism and constraints satisfaction) 

efficiently in a single step. The model we introduce contains three objectives and seven 

constraints (equations 15-21 in the model). As mentioned earlier, we satisfy bound constraints 

(equations 20, 21 and 22 for x, p and y variables) in the initial population and hold this 

property while the GA process is continued. To satisfy other constraints, we use the refiner 

operator which is introduced next, and the constrained tournament selection operator. In fact, 

several approaches have been presented to satisfy constraints of MOO problems, for instance 

ignoring infeasible chromosomes, penalty function, JVGS, constrained tournament, etc. 

(Michalewicz and Schoenauer, 1996; Jimenez et al., 1999; Deb, 2001). We use the 
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constrained tournament method because of its ability to satisfy constraints and selection based 

on fitness simultaneously (unlike other approaches, like roulette wheel and proportionate 

selection). It has been shown that tournament selection operator has better or equivalent 

convergence rate and complexity time compared to other selection operators introduced in the 

literature (Goldberg and Deb, 1991). Additionally, tournament operator is free from the 

scaling problem which is happened in large and non-dense search spaces (Deb, 2001). In fact, 

the constrained tournament selection operator combines the domination principle and 

constraint satisfaction, by first selecting two (or more) chromosomes from the population and 

then determining a winner via the following rules: 

• Feasible solutions are better than non-feasible solutions. 

• Between two feasible solutions (or two infeasible solutions), the standard domination 

identifies the winning solution. 

In the latter rule, the constrained tournament selection operator looks at objective 

functions (the first goal of MOO) and then at the diversity of solutions in the population (the 

second goal of MOO). Several approaches have been presented to achieve diversity, including 

niche metrics, crowding models, sharing functions, etc. (Deb, 2001). In this paper, we use a 

crowding distance based on the average distance of a solution in objective space. 

Crossover operator 

The ‘variation’ operator is a combination of various operators (such as crossover and 

mutation) that are used to generate a modified population. Crossover operators combine 

information from two parents (solutions of current population) in such a way that the two 

children (solutions for a next population) resemble both parents. Several methods have been 

introduced to realize this combination (Michalewicz, 1994; Deb, 2001). Since, in this study, 

each chromosome contains three vectors x (integer vector), p (real vector), and y (binary 

vector), we use a single-point linear crossover to combine x and p vectors of two parents, and 

a single-point multiple replacement for vectors y, to produce two offspring solutions. As the 

chromosome representation is real code, this type of crossover is faster than binary crossover. 

The following pseudo-code describes crossover operation in our implementation: 
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Random real value between 0 and

integer number between 0 and

1( ) 1( ) (1- ) 2( ) , if

2( ) 2( ) (1- ) 1( ) , otherwise

integer number between 0 and

1( ) 1(

ijt ijt ijt

ijt ijt ijt

it

Max

cpx I J T

C x P x P x i j t cpx

C x P x P x

cpp I T

C p P p

λλ

λ λ

λ λ

λ

=

= × ×

= + × × <


= +

= ×

= ) (1- ) 2( ) , if
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it it

it it it
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λ
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+ × <


= +

 

integer number between 0 and

1( ) 1( ) , if

1( ) 2( ) , otherwise

2( ) 2( ) , if

2( ) 1( ) , otherwise

jt jt

jt jt
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jt jt

cpy J T

C y P y j t cpy

C y P y

C y P y j t cpy

C y P y

= ×

= × <


=


 = × <

 =

 

In the current population, P1 and P2 are two selected parents, while C1 and C2 are two 

children. After using the linear crossover, we first round the result (because x is an integer 

vector) and check its lower and upper bounds (constraints 20 and 21) for x and p for 

Max λ value greater than one. Also, to avoid small positive values of xijt for some i, j and t in 

the final non-dominated optimal solutions, we define a lower bounded parameter LBx, which 

is user-predefined. To end this, after generating a solution in the algorithm it’s xijt value is set 

to zero or LBx*dit if it falls between 0 and LBx*dit. 

Mutation operator 

Each offspring solution created by the crossover operator is perturbed in its vicinity by a 

mutation operator (Goldberg, 1989). Every variable is mutated with a predefined mutation 

probability. In this study, we use a linear mutation by probability 
1

I J T× ×  to mutate x, 

1
I T× for p vectors and a bit-wise mutation by probability 

1
J T×  for y vector as follows: 

For mutation in x (or p), first a random member xijt (or pit) is selected, after which a new 

random value is selected with regard to the upper and lower bounds. Similarly, for y, a single 

cell is selected at random, after which its value is replaced by 1 if it is 0, and vice versa. 
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Refiner operator 

Finding a feasible solution in the constrained optimization problems is a challenging 

problem in literature (Deb, 2001). The model proposed in this paper is a constrained problem, 

with some hard constraints (e.g. equations 17 and 19). Although the constrained tournament 

selection operator helps the algorithm to move the population toward the feasible regions in 

the search space, it is a time-consuming process and too many generations of the algorithm are 

needed. Another problem that arises in this case is that, after finding a feasible solution, since 

other solutions of population are infeasible, they converge to the feasible solution or to the 

feasible region that is found the first time. Therefore, achieving the second objective of 

MOOP (finding a diverse set of Pareto-optimal solutions) becomes very difficult. To 

overcome this problem, we introduce a new operator, which is called a refiner operator, and 

which we use after the crossover and mutation operator. Selecting the solutions with a smaller 

constraint violation as a winner in each tournament is designed to move the population toward 

a feasible region. Orthogonally to this idea, our refiner operator tries to move each child 

solution toward the nearest feasible region. In fact, the refiner operator has a local approach to 

changing an infeasible solution to a feasible solution. 

If s is a solution that is obtained by using crossover and mutation operators and if s is an 

infeasible solution, the refiner operator changes s to a feasible solution or an infeasible 

solution, with smaller constraint violation in a random way. To end this, we have three 

options: x, y and p, which construct a solution to the problem. First, we compute the value of 

constraint violation based on the constraint of the model. For any violation in the equation 15, 

refiner operator decreases dit by increasing the value of pit, randomly. Also, for any violation in 

the constraint equation 16, the value of xijt is decreased with regard to LBx bounded parameter, 

randomly, or sets value of yjt to 1. Finally, this process is repeated for satisfying the hard 

constraints by increasing or decreasing the value of xijt for some random selected i, j and t. 

Termination condition 

The GA operators are repeated until a termination criterion is met. In the MOO problems, 

because of the goal (obtaining a set of diverse Pareto-optimal solutions), only some criteria 

(relative to single objective optimization), such as reaching a maximum number of generations 

and finding a special set of solutions, can be used. However, although identifying an exact and 
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efficient terminate condition is an arduous empirical affair, it can be determined with regard to 

the size of population, complexity of search space and number of final non-dominated 

solutions. In the simulation that is performed in this paper, we use a population size 120, 10 

final non-dominated solutions and a maximum of 500 iterations.  

It should be mentioned here that, mutation rate, the size of population, and the number of 

iterations were obtained after a pilot testing. 

Numerical example 

In this section, we illustrate the formulated model and solve the problem, using the 

proposed genetic algorithm. We consider a situation with three products, four periods and four 

suppliers. The relevant data is presented in Tables 1 and 2.  

INSERT TABLES 1 AND 2 ABOUT HERE 

Solving this model simultaneously provides the buyer with the optimal values of the 

selling price, total demand, purchasing price and lot-size of different products in different 

periods. The model proposed in this paper is a multi-objective model that uses a genetic 

algorithm, providing the buyer with various optimal solutions, allowing the buyer to select the 

most suitable solution based on higher-level information. For this example, we produce 10 

non-dominated solutions (Sol. 1 through Sol. 10). However, it is clear that, in a real-world 

situation, a decision-maker may consider more optimal solutions. 

The results are presented in Tables 3-7. Table 3 shows the selling price of product i in 

period t in ten non-dominated solutions, which in turn dictate the corresponding optimal 

values of total demand (see Table 4). It should be mentioned here that, in the proposed model 

there are three constraints that can potentially lead to inventory shortage: budget limitation 

(equation 6); storage capacity (equation 7); and supplier’s capacity (equation 10). However 

equation 4 dictates that inventory shortage is not allowed. The relationship between customer 

demand and the buyer’s selling price (see equation 9) guarantees the prevention of inventory 

shortage, i.e. the demand-price relationship equation determines the customer demand such 

that all the mentioned conflicting constraints (equations 4, 6, 7, and 10) will be satisfied. 

INSERT TABLES 3 AND 4 ABOUT HERE 

Once the total demand of the three products in four periods is determined, the buyer has to 

order the products from the four suppliers. Tables 5 and 6 show the optimal number of product 
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i purchased from supplier j in period t in the ten non-dominated solutions and their 

corresponding purchasing price respectively. It should be mentioned here that, to avoid small 

values for xijt, we set the LBx parameter to 0.1, which results in an optimal xijt of zero or 

greater than ten percent of the total demand for product i in period t. As can be seen from 

Table 5, among four suppliers, two suppliers (suppliers 1 and 4) have been selected (all xijt = 

0, for j = 2 and 3). Note that the values in Table 5 are optimal lot-sizes xijt, which are different 

from ijtx′ . ijtx′  can be obtained from (24). In Table 6, we have included the corresponding 

purchasing prices of  xijt. It is clear that, when xijt=0, there is no value for the purchasing price. 

Finally, Table 7 and Figure 3 show the optimal value of objective functions for the ten 

non-dominated solutions and the trade-off between them. 

INSERT TABLES 5, 6, 7 AND FIGURE 3 ABOUT HERE 

It becomes clear that, when total profits are increased, the value of at least one of the other 

two objective functions also increases. In other words, to increase profits, the buyer has to 

sacrifice at least one of the other two objectives. The fourth row of Table 7 also shows the 

changes in value of objective functions between the non-dominated solutions. For example 

when comparing Sol.2 to Sol.1, the value of objective functions z1, z2 and z3 decreases, which 

means that Sol.2 is worse than Sol.1 in terms of the total profit, while it is better than Sol.1 in 

terms of total inconsistency and deficiency. As mentioned before, this trade-off between 

objective values allows the buyer to choose the most suitable solution from the set of non-

dominated solutions based on higher-level information. Among the ten non-dominated 

solutions, Sol.8 and Sol.2 are the best solutions with respect to total profit, and total 

inconsistency and total deficiency respectively.  

Comparison results 

To compare the performance of the proposed NSGA-II algorithm in presence of the refiner 

operator, we apply SPEA2, as another popular and powerful multi-objective evolutionary 

optimization algorithm (Zitzler et al., 2001), to solve the problem. SPEA2 uses a fixed-size 

external population in addition to a main genetic population for achieving non-dominated 

solutions and updates it in each generation. When the number of non-dominated solutions 

exceeds the size of the external population, the algorithm uses a simple clustering approach to 

select some of them such that the selected set is as diverse as possible. Also, to deal with 

Page 19 of 33

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

19 

 

elitism, SPEA2 uses a global strategy and combines both the genetic and external populations 

to generate the next child population. Several comparison studies have been done to compare 

NSGA-II and SPEA2 in solving some standard test problems (Deb, 2001, Khare et al., 2002, 

Konak et al., 2006). Here we compare NSGA-II in the presence of the proposed refiner 

operator with SPEA2 in solving the proposed model. To this end, we use the spacing metric 

(Schott, 1995) to compare diversity, and the set coverage metric (scm) (Zitzler et al., 2000) to 

compare Pareto-optimality of the final obtained solutions. The spacing metric computes the 

distance between any two consecutive solutions in the objective space as follows: 

( )

1,...,
1

1

2

1

min ,

1
,

1
,

M
i j

i m m
j n

mj i

n

i

i

n

i
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=≠

=

=

= −

=
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∑

 

where, M is the number of objectives, i

mf is the value of mth objective for solution i, and n is 

the number of the obtained solutions. This metric is used to measure the spread of the 

solutions. A smaller spacing value S shows a better diversity.  

Also, for two sets of solutions A and B, scm(A,B) measures the amount of closeness of the 

solutions to the Pareto-optimal fronts. It computes the proportion of the solutions in B that are 

weakly dominated by the solutions in A. So, the scm(A,B) is calculated as follows: 

( )
{ }:

, ,
b B a A a b

scm A B
B

∈ ∃ ∈
=

p
 

where p corresponds to the weak dominance relation. If scm(A,B) closes to one and scm(B,A) 

closes to zero, the solution set A dominates to the solution set B. 

To have a fair comparison between SPEA2 and NSGA-II in the presence of the refiner 

operator, we set all the genetic parameters as the same as those of NSGA-II, and set the size of 

the external population of SPEA2 to 30 which is 1/4 of the size of the main population (120). 

This ratio has been commonly used by the pioneers of SPEA2 (Zitzler et al. 2001, Deb 2001). 

We separately run each algorithm 30 times, and compare their results with respect to the 

above-mentioned metrics. To this end, we first compute spacing and set coverage of each 
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obtained solution set. Then, we use the non-parametric Wilcoxon rank sum test to examine the 

differences between two independent samples of obtained results from the two algorithms 

NSGA-II and SPEA2 with respect to two metrics (set coverage and spacing). The comparison 

results are shown in Table 8. 

INSERT TABLE 8 ABOUT HERE 

Based on the results of Wilcoxon rank sum test, it is concluded that the set coverage of 

NSGA-II (median = 0.888) is significantly better than the set coverage of SPEA2 (median = 

0.171). However the difference between the spacing of NSGA-II (median = 0.0019) and that 

of SPEA2 (median = 0.0014) is not significant. The comparison results show the suitability 

and better performance of NSGA-II algorithm in the presence of the refiner operator to solve 

the specific problem of this paper. 

Conclusion and future research 

In this paper, we have considered a situation in which a buyer wants to find the optimal 

selling price and lot-size of multiple products in multiple periods, while at the same time 

selecting the best suppliers. Taking into account the objectives of total profits, total 

inconsistency and total deficiency and a number of constraints, including budget limitation, 

storage and supplier capacity, we have formulated a multi-objective non-linear mixed integer 

programming model, applying a genetic algorithm (NSGA-II) to solve the model and produce 

a handful of Pareto-optimal solutions. Although the buyer is faced with some constraints, such 

as budget limitation, storage capacity and suppliers’ limited capacity, the buyer still is able to 

prevent inventory shortage which is because of the relationship between the buyer’s selling 

price and customer demand. In addition, we have analyzed the trade-offs between the various 

solutions that allow the buyer to select the most suitable solution based on higher-level 

information, which is to a considerable extent qualitative and subjective in nature and which 

cannot be formulated within the model. Furthermore we compared the results obtained by 

NSGA-II with another popular and powerful multi-objective evolutionary optimization 

algorithm, SPEA2. The comparison results show the robustness of NSGA-II algorithm in the 

presence of the proposed refiner operator to solve the specific problem of this paper. 

For future research we suggest applying other multi-objective evolutionary optimization 

algorithms (e.g. Caballero et al., 2004; Davarynejad et al., 2011) to solve this problem. We 
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also suggest incorporating other features of the buyer-supplier relationship in examining and 

modeling the problem of lot-sizing and supplier selection. Finally, while we have formulated 

the problem in terms of deterministic conditions, the inclusion of stochastic, probabilistic and 

fuzzy formulations of the model is recommended.  

 

References  

Abad, P.L., 1988.  Joint price and lot-size determination when supplier offers incremental 

quantity discounts. The Journal of the Operational Research Society, 39(6), 603-607.  

Abad, P.L., 1994. Supplier pricing and lot-sizing when demand is price sensitive. European 

Journal of Operational Research, 78(3), 334-354. 

Abad, P.L., 1996. Optimal pricing and lot-sizing under conditions of perishability and partial 

backordering. Management Science, 42, 1093–1104. 

Abad, P.L., 2001. Optimal price and order size for a reseller under partial backordering. 

Computers & Operations Research, 28, 53–65. 

Abad, P.L., 2003a. Optimal price and lot-size when the supplier offers a temporary price 

reduction over an interval. Computers & Operations Research, 30(1), 63-74. 

Abad, P.L., 2003b. Optimal pricing and lot-sizing under conditions of perishability, finite 

production and partial backordering and lost sale. European Journal of Operational 

Research, 144(3), 677–685. 

Aissaoui, N., Haouari, M., and Hassini, E. 2007. Supplier selection and order lot-sizing 

modeling: A review. Computers & Operations Research, 34 (12), 3516-3540. 

Amid, A., Ghodsypour, S.H. and O’Brien, C., 2006. Fuzzy multiobjective linear model for 

supplier selection in a supply chain. International Journal of Production Economics 104, 

394–407. 

Amid, A., Ghodsypour, S.H. and O’Brien, C., 2011. A weighted max–min model for fuzzy 

multi-objective supplier selection in a supply chain, International Journal of Production 

Economics, 131 (1), 139-145. 

Aytug, H., Khouja, M. and Vergara, F. E., 2003. Use of genetic algorithms to solve production 

and operations management problems: a review, International Journal of Production 

Research, 41(17), 3955 – 4009. 

Page 22 of 33

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

22 

 

Basnet, C. and Leung, J.M.Y., 2005. Inventory lot-sizing with supplier selection, Computers 

& Operations Research, 32, 1–14. 

Beamon, B.M., 1998. Supply Chain Design and Analysis: Models and Methods, International 

Journal of Production Economics, 55 (3), 281-294. 

Ben-Daya, M., Darwish, M. and Ertogral, K., 2008. The joint economic lot-sizing problem: 

Review and extensions. European Journal of Operational Research, 185(2), 726-742. 

Bitran, G.R. and Yanasse, H.H., 1982. Computational complexity of the capacitated lot-size 

problem. Management Science, 28(10), 1174-1186. 

Caballero, R., Gandibleux, X. and Molina, J., 2004. MOAMP- A Multiobjective Metaheuristic 

using an Adaptative Memory Procedure. Technical Report. University of Valenciennes. 

Chan, F.T.S., 2003. Performance measurement in a supply chain. The International Journal of 

Advanced Manufacturing Technology, 21, 534–548. 

Chaudhry, S.S. and Luo, W., 2005. Application of genetic algorithms in production and 

operations management: a review, International Journal of Production Research, 43(19), 

4083 – 4101. 

Chen, E.J. and Lee, L.H., 2009. A multi-objective selection procedure of determining a Pareto 

set, Computer & operation research, 36, 1872-1879. 

Chen, J.M. and Chen, L.T., 2004. Pricing and lot-sizing for a deteriorating item in a periodic 

review inventory system with shortages, Journal of the Operational Research Society, 55, 

892–901. 

Cheng, F. and Ye, F., 2010, A two objective optimisation model for order splitting among 

parallel suppliers, International Journal of Production Research, DOI: 

10.1080/00207541003792250.  

Davarynejad, M., Rezaei, J., Vrancken, J., van den Berg, J. and Coello Coello, C.A., 2011. 

Accelerating convergence towards the optimal Pareto front. 2011 IEEE Congress on 

Evolutionary Computation, June 5-8, 2011, New Orleans, USA. 

de Boer, L., Labro, E. and Morlacchi, P., 2001. A review of methods supporting supplier 

selection. European Journal of Purchasing and Supply Management, 7, 75–89. 

Deb, K., 2001. Multi-Objective Optimization using Evolutionary Algorithms. Chichester, 

U.K., Wiley. 

Page 23 of 33

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

23 

 

Deb, K., Agrawal, S., Pratap, A. and Meyarivan, T., 2000. A fast elitist non-dominated sorting 

genetic algorithm for multi-objective: NSGA-II. In: Proceedings of the Parallel Problem 

Solving from Nature VI Conference, Springer-Verlag, pp. 846-858. 

Ertogral, K., Darwish, M., and Ben-Daya, M. 2007. Production and shipment lot sizing in a 

vendor–buyer supply chain with transportation cost, European Journal of Operational 

Research, 176(3), 1592-1606. 

Florian, M., Lenstra, J.K. and Rinnooy Kan, A.H.G., 1980. Deterministic Production 

Planning: Algorithms and Complexity. Management Science, 26(7), 669-679. 

Ghodsypour, S.H. and O'Brien, C., 1998. A decision support system for supplier selection 

using an integrated analytic hierarchy process and linear programming. International 

Journal of Production Economics, 56-57, 199-212. 

Goldberg, D. E. and Deb, K., 1991. A comparison of selection schemes used in genetic 

algorithm, In Foundations of genetic algorithms 1 (FOGA), 69-63. 

Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimization, and Machine Learning. 

Addison Wesley. 

Gonzalez-Ramirez, R. G., Smith, N. R. and Askin, R. G., 2011. A heuristic approach for a 

multi-product capacitated lot-sizing problem with pricing, International Journal of 

Production Research, 49(4), 1173-1196. 

Guner Goren, H., Tunali, S. and Jans, R., 2010. A review of applications of genetic algorithms 

in lot sizing, Journal of Intelligent Manufacturing, 21(4), 575-590.  

Hines, A., 2004. Supply Chains Strategies; Customer Driven and Customer-Focused, 

Butterworth-Heinemann, Oxford.  

Ho, W., Xu, X. and Dey, P. K., 2010. Multi-criteria decision making approaches for supplier 

evaluation and selection: A literature review, European Journal of Operational Research, 

202(1), 16-24. 

Horvath, L., 2001. Collaboration: the key to value creation in supply chain management, 

Supply Chain Management: An International Journal, 6(5), 205 – 207. 

Hwang, H. and Shinn, S.W., 1997. Retailer's pricing and lot-sizing policy for exponentially 

deteriorating products under the condition of permissible delay in payments. Computers & 

Operations Research, 24, 539–547. 

Page 24 of 33

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

24 

 

Jensen, M.T., 2003. Reducing the run-time complexity of Multiobjective EAs: the NSGA-II 

and other algorithms, IEEE Transaction on Evolutionary Computation, 7 (5), 503-515. 

Jimenez, F., Verdegay, J.L. and Gomez-Skarmeta, A.F., 1999. Evolutionary techniques for 

constrained multiobjective optimization problems. In: Proceedings of the Workshop on 

Multi-Criterion Optimization Using Evolutionary Methods held at Genetic and 

Evolutionary Computation Conference, GECCO, pp. 115-116. 

Kalwani, M.U., and Narayandas, N., 1995. Long-term manufacturer-supplier relationships: do 

they pay off for supplier firms?, The Journal of Marketing, 59(1), 1-16. 

Kannan, G. and Haq A.N., 2007. Analysis of interactions of criteria and sub-criteria for the 

selection of supplier in the built-in-order supply chain environment. International Journal 

of Production Research, 45(17) 3831 – 3852. 

Karimi, B., Fatemi Ghomi, S.M.T. and Wilson, J.M., 2003. The capacitated lot-sizing 

problem: a review of models and algorithms. Omega, 31, 365– 378. 

Karpak, B., Birsen, K., Rammohan, R. And Kumcu, E., 1999. Multi-objective decision-

making in supplier selection: An application of visual interactive goal programming. 

Journal of Applied Business Research, 15(2), 57–71. 

Khare V., Yao X. and Deb K., 2002. Performance scaling of multi-objective evolutionary 

algorithms, KanGAL Report No. 2002009, 1-15. 

Khouja, M., 2006. A joint optimal pricing, rebate value, and lot-sizing model. European 

Journal of Operational Research, 174(2), 706-723. 

Kim, D. and Lee, W.J., 1998. Optimal joint pricing and lot-sizing with fixed and variable 

capacity. European Journal of Operational Research, 109 (1), 212–227. 

Konak A., Coit A.W. and Smith, A.E. 2006. Multi-objective optimization using genetic 

algorithms: A tutorial, Reliability Engineering and System Safety, 91(9), 992–1007. 

Larson, P.D., 1994. Buyer-supplier co-operation, product quality and total costs, International 

Journal of Physical Distribution & Logistics Management, 24(6), 4-10. 

Liao, Z. and Kuhn, A., 2004. Operational integration of supplier selection and procurement 

lot-sizing in supply chain. Proceedings of global project and manufacturing management 

symposium, Siegen Germany. 

Page 25 of 33

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

25 

 

Liao, Z. and Rittscher, J., 2007. A multi-objective supplier selection model under stochastic 

demand conditions. International Journal of Production Economics, 105, 150–159. 

Mapes, J., Szwejczewski, M. and New, C., 2000. Process variability and its effect on plant 

performance. International Journal of Operations and Production Management, 20(7), 

792–808. 

Michalewicz, Z. and Schoenauer, M., 1996. Evolutionary algorithms for constrained 

parameter optimization problems. Evolutionary Computation Journal, 4(1), 1-32. 

Michalewicz, Z., 1994. Genetic algorithms + data structures = evolution programs. AI Series, 

Springer Verlag, New York. 

Rezaei, J. and Davoodi, M., 2006. Genetic algorithm for inventory lot-sizing with supplier 

selection under fuzzy demand and costs. Advances in Applied Artificial Intelligence, vol. 

4031, 1100–1110.  

Rezaei, J. and Davoodi, M., 2008. A deterministic, multi-item inventory model with supplier 

selection and imperfect quality. Applied Mathematical Modelling 32(10), 2106-2116. 

Rezaei, J. and Davoodi, M., 2011. Multi-objective models for lot-sizing with supplier 

selection, International Journal of Production Economics, 130(1), 77-86. 

Rezaei, J., 2005. An inventory control model with price-demand relationship in a fuzzy 

environment, 3
rd

 International Management Conference, September 20-22, 2005 Tehran, 

Iran. 

Robinson, P., Narayanan, A., and Sahin, F., 2009. Coordinated deterministic dynamic demand 

lot-sizing problem: A review of models and algorithms. Omega, 37(1), 3-15.  

Schotanus, F., Telgen, J., and de Boer, L., 2009. Unraveling quantity discounts. Omega, 37(3), 

510-521. 

Schott, J.R. 1995. Fault Tolerant Design Using Single and Multi-Criteria Genetic Algorithms. 

Master's Thesis, Boston, MA: Department of Aeronautics and Astronautics, Massachusetts 

Institute of Technology. 

Shinn, S.W. and Hwang H., 2003. Optimal pricing and ordering policies for retailers under 

order-size-dependent delay in payments. Computers & Operations Research, 30(1) 35-50.  

Page 26 of 33

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

26 

 

Smith, N.R, Martínez-Flores, J.L. and Cárdenas-Barrón L.E., 2007. Analysis of the benefits of 

joint price and order quantity optimisation using a deterministic profit maximisation 

model. Production Planning and Control, 18(4), 310-318. 

Smith, N.R., Limón, J., and Cárdenas-Barrón, L.E., 2009. Optimal pricing and production 

master planning in a multi period horizon considering capacity and inventory constraints, 

Mathematical Problems in Engineering, 2009, 1-15.  

Tempelmeier, H., 2002. A simple heuristic for dynamic order sizing and supplier selection 

with time-varying data. Production and Operations Management, 11, 499–515. 

van Norden, L., and van de Velde, S., 2005. Multi-product lot-sizing with a transportation 

capacity reservation contract, European Journal of Operational Research, 165(1), 127-138.  

Wagner, H.M. and Whitin, T.M., 1958. Dynamic version of the economic lot-size model. 

Management Science, 5, 89–96. 

Wagner, S.M. and Krause, D.R., 2009. Supplier development: communication approaches, 

activities and goals, International Journal of Production Research, 47(12), 3161-3177. 

Weber, C.A. and Ellram, L.M., 1992. Supplier selection using multi-objective programming: a 

decision support system approach. International Journal of Physical Distribution & 

Logistics Management, 23 (2), 3–14. 

Weber, C.A., Current, J.R. and Benton, W.C., 1991. Vendor selection criteria and methods. 

European Journal of Operational Research, 50, 2-18. 

Wilson, E.J., 1994. The relative importance of supplier selection criteria: A review and 

update. International Journal of Purchasing and Materials Management, 30, 35–41. 

Yano, C.A. and Lee, H.L., 1995. Lot-sizing with random yields: A review. Operations 

Research, 43 (2), 311–334. 

Zitzler, E., Deb, K. and Thiele, L., 2000. Comparison of Multiobjective Evolutionary 

Algorithms: Empirical Results. Evolutionary Computation, 8(2), 173–195. 

Zitzler, E., Laumanns, M. and Thiele, L., 2001. SPEA2: Improving the strength Pareto 

evolutionary algorithm for multi-objective optimization, Evolutionary Methods for Design 

Optimization and Control with Applications to Industrial Problems, pp. 95-100. 

Page 27 of 33

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 

 

Table 1 Holding cost, occupied space and demand components of product i  

 

 

 

Table 2 Other data related to products and/or suppliers 

       
 

Product(i) 
ih
 iw

 11, iim β  22 , iim β  33, iim β  44 , iim β  

23 0.2 500, 3.6 620, 4.5 550, 3.9 470, 4.1 

21 0.15 770, 4.9 700, 4.7 580, 3.8 660, 3.15 

1 

2 

3 6 0.16 160, 1.8 150, 1.7 215, 2.1 290, 2.7 

   Suppliers   

 Product(i) 1 2 3 4 

1 57, 0.01 65, 0.02 55, 0.01 62, 0.015 

2 84, 0.02 82, 0.02 80, 0.01 79, 0.03 
ijij λα ,  

3 25, 0.01 27, 0.01 26, 0.02 29, 0.02 

1 0.0, 0.02, 0.08 0.01, 0.0, 0.09 0.02, 0.1, 0.07 0.01, 0.01, 0.1 

2 0.01, 0.0, 0.11 0.001, 0.1, 0.1 0.0, 0.02, 0.08 0.01, 0.0, 0.06 
ij

w

ij

l

ij uu δ,,  

3 0.003, 0.01, 0.1 0.01, 0.1, 0.15 0.01, 0.001, 0.1 0.01, 0.0, 0.05 

1 0.005, 0.1 0.001, 0.01 0.005, 0.09 0.007, 0.06 

2 0.01, 0.05 0.005, 0.05 0.01, 0.08 0.004, 0.08 
ijijq η,  

3 0.01, 0.05 0.01, 0.1 0.012, 0.1 0.003, 0.11 

1 150 65 90 120 

2 200 80 130 110 
ij

c
 

3 100 90 250 90 

j
o

 
 950 1180 1320 1090 

,
j j

o γ′   0.1, 0.001 0.09, 0.003 0.7, 0.002 0.1, 0.002 

j
v

 
 44 76 76 22 

j
τ   220 385 385 105 

060, 75000W B= =      
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Table 3 Selling price of product i in period t in ten non-dominated solutions 
pit Sol. 1 Sol. 2 Sol. 3 Sol. 4 Sol. 5 Sol. 6 Sol. 7 Sol. 8 Sol. 9 Sol. 10 
p11 92.97 100.54 75.82 86.17 80.55 98.80 86.18 89.76 77.05 91.92 

p12 104.51 99.49 102.62 105.80 96.78 91.56 94.04 81.33 103.77 94.10 

p13 96.47 107.75 96.43 107.33 93.64 92.36 102.76 91.89 114.56 95.17 

p14 94.22 90.86 95.05 77.16 92.60 68.93 94.16 75.05 78.35 81.29 

p21 131.48 126.84 126.77 122.69 103.04 121.68 115.36 102.93 112.76 103.33 

p22 122.54 130.34 112.95 117.76 102.89 92.97 110.76 98.57 128.23 113.44 

p23 128.82 121.34 106.68 115.61 115.38 104.61 118.08 105.41 126.44 125.89 

p24 168.02 167.16 166.13 155.75 137.70 144.59 163.92 144.43 161.40 150.01 

p31 35.80 44.41 43.32 39.55 36.97 46.23 40.67 50.04 38.74 46.43 

p32 52.76 55.70 56.19 61.16 40.02 42.34 37.91 49.46 43.54 37.10 

p33 58.04 49.43 54.34 38.97 35.35 53.51 58.36 42.45 37.05 45.34 

p34 76.79 74.23 52.43 79.52 62.50 52.05 59.48 61.78 72.81 52.01 

 
 

 

 

 

Table 4 Total demand of product i in period t given price pit for ten non-dominated solutions 
dit Sol. 1 Sol. 2 Sol. 3 Sol. 4 Sol. 5 Sol. 6 Sol. 7 Sol. 8 Sol. 9 Sol. 10 
d11 165.30 138.04 227.05 189.80 210.03 144.32 189.76 176.85 222.63 169.08 

d12 149.70 172.29 158.22 143.89 184.49 207.97 196.83 253.99 153.03 196.56 

d13 173.75 129.78 173.94 131.43 184.79 189.80 149.25 191.62 103.22 178.83 

d14 83.71 97.49 80.29 153.65 90.34 187.37 83.92 162.31 148.75 136.69 

d21 125.75 148.48 148.81 168.79 265.11 173.77 204.75 265.62 217.46 263.67 

d22 124.05 87.39 169.16 146.51 216.43 263.06 179.41 236.74 97.32 166.85 

d23 90.48 118.91 174.62 140.68 141.55 182.50 131.29 179.43 99.53 101.63 

d24 130.75 133.46 136.68 169.39 226.23 204.54 143.64 205.06 151.59 187.48 

d31 95.56 80.06 82.03 88.81 93.46 76.78 86.80 69.93 90.27 76.42 

d32 60.31 55.32 54.48 46.03 81.96 78.02 85.56 65.93 75.99 86.94 

d33 93.11 111.20 100.90 133.17 140.76 102.63 92.44 125.86 137.20 119.78 

d34 82.66 89.58 148.44 75.31 121.26 149.46 129.41 123.20 93.42 149.57 
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Table 5 Number of product i purchased from supplier j in period t in ten non-dominated 

solutions (all xijt=0, for j=2 and 3) 
xijt Sol. 1 Sol. 2 Sol. 3 Sol. 4 Sol. 5 Sol. 6 Sol. 7 Sol. 8 Sol. 9 Sol. 10 
x111 150 126 150 150 139 90 143 150 138 150 

x112 150 86 104 150 76 150 150 150 150 77 

x113 150 150 150 139 96 150 150 150 150 150 

x114 0 0 32 0 49 37 0 81 0 63 

x141 90 66 100 95 97 58 52 85 91 72 

x142 15 120 88 67 91 78 119 55 85 84 

x143 29 0 0 14 92 120 0 45 0 76 

x144 0 0 28 16 42 60 18 84 26 22 

x211 135 175 130 183 173 68 132 160 111 159 

x212 0 0 24 16 132 156 107 168 0 98 

x213 106 0 200 121 128 165 167 130 152 124 

x214 0 0 17 0 88 75 0 112 0 39 

x241 13 96 109 18 97 109 110 110 110 110 

x242 110 110 110 110 86 109 110 70 98 68 

x243 110 110 0 96 110 110 0 110 10 92 

x244 0 0 44 86 42 38 38 34 89 35 

x311 78 0 66 100 64 66 9 28 80 37 

x312 39 0 9 5 29 43 60 8 87 65 

x313 51 75 99 81 100 60 100 100 14 66 

x314 0 0 15 0 32 24 0 0 0 30 

x341 67 83 69 55 34 39 90 44 82 76 

x342 47 90 82 51 68 55 90 90 90 75 

x343 53 90 0 47 90 90 0 90 0 50 

x344 0 0 50 8 25 34 49 28 48 38 
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Table 6 Purchasing price of product i from supplier j in period t given order quantity xijt for 

ten non-dominated solutions 
φ ijt Sol. 1 Sol. 2 Sol. 3 Sol. 4 Sol. 5 Sol. 6 Sol. 7 Sol. 8 Sol. 9 Sol. 10 

φ111 54.23 54.32 54.23 54.23 54.27 54.50 54.25 54.23 54.27 54.23 
φ112 54.23 54.53 54.42 54.23 54.60 54.23 54.23 54.23 54.23 54.59 
φ113 54.22 54.22 54.22 54.27 54.47 54.22 54.22 54.22 54.22 54.22 
φ114   55.07  54.83 54.99  54.56  54.70 
φ141 57.97 58.25 57.88 57.93 57.91 58.36 58.45 58.02 57.97 58.17 
φ142 59.50 57.72 57.98 58.22 57.95 58.09 57.73 58.39 58.01 58.03 
φ143 58.96   59.58 57.95 57.72  58.57  58.11 

φ144   59.00 59.49 58.62 58.31 59.39 58.03 59.06 59.19 

φ211 76.18 75.78 76.24 75.72 75.80 77.23 76.21 75.92 76.48 75.93 
φ212   78.78 79.34 76.19 75.95 76.51 75.83  76.64 
φ213 76.54  75.58 76.34 76.24 75.86 75.84 76.22 75.99 76.29 

φ214   79.27  76.81 77.05  76.45  78.05 

φ241 73.18 68.92 68.66 72.47 68.90 68.66 68.64 68.64 68.64 68.64 
φ242 68.63 68.62 68.62 68.63 69.12 68.63 68.62 69.54 68.85 69.60 

φ243 68.62 68.62  68.89 68.62 68.62  68.62 73.57 68.99 
φ244   70.55 69.12 70.60 70.80 70.86 71.04 69.07 70.98 

φ311 23.94  23.98 23.88 23.99 23.98 24.46 24.19 23.93 24.12 
φ312 24.10  24.46 24.59 24.18 24.08 24.00 24.49 23.91 23.98 
φ313 24.04 23.95 23.88 23.93 23.88 24.00 23.88 23.88 24.35 23.98 

φ314   24.33  24.15 24.22    24.17 
φ341 26.67 26.55 26.65 26.77 27.03 26.96 26.51 26.89 26.56 26.60 
φ342 26.85 26.51 26.56 26.81 26.66 26.77 26.51 26.51 26.51 26.60 
φ343 26.79 26.51  26.85 26.51 26.51  26.51  26.82 
φ344   26.82 27.80 27.18 27.02 26.83 27.12 26.84 26.96 

 

 

Table 7 Objective functions value in ten non-dominated solutions 

 Sol. 1 Sol. 2 Sol. 3 Sol. 4 Sol. 5 Sol. 6 Sol. 7 Sol. 8 Sol. 9 Sol. 10 

z1 
51453.48 48311.72 52604.68 52485.88 58471.23 57122.39 54163.06 58784.38 51554.93 57113.14 

z2 
17.32048 16.77819 20.10106 19.47626 22.49809 22.70843 20.08323 24.0886 19.61641 21.78098 

z3 
7.611193 6.677395 9.541605 9.021059 11.70642 11.14942 9.618793 11.69745 8.657602 10.457 

Changes in  

z1, z2, z3 
 ↓↓↓ ↑↑↑ ↓↓↓ ↑↑↑ ↓↑↓ ↓↓↓ ↑↑↑ ↓↓↓ ↑↑↑ 

 

 

Table 8 comparison results of two independent samples of solutions obtained by NSGA-II and 

SPEA 2 

Ranks  Test Statistics 

Metric Algorithm N 
Sum of 

Ranks 

Mean 

Rank   

Set 

Coverage Spacing 
Set coverage NSGA-II 30 1065.5 35.52  Wilcoxon W 764.500 923.000 

 SPEA 2 30 764.5 25.48  Standard Error 65.916 67.639 

Spacing NSGA-II 30 907.0 30.23  Standardized Test Statistic -2.283 0.118 

 SPEA 2 30 923.0 30.77  

Asymptotic Sig. (2-sided 

test) 0.022 0.906 

      The significance level is 0.05 
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Figure 2 Each chromosome consists of three types of variables, integer, 0/1  and real vectors. 
 

x111 x112 …….. xijt …….. xIJT 

x 

y11 y12 …….. yjt …….. yJT 

y 

p11 p12 …….. pit …….. pIT 

p 

Adversarial  Partnership  Integration   

Emphasis on 

price 

Emphasis on 

relationship 

Emphasis on sharing 

risk and rewards 

through a legal entity 

Supply chain owned 

and controlled by a 

single organization 

Figure 1 types of relationship between buyer and supplier (Hines, 2004) 
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Figure 3 Total profit, total inconsistency and total deficiency of ten non-dominated solutions. 
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