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ABSTRACT 

 

The system optimal routing problem has been widely studied for road network while it is less 

considered for public transit system. Traditional shortest-path-based multimodal itinerary 

guidance systems may deteriorate the system performance when the assigned lines become 

congested. For this issue, we formulate the dynamic system optimal routing model for 

multimodal transit system. The transit system is represented by a multilevel graph to explicitly 

simulate passenger flow and transit system operations. A solution algorithm based on the 

cross entropy method is proposed, and its performance is compared with the method of 

successive averages in static and dynamic cases. Numerical study on a simple multimodal 

transit network provides the basis for comparing the system optimal routing and user optimal 

routing under different congestion levels.       
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INTRODUCTION 

 

The development of internet enabled service and information system for assisting travellers to 

reach his destination in a multimodal transit network has been an active research issue in 

recent years. The equipped travelers are provided with multimodal itinerary recommendations 

during his/her journey to destination based on the timetable/frequency or real-time 

information. More advanced services concern on-line ticket booking and delivery on smart 

phone to enhance a more efficient passengers’ transportation in the multimodal transit system. 

As there is an increasing demand in congested urban area, such system can effectively reduce 

users’ travel time and improves the efficiency of multimodal transit system.      

Existing multimodal itinerary guidance systems can be found in (1, 2, 3). These 

systems provide passengers with pre-trip multimodal itineraries by searching time-dependent 

shortest paths to requested destinations. Different multimodal network models have been 

proposed for computing the shortest multimodal paths. For example, Foo et al. (1) developed a 

multicriteria and multimodal pre-trip advisory system based on the computation of the 

shortest paths in terms of generalized path travel cost. The multimodal transport system is 

modeled on a directed graph for which each service line section is represented by a direct arc 

connecting two service stops. Lo et al. (2) developed a multimodal route advisory system 

based on the State-Augmented Multimodal (SAM) network with frequency-based transit 

operations. The SAM network represents modal transfer states of path by some internal state 

labels associated with each node, which is convenient for restricting mode transfer constraints 

with non-linear path fare. Galvez-Fernandez et al. (3) proposed a transfer graph consisting of a 

set of unimodal graphs connected by a set of transfer links. The time-dependent multimodal 

shortest path advice is computed based on the variant of Dijkstra’s algorithm by linking the 

shortest unimodal subpaths via related transfer points. Although these multimodal transit 

itinerary advice systems utilized different network loading models for representing 

passengers’ flow and transit vehicle operations, the route guidance principle is based on the 

time-dependent shortest path assignment. This assignment scheme may increase total system 

travel time if the informed users exceed certain proportion and reduce the system 

performance.  

For this issue, previous studies (4) on road route guidance systems suggest that the 

shortest path based route guidance is effective in reducing user’s travel time for few equipped 

vehicles but not for a large proportion of equipped vehicles. As the transit vehicle has limited 

passenger capacity, the assignment of too many users on the same shortest path will lead to 

undesired congestions and increase total system travel times. Effective transit route guidance 

system should take into account this effect. For this issue, Jahn et al. (5) propose a 

system-optimal (SO) routing with user-constrained shortest paths on static road network. 

They considered the reactive route guidance problem as a convex minimum cost 
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multicommodity problem with side constraints. The assigned routes are restricted to a set of 

paths with a reasonable higher travel time than that on the shortest paths. The computational 

study indicated that such route guidance system provides significant advantage in fairness 

(less travel time deviation between users) and in efficiency (total travel time of users is close 

to the system optimum). For dynamic road route guidance, some more advanced approaches 

such as anticipatory route guidance can be applied by taking into account future traffic state 

predictions under the according route guidance (6). Although the dynamic route guidance 

problem has been widely studied for road users, it is still less considered in existing transit 

route advisory systems.  

In this study, we propose a dynamic system optimal routing (DSOR) on multimodal 

transit network. We assume that all passengers are equipped with some communication 

advices and follow the suggested pre-trip multimodal itinerary to his/her related destination. 

Alghough this assumption is relatively strong, it can be considered as the reference senario for 

the design of dynamic user-constrained or online consistent multimodal itinerary advice 

systems. The system optimal routing problem under full compliance and full market 

penetration is equivalent to the system optimal dynamic traffic assignment problem (SODTA). 

The SODTA problem aims at determining time-dependent path flows such that total system 

travel time/cost is minimized.  

In the past, the SODTA problem on road network has been widely studied (6, 7, 8). 

Beckman et al. (9) first introduce the concept of path marginal cost (time) to describe the 

system optimal state. The path marginal cost is the induced extra travel cost on the system 

when introducing a user/vehicle on a path. Under system optimal state, the experienced path 

marginal cost is equal and no more than that of unused paths. As there is no direct way to 

compute the path marginal cost under simulation-based dynamic network loading models, it is 

generally difficult to evaluate its value. Peeta and Mahmassani (10) show that this problem 

can be formulated as a path-based dynamic user equilibrium (DUE) assignment problem and 

solved by related solution methods for the DUE problem. The authors compute the link 

marginal cost by approximating the derivative of link travel times. Chow (7) proposes a 

system optimal traffic assignment model with departure time choice, and formulates the 

problem as a state-dependent optimal control problem under different link travel time models. 

The author proposes a hybrid gradient-based forward–backward dynamic programming 

approach for solving the problem in a small network. The widely used solution method, 

among many others (see (8) for the literature review), for solving the dynamic SO assignment 

problems is the method of successive averages (MSA) (11, 12). It is well known that the MSA 

method can obtain the approximate of DUE solution for simulation-based network loading 

model. To the best of our knowledge, there is still no related study on dynamic system optimal 

assignment on the multimodal transit network.   

The rest of this paper is organized as follows. First  the dynamic network loading 
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model based on a multilevel multimodal network is presented. Then we illustrate the 

computation of generalized path cost and the multiagent-based transit system simulation. It 

follows the mathematical formulation of the DSOR problem on the multimodal transit system. 

The computation of time-dependent path marginal cost on the multimodal transit system is 

discussed. In section 4, the solution algorithm based on the cross entropy (CE) method is 

presented (13, 14, 15). In Section 5, we validate the proposed solution method on a static small 

netwok and compare its soultion quality and convergence speed with the MSA method. Then 

we applied the solution method for the DSOR problem and compare its performance with the 

MSA method under different travel demand settings. Finally, conclusions are drawn and 

future extenstions are discussed.    

 

DYNAMIC MULTIMODAL TRANSIT NETWORK LOADING MODEL 

 

Multimodal Transit Network  

 

The multimodal transit network is represented by a direct graph G(N, A) with N the set of 

nodes and A the set of arcs (Figure 1). The multimodal network is modelled as a multilevel 

structure where each level represents a unimodal subnetwork and connected between them by 

a set of transfer links (16, 17). The reference level is the origin/destination network where 

each node represents an origin and/or destination connected between them via walking links. 

Each transit mode operates on its own subnetwork for which we distinguish station node and 

line node (stop) for modelling passengers’ and vehicles’ flows. The station nodes are 

mode-specific and interconnected by boarding /alighting arcs with related service line nodes. 

Moreover, within a multimodal station, a set of station nodes are used to connect related 

service lines, and they are also interconnected by transfer links. The walking and transfer links 

are associated with constant access travel time. It is calculated as its length divided by 

constant walking speed. As for the transit lines, they are a set of pre-defined sequence of line 

nodes for transit vehicle operations. The travel time on transit line arcs is calculated by its 

length divided by constant average vehicle operation speed. Hence, a multimodal path is 

explicitly represented by acyclic directed path on the multilevel directed graph connecting an 

OD pair. The transit congestion is considered under the constraints of vehicle capacity.  
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FIGURE 1 Multilevel transit network structure  

 

Dynamic Network Loading and the Computation of the Generalized Cost of 

Multimodal Transit Path  

 

For modelling the transit system operation dynamics, we adopt a multiagent approach to 

capture the dynamics of transit system operations and passenger’s waiting process at stations. 

Two types of agents are used for modeling passengers and transit vehicle movements. For the 

vehicle agents, it represents a mode-specific vehicle operating on predefined transit lines 

under vehicle capacity constraints and scheduled service frequency. The stop times at stations 

are assumed constant and sufficient for passengers to board or alight the vehicle. If the vehicle 

capacity is achieved, the passengers have to wait for the next arriving vehicle. The passenger 

agents aim at arriving at his/her destination with the least travel cost following an acyclic path 

in the multimodal transit network. In general, passenger’s experienced path travel cost 

contains total path travel time, waiting time at stops, transfer penalty, schedule delay cost of 

early/late arrival at destination and fare. For simplicity, the last three terms of the generalized 

travel cost is neglected. Hence, the generalized travel cost of a multimodal path contains the 

walking time for accessing O/D and stations, transfer time between stations, 

boarding/alighting time, and in-vehicle travel time and waiting time at line (stop) nodes. By 

assuming the First-In-First-Out principle for passengers’ queuing process at stops, the waiting 

times )(w tiπ  when arriving at a stop i at time t can be calculated by:  

ttSDt iii −=π − ))(()( 1w ,                                                                                                                            (1)          

where )(tS i  is cumulative arrivals at line node i by time t, )(1 tDi

−  is the inverse function of 
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cumulative departure from line node i by time t. 

Hence the generalized travel cost of path r with respect to departure time interval h and OD 

pair k is then evaluated as: 

∑∑ ∈∈
π+π+π==

hkrhkr Mm

mrr

s

r

hkrMm

m

hkr

hkr t
M

C
M

C )],([
1

)(
1

)( depwv
fff ,                                 (2) 

where )(fmC  is passenger m’s experienced travel times. s

rπ  is the total walking times of path r, 

v

rπ  the in-vehicle travel times on transit links of path r, and ),( depw
fmr tπ  the total experienced 

waiting times on path r, calculated as the summation of the waiting times at line nodes of path 

r when agent m departing from his/her origin at time dep

mt . Note that the waiting times at stops 

depend on related line frequency, vehicle capacity and the implying queuing process at stops.    

 

PROBLEM FORMULATION 

 

Notation 

 

m designation of a user   

h 
departure time index with discretized time slot ∆ , { }nHh ,...,1,0=∈  where 

⎡ ⎤ nTh =∆/  with hT  being the total period for departure time choice 

k origin-destination pair, Kk ∈  

r path index Rr ∈  

hkd  demand of origin-destination pair k in departure time interval h 

)(fhkrC  experienced path generalized travel cost with respect to departure time interval h, 

OD pair k and path r 

hkrf  flow on path r connecting OD pair k in departure time period h 

t time instant 

T the time of the last vehicle/user leaves the network 

 

We consider the DSOR problem with given time-dependent OD demand khdhk ,, ∀ . The 

problem aims at determining time-dependent path flow patterns such that total system travel 

cost (time) is minimized. The problem can be formulated as the following minimization 

problem (Peeta and Mahmassani (10)): 

Min̓ ∑∑ ∑∈=
h k Rr

hkrhkr

hk

CfZ )()( ff                                                                                                 (3) 

s.t.  KkHhdf hk

Rr

hkr

hk

∈∈∀=∑∈ ,,                                                                                       (4) 
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        hkhkr RrKkHhf ∈∈∈∀≥ ,,,0                                                                                                      (5) 

The objective function (3) represents the minimization of total generalized travel cost of users, 

calculated as the summation of the multiplication of the path flows and its average 

time-dependent generalized travel cost over all OD pairs and the study period. The constraint 

(4) is the conservation of path flows for all OD pairs and departure time intervals given the 

known time-dependent OD demand. The constraint (5) ensures the non-negativity of path 

flow. As the generalized travel cost depends on complex interactions of transit system supply 

and users’ demand, it is difficult to obtain an analytical form of travel cost estimation. The 

experienced travel cost is generally calculated by a simulator which describes the dynamics of 

transit vehicles and users on the multimodal network. Hence, the DSOR problem can not be 

solved directly by derivative-based optimization methods.  

Alternatively, we can reformulate the original problem (3)-(5) by Lagrangian 

relaxation method as (10): 

∑∑ ∑∑∑ ∑ ∈∈
−+=

h k Rr

hkrhkhk

h k Rr

hkrhkr

hkhk

fduCfL )()(),( fuf                                                           (6) 

       s.t.       hkhkr RrKkHhf ∈∈∈∀≥ ,,,0 ,                                                                                        (7) 

where hku  is the Lagrangian multiplier.  

By taking the partial derivative of ),( ufL  with respect to hkrf , we obtain 

hkhkrhk

hhh k r hkr

rkh
rkhhkr

hkr

uu
f

C
fC

f

L −Γ=−∂
∂+=∂

∂ ∑ ∑∑≥'' ' '

'''
''' ]

)(
[)(

),( f
f

uf
                                          (8) 

The first term hkrΓ  is the time-dependent path marginal cost with respect to h, k, r. It contains 

the generalized path cost )(fhkrC  and the total marginal cost increases on the system from the 

moment when entering an additional user into the system. The second term hku  is the dual 

variable representing the minimum path marginal cost with respect to h and k.     

By introducing Eq. (8), the first-order optimality conditions are written as: 

rkhuf hkhkrhkr ,,,0)( ∀=−Γ                                                                                                      (9) 

rkhuhkhkr ,,,0 ∀≥−Γ                                                                                                                    (10) 

 Eq. (4) and (5)  

Equations (9) and (10) state that, at system optimal state, the time-dependent marginal cost on 

used paths is less or equal than that on unused paths. Eq. (4) and (5) are the conservation of 

flows for each OD pair and the non-negativity of path flows, respectively. The solution for the 

above conditions is equivalent to that of the following variational inequality problem for 
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dynamic user equilibrium in terms of time-dependent path marginal cost )( *
fΓ , i.e. find 

Ω∈*
f such that 

Ω∈∀≥−•Γ ffff ,0)()( **                                                                                                                   (11) 

⎪⎭
⎪⎬⎫⎪⎩

⎪⎨⎧ ∀≥∀==Ω ∑∈ rkhfdff hkr

Rr

hkhkrhkr

hk

,,,0,                                                                                  (12) 

where the operator •  denotes the inner product of vectors.  

The above reformulation of the DSOR problem as the variation inequality problem allows for 

the development of solution algorithms similar to that for solving dynamic user equilibrium 

problems. The difficulty remains on the issue of estimating the time-dependent path marginal 

cost on the system. We address this issue in the next section.      

Computation of the Time-Dependent Marginal Cost of Multimodal Transit Paths  

The time-dependent path marginal cost represents the increase of experienced generalized 

travel cost of the system when an additional passenger hkrf∆  is introduced on the path hkRr ∈  

in departure time interval h. As passenger’s generalized travel cost depends on the 

simulation-based dynamic network loading model, we cannot calculate directly the derivative 

of the generalized travel cost. As shown in (8), the time-dependent path marginal cost hkrΓ ,  is 

written as:  

       ∑ ∑ ∑≥ ∈ ∂
∂+

hhh k Rr hkr

rkh
rkhhkr

kh
f

C
fC

'' ' '

'''
'''

''

]
)(

[)(
f

f                                                                                          (13) 

The first term can be obtained as passengers’ experienced average path generalized cost with 

respect to (h, k, r). The second term can be estimated by first computing the time-dependent 

link marginal travel cost and then summing it over the path.  

As shown in (2), passenger’s experienced path cost depends on constant path walking 

times, path in-vehicle travel times and path waiting times at stops which depend on the 

available capacity when the passenger arriving at stops. If the number of passengers waiting at 

a stop exceeds the available capacity of the arriving vehicle, some passengers will be delayed 

and need to take the next arriving vehicle. The delay times equal to the additional waiting 

times due to failing to board the arriving vehicles. Hence we can write the approximate hkrΓ~  of 

(13) at each iteration as: 

=Γhkr

~
))](()([

1
tQC

f
i

Ni

h

Mm

m

hkr
L
rhkr

∑∑
∈∈

Ψ+f ,                                                                                          (14) 
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where ))(( tQihΨ  is the total additional waiting times at stop i due to unavailable places of 

vehicle for passengers with departure time within h, i.e. ))1(,[ 00

dep ∆++∆+∈ hthtt . L

rN  is 

the set of line nodes on path r. )(tQi  is the number of available places at line node i at time t. 

))(( tQihΨ  can be computed by  

∑ ∑ ∑∈ ∈ ⎥⎦
⎥⎢⎣

⎢
λ

πλ=Ψ
k Rr fm mii

mi
miiih

hk hkr
t

ttQ ]
)(

)([))((
w

,                                                                               (15) 

where ⎣ ⎦x  is the operator denoting the largest integer smaller than or equal to x. w

miπ  is 

passenger m’s experienced waiting time at stop i. )( mii tλ  is the time headway of transit line at i  

when passenger m arriving at the stop at time mit . The equation (15) computes the summation 

of the failing-to-board waiting times at stop i for all passengers departing his/her origin in 

departure time interval h.   

 

SOLUTION ALGORITHM 

 

The proposed solution algorithm is based on the CE algorithm for solving general dynamic 

traffic assignment problem (13, 14, 15). The CE method is a stochastic optimization algorithm 

for solving combinatorial optimization problems (18, 19). The method associates a stochastic 

mecanism for generating feasible solutions (samples) and iteratively improves the solution 

quality based on the performance of the samples. The CE algorithm is a learning algorithm 

based on the the minimization of the Kullback–Leibler distance (cross entropy) to unknown 

optimal density (user equilibrium assignment density). We state the basic concept of the CE 

algorithm and develop the solution algorithm for the DSOR problem.  

To illustrate the basic concept of the CE algorithm for traffic assignment problem, we 

consider the path assignment problem with OD pair k connected by a set of routes kR . We 

associate a probability function w
p  with w the iteration index to generate solutions. The 

performance of the assignment on the paths depends on the experienced travel cost. Let us 

define the path performance function by Boltzmann distribution (20): 

       
γ−=γ /)(

)(
frC

r eH                                                                                                               (16) 

where γ  is a control parameter or temperature. It can be seen that decreasing the value of γ  

increases the path flows on cheaper paths.   

As we seek to obtain a target probability density *
p , i.e. user equilibrium assignment 

density, a direct way is generating very large samples by crude Monte-Carlo simulation, 

which is generally impractical. An alternative way is using importance sampling density p  in 
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the family of { );( vfp }, parameterized by some performance information v. The objective is 

to get better assignment towards to cheaper paths iteratively based on the path performance 

information. If a path is found with cheaper cost, its choice probability will be adjusted to have 

higher flows at the next iteration. To derive the optimal importance sampling density from the 

current known probability density w
p , where w is an iteration index, we can solve the cross 

entropy minimization problem, equivalent to the following maximization problem (18):  

]ln)Ȗ([E max p
pp

Hw ҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҏҞ                                                                                                            (17) 

 st. ,0,1∑∈ ≥∀=
kRr

rr pp                                                                                                                     (18) 

where w is an iteration index.  

Note that w
p  is the current known density and p  is the importance sampling density to be 

derived.    

The Lagrangian function of (17)-(18) is written as: 

]1[]ln[
/ ∑∑ ∈∈
γ− −+=

kk

r

Rr

r

Rr

Cw

r puepL p                                                                                              (19) 

where u is the Lagrangian multiplier.  

The first order optimality condition states:  

0
/ =+=∂

∂ γ−
u

p

ep

p

L

r

Cw

r

r

r

                                                                                                                          (20) 

By summing over rp  for kRr ∈ , we obtain: 

r

Cw

r

Rr

Cw

r

Rr

Cw

r

p

ep
uep

u

ep r

k

r

k

r γ−

∈
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∈
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/
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1                                                                         (21) 

 

Hence, we can derive the importance sampling density rp  for iteration w+1 as:    

k

Rs

Cw

s

w
C

w

r

w

r Rr
ep

e
pp

k

ww
s

w
r ∈∀= ∑∈ −

−+ ,
Ȗ/

Ȗ/
1                                                                                         (22) 

This adjusted probability function (importance sampling density) favourites the shifting of 

flows on shorter paths. The shifting force is determined by the control parameter wγ , 

minimized under the constraint that the summation of the changes of probabilities is bounded 

by a divergent series, i.e.: 
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Min wȖ   subject to  ∑∈ + ≤−
kRr

ww

r

w

r pp Į|| 1                                                                                      (23) 

where 
w

w θ=Į  is a numerical divergent series ( 0→αw as ∞→w  and ∑∞
= ∞=α
1w

w ) such 

that the flow adjustment converges to fix points. θ  is a positive constant.  

As the iterative probability update process (22)-(23) makes ∞→γw , which makes the field 

converge to the fixed points. The reader is referred to (13, 14, 15) for more detailed 

description.   

 

Main Algorithm 

 

For solving the DSOR problem of (3)-(5), the CE method is proposed as follows.  

 

Step 1 (Initialization): generate acyclic multimodal path choice set by the modified 

k-shortest algorithm (21) or the stochastic route generation approach (22). Initialize uniform 

probability distributions for path choice.    

  

Step 2 (Dynamic network loading): Loading the time-dependent travel demand on the 

multimodal transit network and run the transit system simulation. When passengers arrive at 

his/her respective destination, compute his/her generalized travel cost by (2). Compute the 

time-dependent path marginal cost with respect to passenger’s departure time interval by (14) 

and (15). Note that given a departure time interval h, departure time is randomly selected 

within the interval ))1(,[ 00 ∆++∆+ htht  with 0t  is the earliest departure time instant.  

 

Step 3 (Assignment probability update): compute the time-dependent path assignment 

probability as 

hk

Rs

w

hks

w

hkr

w

hkr Rr
ep

e
pp

hk

w
hk

w
hks

w
hk

w
hkr ∈∀= ∑∈ Γ−

Γ−+   ,
Ȗ/ˆ

Ȗ/ˆ

1 ,                                                                                             (24) 

where 
w

hk

w

hkrw

hkr Γ
Γ=Γ ~

ˆ  is the normalized path marginal cost with respect to h and k. w

hkrΓ~  is estimated 

path marginal cost estimated by (14)-(15). The average path marginal cost w

hkrΓ is computed by 

∑∈ Γ=Γ
hkRr

w

hkr

hk

w

hk
R

~1 . Note that hkR  is the path choice set generated at Step 1. w

hkγ  is the control 

parameter with respect to h and k resulting from the solution of (23).  

 

Step 4 (Stop criteria): when maxww =  or the resulting probability updates stabilize, stop; 
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otherwise goto Step 2. 

 

COMPUTATIONAL STUDY 

 

In this section, we present the computational results of the proposed CE method for static 

system optimal routing and the DSOR problem. First, we test the CE algorithm on static case 

to validate its computational performance compared with the widely used MSA algorithm and 

the optimal solution. For dynamic case, we compare the obtained system optimal solutions by 

both methods under different loading factors. The results are also compared with user optimal 

routing solution to evaluate total system travel cost saving under different scenarios.        

 

Static System Optimal Routing 

 

A simple static network with one OD pair connected by three paths with non-linear path cost 

functions is depicted in Figure 2. For solving the static system optimal routing problem, we 

first compute the marginal path cost for every path by (13) and then apply the CE algorithm to 

solve the VI problem of (9)-(10). The convergence result of the CE algorithm is illustrated in 

Fig. 3. It shows the CE algorithm finds the system optimal solution with a gap of 8.72e-007 

compared with the optimal solution. Its convergence speed outperforms the MSA method. The 

total travel cost of the CE algorithm is 229.304 (the optimal solution is 229.3038). The 

obtained path flow on path 1, 2 and 3 are 2.8390, 4.3117, and 2.8492, respectively. The initial 

control parameter θ  below (23) is set as 0.1.   

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2 A small static network example  
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FIGURE 3 Convergence result of the CE and MSA algorithms for static system optimal 

routing problem 

 

Dynamic System Optimal Routing on Transit System 

 

The experimental study for dynamic DSOR problem is implemented on a small multimodal 

transit network (Fig. 4). The network is composed of one bus line and two metro lines 

connecting 4 OD pairs. For simplification, the transit operations are available only in one 

direction. However, one can extend the transit network and related operations in both 

directions with little cost. There are totally 19 nodes and 40 links for the multilevel 

multimodal transit network. For the transit operations setting, the speed of metro and bus are 

set as 20.0 and 12.5 m/sec, respectively. The capacity of vehicle for metro and bus is set as 200 

and 40 passengers/vehicle, respectively. The stop times at stations for metro and bus is set as 

20 seconds uniformly. The frequency of metro and bus is set as 20 and 6 vehicles per hour, 

respectively. We assume that all passengers can board/alight the vehicles within the stop times. 

The length of boarding, alighting and transfer arcs is set as 100 m for both modes. The access 

distance between O/D nodes and related metro/bus stations is set as 300 m.  

For demand setting, the departure time period is set as 60 minutes with discretized 

time interval of 5 minutes. There are three origins (node 1, 2, and 3) and one destination (node 

4). For each OD pair, the time-dependent demand profile for the reference scenario is set as 

160 passengers/20 minutes, 320 passengers/20 minutes and 160 passengers/20 minutes 

consecutively to generate congestion situation. Four loading factors with respect to the 

reference scenario are tested in the numerical study, namely 1.0, 1.5, 2 and 2.5 (Table 1). The 

multiagent transit system is implemented by discrete event simulation technique based on 
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C++.     

 

FIGURE 4 A simple transit network with one bus and 2 metro lines (left); Presentation 

of multilevel multimodal transit network (right) 

For the OD pair (1, 4), the path choice set contains 5 paths: a) 1-16-18-19-17-4 (1371 

sec.); b) 1-5-12-13-14-15-8-4 (1621 sec.) c) 1-5-9-10-11-8-4 (1381 sec.) d) 

1-5-12-13-14-7-10-11-8-4 (1934 sec.); e) 1-5-9-10-7-14-15-8-4 (1534 sec.). For OD pair (2, 

4), there is only one path: 2-6-13-14-15-8-4 (1301 sec.). For the OD pair (3, 4), there is two 

paths: a) 3-7-14-15-8-4 (981 sec.); b) 3-7-10-11-8-4 (1061 sec.). Note that the path travel time 

in the parentheses includes the average waiting time for boarding the transit vehicle.   

The typical convergence pattern of the CE and MSA method for the DSOP problem is 

shown in the Figure 5. The result indicates that the two algorithms converge to near-optimal 

solution after 5 iterations. The MSA method has a higher total travel time at initial iteration 

due to the assignment of passengers’ flows on the initial shortest path.  

The computational results of the CE algorithm for the DSOR problem are shown in 

Table 1. The result indicates that the CE method performs better than the MSA method for 

solving the DSOR problem and dynamic user optimal (UE) routing problem for most cases. 

As expected, when the loading factor increases, the total travel time differences between the 

system-optimal and user-optimal routing increases accordingly. This is due the fact that as the 

level of congestion increases, some user may be assigned to longer travel route to reduce total 

system travel time. The result is on the line with previous study (10). Moreover, when the 

loading factor increases, the percentage of total time savings between the DSOR and UE 

solutions becomes higher from 0.20% (loading factor equals 1) to 0.33% (loading factor 

equals 2.5). As the possible routes for re-assigning passengers are relatively limited, the 

percentage increasing of total time savings becomes not very significant when the system is 

highly congested. However, it can be expected that when more routes can be used to each 

destination, the percentage of total time savings might become more significant between the 

DSOR and UE routing strategies. Moreover, the limited difference between the DSOR and UE 
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routing strategies may be due to underestimating the time-dependent path marginal cost. If the 

scheduled delay cost of early/late arrival at destination is considered in the generalized cost 

computation, more significant difference could be expected.  
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FIGURE 5 The typical convergence pattern of the CE and MSA method for the DSOR 

problem 

 

TABLE 1 The computational results of the CE and MSA methods for the DSOR problem 

Loading 

factors 

Number of  

passengers 
Dynamic system optimal routing (SO) 

  CE MSA Best  

  Total travel  

time (hr) 

Total travel  

time (hr) 

Total travel  

time (hr) 

Average travel 

time per 

passenger (sec.) 

Total travel 

time 

difference 

between SO 

and UE 

solution (hr) 

1 1920 659.06 659.10 659.06 1235.7 1.29 (0.20%) 

1.5 2880 993.45 994.30 993.45 1241.8 3.08 (0.31%) 

2 3840 1334.22 1329.39 1329.39 1246.3 3.24 (0.24%) 

2.5 4800 1672.70 1671.96 1671.96 1254.0 5.53 (0.33%) 

  User optimal routing (UE)  

  CE MSA Best   

  Total travel  

time (hr) 

Total travel  

time(hr) 

Total travel  

time(hr) 

Average travel 

time per 

passenger (sec.) 

 

1 1920 660.36 661.29 660.36 1238.2  

1.5 2880 996.53 998.55 996.53 1245.7  

2 3840 1332.63 1333.33 1332.63 1249.3  

2.5 4800 1677.49 1681.21 1677.49 1258.1  

Remarks: The result is based on the solutions obtained after 20 iterations. The parameter θ  

below (25) is set within [1.70, 1.8] for all tested scenarios. 
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As for the influence of θ  (below Eq. (23)) on the performance of the CE method for 

the DSOR problem, the result is shown in Figure 6. It illustrates that the initial value of the 

parameter influences the obtained solution quality. To find better solution quality, one can use 

line search techniques to obtain optimal θ  to the problem to be solved. 
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FIGURE 6 Influence of θ on the solution quality obtained by the CE method for the 

DSOR problem 

 

CONCLUSIONS 

 

The design of multimodal itinerary guidance systems aims at providing passengers with 

efficient route guidance to arrive to destination. From the system point of view, it is desirable 

to reduce total passengers’ travel times. However, traditional time-dependent 

shortest-path-based route guidance system might be inefficient due to the service capacity 

constraints. In this paper, we propose a dynamic system optimal routing model on a 

multimodal transit network. The network is modeled by a multilevel directed graph to 

simulate explictly passengers’ movements and transit vehicle operations. The dynamic system 

optimal problem is formulated as a variational inequality problem for dynamic user 

equilibrium in terms of time-dependent path marginal cost. The computation of 

time-dependent path marginal cost is based on the passengers’ additional waiting times due to 

failing to board the arriving vehicles. We propose the cross entropy method for solving the 

dynamic system optimal problem. The computational results on static cases and dynamic 

cases show that the proposed algorithm performs better than the method of successive 

averages. We compare also the system optimal and user optimal routing strategies with respect 

to different network loading factors. The numerical result on a small network suggests that 

when the congestion level of transit system increases, the system optimal routing may reduce 
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total system travel time. 

Further study includes some numerical experiments on realistic multimodal transit 

networks and the computation of the user-constrained multimodal shortest paths. Moreover, 

the incorporation of more realistic transit system operation modeling and passenger route 

choice behaviour modeling for non-guided users are desired. It is also interesting to test the 

scenarios with different proportion of informed users of the route advisory system.                 
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