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We extend to the eigenvalues of the hypersurface Spin c Dirac operator well known lower and upper bounds. Examples of limiting cases are then given. Futhermore, we prove a correspondence between the existence of a Spin c Killing spinor on homogeneous 3-dimensional manifolds E ⇤ (κ, τ ) with 4-dimensional isometry group and isometric immersions of E ⇤ (κ, τ ) into the complex space form M 4 (c) of constant holomorphic sectional curvature 4c, for some c 2 R ⇤ . As applications, we show the non-existence of totally umbilic surfaces in E ⇤ (κ, τ ) and we give necessary and sufficient geometric conditions to immerse a 3-dimensional Sasaki manifold into M 4 (c).

Introduction

It is well known that the spectrum of the Dirac operator on hypersurfaces of a Spin manifold detects informations on the geometry of such manifolds and their hypersurfaces ( [START_REF] Ammann | The Willmore conjecture for immersed tori with small curvature integral[END_REF][START_REF] Ammann | Ambient Dirac eigenvalue estimates and the Willmore functional[END_REF][START_REF] Bär | Extrinsic bounds for eigenvalues of the Dirac operator[END_REF][START_REF] Hijazi | Dirac operator on embedded hypersurfaces[END_REF][START_REF] Hijazi | Conformal lower bounds for the Dirac operator on embedded hypersurfaces[END_REF][START_REF] Hijazi | Eigenvalue boundary problems for the Dirac operator[END_REF]). For example, O. Hijazi, S. Montiel and X. Zhang [START_REF] Hijazi | Dirac operator on embedded hypersurfaces[END_REF] proved that on the compact boundary M n of a Riemannian compact Spin manifold Z n+1 of dimension n +1and with nonnegative scalar curvature, the first positive eigenvalue λ 1 of the Dirac operator satisfies

λ 1 ≥ n 2 inf M H, (1) 
where H denotes the mean curvature of M , assumed to be nonnegative. Equality holds if and only if H is constant and every eigenspinor associated with λ 1 is the restriction to M of a parallel spinor on Z (and so Z is Ricci-flat). As application of the limiting case, they gave an elementary proof of the famous Alexandrov theorem [START_REF] Hijazi | Dirac operator on embedded hypersurfaces[END_REF]: the only compact embedded hypersurface in R n+1 of constant mean curvature is the sphere S n of dimension n.

Assume now that M n is a closed hypersurface of Z n+1 . Evaluating the Rayleigh quotient applied to a parallel or Killing spinor field coming from Z, C. Bär [START_REF] Bär | Extrinsic bounds for eigenvalues of the Dirac operator[END_REF] derived an upper bound for the eigenvalues of the Dirac operator on M by using the min-max principle. More precisely, there are at least µ eigenvalues λ 1 , •••, λ µ of the Dirac operator on M satisfying

λ 2 j  n 2 α 2 + n 2 4vol(M ) Z M H 2 dv, (2) 
where vol(M ) is the volume of M , dv is the volume form of the manifold M , α is the Killing number (α =0if the ambient spinor field is parallel) and µ is the dimension of the space of parallel or Killing spinors.

Recently, Spin c geometry became a field of active research with the advent of Seiberg-Witten theory [START_REF] Kronheimer | The genus of embedded surfaces in the projective plane[END_REF][START_REF] Witten | Monopoles and four-manifolds[END_REF][START_REF] Seiberg | Monopoles, duality and chiral symmetry breaking in N =2supersymmetric QCD[END_REF]. Applications of the Seiberg-Witten theory to 4-dimensional geometry and topology are already notorious ([9, 24, 25, 13]). From an intrinsic point of view, Spin, almost complex, complex, Kähler, Sasaki and some classes of CR manifolds have a canonical Spin c structure. The complex projective space CP m is always Spin c but not Spin if m is even. Nowadays, and from the extrinsic point of vue, it seems that it is more natural to work with Spin c structures rather than Spin structures. Indeed, O. Hijazi, S. Montiel and F. Urbano [START_REF] Hijazi | Spin c geometry of Kähler manifolds and the Hodge Laplacian on minimal Lagrangian submanifolds[END_REF] constructed on Kähler-Einstein manifolds with positive scalar curvature, Spin c structures carrying Kählerian Killing spinors. The restriction of these spinors to minimal Lagrangian submanifolds provides topological and geometric restrictions on these submanifolds. In [START_REF] Nakad | Hypersurfaces of Spin c manifolds and Lawson type correspondence[END_REF][START_REF] Nakad | Special submanifolds of Spin c manifolds[END_REF], and via Spin c spinors, the authors gave an elementary proof for a Lawson type correspondence between constant mean curvature surfaces of 3-dimensional homogeneous manifolds with 4-dimensional isometry group. We point out that, using Spin spinors, we cannot prove this Lawson type correspondence. Moreover, they characterized isometric immersions of a 3-dimensional almost contact metric manifold M into the complex space form by the existence of a Spin c structure on M carrying a special spinor called a generalized Killing spinor.

In the first part of this paper and using the Spin c Reilly inequality, we extend the lower bound [START_REF] Abresch | A Hopf differential for constant mean curvature surfaces in S 2 ⇥ R and H 2 ⇥ R[END_REF] to the first positive eigenvalue of the Dirac operator defined on the compact boundary of a Spin c manifold. Examples of the limiting case are then given where the equality case cannot occur if we consider the Spin Dirac operator on these examples. Also, by restriction of parallel and Killing Spin c spinors, we extend the upper bound (2) to the eigenvalues of the Dirac operator defined on a closed hypersurface of Spin c manifolds. Examples of the limiting case are also given.

In the second part, we study Spin c structures on 3-dimensional homogeneous manifolds E ⇤ (κ, τ ) with 4-dimensional isometry group. It is well known that the only complete simply connected Spin c manifolds admitting real Killing spinor other than the Spin manifolds are the non-Einstein Sasakian manifolds endowed with their canonical or anti-canonical Spin c structure [START_REF] Moroianu | Parallel and Killing spinors on Spin c manifolds[END_REF]. Since E ⇤ (κ, τ ) are non-Einstein Sasakian manifolds [START_REF] Boyer | On Eta-Einstein Sasakian geometry[END_REF], the canonical and the anti-canonical Spin c structure carry real Killing spinors. In [START_REF] Nakad | Hypersurfaces of Spin c manifolds and Lawson type correspondence[END_REF], the authors proved that this canonical (resp. this anti-canonical) Spin c structure on E ⇤ (κ, τ ) is the lift of the canonical (resp. the anti-canonical) Spin c structure on M 2 (κ) via the submersion

E ⇤ (κ, τ ) -! M 2 (κ),
where M 2 (κ) denotes the simply connected 2-dimensional manifold with constant curvature κ . Moreover, they proved that the Killing constant of the real Killing spinor field is equal to τ 2 . Here, we reprove the existence of a Killing spinor for the canonical and the anti-canonical Spin c structure. This proof is based on the existence of an isometric embedding of E ⇤ (κ, τ ) into the complex projective space or the complex hyperbolic space (see Proposition 4.1). Conversely, from the existence of a Killing spinor on E ⇤ (κ, τ ), we prove the existence of an isometric immersion of E ⇤ (κ, τ ) into the complex space form M 4 (c) of constant holomorphic sectional curvature 4c, for some c 2 R ⇤ (see Proposition 4.2). Since every non-Einstein Sasaki manifold has a Spin c structure with a Killing spinor, it is natural to ask if this last result remains true for any 3-dimensional Sasaki manifold. Indeed, every simply connected non-Einstein Sasaki manifold can be immersed into M 4 (c) for some c 2 R ⇤ , providing that the scalar curvature is constant (see Theorem 4.3). Finally, we make use of the existence of a Killing spinor on E ⇤ (κ, τ ) to calculate some eigenvalues of Berger spheres endowed with differents Spin c structures. By restriction of this Killing spinor to any surface of E ⇤ (κ, τ ), we give a Spin c proof for the non-existence of totally umbilic surfaces in E ⇤ (κ, τ ) (see Theorem 4.4) proved already by R. Souam and E. Toubiana [START_REF] Souam | On the classification and regularity of umbilic surfaces in homogeneous 3-manifolds[END_REF].

Preliminaries

In this section, we briefly introduce basic notions concerning the Dirac operator on Spin c manifolds (with or without boundary) and their hypersurfaces. Details can be found in [START_REF] Friedrich | Dirac operator's in Riemannian geometry[END_REF], [START_REF] Montiel | Using spinors to study submanifolds[END_REF], [START_REF] Lawson | Spin geometry[END_REF], [START_REF] Hijazi | Spertral properties of the Dirac operator and geometrical structures[END_REF] and [START_REF] Bär | Extrinsic bounds for eigenvalues of the Dirac operator[END_REF].

The Dirac operator on Spin c manifolds. We consider an oriented Riemannian manifold (M n ,g) of dimension n with or without boundary and denote by SOM the SO n -principal bundle over M of positively oriented orthonormal frames. A Spin c structure of M is is given by an S 1 -principal bundle (S 1 M, π,M) of some Hermitian line bundle L and a Spin c n -principal bundle (Spin c M, π,M) which is a 2-fold covering of the SO n ⇥ S 1 -principal bundle SOM ⇥ M S 1 M compatible with the group covering

0 -! Z 2 -! Spin c n =Spin n ⇥ Z 2 S 1 -! SO n ⇥ S 1 -! 0.
The bundle L is called the auxiliary line bundle associated with the Spin c structure. If A : T (S 1 M ) -! iR is a connection 1-form on S 1 M , its (imaginary-valued) curvature will be denoted by F A , whereas we shall define a real 2-form Ω on S 1 M by F A = iΩ. We know that Ω can be viewed as a real valued 2-form on M [START_REF] Friedrich | Dirac operator's in Riemannian geometry[END_REF][START_REF] Kobayashi | Foundations of differential geometry[END_REF]. In this case, iΩ is the curvature form of the auxiliary line bundle L [START_REF] Friedrich | Dirac operator's in Riemannian geometry[END_REF][START_REF] Kobayashi | Foundations of differential geometry[END_REF].

Let ΣM := Spin c M ⇥ ρn Σ n be the associated spinor bundle where

Σ n = C 2 [ n 2 ]
and ρ n :S p i n c n -! End(Σ n ) the complex spinor representation [START_REF] Friedrich | Dirac operator's in Riemannian geometry[END_REF][START_REF] Lawson | Spin geometry[END_REF][START_REF] Nakad | Special submanifolds of Spin c manifolds[END_REF]. A section of ΣM will be called a spinor field. This complex vector bundle is naturally endowed with a Clifford multiplication, denoted by "•", • : Cl(TM) -! End(ΣM ) which is a fiber preserving algebra morphism and with a natural Hermitian scalar product <.,.>compatible with this Clifford multiplication [START_REF] Montiel | Using spinors to study submanifolds[END_REF][START_REF] Friedrich | Dirac operator's in Riemannian geometry[END_REF][START_REF] Hijazi | Spertral properties of the Dirac operator and geometrical structures[END_REF]. If n is even, ΣM = Σ + M ⊕ Σ -M can be decomposed into positive and negative spinors by the action of the complex volume element [START_REF] Friedrich | Dirac operator's in Riemannian geometry[END_REF][START_REF] Montiel | Using spinors to study submanifolds[END_REF][START_REF] Hijazi | Spertral properties of the Dirac operator and geometrical structures[END_REF][START_REF] Nakad | Special submanifolds of Spin c manifolds[END_REF]. If such data are given, one can canonically define a covariant derivative r on ΣM given, for all X 2 Γ(TM), by [START_REF] Friedrich | Dirac operator's in Riemannian geometry[END_REF][START_REF] Lawson | Spin geometry[END_REF][START_REF] Hijazi | Spertral properties of the Dirac operator and geometrical structures[END_REF][START_REF] Nakad | Special submanifolds of Spin c manifolds[END_REF]:

r X ψ = X(ψ)+ 1 4 n X j=1 e j • r X e j • ψ + i 2 A(s ⇤ (X))ψ, (3) 
where the second r is the Levi-Civita connection on

M , ψ =[ ] b ⇥ s, σ] is a locally defined spinor field, b =( e 1 , •••,e n ) is a local oriented orthonormal tangent frame, s : U -! S 1 M is a local section of S 1 M , ] b ⇥ s is the lift of the local section b ⇥ s : U -! SOM ⇥ M S 1 M to the 2-fold covering and X(ψ)=[ ] b ⇥ s, X(σ)].
For any other connection A 0 on S 1 M , there exists a real 1-form α on M such that A 0 = A + iα [START_REF] Friedrich | Dirac operator's in Riemannian geometry[END_REF]. If we endow the S 1 -principal fiber bundle S 1 M with the connection A 0 , there exists on ΣM a covariant derivative r 0 given by

r 0 X ψ = r X ψ + i 2 α(X)ψ, (4) 
for all X 2 Γ(TM) and ψ 2 Γ(ΣM ). Moreover, the curvature 2-form of A 0 is given by F A 0 = F A + idα. But F A (resp. F A 0 ) can be viewed as an imaginary 2-form on M denoted by iΩ (resp. iΩ 0 ). Thus, iΩ (resp. iΩ 0 ) is the curvature of the auxiliary line bundle associated with the S 1 -principal fiber bundle S 1 M endowed with the connection A (resp. A 0 ) and we have iΩ 0 = iΩ + idα.

The Dirac operator, acting on Γ(ΣM ), is a first order elliptic operator locally given by D = P n j=1 e j • r e j , where {e j } j=1,•••,n is any orthonormal local basis tangent to M . An important tool when examining the Dirac operator on Spin c manifolds is the Schrödinger-Lichnerowicz formula [START_REF] Friedrich | Dirac operator's in Riemannian geometry[END_REF][START_REF] Lawson | Spin geometry[END_REF]:

D 2 = r ⇤ r + 1 4 S Id Γ(ΣM ) + i 2 Ω•, ( 5 
)
where S is the scalar curvature of M , r ⇤ is the adjoint of r with respect to the L 2scalar product and Ω• is the extension of the Clifford multiplication to differential forms. The Ricci identity is given, for all X 2 Γ(TM), by

n X j=1 e j •R(e j ,X)ψ = 1 2 Ric(X) • ψ - i 2 (XyΩ) • ψ, (6) 
for any spinor field ψ. Here Ric (resp. R) denotes the Ricci tensor of M (resp. the Spin c curvature associated with the connection r) and y the interior product.

A Spin structure can be seen as a Spin c structure with trivial auxiliary line bundle L endowed with the trivial connection. Every almost complex manifold (M 2m ,g,J) of complex dimension m has a canonical Spin c structure. In fact, the complexified cotangent bundle T ⇤ M ⌦ C = Λ 1,0 M ⊕ Λ 0,1 M decomposes into the ±i-eigenbundles of the complex linear extension of the complex structure. Thus, the spinor bundle of the canonical Spin c structure is given by

ΣM = Λ 0,⇤ M = ⊕ m r=0 Λ 0,r M,
where Λ 0,r M = Λ r (Λ 0,1 M ) is the bundle of r-forms of type (0, 1). The auxiliary line bundle of this canonical Spin c structure is given by L

=( K M ) -1 = Λ m (Λ 0,1 M ),
where K M is the canonical bundle of M [START_REF] Friedrich | Dirac operator's in Riemannian geometry[END_REF][START_REF] Montiel | Using spinors to study submanifolds[END_REF][START_REF] Nakad | Special submanifolds of Spin c manifolds[END_REF]. Let n be the Kähler form defined by the complex structure J, i.e. n(X, Y )=g(X, JY ) for all vector fields X, Y 2 Γ(TM). The auxiliary line bundle L =(K M ) -1 has a canonical holomorphic connection induced from the Levi-Civita connection whose curvature form is given by iΩ = iρ, where ρ is the Ricci 2-form given by ρ(X, Y )=R i c ( X, JY ). For any other Spin c structure the spinorial bundle can be written as [START_REF] Friedrich | Dirac operator's in Riemannian geometry[END_REF][START_REF] Hijazi | Spin c geometry of Kähler manifolds and the Hodge Laplacian on minimal Lagrangian submanifolds[END_REF]:

ΣM = Λ 0,⇤ M ⌦ L,
where L 2 = K M ⌦ L and L is the auxiliary bundle associated with this Spin c structure. In this case, the 2-form n can be considered as an endomorphism of ΣM via Clifford multiplication and we have the well-known orthogonal splitting ΣM = ⊕ m r=0 Σ r M, where Σ r M denotes the eigensubbundle corresponding to the eigenvalue i(m -2r)

of n, with complex rank ⇣ m k ⌘
. The bundle Σ r M correspond to Λ 0,r M ⌦ L. For the canonical Spin c structure, the subbundle Σ 0 M is trivial. Hence and when M is aK ähler manifold, this Spin c structure admits parallel spinors (constant functions) lying in Σ 0 M [START_REF] Moroianu | Parallel and Killing spinors on Spin c manifolds[END_REF]. Of course, we can define another Spin c structure for which the spinor bundle is given by Λ ⇤,0 M = ⊕ m r=0 Λ r (T ⇤ 1,0 M ) and the auxiliary line bundle by K M . This Spin c structure will be called the anti-canonical Spin c structure.

Spin c hypersurfaces and the Gauss formula. Let (M n ,g) be an n-dimensional oriented hypersurface isometrically immersed in a Riemannian Spin c manifold (Z n+1 ,g Z ). The hypersurface M inherts a Spin c structure from that on Z, and we have [START_REF] Montiel | Using spinors to study submanifolds[END_REF][START_REF] Bär | Extrinsic bounds for eigenvalues of the Dirac operator[END_REF][START_REF] Nakad | Special submanifolds of Spin c manifolds[END_REF][START_REF] Nakad | The Energy-Momentum tensor on Spin c manifolds[END_REF]:

⇢ ΣZ | M ' ΣM if n is even, Σ + Z | M ' ΣM if n is odd.
Moreover Clifford multiplication by a vector field X, tangent to M , is given by

X • ϕ =(X • ν • ψ) | M , where ψ 2 Γ(ΣZ) (or ψ 2 Γ(Σ + Z) if n is odd), ϕ is the restriction of ψ to M ,"
•" is the Clifford multiplication on Z,"•" that on M and ν is the unit normal vector. When n is odd, we can also get Σ -Z | M ' ΣM . In this case, the Clifford multiplication by a vector field X tangent to M is given by X

• ϕ = -(X • ν • ψ) | M and we have ΣZ | M ' ΣM ⊕ ΣM . The connection 1-form defined on the restricted S 1 -principal bundle (S 1 M =: S 1 Z | M , π,M),

is given by

A = A Z | M : T (S 1 M )=T (S 1 Z) | M -! iR.
Then the curvature 2-form iΩ on the S 1 -principal bundle S 1 M is given by iΩ = iΩ Z | M , which can be viewed as an imaginary 2-form on M and hence as the curvature form of the line bundle L, the restriction of the line bundle L Z to M . We denote by r Z the spinorial Levi-Civita connection on ΣZ and by r that on ΣM . For all X 2 Γ(TM) and for every spinor field ψ 2 Γ(ΣZ) (or ψ 2 Γ(Σ + Z) if n is odd), we consider ϕ = ψ | M and we get the following Spin c Gauss formula [START_REF] Montiel | Using spinors to study submanifolds[END_REF][START_REF] Bär | Extrinsic bounds for eigenvalues of the Dirac operator[END_REF][START_REF] Nakad | The Energy-Momentum tensor on Spin c manifolds[END_REF]:

(r Z X ψ) | M = r X ϕ + 1 2 II(X) • ϕ, (7) 
where II denotes the Weingarten map with respect to ν. Moreover, Let D Z and D be the Dirac operators on Z and M , after denoting by the same symbol any spinor and it's restriction to M , we have

e Dϕ = n 2 Hϕ -ν • D Z ϕ -r Z ν ϕ, (8) 
e D(ν • ϕ)=-ν • e Dϕ, (9) 
where H = 1 n tr(II) denotes the mean curvature and e D = D if n is even and e D = D ⊕ (-D) if n is odd.

Homogeneous 3-dimensional manifolds with 4-dimensional isometry group. We denote a 3-dimensional homogeneous manifold with 4-dimensional isometry group by E(κ, τ ), κ -4τ 2 6 =0 . It is a Riemannian fibration over a simply connected 2-dimensional manifold M 2 (κ) with constant curvature κ and such that the fibers are geodesic. We denote by τ the bundle curvature, which measures the default of the fibration to be a Riemannian product. Precisely, we denote by ξ a unit vertical vector field, that is tangent to the fibers. If τ 6 =0 , the vector field ξ is a Killing field and satisfies for all vector field X,

r X ξ = τ X ^ξ,
where r is the Levi-Civita connection and ^is the exterior product. In this case E(κ, τ ) is denoted by E ⇤ (κ, τ ). When τ vanishes, we get a product manifold M 2 (κ) ⇥ R. If τ 6 =0 , these manifolds are of three types: they have the isometry group of the Berger spheres if κ > 0, of the Heisenberg group

Nil 3 if κ =0or of P SL 2 (R) if κ < 0. Note that if τ =0, then ξ = ∂
∂t is the unit vector field giving the orientation of R in the product M 2 (κ) ⇥ R. The manifold E ⇤ (κ, τ ) admits a local direct orthonormal frame {e 1 ,e 2 ,e 3 } with e 3 = ξ, and such that the Christoffel symbols Γ k ij = hr e i e j ,e k i are given by 8 > > > > < > > > > :

Γ 3 12 = Γ 1 23 = -Γ 3 21 = -Γ 2 13 = τ, Γ 1 32 = -Γ 2 31 = τ -κ 2τ , Γ i ii = Γ i ij = Γ i ji = Γ j ii =0, 8 i, j 2 {1, 2, 3}. (10) 
We call {e 1 ,e 2 ,e 3 = ξ} the canonical frame of E ⇤ (κ, τ ). Except the Berger spheres and with R 3 , H 3 , S 3 and the solvable group Sol 3 , the manifolds E(κ, τ ) define the geometry of Thurston. The authors [START_REF] Nakad | Hypersurfaces of Spin c manifolds and Lawson type correspondence[END_REF] proved that there exists on E ⇤ (κ, τ ) a Spin c structure (the canonical Spin c structure) carrying a Killing spinor field ψ of Killing constant τ 2 , i.e., a spinor field ψ satisfying

r X ψ = τ 2 X • ψ, for all X 2 Γ(T E ⇤ (κ, τ )).
Moreover, ξ • ψ = -iψ and the curvature of the auxiliary line bundle is given by

iΩ(e 1 ,e 2 )=-i(κ -4τ 2 )a n d iΩ(e k ,e j )=0, (11) 
elsewhere in the canonical frame {e 1 ,e 2 , ξ}. There exists also another Spin c structure (the anti-canonical Spin c structure) carrying a Killing spinor field ψ of Killing constant τ 2 such that ξ • ψ = iψ and the curvature of the auxiliary line bundle is given by iΩ(e 1 ,e 2 )=i(κ -4τ 2 )a n d iΩ(e k ,e j )=0, [START_REF] Ginoux | The Dirac spectrum[END_REF] elsewhere in the canonical frame {e 1 ,e 2 , ξ}.

3 Lower and upper bounds for the eigenvalues of the hypersurface Dirac operator

We will extend the lower bound (1) and the upper bound (2) to the eigenvalues of the hypersurface Spin c Dirac operator e D. Examples of the limiting cases are then given.

Lower bounds for the eigenvalues of the hypersurface Dirac operator

We assume that the manifold Z n+1 is a Spin c manifold having a compact domain D with compact boundary M = ∂D. Using suitable boundary conditions for the Dirac operator D Z , we extend the lower bound (1) to the first positive eigenvalue of the extrinsic hypersurface Dirac operator e D on M endowed with the induced Spin c structure.

Since M is compact, the Dirac operator e D has a discrete spectrum and we denote by π + : Γ(ΣM ) -! Γ(ΣM ) the projection onto the subspace of Γ(ΣM ) spanned by eigenspinors corresponding to the nonnegative eigenvalues of e D. This projection provides an Atiyah-Patodi-Singer type boundary conditions for the Dirac operator D Z of the domain D. It has been proved that this is a global self-adjoint elliptic condition [START_REF] Hijazi | Eigenvalues of the Dirac operator on manifolds with boundary[END_REF][START_REF] Hijazi | Dirac operator on embedded hypersurfaces[END_REF].

It is not difficult to extend the Spin Reilly inequality (see [START_REF] Hijazi | Eigenvalues of the Dirac operator on manifolds with boundary[END_REF], [START_REF] Hijazi | Dirac operator on embedded hypersurfaces[END_REF], [START_REF] Hijazi | Conformal lower bounds for the Dirac operator on embedded hypersurfaces[END_REF], [START_REF] Hijazi | Eigenvalue boundary problems for the Dirac operator[END_REF]) to Spin c manifolds. Indeed, for all spinor fields ψ 2 Γ(ΣD), we have

Z ∂D ⇣ < e Dϕ, ϕ > - n 2 H|ϕ| 2 ⌘ ds ≥ Z D ⇣ 1 4 S Z |ψ| 2 + < i 2 Ω Z • ψ, ψ > - n n +1 |D Z ψ| 2 ⌘ dv, (13) 
where dv (resp. ds) is the Riemannian volume form of D (resp. ∂D). Moreover equality occurs if and only if the spinor field ψ is a twistor-spinor, i.e., if and only if it satisfies P Z ψ =0 , where P Z is the twistor operator acting on ΣZ locally given, for all X 2 Γ(T Z), by P Z X ψ = r Z X ψ + 1 n+1 X • D Z ψ. Now, we can state the main theorem of this section: Theorem 3.1 Let (Z n+1 ,g Z ) be a Riemannian Spin c manifold such that the operator S Z +2iΩ Z • is nonnegative. We consider M n a compact hypersurface with nonnegative mean curvature H and bounding a compact domain D in Z. Then, the first positive eigenvalue λ 1 of e D satisfies

λ 1 > n 2 inf M H. ( 14 
)
Equality holds if and only if H is constant and the eigenspace corresponding to λ 1 consists of the restrictions to M of parallel spinors on the domain D.

Proof. Let ϕ be an eigenspinor on M corresponding to the first positive eigenvalue λ 1 > 0 of e D, i.e., e Dϕ = λ 1 ϕ and π + ϕ = ϕ. The following boundary problem has a unique solution (see [START_REF] Hijazi | Eigenvalues of the Dirac operator on manifolds with boundary[END_REF], [START_REF] Hijazi | Dirac operator on embedded hypersurfaces[END_REF], [START_REF] Hijazi | Conformal lower bounds for the Dirac operator on embedded hypersurfaces[END_REF] and [START_REF] Hijazi | Eigenvalue boundary problems for the Dirac operator[END_REF])

⇢ D Z ψ =0 on D π + ψ = π + ϕ = ϕ on M = ∂D.
From the Reilly inequality (13), we get

Z M (λ 1 - n 2 H)|ψ| 2 ds ≥ Z D ( 1 4 S Z |ψ| 2 + i 2 < Ω Z • ψ, ψ >)dv ≥ 0,
which implies [START_REF] Herzlich | Generalized Killing spinors and conformal eigenvalue estimates for Spin c manifold[END_REF]. If the equality case holds in ( 14), then ψ is a harmonic spinor and a twistor spinor, hence parallel. Since π + ψ = ϕ along the boundary, ψ is a non-trivial parallel spinor and λ 1 = n 2 H. Futhermore, since ψ is parallel, we deduce by ( 8) that e Dϕ = n 2 Hϕ. Hence we have ϕ = π + ψ = ψ. Conversely if H is constant, the fact that the restriction to M of a parallel spinor on D is an eigenspinor with eigenvalue n 2 H is a direct consequence of (8).

Examples 3.1 A complete simply connected Riemannian Spin c manifold Z n+1 carrying a parallel spinor field is isometric to the Riemannian product of a simply connected Kähler manifold Z n 1 1 of complex dimension m 1 (n 1 =2 m 1 ) and a simply connected Spin manifold Z n 2 2 of dimension n 2 (n +1=n 1 + n 2 ) carrying a parallel spinor and the Spin c structure of Z is the product of the canonical Spin c structure of Z 1 and the Spin structure of Z 2 [START_REF] Moroianu | Parallel and Killing spinors on Spin c manifolds[END_REF]. Moreover, if we assume that Z 1 is Einstein, then

iΩ Z (X, Y )=iρ Z 1 (X 1 ,Y 1 )=iRic Z 1 (X 1 ,JY 1 )=i S Z 1 n 1 n (X 1 ,Y 1 ), (15) 
for every X

= X 1 + X 2 ,Y = Y 1 + Y 2 2 Γ(T Z
) and where J denotes the complex structure on Z 1 . Moreover, if the Einstein manifold Z 1 is of positive scalar curvature, we have, for any spinor field ψ 2 Γ(ΣZ),

S Z |ψ| 2 +2i<Ω Z • ψ, ψ > = S Z 1 |ψ| 2 + i m 1 S Z 1 < n • ψ, ψ > = S Z 1 m 1 X r=0 (1 - m 1 -2r m 1 )|ψ r | 2 = S Z 1 m 1 X r=0 2r m 1 |ψ r | 2 ≥ 0.
Finally, the first positive eigenvalue of the Dirac operator e D of any compact hypersurface with nonnegative constant mean curvature H and bounding a compact domain D in Z = Z 1 ⇥ Z 2 satisfies the equality case in [START_REF] Herzlich | Generalized Killing spinors and conformal eigenvalue estimates for Spin c manifold[END_REF] for the restricted Spin c structure. Next, we will give some explicit examples. The Alexandrov theorem for S 2 + ⇥ R says that the only embedded compact surface with constant mean curvature H>0 in

Z = Z 1 ⇥Z 2 = S 2
+ ⇥R is the standard rotational sphere described in [START_REF] Abresch | A Hopf differential for constant mean curvature surfaces in S 2 ⇥ R and H 2 ⇥ R[END_REF][START_REF] Abresch | Generalized Hopf differentials[END_REF][START_REF] Daniel | Constant mean curvature surfaces in homogeneous 3-manifolds[END_REF]. Hence, the first positive eigenvalue of the Dirac operator e D on the rotational sphere satisfies the equality case in [START_REF] Herzlich | Generalized Killing spinors and conformal eigenvalue estimates for Spin c manifold[END_REF]. We consider the complex projective space CP m (Z 2 = {;}) endowed with the Einstein Fubini-Study metric and the canonical Spin c structure. The first positive eigenvalue of the Dirac operator e D of any compact hypersurface M with nonnegative constant mean curvature H and bounding a compact domain D in CP m satisfies the equality case in [START_REF] Herzlich | Generalized Killing spinors and conformal eigenvalue estimates for Spin c manifold[END_REF]. Compact embedded hypersurfaces in CP m are examples of manifolds viewed as a boundary of some enclosed domain in CP m . As an example, we know that there exists an isometric embedding of E ⇤ (κ, τ ) into M 4 ( κ 4 -τ 2 ) of constant mean curvature H = κ-16τ 2 12τ [START_REF] Torralbo | Compact stable mean curvature surfaces in homogeneous 3-manifolds[END_REF]. Here M 4 ( κ 4τ 2 ) denotes the complex space form of constant holomorphic sectional curvature κ -4τ 2 . We choose κ > 16τ 2 and τ > 0, then H is positive. In this case, E ⇤ (κ, τ ) are Berger spheres (compact) and M 4 is the complex projective space CP 2 of constant holomorphic sectional curvature κ -4τ 2 > 0. The canonical Spin c structure on M 4 carries a parallel spinor and hence the equality case in ( 14) is satisfied for the first positive eigenvalue of e D defined on Berger spheres. Finally, we recall that S 2 + ⇥ R and CP m (when m is odd), have also a unique Spin structure. Hence, Inequality ( 14) holds for the first positive eigenvalue of the Spin Dirac operator e D defined on the rotational sphere or on any compact embedded hypersurface in CP m (when m is odd). But, equality cannot occur since this unique Spin structure on S 2 + ⇥ R and on CP m does not carry a parallel spinor.

Upper bounds for the eigenvalues of the Dirac operator

A spinor field ψ on a Riemannian Spin c manifold Z n+1 is called a real Killing spinor with Killing constant

α 2 R if r Z X ψ = α X • ψ, (16) 
for all X 2 Γ(T Z). When α =0, the spinor field ψ is a parallel spinor. We define µ = µ(Z, α) := dim C {ψ, ψ is a Killing spinor on Z with Killing constant α} Theorem 3.2 Let M be an n-dimensional closed oriented hypersurface isometrically immersed in a Riemannian Spin c manifold Z. We endow M with the induced Spin c structure. For any α 2 R, there are at least µ(Z, α) eigenvalues λ 1 ,...,λ µ of the Dirac operator e D on M satisfying

λ 2 j  n 2 α 2 + n 2 4vol(M ) Z M H 2 dv, ( 17 
)
where H denotes the mean curvature of M . If equality holds, then H is constant.

Proof. First, note that the set of Killing spinors with Killing constant α is a vector space. Moreover, linearly independent Killing spinors are linearly independent at every point, the space of restrictions of Killing spinors on Z to M , i.e., ( e

{ψ| M , ψ is a spinor on Z satisfying r Z X ψ = α X • ψ, 8X 2 Γ(T Z)} is also µ-dimensional. Now
D 2 ψ, ψ) (ψ, ψ) = ( e Dψ, e Dψ) vol(M ) = (nαν• ψ + n 2 Hψ,nαν• ψ + n 2 Hψ) vol(M ) = n 2 α 2 + n 2 4 R M H 2 vol(M ) ,
i.e., the Rayleigh quotient of e D 2 is bounded by

n 2 α 2 + n 2 4 R M H 2
vol(M ) on a µ-dimensional space of spinors on M . Hence, the Min-Max principle implies the assertion. If equality holds, then the restriction to M of every Killing spinor ψ of Killing constant α satisfies e

D 2 ϕ = λ 2 1 ϕ. But, it is known that [11] e D 2 ϕ = D2 ϕ + n 2 dH • ν • ϕ + n 2 H 2 4 ϕ, ( 18 
)
where D is the Dirac-Witten operator given by D = P n j=1 e j • r Z e j . Hence, using that Dψ = -nαψ and (18), we get

λ 2 1 ϕ = n 2 α 2 ϕ + n 2 dH • ν • ϕ + n 2 4 H 2 ϕ.
Considering the real part of the scalar product of the last equality by ϕ implies that

λ 2 1 = n 2 α 2 + n 2 H 2 4 .
Hence, H is constant.

Examples 3.2 Simply connected complete Riemannian Spin c manifolds carrying parallel spinors were described in Examples 3.1. The only Spin c structures on an irreducible Kähler not Ricci-flat manifold Z which carry parallel spinors are the canonical and the anti-canonical one. In both cases, µ(Z, 0) = 1 [START_REF] Moroianu | Parallel and Killing spinors on Spin c manifolds[END_REF]. Hence, Inequality [START_REF] Hijazi | Eigenvalues of the Dirac operator on manifolds with boundary[END_REF] holds for the first eigenvalue of the Dirac operator e D defined on any compact Riemannian hypersurface endowed with the restricted Spin c structure. The complex projective space CP m or the complex hyperbolic space CH m with the Fubini-Study metric are examples of irreducible Kähler not Ricci-flat manifolds. From Examples 3.1, the equality case in ( 14) is achieved for the first positive eigenvalue of the Dirac operator e D defined on Berger spheres embedded into CP 2 . Hence, Inequality ( 17) is also an equality in this case. Also, for rotational constant mean curvature H spheres embedded into S 2 ⇥ R, Inequality ( 17) is an equality because in this case, Inequality ( 14) is an equality. The only complete simply connected Spin c manifolds admitting real Killing spinors other than the Spin manifolds are the non-Einstein Sasakian manifolds endowed with their canonical or anti-canonical Spin c structure [START_REF] Moroianu | Parallel and Killing spinors on Spin c manifolds[END_REF]. The manifolds E ⇤ (κ, τ ) are examples of Spin c manifolds carrying a Killing spinor ψ of Killing constant τ 2 .

4 Spin c structures on E ⇤ (κ, τ ) and applications

In this section, we make use of the existence of a Spin c Killing spinor to immerse E ⇤ (κ, τ ) into complex space forms, to calculate some eigenvalues of the Dirac operator on Berger spheres and to prove the non-existence of totally umbilic surfaces in E ⇤ (κ, τ ).

Isometric immersions of E ⇤ (κ, τ ) into complex space forms

From the existence of an isometric embedding of E ⇤ (κ, τ ) into M 4 ( κ 4 -τ 2 ), we reprove that the only Spin c structures on E ⇤ (κ, τ ) carrying a Killing spinor are the canonical and the anti-canonical one. Conversely, the existence of a Spin c Killing spinor allows to immerse E ⇤ (κ, τ ) in M 4 ( κ 4τ 2 ). More generally, we give necessary and sufficient geometric conditions to immerse any 3-dimensional Sasaki manifold into M 2 (c) for some c 2 R ⇤ . Proposition 4.1 The only Spin c structures on E ⇤ (κ, τ ) carrying a real Killing spinor are the canonical and the anti-canonical one. Moreover, the Killing constant is given by τ 2 .

Proof. It is known that there exists an isometric embedding of [START_REF] Torralbo | Compact stable mean curvature surfaces in homogeneous 3-manifolds[END_REF]. Moreover, the second fundamental form is given by

E ⇤ (κ, τ ) into M 4 ( κ 4 -τ 2 ) of constant mean curvature H = κ-16τ 2 12τ
II(X)=-τ X - 4τ 2 -κ τ g M 4 (X, ξ)ξ, for every X 2 Γ(T E ⇤ (κ, τ )).
Here, we recall that the normal vector of the immersion is given by ν := Jξ and {e 1 ,e 2 , ξ, ν = Jξ} is a local orthonormal basis tangent to M 4 where {e 1 ,e 2 , ξ} is the canonical frame of E ⇤ (κ, τ ). We denote by η the real 1-form associated with ξ, i.e., η(X)=g(X, ξ) for any X 2 Γ(T E ⇤ (κ, τ )). The restriction of the canonical Spin c structure on M 4 ( κ 4τ 2 ) induces a Spin c structure on E ⇤ (κ, τ ) and by the Spin c Gauss formula [START_REF] Boyer | On Eta-Einstein Sasakian geometry[END_REF], the restriction of the parallel spinor on M 4 ( κ 4τ 2 )

induces a spinor field ϕ on E ⇤ (κ, τ ) satisfying, for all X 2 Γ(T E ⇤ (κ, τ )),

r X ϕ = τ 2 X • ϕ + 4τ 2 -κ 8τ η(X)ξ • ϕ.
Moreover, the spinor field ϕ satisfies ξ • ϕ = -iϕ [30, Theorem 3] and the curvature of the auxiliary line bundle L associated with the induced Spin c structure is given by [START_REF] Nakad | Hypersurfaces of Spin c manifolds and Lawson type correspondence[END_REF]Theorem 3] iΩ(e 1 ,e 2 )=-6i( κ 4 τ 2 ), and iΩ(e i ,e j )=0,

elsewhere in the basis {e 1 ,e 2 , ξ}. We deduce that, for all X 2 Γ(T E ⇤ (κ, τ )),

r X ϕ = τ 2 X • ϕ -i 4τ 2 -κ 8τ g(X, ξ)ϕ.
The connection A on the S 1 -principal fiber bundle S 1 (E ⇤ (κ, τ )) associated with the induced Spin c structure is the restriction to E ⇤ (κ, τ ) of the connection on the S 1 -principal fiber bundle S 1 M 4 associated with the canonical Spin c structure on M 4 ( κ 4τ 2 ), i.e., the connection A on S 1 (E ⇤ (κ, τ )) is the restriction to E ⇤ (κ, τ ) of the connection on S 1 (M 4 ( κ 4τ 2 )) defined by the Levi-Civita connection. Let α be the real 1-form on E ⇤ (κ, τ ) defined by

α(X)= 4τ 2 -κ 4τ g(X, ξ),
for any X 2 Γ(T E ⇤ (κ, τ )). We endow the S 1 -principal fiber bundle S 1 (E ⇤ (κ, τ )) with the connection A 0 = A + iα. From (4), there exists on ΣE ⇤ (κ, τ ) a covariant derivative r 0 such that

r 0 X ϕ = r X ϕ + i 2 α(X)ϕ = τ 2 X • ϕ,
for all X 2 Γ(T E ⇤ (κ, τ )). Hence, we obtain a Spin c structure on E ⇤ (κ, τ ) carrying a Killing spinor field and whose S 1 -principal fiber bundle S 1 (E ⇤ (κ, τ )) has a connection given by A 0 . Now, we should prove that this Spin c structure is the canonical one. First, we calculate the curvature iΩ 0 = iΩ + idα of A 0 . It is easy to check that ξydα =0and dα(e 1 ,e 2 )=-4τ 2 -κ 2 . Hence, using [START_REF] Hijazi | Eigenvalue boundary problems for the Dirac operator[END_REF], we get

Ω 0 (e 1 ,e 2 )=-(κ -4τ 2 )a n dξyΩ 0 =0.
The curvature form iΩ 0 is the same as the curvature form associated with the connection on the auxiliary line bundle of the canonical Spin c structure on E ⇤ (κ, τ ). Since E ⇤ (κ, τ ) is a simply connected manifold, we deduce that the S 1 -principal fiber bundle S 1 (E ⇤ (κ, τ )) endowed with the connection A 0 is the auxiliary line bundle of the canonical Spin c structure on E ⇤ (κ, τ ). Hence, we have on E ⇤ (κ, τ ) two Spin c structures with the same auxiliary line bundle (the canonical one and the one obtained by restriction of the canonical one on M 4 ). But, on a Riemannian manifold M , Spin c structures having the same auxiliary line bundle are parametrized by H 1 (M, Z 2 ) [START_REF] Montiel | Using spinors to study submanifolds[END_REF], which is trivial in our case since E ⇤ (κ, τ ) is simply connected. To get the anticanonical Spin c structure on E ⇤ (κ, τ ), we restrict the anti-canonical Spin c structure on M 4 . In this case, ξ • ϕ = iϕ, Ω(e 1 ,e 2 )=6 ( κ 4τ 2 ), ξyΩ =0and we choose the real 1-form α to be α(X)=-4τ 2 -κ 4τ g(X, ξ).

Next, we want to prove the converse. Indeed, we have 

in the basis {e 1 ,e 2 ,e 3 = ξ}. We denote by A the connection on the auxiliary line bundle defining the canonical Spin c structure. Let α be the real 1-form on E ⇤ (κ, τ )) defined by α(X)=-4τ 2 -κ 4τ g(X, ξ), for any X 2 Γ(T E ⇤ (κ, τ )). We endow the S 1principal fiber bundle S 1 (E ⇤ (κ, τ )) with the connection A 0 = A + iα. Then, there exists on ΣE ⇤ (κ, τ ) a covariant derivative r 0 such that

r 0 X ϕ = τ 2 X • ϕ + i 2 α(X)ϕ = τ 2 X • ϕ + 4τ 2 -κ 8τ η(X)ξ • ϕ, (21) 
for all X 2 Γ(T E ⇤ (κ, τ )). Hence, we obtain a Spin c structure on E ⇤ (κ, τ ) carrying a spinor field ϕ satisfying [START_REF] Kobayashi | Foundations of differential geometry[END_REF] and whose S 1 -principal fiber bundle S 1 (E ⇤ (κ, τ )) has a connection given by A 0 . We calculate the curvature iΩ 0 = iΩ + idα of A 0 . It is easy to check that ξydα =0and dα(e 1 ,e 2 )= 4τ 2 -κ 2 . Hence,

Ω 0 (e 1 ,e 2 )=-6( κ 4 -τ 2 )a n dξyΩ 0 =0.
Since E ⇤ (κ, τ ) are Sasakian, by [START_REF] Nakad | Hypersurfaces of Spin c manifolds and Lawson type correspondence[END_REF]Theorem 4], we get an isometric immersion of E ⇤ (κ, τ ) into M 4 (c) for c = κ 4τ 2 . Moreover, E ⇤ (κ, τ ) are of constant mean curvature and η-umbilic (see [START_REF] Nakad | Hypersurfaces of Spin c manifolds and Lawson type correspondence[END_REF]).

More general, we have: Theorem 4.3 Every simply connected non-Einstein 3-dimensional Sasaki manifold M 3 of constant scalar curvature can be immersed into M 4 (c) for some c 2 R ⇤ . Moreover, M is η-umbilic and of constant mean curvature.

Proof. We recall that a Sasaki structure on a 3-dimensional manifold M 3 is given by a Killing vector field ξ of unit length such that the tensors X := rξ and η := g(ξ, •) are related by

X 2 = -Id + η ⌦ ξ.
We know that a non-Einstein Sasaki manifold has a Spin c structure carrying a Killing spinor field ϕ of Killing constant β. By rescaling the metric, we can assume that β = -1 2 . Moreover, the Killing vector field ξ defining the Sasaki structure satisfies ξ • ϕ = -iϕ (see [START_REF] Moroianu | Parallel and Killing spinors on Spin c manifolds[END_REF]). The Ricci tensor on M is given by

Ric(e j )= S -2 2 e j ,j =1, 2a n dR i c ( ξ)=2ξ,
where S denotes the scalar curvature of M and {e 1 ,e 2 , ξ} a local orthonormal frame of M . Because we assumed that M is non-Einstein, we have S 6 =6and hence we can find c 2 R ⇤ such that S =8c +6. The Ricci identity (6) in X = ξ gives that ξyΩ =0 and by the Schrödinger-Lichnerowicz formula, it follows that Ω(e 1 ,e 2 )= 6-S 2 . Let α be the real 1-form on M defined by α(X)=-cg(X, ξ), for any X 2 Γ(TM).W e endow the S 1 -principal fiber bundle S 1 M with the connection A 0 = A + iα, where A denotes the connection on S 1 M whose curvature form is given by iΩ. From (4), there exists on ΣM a covariant derivative r 0 such that

r 0 X ϕ = - 1 2 X • ϕ - i 2 cg(X, ξ)ϕ.
Now, we calculate the curvature iΩ 0 = iΩ+idα of A 0 . It is easy to check that ξydα =0 and dα(e 1 ,e 2 )=-2c. Hence,

ξyΩ 0 =0, Ω 0 (e 1 ,e 2 )= 6 -S 2 -2c = -6c.
By [START_REF] Nakad | Hypersurfaces of Spin c manifolds and Lawson type correspondence[END_REF]Theorem 4], M is immersed into M 4 (c). Additionally, M is η-umbilic and of constant mean curvature.

4.2 Totally umbilic surfaces in E ⇤ (κ, τ )

By restriction of the Killing spinor of Killing constant τ 2 on E ⇤ (κ, τ ) to a surface M 2 , the authors characterized isometric immersions into E(κ, τ ) by the existence of a Spin c structure carrying a special spinor field [START_REF] Nakad | Hypersurfaces of Spin c manifolds and Lawson type correspondence[END_REF]. More precisely, consider (M 2 ,g) a Riemannian surface. We denote by E a field of symmetric endomorphisms of TM, with trace equal to 2H. The vertical vector field can be written as ξ = dF (T )+f ν, where ν is the unit normal vector to the surface, f is a real function on M and T the tangential part of ξ. The isometric immersion of (M 2 ,g) into E(κ, τ ) with shape operator E, mean curvature H is characterized by a Spin c structure on M carrying a non-trivial spinor field ϕ satisfying, for all X 2 Γ(TM),

r X ϕ = - 1 2 EX • ϕ + i τ 2 X • ϕ.
Moreover, the auxiliary bundle has a connection of curvature given, in any local orthonormal frame {t 1 ,t 2 }, by iΩ(t 1 ,t 2 )=-i(κ -4τ 2 )f = -i(κ -4τ 2 ) <ϕ,ϕ> |ϕ| 2 . The vector T is given by

g(T,t 1 )=< it 2 • ϕ, ϕ |ϕ| 2 > and g(T,t 2 )=-< it 1 • ϕ, ϕ |ϕ| 2 >.
Here and also by restriction of the Killing spinor, we gave an elementary Spin c proof of the following result proved by R. Souam and E. Toubiana in [START_REF] Souam | On the classification and regularity of umbilic surfaces in homogeneous 3-manifolds[END_REF].

Theorem 4.4 There are no totally umbilic surfaces in E ⇤ (κ, τ ).

Proof. Assume that M is a totally umbilical surface in E ⇤ (κ, τ ), i.e. E = H Id. Then d r E(e 1 ,e 2 )=(r t 1 E)t 2 -(r t 2 E)t 1 = J(dH). The Spin c curvature R on the spinor field ϕ is given by [START_REF] Nakad | Hypersurfaces of Spin c manifolds and Lawson type correspondence[END_REF]:

R(t 1 ,t 2 )ϕ = - 1 2 J(dH) • ϕ + i H 2 2 ϕ + i τ 2 2 ϕ.
The Spin c Ricci identity (6) on the surface M implies

t 1 •R(t 1 ,t 2 )ϕ = 1 2 Ric(t 2 ) • ϕ - i 2 (t 2 yΩ) • ϕ Hence, - 1 2 t 1 • J(dH) • ϕ + i 2 H 2 t 1 • ϕ + i 2 τ 2 t 1 • ϕ = 1 2 Ric(t 2 ) • ϕ + i 2 Ω(t 1 ,t 2 )t 1 • ϕ
Consider the real part of the scalar product of the last identity by ϕ, we get

g(t 1 ,J(dH)) = Ω(t 1 ,t 2 ) < it 1 • ϕ, ϕ |ϕ| 2 >= -Ω(t 1 ,t 2 )g(T,t 2 ).
Finally, -g(t 2 ,dH)=(κ -4τ 2 )fg(T,t 2 ). The same holds for t 1 . Then, dH = -(κ -4τ 2 )fT, which gives the contradiction. The last identity is the same obtained by R. Souam and E. Toubiana in [START_REF] Souam | On the classification and regularity of umbilic surfaces in homogeneous 3-manifolds[END_REF].

Spectrum of the Spin c Dirac operator on Berger spheres

In this subsection, we apply a method of C. Bär [START_REF]The Dirac operator on space forms of positive curvature[END_REF][START_REF] Ginoux | The Dirac spectrum[END_REF] to find explicitly some eigenvalues of the Spin c Dirac operator on Berger spheres, i.e., on E ⇤ (κ, τ ) with κ > 0. 

(D + α 2 Id) 2 (f k ϕ)=(λ k (4)+( n -1 2 ) 2 )f k ϕ,
where λ k (4) is the eigenvalue of 4 whose eigenfunction is f k . So, (λ k (4)+( n-1 2 ) 2 ) k2N are some eigenvalues of (D + α 2 Id) 2 .

Spectrum of Berger spheres endowed with the canonical Spin c structure.

We consider Berger spheres with Berger metrics g κ,τ , κ > 0 and τ 6 =0defined by

g (κ,τ ) (X, Y )= κ 4 ⇣ g(X, Y )+( 4τ 2 κ -1)g(X, ξ)g(Y, ξ) ⌘ ,
where g is the standard metric on S 3 of constant curvature 1. For simplicity, we can assume that κ =4(τ 6 = ±1). For any function f , the Laplacian 4 4,τ with respect to g 4,τ is related to the Laplacian 4 with respect to g by [START_REF] Tanno | The first eigenvalue of the Laplacian on spheres[END_REF] 4 4,τ f = 4f -(1τ -2 )ξ(ξ(f )).

It is known that each eigenfunction f k of 4 corresponding to λ k (4)=k(2 + k) (k 2 N) is also an eigenfunction of 4 4,τ [START_REF] Tanno | The first eigenvalue of the Laplacian on spheres[END_REF] corresponding to

λ k (4) -(1 -τ -2 )(k -2p) 2 , 0  p  [ k 2 ].
Moreover, each eigenvalue of 4,τ takes the above form. We recall that the eigenspace of 4 corresponding to λ k (4) is the restriction to the sphere S 3 of the set of harmonic homogeneous polynomial on R 4 of degree k. When we consider Berger spheres endowed with the canonical Spin c structure, we get by Lemma 4.5

⇣ D + τ 2 Id ⌘ 2 (f k ϕ)= h 2+k(2 + k) -(1 -τ -2 )(k -2p) i f k ϕ,
where ϕ is the Killing spinor field of Killing constant τ 2 . Hence,

µ k,p = - τ 2 ± p 2+k(2 + k) -(1 -τ -2 )(k -2p)
are some eigenvalues of the Dirac operator on Berger spheres with -1 < τ < 1 and endowed with the canonical Spin c structure.

Spectrum of Berger spheres endowed with the Spin c structure induced from the canonical one on M 4 (1τ 2 ). On Berger spheres, we have shown that the Spin c structure induced from the canonical one on M 4 (1τ 2 ) carries a spinor field ϕ satisfying

r X ϕ = τ 2 X • ϕ -i τ 2 -1 2τ g(X, ξ)ϕ = r 0 X ϕ -i τ 2 -1 2τ g(X, ξ)ϕ
Then, denoting by D (resp. D 0 ) the Dirac operator associated with the restricted Spin c structure (resp. with the canonical Spin c structure), we get Dϕ = D 0 ϕ -τ 2 -1 2τ ϕ. for any function f , we have

D(f ϕ)=gradf • ϕ + fDϕ = D 0 (f ϕ) -fD 0 ϕ + fDϕ = D 0 (f ϕ) -( τ 2 -1 2τ )f ϕ.
Hence, we have

D(f k ϕ)= ⇣ µ k,p -τ 2 -1 2τ ⌘ f k ϕ and µ k,p -τ 2 -1
2τ are some eigenvalues of the Dirac operator on Berger spheres endowed with the Spin c structure induced from the canonical one on M 4 (1τ 2 ), -1 < τ < 1.

Proposition 4 . 2

 42 The manifolds E ⇤ (κ, τ ) are isometrically immersed into M 4 (c) for some c. Moreover, E ⇤ (κ, τ ) are of constant mean curvature and η-umbilic.Proof. We recall that the 3-dimensional homogeneous manifolds E ⇤ (κ, τ ) have a Spin c structure (the canonical Spin c structure) carrying a Killing spinor field ϕ of Killing constant τ 2 . Moreover ξ • ϕ = -iϕ and Ω(e 1 ,e 2 )=-(κ -4τ 2 )a n d Ω(e i ,e j )=0,

Lemma 4 . 5 2 ) 2 ) 2 (

 45222 Let (M n ,g) be a Riemannian Spin c manifold carrying a Killing spinor ϕ of Killing number α 2 R ⇤ . Then, (λ k (4)+( n-1 k2N are some eigenvalues of (D + α 2 Id) 2 . Here λ k (4), k =0, 1,...denote the eigenvalue of the Laplacian 4.Proof:We have Dϕ = -nα 2 ϕ. For every f 2 C 1 (M, R), we can easily check thatD -αD(f ϕ)+(4f )ϕ, Hence, (D + α 2 Id) 2 (f ϕ)=( 4f +( n-1 2 ) 2 f )ϕ. Now, if {f k } k2N denotes a L 2 -orthonormal basis of eigenfunctions of 4 of M , then for every k 2 N, we get

  let ψ be a Killing spinor on Z with Killing constant α 2 R. Killing spinors have constant length so we can assume that |ψ| ⌘ 1. By definition, we have D Z ψ = -(n +1)αψ , and hence using[START_REF] Daniel | Constant mean curvature surfaces in homogeneous 3-manifolds[END_REF] we get e Dϕ = nαν• ϕ + n 2 Hϕ. We denote by (., .)=R e R M <. ,,>the real part of the L 2 -scalar product. Now, we compute the Rayleigh quotient of e D 2
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