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Estimation of Multivariate Conditional Tail Expectation
using Kendall’s Process

Elena Di Bernardino1, Clémentine Prieur2

Abstract

This paper deals with the problem of estimating the Multivariate version of the Conditional-Tail-
Expectation, proposed by Cousin and Di Bernardino (2012). We propose a new non-parametric estim-
ator for this multivariate risk-measure, which is essentially based on the Kendall’s process (see Genest
and Rivest, 1993). Using the Central Limit Theorem for the Kendall’s process, proved by Barbe et al.
(1996), we provide a functional Central Limit Theorem for our estimator. We illustrate the practical
properties of our estimator on simulations. A real case in environmental framework is also analyzed.
The performances of our new estimator are compared to the ones of the level sets-based estimator,
previously proposed in Di Bernardino et al. (2011).

Keywords: Multivariate Kendall distribution, Multidimensional risk measures, Kendall’s process.

Introduction

Multivariate risk-measures

Traditionally, risk measures are thought of as mappings from a set of real-valued random variables to
the real numbers. However, it is often insufficient to consider a single real measure to quantify risks,
especially when the risk-problem is affected by other external risk factors whose sources cannot be
controlled. Note that the evaluation of an individual risk may strongly be affected by the degree of
dependence amongst all risks and these risks may also be strongly heterogeneous.

For instance, several hydrological phenomena are described by two or more correlated characterist-
ics. These dependent characteristics should be considered jointly to be more representative of the
multivariate nature of the phenomenon. Consequently, probabilities of occurrence of risks cannot be
estimated on the basis of univariate analysis. The multivariate hydrological risks literature mainly
treated one or more of the following three elements: (1) showing the importance and explaining the
usefulness of the multivariate framework, (2) fitting the appropriate multivariate distribution (copula
and marginal distributions) in order to model risks and (3) defining and studying multivariate return
periods (see Chebana and Ouarda, 2011).

One of the most popular measures in hydrology and climate is undoubtedly the return period. A
frequency analysis in hydrology focuses on the estimation of quantities (e.g., flows or annual rainfall)
corresponding to a certain return period. It is closely related to the notion of quantile which has
therefore been extensively studied in dimension one. For a random variable X that represents the
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magnitude of an event that occurs at a given time and at a given site, the quantile of order 1 − 1
T

expresses the magnitude of the event which is exceeded with a probability equal to 1
T . T is then called

the return period. In finance, or more generally in univariate risk theory the quantile is known as the
Value-at Risk (Var) and it is defined by

QX(α) = inf{x ∈ R+ : FX(x) ≥ α}, for α ∈ (0, 1),

with F the univariate distribution of event X. A second important univariate risk measure, based on
the quantile notion, is the Conditional-Tail -Expectation (CTE) defined by

CTEα(X) = E[X |X > QX(α) ], for α ∈ (0, 1).

From the years 2000 onward, much research has been devoted to risk measures and many extension
to multidimensional settings have been suggested (see, e.g., Jouini et al., 2004; Bentahar, 2006; Em-
brechts and Puccetti, 2006; Nappo and Spizzichino, 2009; Cousin and Di Bernardino, 2012; Henry et
al., 2012).

In the following we deal with the multivariate version of Conditional-Tail-Expectation, proposed by
Di Bernardino et al. (2011), Cousin and Di Bernardino (2012). It is constructed as the conditional
expectation of a multivariate random vector given that the latter is located in a particular set cor-
responding to the α-upper level set of the associated multivariate distribution function (in a bivariate
setting see Di Bernardino et al., 2011). In this sense this measure is essentially based on a “multivariate
distributional approach”. More precisely they define, for i = 1, . . . , d, and for α ∈ (0, 1),

CTEα(Zi) = E[Zi |FZ(Z) ≥ α ] = E[Zi |Z ∈ L(α) ], (1)

where Z = (Z1, . . . , Zd) is a non-negative multivariate random vector with distribution function F ,
K(α) = P[FZ(Z) ≥ α] is the associated multivariate Kendall distribution function and where the
α-upper level set of F is defined by L(α) = {x : F (x) ≥ α}. In particular, Cousin and Di Bern-
ardino (2012) proved that properties of the Multivariate Conditional Tail-Expectation in (1) turn to
be consistent with existing properties on univariate risk measures (positive homogeneity, translation
invariance, increasing in risk-level α, etc).

Recently, level-curves ∂L(α) (where ∂A denotes the boundary of a set A) and associated level-sets
L(α) have been proposed as risk measures in multivariate hydrological models because of their many
advantages: they are simple, intuitive, interpretable and probability-based (see Chebana and Ouarda,
2011). de Haan and Huang (1995) model a risk-problem of flood in the bivariate setting using an
estimator of level curves ∂L(α) of the bivariate distribution function. Furthermore, as noticed by Em-
brechts and Puccetti (2006) ∂L(α) can be viewed as a natural multivariate version of the univariate
quantile. The interested reader is also referred to Tibiletti (1993), Belzunce et al. (2007), Nappo and
Spizzichino (2009).

However the multivariate risk measure proposed in (1) can be seen as a more parsimonious and
synthetic measure compared with Embrechts and Puccetti (2006)’s approach. Indeed, ∂L(α) is an
hyperplane of dimension d− 1. This choice can be unsuitable when we face real risk problems. Using
measure in (1), instead of considering the whole geometric space L(α) corresponding to the α-level set
of F , we only focus on the particular point in Rd+ that matches the conditional expectation of Z given
that Z falls in L(α). This means that measure in (1) is a real-valued vector with the same dimension
as the considered portfolio of risks. The latter feature could be relevant on practical grounds.
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Estimating multivariate risk-measure in (1)

The problem of consistent estimation of the univariate quantile based risk-measures (VaR and CTE,
see above) has received attention in literature essentially in the univariate case (e.g. see Brazauskas
et al., 2008; Necir et al., 2010; Ahn and Shyamalkumar, 2011). The estimation of multivariate risk-
measures has received some attention however, it is much less common, due to a number of theoretical
and practical reasons. However in the last decade, several generalizations of the classical univariate
CTE have been proposed, mainly using as conditioning events the total risk or some univariate extreme
risk. This kind of measures are suitable to model risk problems with dependent and homogenous risks.
Indeed these measures are based on an arbitrary real-valued aggregate transformation (sum, min,
max,. . .) of risks. We remark that using an aggregate procedure between the risks can be inappropriate
to measure risks with heterogeneous characteristics especially in an external risks problem. Some
commonly used multivariate CTE measures are:

CTEsum
α (Zi) = E[Zi |S > QS(α) ], (2)

CTEmin
α (Zi) = E[Zi |Z(1) > QZ(1)

(α) ], (3)

CTEmax
α (Zi) = E[Zi |Z(d) > QZ(d)

(α) ], (4)

for i = 1, . . . , d, with S = Z1+· · ·+Zd the total risk, Z(1) = min{Z1, ..., Zd} and Z(d) = max{Z1, ..., Zd}
two extreme risks.

The interested reader is referred to Cai and Li (2005) for further details. For explicit formulas of
CTEsum

α (Zi) in the case of Fairlie-Gumbel-Morgenstern family of copulas, see Bargès et al. (2009).
Landsman and Valdez obtain an explicit formula for CTEsum

α (Zi) in the case of elliptic distribution
functions (see Landsman and Valdez, 2003); Cai and Li in the case of phase-type distributions (see
Cai and Li, 2005). Furthermore, for a comparison between measures in (2)-(4) and (1) we refer to
Cousin and Di Bernardino (2012). In the recent literature, some efforts have been done to provide a
consistent estimation of measures in (2)-(4). We refer the interested reader, for instance, to Hua and
Joe (2011), Asimit et al. (2011).

In this paper we propose a new estimator for the multivariate risk measure defined by (1) above, and
introduced by Di Bernardino et al. (2011), Cousin and Di Bernardino (2012).

A consistent estimator for CTEα(Zi) = E[Zi |Z ∈ L(α) ], has already been provided by Di Bernardino
et al. (2011), who proposed a plug-in estimator based on the consistent estimation of the whole level
sets L(α). As the level sets are not compact, their estimation procedure requires the choice of an
increasing truncation sequence (Tn)n≥1. The non-optimal rate of convergence provided by the authors
depends on the rate of convergence of (Tn)n≥1 to infinity. Making the “best choice” for (Tn)n≥1 is
not trivial, and requires the knowledge of the tail behavior of Z, at least in its generic form. The
interested reader is referred to Di Bernardino et al. (2011) for further details.

Contrarily to this approach, we propose in this paper a new non-parametric estimator for CTEα(Zi) =
E[Zi |FZ(Z) ≥ α ], based on the estimation of the Kendall’s distribution, i.e. the distribution of the
univariate random variable FZ(Z). For this estimator we prove a functional central limit theorem. The
main advantage of our new estimator is that it does not require the calibration of extra parameters
or sequences.
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Organization of the paper

The paper is organized as follows. In Section 1, we introduce some notation, tools and technical
assumptions. In Section 2, we recall the Multivariate Conditional Tail Expectation, previously intro-
duced by Cousin and Di Bernardino (2012), and we define our new non-parametric estimator for it.
In Section 3 we state our main result, which is a functional central limit theorem for our estimator,
and we give a sketch for its proof. The main lines of the proof follow then is in Sections 4 and 5.
The practical properties of our estimator are further investigated on simulated data in Section 6; an
hydrological real data-set is then analyzed. Finally, the proofs of auxiliary lemmas are postponed to
Section 7 and to the Appendix.

1. A central tool: the Kendall’s process

A central tool in this paper is the Kendall distribution which is a synthetical way to model dependence
in multivariate problems. In this section we first introduce the Kendall’s process and fix some notation.
Then we introduce the Kendall empirical distribution function whose properties have been studied in
Genest and Rivest (1993), Barbe et al. (1996).

1.1. Definitions and notation

Let Z = (Z1, . . . , Zd) be a d−dimensional random vector, d ≥ 2. As we will see later on, our study
of multivariate risk measures strongly relies on the key concept of Kendall distribution function (or
multivariate probability integral transformation), that is, the distribution function of the random vari-
able F (Z), where F is the multivariate distribution of random vector Z. Let F̃ denote the copula
associated to F through the relation F (z) = F̃ (F1(z1), . . . , Fd(zd)).

From now on, the Kendall distribution will be denoted by K, so that K(t) = P[F (Z) ≤ t], for t ∈ [0, 1].
We also denote by K(t) the survival distribution function of F (Z), i.e., K(t) = P[F (Z) > t]. For more
details on the multivariate probability integral transformation, the interested reader is referred to
Capéraà et al., (1997), Genest and Rivest (2001), Nelsen et al. (2003), Genest and Boies (2003),
Genest et al. (2006) and Belzunce et al. (2007).

Remark 1 In contrast to the univariate case, it is not generally true that the distribution function
K of F (Z) is uniform on [0, 1], even when F is continuous. Note also that it is not possible to
characterize the joint distribution F or reconstruct it from the knowledge of K alone, since the latter
does not contain any information about the marginal distributions F1, . . . , Fd (see Genest and Rivest,
2001). Indeed, as a consequence of Sklar’s Theorem, the Kendall distribution only depends on the
dependence structure or the copula function F̃ associated with Z (see Sklar, 1959). Thus, we also
have K(t) = P[F̃ (U) ≤ t], where U = (U1, . . . , Ud) and U1 = F1(Z1), . . . , Ud = Fd(Zd), for t ∈ [0, 1].

We now define the notion of partially strictly increasing as it will be needed further:

Definition 1.1 A function F (x1, . . . , xd) is partially strictly increasing on Rd+ \{(0, . . . , 0)} if for any
i = 1, . . . , d, the function of one variable g(·) = F (x1, . . . , xi−1, ·, xi+1, . . . , xd) is strictly increasing.
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1.2. The Kendall empirical distribution

We now recall the definition of the Kendall empirical distribution, which is a non parametric estimator
of the Kendall distribution K, first introduced in Genest and Rivest (1993) (see also Barbe et al., 1996).
Let {Zi}ni=1 be a random sample in Rd+ of size n ≥ 2 and with joint d-variate distribution function
F and marginals F1, . . . , Fd. Let Vi,n stand for the proportion of observations Zj , j 6= i, such that
Zj ≤ Zi componentwise, i.e.,

Vi,n =
1

n− 1

n∑
j=1, j 6=i

1{Zj≤Zi}. (5)

Let also Fn(x) = 1
n

∑n
j=1 1{Zj≤x} be the empirical distribution function associated to F . We then

define Kn as the empirical distribution function based on the Vi,ns and K as the distribution function
of the random variable F (Z) taking values in [0, 1].

In Barbe et al. (1996) is proved that, under regularity conditions on K and F , the centered Kendall’s
process

√
n (Kn(t)−K(t)) is asymptotically Gaussian, considering the weak convergence in the space

D of càdlàg functions from [0, 1] to R endowed with the Skorohod topology (see e.g., Billingsley, 1995),
and an explicit expression for its limiting covariance function is given (see Theorem 1 in Barbe et al.,
1996). More precisely, let us assume that

I: the distribution function K(t) of F (Z) admits a continuous density k(t) on (0, 1] that verifies

k(t) = o
(
t−1/2 log−1/2−ε

(
1
t

))
, for some ε > 0 as t→ 0,

and that

II: there exists a version of the conditional distribution of the vector U := (F1(Z1), ..., Fd(Zd)) given
F̃ (U) = t and a countable family P of partitions C of [0, 1]d into a finite number of Borel sets
satisfying:

inf
C∈P

max
C∈C

diam(C) = 0,

such that for all C ∈ C the mapping

t 7→ ηt(C) = k(t)P[U ∈ C | F̃ (U) = t]

is continuous on (0, 1] with η1(C) = k(1)1{(1,...,1)∈C}.

Remark 2 Note that {F̃ (U) = t} has Lebesgue-measure zero in [0, 1]. Then we make sense of
Assumption II using the limit procedure in Feller (1966), Section 3.2. Furthermore we remark that
Assumption II is in fact a condition on the (unique) copula function F̃ (see Sklar, 1959).

Remark 3 In Barbe et al. (1996), Genest et al. (2006) can be found classes of multivariate copulas
which satisfy Assumptions I and II (Archimedean copulas, bivariate extreme copulas, FGM, . . . ).
However at the moment at our knowledge nothing is proved for elliptic or meta-elliptic copulas, even
if numerical experiments in Genest et al. (2009) tend to show that the limit theorem for the Kendall’s
process holds true even in such cases.

Remark 4 In the following, weak convergence for processes will always be considered in the space D
of càdlàg functions from [0, 1] to Rk endowed with the Skorohod topology, for some k ∈ N∗.
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In view of the definition of the Vi,ns (see (5)), and using Remark 1, one can write (see Ghoudi et al.,
1998):

Kn(t) =
1

n

n∑
i=1

1{F̃n(Ui)≤ t+ 1−t
n
}.

We now state the main result in Barbe et al. (1996).

Theorem 1.1 (Theorem 1 in Barbe et al., 1996) Under Assumptions I and II above, the em-
pirical process

αn(t) =
√
n (Kn(t)−K(t)) (6)

converges in distribution to a continuous Gaussian process α with zero mean and covariance function
Γ.

Remark 5 A general formulation for Γ is given in Barbe et al. (1996). Its exact form can be provided
for specific classes of copulas. Moreover, Barbe et al. notice that even for simple copula’s structures
such as Farlie-Gumbel-Morgenstern copula, it does not seem possible to derive an explicit analytical
expression for the covariance Γ(s, t).

2. A multivariate risk measure: the t-Conditional Tail Expectation

As said in the introduction, one wants to preserve the complete information about the multivariate
dependence structure. To this end, we consider the Conditional Tail Expectation introduced in Di
Bernardino et al. (2011) and Cousin and Di Bernardino (2012).

From now on, we consider non-negative absolutely-continuous random vector3 Z = (Z1, . . . , Zd) (with
respect to Lebesgue measure λ on Rd). We assume moreover the two following conditions:

i) F is a partially strictly increasing multivariate distribution function,

ii) there exists r > 2 such that E(|Zj |r) <∞, for j = 1, . . . , d.

These conditions will be called regularity conditions.

Remark 6 We remark that under these regularity conditions the copula F̃ , associated to the distri-
bution function F , has continuous and strictly positive density function on (0, 1)d (see Section 4 in
Tibiletti, 1994).

Remark 7 From Theorem 2 in Barbe et al. (1996), the regularity conditions above imply Assumption
II recalled in Section 1, and it also implies that for all C ∈ C (the notation is the same as in the
statement of Assumption II)

t 7→ µt(C) = k(t) E[Zj 1{U∈C}|F̃ (U) = t]

is continuous on (0, 1] with µ1(C) = k(1)1{(1,...,1)∈C}.

3We restrict ourselves to Rd+ because usually, in applications, components of d−dimensional vectors correspond to
random losses and are then valued in R+. However extensions of our results in the case of multivariate distribution
function on the entire space Rd are possible.
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We can now define the Conditional Tail Expectation.

Definition 2.1 Consider a d–dimensional random vector Z satisfying the regularity conditions with
associated copula function F̃ . For t ∈ (0, 1), we define the Multivariate t-Conditional Tail Expectation
by

CTEt(Z) = E[Z | F̃ (U) ≥ t] =


E[Z1 | F̃ (U) ≥ t ],

E[Z2 | F̃ (U) ≥ t ],

...

E[Zd | F̃ (U) ≥ t ].

 ;

where U := (F1(Z1), ..., Fd(Zd)).

Remark 8 Cousin and Di Bernardino (2012) derive several properties for the multivariate extension
of the classical univariate Conditional Tail Expectation proposed in Definition 2.1. In particular, it
satisfies the homogeneity and the translation invariance properties, as far as a weak version of the
monotonicity property, which are required properties for coherent risk measures in the sense of Artzner
et al. (1999). In the simulation study we will also illustrate two other properties:
- for some family of Archimedean copulas an increase of the dependence parameter θ yields a decrease
in each component of CTEt(Z),
- CTEit(Z) is a non-decreasing function of risk level t, for i ∈ 1, . . . , d.

For further details the interested reader is referred to Sections 3.1-3.5 in Cousin and Di Bernardino
(2012).

We propose in this paper a new non parametric estimator for the Conditional Tail Expectation based
on the Kendall empirical distribution.

Definition 2.2 The Kendall-based estimator for the Multivariate t-Conditional Tail Expectation is
defined by

ĈTEt(Z) =



1
n

∑n
i=1 Z1i1{F̃n(Ui)≥ t}

1−Kn(t)
1
n

∑n
i=1 Z2i1{F̃n(Ui)≥ t}

1−Kn(t)
...

1
n

∑n
i=1 Zdi1{F̃n(Ui)≥ t}

1−Kn(t)


,

where Kn is the empirical Kendall estimator of K.

In the following, we use the following notation:

CTEjt (Z) = E[Zj | F̃ (U) ≥ t ] and ĈTE
j

t (Z) =

1
n

∑n
i=1 Zj i1{F̃n(Ui)≥ t}

1−Kn(t)
, for j = 1, . . . , d.
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3. Main results and sketch of the proof

Using Theorem 1.1 recalled in Section 1, we can prove the weak convergence of the Kendall-based
process:

αCTE
n (t) :=

(
αCTE
n, 1 (t) , . . . αCTE

n, d (t)
)′

with
αCTE
n, j (t) =

√
n (ĈTE

j

t (Z) − CTEjt (Z)), j = 1, . . . , d. (7)

The first step is the coordinatewise convergence (see Theorem 3.1 below).

Theorem 3.1 Under regularity conditions i) and ii) and Assumption I, the Kendall based process
αCTE
n, j , for j = 1, . . . , d, converges weakly to a continuous Gaussian process αCTE

j with zero mean and

covariance function ΓjCTE.

Then, we deduce the main result (see Theorem 3.2 below).

Theorem 3.2 Under regularity conditions i) and ii) and Assumption I, the Kendall based process
αCTE
n converges weakly to a continuous Gaussian process αCTE with zero mean and (cross-)covariance

function defined by Γi,jCTE(s, t) = Cov(αi(s), αj(t)), (s, t) ∈ [0, 1]2, i = 1 . . . , d, j = 1, . . . , d.

Remark 9 Remark that the exact formulation for the (cross-)covariance function is complex. It was
already discussed in Remark 5 for the limit covariance function for the centered Kendall’s process
{αn(t), t ∈ [0, 1]}.

Proof of Theorem 3.2: Let j1 < . . . < jl ∈ {1, . . . , d}, if one wants to prove the convergence of the
finite-dimensional distributions of αCTEn we consider

∑jl
k=j1

bkα
CTE
n,k . Then the proof is similar to the

proof of the convergence of the finite-dimensional distributions of αCTEn,k for some fixed k ∈ {1, . . . , d}
(see proof of Theorem 3.1). Now it remains to prove the tightness in D

(
[0, 1],Rd

)
endowed with

the Skorohod topology. As each component converges weakly in the Skorohod space D ([0, 1],R) to a
continuous limit, we get the result. �

Sketch of the proof of Theorem 3.1:

We first write (7) as:

αCTE
n, j (t) =

√
n

(
1
n

∑n
i=1 Zj i 1{F̃n(Ui)≥ t}

1−Kn(t)
−

E[Zj 1{F̃ (U)≥t} ]

1−K(t)

)
=

√
n

(1−K(t))
(

1
n

∑n
i=1 Zj i 1{F̃n(Ui)≥ t} − E[Zj 1{F̃ (U)≥t} ]

)
+ E[Zj 1{F̃ (U)≥t} ] (Kn(t)−K(t))

(1−Kn(t)) (1−K(t))


(8)

The denominator of (8) converges (in probability) to (1−K(t))2 = K(t)2 ∈ (0, 1) (see Theorem 1.1).
Thus we focus now our attention on the numerator of (8). We write it as ϑn(t) := ξn(t) +ψn(t), with

ξn(t) =
√
nK(t)

(
1

n

n∑
i=1

Zj i 1{F̃n(Ui)≥ t} − E[Zj 1{F̃ (U)≥t} ]

)
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and
ψn(t) =

√
n E[Zj 1{F̃ (U)≥t} ] (Kn(t)−K(t)).

Notice that the dependence on j has been omitted for sake of simplicity in the notation.
Furthermore the process ξn(t) may be written as the sum of two subsidiary processes:

ζn(t) =
√
nK(t)

(
1

n

n∑
i=1

Zj i

(
1{F̃n(Ui)≥ t} − 1{F̃ (Ui)≥ t}

))
,

and

φn(t) =
√
nK(t)

(
1

n

n∑
i=1

Zj i 1{F̃ (Ui)≥ t} − E[Zj 1{F̃ (U)≥t} ]

)
.

Then ϑn(t) := ζn(t) + φn(t) + ψn(t). In Section 4 we study separately the convergence of these three
subsidiary processes ψn(t) (see Section 4.1), ζn(t) (see Section 4.2) and φn(t) (see Section 4.3). We
also introduce, following Barbe et al. (1996) , the empirical process νn defined by

νn(A) =
√
n

(
1

n

n∑
i=1

1{Ui∈A} − P[U ∈ A]

)
, with A ∈ A,

with A :=
{
A1,z, z ∈ [0, 1]d

}⋃
{A2,t, t ∈ [0, 1]} where A1,z := {z′ ∈ [0, 1]d : z′ ≤ z}, and A2,t := {z ∈

[0, 1]d : F̃ (z) ≤ t}. Then A is a Vapnik-Cervonenkis class, and it implies that νn converges weakly to
a centered Gaussian process ν over A.

4. Convergence results for subsidiary processes

In this section we study the asymptotic behavior of each of the subsidiary processes. In the following
we always assume that the regularity conditions i) and ii) as far as Assumption I are satisfied.

4.1. Asymptotic behavior of ψn(t)

Lemma 4.1 Under regularity conditions i) and ii) and Assumption I, the empirical process

ψn(t) =
√
n E[Zj 1{F̃ (U)≥t} ] (Kn(t)−K(t))

= E[Zj 1{F̃ (U)≥t} ] αn(t)

converges weakly to a continuous Gaussian process with zero mean and covariance function

Γψ(s, t) := MsMt Γ(s, t), (9)

where Γ(s, t) is as in Theorem 1.1 and Mc = E[Zj 1{F̃ (U)≥c} ] < +∞, for c ∈ (0, 1).

Proof of Lemma 4.1: We just remark that ψn(t) = E[Zj 1{F̃ (U)≥t} ]αn(t), where αn(t) is the Kendall’s

empirical process introduced by Genest and Rivest (1993) and Barbe et al. (1996) (see (6)). Then
the demonstration comes down trivially from Theorem 1.1. Hence the result. �

Remark 10 Note that in the following, the main element we will need is that

sup
t∈[0,1]

∣∣∣∣∣αn(t)−

(
νn(A2,t)−

∫
[0,1]d

νn(A1,z) ηt(dz)

)∣∣∣∣∣
converges to zero in probability (see proof of Theorem 5 in Barbe et al., 1996).
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4.2. Asymptotic behavior of ζn(t)

We now study ζn(t) = K(t) 1√
n

∑n
i=1 Zj i

(
1{F̃n(Ui)≥ t} − 1{F̃ (Ui)≥ t}

)
.

The behavior of ζn(t) when t is bounded away from the origin is described in Lemmas 4.2 and 4.3. Its
behavior for t in the neighborhood of the origin will be the object of Lemma 4.4.

Lemma 4.2 Under regularity conditions i) and ii) and Assumption I, the following quantity converges
in probability to 0 for any 0 < t0 ≤ 1:

sup
t0≤t≤1

∣∣∣∣∣−ζn(t) +K(t)

∫
[0,1]d

νn(A1, z)µt(dz)

∣∣∣∣∣ , (10)

with µt(C) = k(t) E[Zj1{U∈C}|F̃ (U) = t] for any rectangle C in [0, 1]d.

Proof of Lemma 4.2: The proof is postponed to Section 7. �

Lemma 4.3 Under regularity conditions i) and ii) and Assumption I, the restriction of the process
ζn(t) to the interval [t0, 1] converges in law to a centered, continuous Gaussian process having the
representation K(t)

∫
[0,1]d B(z)µt(dz) in terms of the weak limit B of

√
n (F̃n − F̃ )(z).

Proof of Lemma 4.3: The proof is postponed to Section 7. �

The following result describes the behavior of ζn(t) for t in the neighborhood of the origin.

Lemma 4.4 Define

δn(t) = K(t)
√
n

1

n

n∑
i=1

Zj i

(
1{t<F̃ (Ui)≤ t+(F̃n−F̃ )−(Ui)}

)
,

and

εn(t) = K(t)
√
n

1

n

n∑
i=1

Zj i

(
1{t−(F̃n−F̃ )+(Ui)<F̃ (Ui)≤ t}

)
.

Under regularity conditions i) and ii) and Assumption I, for arbitrary λ > 0, one has

(i) lim
t0→0

lim sup
n→∞

P
[

sup
0≤t≤t0

δn(t) ≥ λ
]

= 0;

(ii) lim
t0→0

lim sup
n→∞

P
[

sup
0≤t≤t0

εn(t) ≥ λ
]

= 0;

(iii) lim
t0→0

lim sup
n→∞

P
[

sup
0≤t≤t0

|ζn(t)| ≥ λ
]

= 0;

Proof of Lemma 4.4:
The proof of (i) and (ii) is an adaptation of Lemma 3 in Barbe et al. (1996). Statement (iii) of this
lemma is an immediate consequence of the first two parts. The detailed proof is postponed to Section
7. �
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4.3. Asymptotic behavior of φn(t)

Lemma 4.5 Under regularity conditions i) and ii) and Assumption I, the empirical process

φn(t) =
√
nK(t)

(
1

n

n∑
i=1

Zj i 1{F̃ (Ui)≥ t} − E[Zj 1{F̃ (U)≥t} ]

)

converges weakly to a continuous Gaussian process φ with zero mean and covariance function

Γφ(s, t) = K(t)K(s)
(
E[Z2

j 1{F̃ (U)≥t∨s}]− E[Zj1{F̃ (U)≥t}] E[Zj1{F̃ (U)≥s}]
)
. (11)

Proof of Lemma 4.5: The proof is similar to the one of Lemma 7.1 (see Section 7). �

5. Proof of Theorem 3.1

We now prove the asymptotic normality stated in Theorem 3.1. First define

χn(t) := E[Zj1F̃ (U)≥t]

(
νn(A2,t)−

∫
[0,1]d

νn(A1,z)ηt(dz)

)
+K(t)

∫
[0,1]d

νn(A1,z)µt(dz) .

We derive from Lemmas 4.1, 4.2 and 4.4 that supt∈[0,1] |ψn(t) + ζn(t) − χn(t)| converges to zero in
probability.

We know that {χn(t), t ∈ [0, 1]} converges inD ([0, 1],R) to some continuous process {χ(t), t ∈ [0, 1]} :={
E[Zj1F̃ (U)≥t]α(t) +K(t)

∫
[0,1]d ν(A1,z)µt(dz), t ∈ [0, 1]

}
. Thus, from the multivariate central limit

theorem (see e.g., 2.18 in Van de Vaart, 1996), the finite-dimensional distributions of the empirical

process

(
φn
χn

)
converge to those of

(
φ
χ

)
. Furthermore the sequence

{(
φn(t)
χn(t)

)
, t ∈ [0, 1]

}
is

tight in D
(
[0, 1],R2

)
as both {φn(t), t ∈ [0, 1]} and {χn(t), t ∈ [0, 1]} converge in D ([0, 1],R) to some

continuous limit process.

Then using the continuous mapping theorem (see e.g. Theorem 2.3 in Van der Vaart, 1996) we obtain
that αCTE

n, j converges weakly to a continuous Gaussian process αCTE
j with zero mean and covariance

function ΓjCTE. Moreover, the limiting process αCTE
j has the following representation in terms of χ

and φ:

αCTE
j (t) =

1

K(t)2
(φ(t) + χ(t)) .

Remark 11 We remark that the covariance function ΓjCTE can be derived by the explicit expressions
of covariance function Γψ (see (9)), Γφ (see (11)) and Γ (see Barbe et al., 1996, proof of Theorem 5).
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6. Numerical study

In this section we provide simulations which aim at studying the practical behavior of our estimator,
as far as to compare its performances to the ones of the level-sets based estimator proposed in Di
Bernardino et al. (2011). Simulations are performed in the 2-dimensional and 3-dimensional setting.

6.1. About asymptotic normality of
√
n(ĈTEα(X,Y )− CTEα(X,Y ))

In this section we show the Q-Q plots obtained from 100 replications of our estimator computed with
samples of size n = 50, 250, 800. The Q-Q plot draws the empirical quantiles against the gaussian
theoretical quantiles.

We consider Z = (X,Y ) a random vector with independent and exponentially distributed components
with parameter 2. The level α has been fixed to 0.38.

Figure 1: Q-Q plot for
√
n (ĈTE

1

α(X,Y ) − CTE1
α(X,Y )) on 100 simulations, with α = 0.38, n = 50, 250, 800.

(X,Y ) with independent and exponentially distributed components with parameter 2.

We observe that increasing n leads to a better adequation of empirical quantiles with gaussian theor-
etical quantiles.

6.2. Comparison of our Kendall based estimator with the level-sets based one introduced in
Di Bernardino et al. (2011)

Let us first recall the definition of the level-sets based estimator of the CTEα, as it was introduced in
Di Bernardino et al. (2011). To this aim, we define, for some T > 0,

L(α)T = {x ∈ [0, T ]2 : F (x) ≥ α}

and for n ∈ N∗
Ln(α)T = {x ∈ [0, T ]2 : Fn(x) ≥ α},

with Fn the empirical distribution of F . Let Tn be an increasing positive sequence. Then we define
the level-sets based estimator by

ĈTE
Tn
α (X,Y ) =


∑n

i=1Xi1{(Xi,Yi)∈Ln(α)Tn}∑n
i=1 1{(Xi,Yi)∈Ln(α)Tn}∑n

i=1 Yi1{(Xi,Yi)∈Ln(α)Tn}∑n
i=1 1{(Xi,Yi)∈Ln(α)Tn}

 .
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It could be interesting to consider the convergence
∣∣CTEα(X,Y )− ĈTE

Tn
α (X,Y )

∣∣. Let CTETnα (X,Y ) =
E[(X,Y )|(X,Y ) ∈ L(α)Tn ]. We remark that the speed of this convergence will also depend on
the convergence rate to zero of

∣∣CTEα(X,Y )− CTETnα (X,Y )
∣∣ , then, in particular of P[(X,Y ) ∈

L(α) \ L(α)Tn ] for n → ∞. More precisely
∣∣CTEα(X,Y )− CTETnα (X,Y )

∣∣ decays to zero at least
with a convergence rate (P[X ≥ Tn or Y ≥ Tn])−1. We remark that (P[X ≥ Tn or Y ≥ Tn])−1 is

increasing in Tn, whereas the speed of convergence of
∣∣CTETnα (X,Y )− ĈTE

Tn
α (X,Y )

∣∣ is decreasing
in Tn (see Theorem 4.1. in Di Bernardino et al., 2011). This kind of compromise provides an illustra-

tion on how to choose Tn in the estimator ĈTE
Tn
α (X,Y ). In this sense, running simulations with this

estimator requires tuning the truncation sequence (Tn)n≥1, which is not always easy. Conversely, an
important advantage of our new estimator is that we do not have any parameter to tune.

In the following we denote our new estimator by ĈTEα(X,Y )K and the level-sets based one by

ĈTEα(X,Y )Lα . The performances of both estimators will be evaluated by computing for each co-
ordinate the mean, the empirical standard deviation and the relative mean squared error whose defin-
itions are recalled below.

We denote ĈTEα(X,Y ) =
(

ĈTEα
1
(X,Y ), ĈTEα

2
(X,Y )

)
the mean of ĈTEα(X,Y ) on 100 simulations.

We denote σ̂ = (σ̂1, σ̂2) the empirical standard deviation with

σ̂1 =

√
1
99

∑100
j=1

(
ĈTEα

1
(X,Y )j − ĈTEα

1
(X,Y )

)2

relative to the first coordinate (resp. σ̂2 relative to the second one).

We denote RMSE = (RMSE1,RMSE2) the relative mean square error with

RMSE1 =

√√√√ 1
100

∑100
j=1

(
ĈTE

1

α(X,Y )j−CTE1
α(X,Y )

CTE1
α(X,Y )

)2

relative to the first coordinate of CTEα(X,Y ) (resp. RMSE2 relatives to the second one).

The explicit value of the theoretical CTEα(X,Y ) was obtained with Maple.

In the following we consider: Independent copula with exponentially distributed marginals; Clayton
copula with parameter 1, with exponential and Burr(4, 1) univariate marginals. The sample size is
fixed to n = 1000 and α = 0.10, 0.24, 0.38, 0.52, 0.66, 0.80. Results are gathered in Table 1 and 2.

The choice of the truncation sequence Tn is detailed in Section 5.2.1 in Di Bernardino et al. (2011)
(see Tables 6-13).

We observe that the performances of our new estimator are always better in terms of relative mean
squared error, and moreover as said before we did not have to tune a truncation sequence (Tn)n≥1
which is a major advantage. Moreover the performances of both estimator decrease as the level α
increases. In the next section we further investigate this phenomenon.
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α CTEα(X,Y ) ĈTEα(X,Y )Lα ĈTEα(X,Y )K σ̂Lα σ̂K RMSELα RMSEK

0.10 (1.255, 0.627) (1.222, 0.638) (1.259, 0.628) (0.044, 0.022) (0.039, 0.021) (0.043, 0.039) (0.032, 0.036)

0.24 (1.521, 0.761) (1.488, 0.811) (1.524, 0.761) (0.069, 0.023) (0.053, 0.023) (0.051, 0.042) (0.035, 0.037)

0.38 (1.792, 0.896) (1.797, 0.911) (1.791, 0.895) (0.075, 0.038) (0.068, 0.037) (0.044, 0.046) (0.037, 0.043)

0.52 (2.102, 1.051) (2.082, 1.047) (2.113, 1.056) (0.104, 0.052) (0.094, 0.045) (0.052, 0.052) (0.045, 0.044)

0.66 (2.492, 1.246) (2.461, 1.255) (2.507, 1.259) (0.139, 0.071) (0.137, 0.071) (0.057, 0.056) (0.056, 0.052)

0.80 (3.061, 1.531) (3.011, 1.544) (3.105, 1.535) (0.251, 0.125) (0.248, 0.122) (0.084, 0.082) (0.083, 0.081)

Table 1: (X,Y ) with independent and exponentially distributed components with parameter 1 and 2 respectively.

α CTEα(X,Y ) ĈTEα(X,Y )Lα ĈTEα(X,Y )K σ̂Lα σ̂K RMSELα RMSEK

0.10 (1.188, 1.229) (1.049, 1.192) (1.179, 1.231) (0.032, 0.021) (0.031, 0.021) (0.019, 0.033) (0.013, 0.018)

0.24 (1.448, 1.366) (1.283, 1.379) (1.442, 1.372) (0.053, 0.224) (0.039, 0.023) (0.019, 0.063) (0.014, 0.017)

0.38 (1.727, 1.505) (1.525, 1.471) (1.724, 1.506) (0.046, 0.031) (0.041, 0.029) (0.019, 0.031) (0.017, 0.022)

0.52 (2.049, 1.666) (1.803, 1.625) (2.065, 1.667) (0.058, 0.041) (0.048, 0.039) (0.023, 0.034) (0.021, 0.031)

0.66 (2.454, 1.875) (2.129, 1.823) (2.479, 1.873) (0.071, 0.054) (0.069, 0.046) (0.035, 0.039) (0.029, 0.033)

0.80 (3.039, 2.202) (2.591, 2.144) (3.029, 2.252) (0.111, 0.105) (0.103, 0.103) (0.055, 0.054) (0.041, 0.049)

Table 2: (X,Y ) with Clayton copula with parameter 1, FX exponential distribution with parameter 1, FY Burr(4, 1)
distribution.

6.3. Deterioration of the performances of our estimator for high levels α

In this section, we first consider the case of independent and exponentially distributed marginals
with resp. parameters 1 and 2, and we choose a level α = 0.9. The theoretical value is then
CTE0.9(X,Y ) = (3.78, 1.89). As illustrated in Table 3, we need in this case between 2000 and 2500
data to get the same performances as for lower level (see Table 1).

n 1000 1500 2000 2500

σ̂K (0.416, 0.299) (0.411, 0.256) (0.368, 0.155) (0.221, 0.113)

σ̂Lα (0.444, 0.308) (0.431, 0.295) (0.377, 0.168) (0.241, 0.123)

RMSEK (0.113, 0.158) (0.111, 0.135) (0.095, 0.087) (0.072, 0.063)

RMSELα (0.123, 0.163) (0.115, 0.161) (0.099, 0.089) (0.077, 0.079)

Table 3: Comparison of the evolution of σ̂K and RMSEK with respect to σ̂Lα and RMSELα , in terms of sample size n
for α = 0.9; (X,Y ) independent and exponentially distributed components with parameter 1 and 2 respectively.

Let (X,Y ) a random vector with independent and exponentially distributed marginals with resp.
parameters 1 and 2. Now we compute 100 replications of our estimate with a sample-size n = 1000.

In Figure 2, we have drawn the empirical confidence intervals for ĈTEα
2
(X,Y )K :[

ĈTE2
α(X,Y )K − u0.95

σ̂K√
n
, ĈTE2

α(X,Y )K + u0.95
σ̂K√
n

]
14



with u0.95 the quantile of order 0.95 of the standard gaussian distribution, for various values of α.

Figure 2: Empirical confidence intervals for ĈTEα
2
(X,Y )K of order 0.95, for different values of α level. Red square

are the theoretical values of CTE2
α(X,Y ). X and Y are independent and exponentially distributed components with

parameter 1 and 2 respectively.

We observe that the length of the empirical confidence interval increases with α. It seems that the
unknown limit variance Γ2

CTE in Theorem 3.1 explodes as α tends to one.

6.4. Influence of structure of dependence on CTEα

From theoretical results in Cousin and Di Bernardino (2012), we know that for a large class of para-
metric families of copulas (indexed by a parameter θ of dependence), the Multivariate Condition Tail
Expectation is a decreasing function of the parameter of dependence θ. For instance, it is true for
Clayton, Gumbel, Frank or Ali-Mikhail-Haq families.

In the following we illustrate this result for the comprehensive4 Clayton family (see e.g., 2.4 in Nelsen,
2009). We define for u, v ∈ [0, 1]

C(u, v) =
(

max(u−θ + v−θ − 1 , 0)
)−1/θ

with −1 ≤ θ ≤ +∞. The case θ = −1 corresponds to the perfect negative dependence, θ = 0 to the
independence, θ = +∞ to the comonotonicity. As the behavior of CTEα(X,Y ) in terms of α and
parameter dependence θ only depends on copula structure (and not on marginal distributions) we
consider, in the Table 4, a Clayton copula with parameter θ and uniform marginal distributions. In
particular this choice implies that CTE1

α(X,Y )=CTE2
α(X,Y ). In Table 4 we compute 100 replications

of our estimator with a sample-size n = 1000.

4A family of copulas that includes comonotonicity, counter-monotonicity and independence dependence structures is
called comprehensive (see Nelsen, 1999).
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H
HHH

HHα
θ −0.95 0 1 104

0.10

CTEα(X,Y ) 0.6419

ĈTEα(X,Y )K 0.6397

σ̂K 0.0337
RMSEK 0.0538

CTEα(X,Y ) 0.6047

ĈTEα(X,Y )K 0.6062

σ̂K 0.0106
RMSEK 0.0177

CTEα(X,Y ) 0.5827

ĈTEα(X,Y )K 0.5831

σ̂K 0.0102
RMSEK 0.0176

CTEα(X,Y ) 0.5500

ĈTEα(X,Y )K 0.5495

σ̂K 0.0091
RMSEK 0.0165

0.38

CTEα(X,Y ) 0.7757

ĈTEα(X,Y )K 0.7723

σ̂K 0.0475
RMSEK 0.0611

CTEα(X,Y ) 0.7617

ĈTEα(X,Y )K 0.7644

σ̂K 0.0127
RMSEK 0.0179

CTEα(X,Y ) 0.7494

ĈTEα(X,Y )K 0.7521

σ̂K 0.0108
RMSEK 0.0178

CTEα(X,Y ) 0.6900

ĈTEα(X,Y )K 0.6903

σ̂K 0.0105
RMSEK 0.0171

0.66

CTEα(X,Y ) 0.8825

ĈTEα(X,Y )K 0.8936

σ̂K 0.1261
RMSEK 0.1442

CTEα(X,Y ) 0.8789

ĈTEα(X,Y )K 0.8848

σ̂K 0.0181
RMSEK 0.0184

CTEα(X,Y ) 0.8754

ĈTEα(X,Y )K 0.8799

σ̂K 0.0119
RMSEK 0.0182

CTEα(X,Y ) 0.8300

ĈTEα(X,Y )K 0.8305

σ̂K 0.0117
RMSEK 0.0176

0.80

CTEα(X,Y ) 0.9321

ĈTEα(X,Y )K 0.9213

σ̂K 0.1422
RMSEK 0.1448

CTEα(X,Y ) 0.9308

ĈTEα(X,Y )K 0.9416

σ̂K 0.0264
RMSEK 0.0342

CTEα(X,Y ) 0.9297

ĈTEα(X,Y )K 0.9385

σ̂K 0.0192
RMSEK 0.0229

CTEα(X,Y ) 0.9000

ĈTEα(X,Y )K 0.9041

σ̂K 0.0187
RMSEK 0.0183

Table 4: (X,Y ) with Clayton copula with parameter θ = −0.95, 0, 1, 104 and α = 0.1, 0.38, 0.66, 0.8, FX and FY
uniform marginals.

6.5. Real data

We consider here the estimation of CTEα in a real case: river flow data-set. The data-set
comes from the National River Flow Archive of the Center for Ecology & Hydrology in UK, (see
http://www.ceh.ac.uk/index.html). We consider an hydrological data-set recorded in the uplands of mid-
Wales. This data-set represents the river flow data measured at the Hore site (for X random variable)
at the Tanllwyth site (for Y random variable), and at the Wye-Gwy site (for Z random variable),
from 1985 to 2003. The unit of measurements of river-flows is m3/s. The river flows are recorded
each 15 minutes. In order to make the temporal data independent, we keep only 9 days spaced
measurements from August the 11th 1985 to October the 20th 2003. The data-set size is now n = 2134.

The multivariate dependence structure that we have fitted on the data is a 3-dimensional Gumbel
copula with parameter θ = 1.19, thus Assumptions I and II in Section 1 seems to be satisfied. In
Figure 3 below, we represent the estimated Kendall distribution function (solid line), the comonotonic
Kendall distribution (bold line), the independent Kendall distribution (dotted line) and the Gumbel
Kendall distribution with θ = 1.19 (dashed line).

In Figure 4 we represent data-set and estimated 3-variate Conditional Tail Expectation, for several
values of risk-level α. Table 5 contains the estimated components of the vectorial CTE for three
different values of α.
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Figure 3: Estimated Kendall distribution function (solid line), comonotonic Kendall distribution (bold line), independent
Kendall distribution (dotted line) and Gumbel Kendall distribution with θ = 1.19 (dashed line).

Figure 4: River flow data; ĈTEα,K for different values of α: α = 0.6 (black square), α = 0.8 (star), α = 0.95 (black dot).
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α 0.6 0.8 0.95

ĈTEα,K (0.333, 0.207, 0.756) (0.677, 0.339, 1.201) (1.031, 1.363, 1.807)

Table 5: ĈTEα,K for 3-dimensional river flow data-set, for different values of level α.

In this real setting the estimation of CTEα can be used in order to quantify the mean of the river
flow in the Hore site (resp. in the Tanllwyth site or Wye-Gwy site) conditionally to the fact that the
data belong jointly to the specific risk’s area L(α). It seems that data on the Wye-Gwy site have an
heavier tail than data on both other sites. For the three different values of α, the estimated value for
the third component of the vectorial CTE is indeed greatest than the estimated values for the first
and the second components. Among these three sites we may thus consider on this study that the
Wye-Gwy is the most dangerous, and maybe infrastructure efforts should be focused on this area.

7. Technical proofs

7.1. Proof of Lemma 4.2

The proof of this result follows the proof of Lemma 1 in Barbe et al. (1996). Let (F̃n − F̃ )+ and
(F̃n − F̃ )− respectively denote the positive and negative parts of F̃n − F̃ . Observe that νn(A1, z) =
√
n (F̃n − F̃ )(z) for all z ∈ [0, 1]d. Since −ζn(t) = K(t) 1√

n

∑n
i=1 Zj i

(
1{F̃n(Ui)≤ t} − 1{F̃ (Ui)≤ t}

)
, then

−ζn(t) = δn(t)− εn(t) with

δn(t) = K(t)
√
n

1

n

n∑
i=1

Zj i

(
1{t<F̃ (Ui)≤ t+(F̃n−F̃ )−(Ui)}

)
,

and

εn(t) = K(t)
√
n

1

n

n∑
i=1

Zj i

(
1{t−(F̃n−F̃ )+(Ui)<F̃ (Ui)≤ t}

)
.

In the following we prove:

sup
t0≤t≤1

∣∣∣∣∣ δn(t)−K(t)

∫
[0,1]d

√
n (F̃n − F̃ )−(z)µt(dz)

∣∣∣∣∣ P→
n→∞

0. (12)

Convergence in (12) is established below. The convergence

sup
t0≤t≤1

∣∣∣∣∣ εn(t)−K(t)

∫
[0,1]d

√
n (F̃n − F̃ )+(z)µt(dz)

∣∣∣∣∣ P→
n→∞

0, (13)

is analogous and left to the reader. Convergence in (10) follows immediately from (12) and (13), since
F̃n − F̃ = (F̃n − F̃ )+ − (F̃n − F̃ )−.
For any elements C of a partition C = (Cl)

m
l=1 ∈ P, let In,l = infz∈Cl

√
n(F̃n − F̃ )−(z), Sn,l =

supz∈Cl
√
n(F̃n − F̃ )−(z) and

ρn,C(t) = K(t)
√
n

[
1

n

n∑
i=1

Zj i1{F̃ (Ui)≤ t,Ui∈C} − E[Zj1{F̃ (U)≤t,U∈C}]

]
.
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Let also

δn,l(t) = K(t)
√
n

[
1

n

n∑
i=1

Zj i

(
1{t<F̃ (Ui)≤ t+(F̃n−F̃ )−(Ui)}

)
1{Ui∈Cl}

]
,

so that δn(t) =
∑m

l=1 δn,l(t). For arbitrary integers 1 ≤ l ≤ m, one may write

δn,l(t) ≤ K(t)
√
n

[
1

n

n∑
i=1

Zj i1{t<F̃ (Ui)≤ t+
Sn,l√
n
}
1{Ui∈Cl}

]

≤
[
ρn,Cl(t+ Sn,l/

√
n)− ρn,Cl(t)

]
+K(t)

√
n

∫ t+
Sn,l√
n

t
µs(Cl)ds

=
[
ρn,Cl(t+ Sn,l/

√
n)− ρn,Cl(t)

]
+K(t)

√
n

∫ t+
Sn,l√
n

t
[µs(Cl)− µt(Cl)]ds+ µt(Cl)Sn,lK(t)

=
[
ρn,Cl(t+ Sn,l/

√
n)− ρn,Cl(t)

]
+K(t)

√
n

∫ t+
Sn,l√
n

t
[µs(Cl)− µt(Cl)]ds

+

[
µt(Cl)Sn,lK(t)−K(t)

∫
Cl

√
n(F̃n − F̃ )−(z)µt(dz)

]
+K(t)

∫
Cl

√
n(F̃n − F̃ )−(z)µt(dz)

≤
[
ρn,Cl(t+ Sn,l/

√
n)− ρn,Cl(t)

]
+K(t)

√
n

∫ t+
Sn,l√
n

t
[µs(Cl)− µt(Cl)]ds

+ µt(Cl)K(t) (Sn,l − In,l) +K(t)

∫
Cl

√
n(F̃n − F̃ )−(z)µt(dz).

An analogous argument yields

δn,l(t) ≥ K(t)
√
n

1

n

n∑
i=1

Zj i1{t<F̃ (Ui)≤ t+
In,l√
n
}
1{Ui∈Cl}

≥
[
ρn,Cl(t+ In,l/

√
n)− ρn,Cl(t)

]
− K(t)

√
n

∫ t+
In,l√
n

t
[µs(Cl)− µt(Cl)] ds

− µt(Cl)K(t) (Sn,l − In,l) +K(t)

∫
Cl

√
n(F̃n − F̃ )−(z)µt(dz).

Lemma 7.1 Under regularity conditions i) and ii) and Assumption I, the empirical process ρn,C
converges weakly to a continuous Gaussian process with zero mean and covariance function

K(t)K(s)
(
E[Z2

j 1{U∈C,F̃ (U)≤t∧s}]− E[Zj1{U∈C,F̃ (U)≤t}] E[Zj1{U∈C,F̃ (U)≤s}]
)
.

Proof of Lemma 7.1:
We first observe that for arbitrary C ∈ C, the finite-dimensional distributions of the empirical process
ρn,C converges weakly to those of a centered Gaussian process with covariance function

K(t)K(s)
(
E[Z2

j 1{U∈C,F̃ (U)≤t∧s}]− E[Zj1{U∈C,F̃ (U)≤t}] E[Zj1{U∈C,F̃ (U)≤s}]
)
.

It remains to prove the tightness of {ρn,C(t), t}. The proof of the tightness is postponed to the Ap-
pendix. �
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Furthermore, it follows from Theorem 2.1.3 in Gaenssler and Stute (1979) that the multivariate em-
pirical process

√
n(F̃n − F̃ ) converges, in Dd = D[0, 1]d, to a continuous Gaussian process B =

B+ − B−, where the space of càdlàg functions Dd is equipped with the Skorohod topology. As a
result, f{

√
n(F̃n − F̃ )} converges weakly to f{B} for any Dd-measurable function that is continu-

ous at every point of C[0, 1]d. In particular, In,l and Sn,l converge in distribution to infz∈Cj B
−(z)

and supz∈Cj B
−(z) respectively. As a result, the quantities In,l/

√
n and Sn,l/

√
n both converge in

probability to 0 as n→∞, and hence the same must be true of

Rn,1 =

m∑
l=1

sup
0≤t≤1

∣∣ρn,Cl(t+ In,l/
√
n)− ρn,Cl(t)

∣∣ ,
and

Rn,2 =

m∑
l=1

sup
0≤t≤1

∣∣ρn,Cl(t+ Sn,l/
√
n)− ρn,Cl(t)

∣∣ ,
because m is fixed and the processes ρn,Cl are tight for all 1 ≤ l ≤ m. The convergence of In,l/

√
n

and Sn,l/
√
n to zero further implies that for arbitrary 0 < t0 ≤ 1, the quantities

Rn,3 =
√
n

m∑
l=1

sup
t0≤t≤1

∣∣∣∣∣∣K(t)

∫ t+
Sn,l√
n

t
[µs(Cl)− µt(Cl)]ds

∣∣∣∣∣∣ ,
and

Rn,4 =
√
n

m∑
l=1

sup
t0≤t≤1

∣∣∣∣∣∣K(t)

∫ t+
In,l√
n

t
[µs(Cl)− µt(Cl)]ds

∣∣∣∣∣∣ ,
converge to 0 in probability, because µs(Cl) is continuous for all s ∈ [t0, 1]. Finally, note that

Rn,5(t) = K(t)

m∑
l=1

µt(Cl) (Sn,l − In,l)

≤
m∑
l=1

µt(Cl) max
1≤l≤m

sup
z1,z2∈Cl

√
n
∣∣∣(F̃n − F̃ )−(z1)− (F̃n − F̃ )−(z2)

∣∣∣
≤ k(t) E[Zj ]

m∑
l=1

max
1≤l≤m

sup
z1,z2∈Cl

√
n
∣∣∣(F̃n − F̃ )−(z1)− (F̃n − F̃ )−(z2)

∣∣∣
≤ k(t) E[Zj ] ω{

√
n (F̃n − F̃ )−, max

1≤l≤m
diam(Cl)},

where
ω{f, r} = sup

z1,z2∈[0,1]d,d(z1,z2)≤z
|f(z1)− f(z2)|

is the modulus of continuity of f . By choosing a partition C ∈ P with an appropriate mesh, it is
thus possible to make Rn,5 = supt0≤t≤1Rn,5(t) arbitrarily small with high probability when n is large
enough. Collecting terms, one may then conclude that

sup
t0≤t≤1

∣∣∣∣∣ δn(t)−K(t)

∫
[0,1]d

√
n (F̃n − F̃ )−(z)µt(dz)

∣∣∣∣∣ ≤ max(Rn,1, Rn,2) + max(Rn,3, Rn,4) +Rn,5.

20



Since the left-hand side does not depend on the choice of the partition, the proof is complete. �

7.2. Proof of Lemma 4.3

First observe that there exists a continuous version F̃ ∗n of F̃n with the property that

supz∈[0,1]d
∣∣∣F̃ ∗n(z)− F̃n(z)

∣∣∣ ≤ 1
n and

√
n (F̃ ∗n − F̃ )(z) converges weakly to B in C[0, 1]d. Note also

that

sup
t0≤t≤1

∣∣∣∣∣
∫
[0,1]d

√
n (F̃ ∗n − F̃ )(z)µt(dz)−

∫
[0,1]d

√
n (F̃n − F̃ )(z)µt(dz)

∣∣∣∣∣ ≤ sup
t0≤t≤1

k(t) E[Zj ]/
√
n.

Thus, in view of Lemma 4.2, it suffices to show that for any f ∈ C[0, 1]d, the function

t 7→
∫
[0,1]d

f(z)µt(dz)

belongs to C[t0, 1]. For if the latter is true, then the mapping

f 7→
∫
[0,1]d

f(z)µt(dz)

will be a bounded linear (and hence continuous) functional from C[0, 1]d to C[t0, 1]. Given a partition
C = (Cl)

m
l=1 ∈ P, it is known by hypothesis that the function t 7→ µt(Cl) is continuous on [t0, 1] for

any 1 ≤ l ≤ m. Thus, for any sequence (tl) in [t0, 1] converging to t, one has

L = lim sup
l→∞

∫
f(z)µtl(dz) ≤

m∑
l=1

µt(Cl) sup
z∈Cl

f(z) < +∞,

and

L = lim inf
l→∞

∫
f(z)µtl(dz) ≥

m∑
l=1

µt(Cl) inf
z∈Cl

f(z) > −∞,

Consequently,

0 ≤ L− L ≤
m∑
l=1

µt(Cl){sup
z∈Cl

f(z)− inf
z∈Cl

f(z)}

≤
m∑
l=1

µt(Cl) sup
z,w∈Cl

|f(z)− f(w)|

≤ k(t)ω{f, max
1≤l≤m

diam(Cl)}.

Since this string of inequalities must hold whatever the choice of the partition C, one may conclude
that L = L, hence the result. �
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7.3. Proof of Lemma 4.4

The proof of (i) (resp. (ii)) in Lemma 4.4 is similar to the one of (i) (resp. (ii)) of Lemma 3 in Barbe
et al. (1996). We detail below the few changes induced by the fact that we study the CTE and not
the Kendall’s process itself.

Proof of (i):
We refer the interested reader to pages 217 to 219 of the paper by Barbe et al. (1996). We start from
the corollary which follows Theorem 4 in Barbe et al. (1996). Nothing is changed in the proof until
the beginning of page 218. Then we write the following chain of inequalities on Fn,:

δn(t) = K(t)√
n

∑n
i=1 Zj i 1{t<F̃ (Ui)≤ t+(F̃n−F̃ )−(Ui)}

≤ K(t)√
n

∑n
i=1 Zj i 1{t<F̃ (Ui)≤ t+(F̃n−F̃ )−(Ui)}1{F̃ (Ui)≥tn} + K(t)√

n

∑n
i=1 Zj i 1{F̃ (Ui)≤tn}

≤ K(t)√
n

∑n
i=1 Zj i 1{t<F̃ (Ui)≤ t+ M√

n
q(2t)} + K(t)√

n

∑n
i=1 Zj i 1{F̃ (Ui)≤tn}

= K(t)
(
gn(tn) +

√
nG(tn) +

[
gn

(
t+ M√

n
q(2t)

)
− gn(t)

]
+
√
n
[
G
(
t+ M√

n
q(2t)

)
−G(t)

])
where G(t) = E[Zj 1{F̃ (Ui)≤t}], gn(t) = 1√

n

∑n
i=1 Zj i 1{F̃ (Ui)≤t} −

√
nG(t), M > 0, tn = logr(n)/n,

q(t) =
√
t logp(1/t), for r > 2p > 1.

We then get

P
{

sup
0≤t≤t0

δn(t) ≥ λ, Fn,M
}
≤ P

{
K(t) |gn(tn)| ≥ λ

4

}
+P
{√

nK(t)G(tn) ≥ λ

4

}
+P
{
Rn,6 ≥

λ

4

}
+P
{
Rn,7 ≥

λ

4

}
,

with

Rn,6 = sup
0≤t≤t0

K(t)

∣∣∣∣gn(t+
M√
n
q(2t)

)
− gn(t)

∣∣∣∣
and

Rn,7 = sup
0≤t≤t0

√
nK(t)

[
G

(
t+

M√
n
q(2t)

)
−G(t)

]
.

The first and the third terms are handled as in Barbe et al. (1996), page 219. The second term writes
√
nK(t)E[Zj 1{F̃ (Ui)≤tn}].

From Assumption II we know that G is continuously differentiable on [0, 1] with derivative t 7→
ηt ([0, 1]) which is continuous thus bounded on [0, 1]. Thus∣∣∣√nK(t)E[Zj 1{F̃ (Ui)≤tn}]

∣∣∣ ≤ √n sup
s∈[0,1]

|G′(s)| tn ≤
logr(n)√

n
sup
s∈[0,1]

|G′(s)|,

which tends to zero as n tends to infinity. It remains to handle Rn,7.
We use once more that G is continuously differentiable on [0, 1] with derivative t 7→ ηt ([0, 1]) which is
continuous thus bounded on [0, 1]. It implies that

Rn,7 ≤
√
n sup
s∈[0,1]

|G′(s)| M√
n

sup
0≤t≤t0

q(2t)
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which tends to zero as t0 tends to zero. �

Proof of (ii):
We have to adapt the proof of (ii) of Lemma 3 in Barbe et al. (1996). The procedure to adapt the
proof is similar as for (i) and thus will be omitted here. �
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Appendix: Proof of the tightness of {ρn,C(t), t}:

To prove the tightness, we apply Theorem 12.3 in Billingsley (1995). Recall that

ρn,C(t) = K(t)
√
n

[
1

n

n∑
i=1

Zj i1{F̃ (Ui)≤ t,Ui∈C} − E[Zj1{F̃ (U)≤t,U∈C}]

]
.

It is sufficient to prove the tightness of

ρ̃n,C(t) =
√
n

[
1

n

n∑
i=1

Zj i1{F̃ (Ui)≤ t,Ui∈C} − E[Zj1{F̃ (U)≤t,U∈C}]

]
.

Let us denote, for any 0 < t < 1,

Bi(t) := Zj i1{F̃ (Ui)≤ t,Ui∈C} − E[Zj1{F̃ (U)≤t,U∈C}],

and for any 0 < s < t < 1
Li(s, t) := Zj i1{s<F̃ (Ui)≤ t,Ui∈C},

Lci (s, t) := Zj i1{s<F̃ (Ui)≤ t,Ui∈C} − E[Zj1{s<F̃ (U)≤t,U∈C}].

For any 0 < u < s < t < 1 the Lci (s, t), i = 1, . . . , n are i.i.d. centered random variables and for any
i 6= j ∈ {1, . . . , n}, Lci (s, t) is independent of Lcj(u, s).
Let us compute, for arbitrary 0 < u < s < t < 1,

E
[
{ρ̃n,C(t)− ρ̃n,C(s)}2{ρ̃n,C(s)− ρ̃n,C(u)}2

]
One has, for 0 < s < t < 1,

ρ̃n,C(t)− ρ̃n,C(s) =
1√
n

n∑
i=1

Lci (s, t).

Thus
E
[
{ρ̃n,C(t)− ρ̃n,C(s)}2{ρ̃n,C(s)− ρ̃n,C(u)}2

]
=

1

n2
E

{ n∑
i=1

(Lci )
2(s, t) +

∑
1≤i<j≤n

Lci (s, t)L
c
j(s, t)}{

n∑
k=1

(Lck)
2(u, s) +

∑
1≤k<l≤n

Lck(u, s)L
c
l (u, s)}


=

1

n2
E
(
n(n− 1)(Lc1)

2(s, t)(Lc2)
2(u, s) + n(Lc1)

2(s, t)(Lc1)
2(u, s) +

n(n− 1)

2
Lc1(s, t)L

c
1(u, s)L

c
2(s, t)L

c
2(u, s)

)
Study of E[(Lc1)

2(s, t)(Lc2)
2(u, s)]:

Let 1 < p < 2 and q > 2 be such that 1/p+ 1/q = 1. From independence on has

E[(Lc1)
2(s, t)(Lc2)

2(u, s)] = E[(Lc1)
2(s, t)]E[(Lc2)

2(u, s)]

≤
(
E[Zj

21{u<F̃ (U)≤ t,U∈C}]
)2

≤
(
E[Zj

2q]
)2/q (P[u < F̃ (U) ≤ t, U ∈ C]

)2/p
.
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Study of E[(Lc1)
2(s, t)(Lc1)

2(u, s)]:

One has

Lc1(s, t)L
c
1(u, s) = −L1(s, t)E[L1(u, s)]− L1(u, s)E[L1(s, t)] + E[L1(u, s)]E[L1(s, t)].

Then
0 ≤ H := L1(s, t)E[L1(u, s)] + L1(u, s)E[L1(s, t)] ≤ L1(u, t)E[L1(u, t)].

Define J := E[L1(u, s)]E[L1(s, t)].
Then

E[(J −H)2] ≤ E[J2] + E[H2]

≤
(
E[Zqj ]

)2/q (
P[u < F̃ (U) ≤ t, U ∈ C]

)2/p
+ (E[L1(u, t)])

2

≤
(
E[Zqj ]

)2/q (
P[u < F̃ (U) ≤ t, U ∈ C]

)2/p
+ E[Z2

j ] (E[Zj
q])2/q

(
P[u < F̃ (U) ≤ t, U ∈ C]

)2/p
≤
(
E[Zqj ]

)2/q (
P[u < F̃ (U) ≤ t, U ∈ C]

)2/p (
1 + E[Z2

j ]
)
.

Study of E[Lc1(s, t)L
c
1(u, s)L

c
2(s, t)L

c
2(u, s)]:

One has by independence

E[Lc1(s, t)L
c
1(u, s)L

c
2(s, t)L

c
2(u, s)] = (E[Lc1(s, t)L

c
1(u, s)])

2 ≤ E[L2
1(s, t)]E[L2

1(u, s)]

≤
(
E[L2

1(s, t)]
)2 ≤ (E[Z2q

j ]
)2/q (

P[u < F̃ (U) ≤ t, U ∈ C]
)2/p

.

Using the bounds of the three terms studied above, we get

E
[
{ρ̃n,C(t)− ρ̃n,C(s)}2{ρ̃n,C(s)− ρ̃n,C(u)}2

]
≤ 2

(
E[Zj

2q]
)2/q

+
(
E[Zqj ]

)2/q (
1 + E[Z2

j ]
)

(G(t)−G(u))2/p

with G(s) := P[F̃ (U) ≤ s, U ∈ C].

Thus applying Theorem 12.3 in Billingsley (1995), with γ = 2, α = 2/p > 1 and F (s) = G(s) which
is nondecreasing continuous function on [0, 1], we get the tightness. �

27


