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Introduction

Multivariate risk-measures

Traditionally, risk measures are thought of as mappings from a set of real-valued random variables to the real numbers. However, it is often insufficient to consider a single real measure to quantify risks, especially when the risk-problem is affected by other external risk factors whose sources cannot be controlled. Note that the evaluation of an individual risk may strongly be affected by the degree of dependence amongst all risks and these risks may also be strongly heterogeneous.

For instance, several hydrological phenomena are described by two or more correlated characteristics. These dependent characteristics should be considered jointly to be more representative of the multivariate nature of the phenomenon. Consequently, probabilities of occurrence of risks cannot be estimated on the basis of univariate analysis. The multivariate hydrological risks literature mainly treated one or more of the following three elements: [START_REF] Ahn | Large sample behavior of the CTE and VaR estimators under importance sampling[END_REF] showing the importance and explaining the usefulness of the multivariate framework, (2) fitting the appropriate multivariate distribution (copula and marginal distributions) in order to model risks and (3) defining and studying multivariate return periods (see [START_REF] Chebana | Multivariate quantiles in hydrological frequency analysis[END_REF].

One of the most popular measures in hydrology and climate is undoubtedly the return period. A frequency analysis in hydrology focuses on the estimation of quantities (e.g., flows or annual rainfall) corresponding to a certain return period. It is closely related to the notion of quantile which has therefore been extensively studied in dimension one. For a random variable X that represents the magnitude of an event that occurs at a given time and at a given site, the quantile of order 1 -1 T expresses the magnitude of the event which is exceeded with a probability equal to 1 T . T is then called the return period. In finance, or more generally in univariate risk theory the quantile is known as the Value-at Risk (Var) and it is defined by Q X (α) = inf{x ∈ R + : F X (x) ≥ α}, for α ∈ (0, 1), with F the univariate distribution of event X. A second important univariate risk measure, based on the quantile notion, is the Conditional-Tail -Expectation (CTE) defined by CTE α (X) = E[ X | X > Q X (α) ], for α ∈ (0, 1).

From the years 2000 onward, much research has been devoted to risk measures and many extension to multidimensional settings have been suggested (see, e.g., [START_REF] Jouini | Vector-valued coherent risk measures[END_REF][START_REF] Bentahar | Tail conditional expectation for vector-valued risks[END_REF] In the following we deal with the multivariate version of Conditional-Tail-Expectation, proposed by Di Bernardino et al. (2011), [START_REF] Cousin | A multivariate extension of value-at-risk and conditional-tailexpectation[END_REF]. It is constructed as the conditional expectation of a multivariate random vector given that the latter is located in a particular set corresponding to the α-upper level set of the associated multivariate distribution function (in a bivariate setting see Di [START_REF] Di Bernardino | Plug-in estimation of level sets in a non-compact setting with applications in multivariable risk theory[END_REF]. In this sense this measure is essentially based on a "multivariate distributional approach". More precisely they define, for i = 1, . . . , d, and for α ∈ (0, 1),

CTE α (Z i ) = E[ Z i | F Z (Z) ≥ α ] = E[ Z i | Z ∈ L(α) ], (1) 
where Z = (Z 1 , . . . , Z d ) is a non-negative multivariate random vector with distribution function F , K(α) = P[F Z (Z) ≥ α] is the associated multivariate Kendall distribution function and where the α-upper level set of F is defined by L(α) = {x : F (x) ≥ α}. In particular, Cousin and Di Bernardino (2012) proved that properties of the Multivariate Conditional Tail-Expectation in [START_REF] Ahn | Large sample behavior of the CTE and VaR estimators under importance sampling[END_REF] turn to be consistent with existing properties on univariate risk measures (positive homogeneity, translation invariance, increasing in risk-level α, etc).

Recently, level-curves ∂L(α) (where ∂A denotes the boundary of a set A) and associated level-sets L(α) have been proposed as risk measures in multivariate hydrological models because of their many advantages: they are simple, intuitive, interpretable and probability-based (see However the multivariate risk measure proposed in (1) can be seen as a more parsimonious and synthetic measure compared with Embrechts and Puccetti (2006)'s approach. Indeed, ∂L(α) is an hyperplane of dimension d -1. This choice can be unsuitable when we face real risk problems. Using measure in (1), instead of considering the whole geometric space L(α) corresponding to the α-level set of F , we only focus on the particular point in R d + that matches the conditional expectation of Z given that Z falls in L(α). This means that measure in (1) is a real-valued vector with the same dimension as the considered portfolio of risks. The latter feature could be relevant on practical grounds.

Estimating multivariate risk-measure in [START_REF] Ahn | Large sample behavior of the CTE and VaR estimators under importance sampling[END_REF] The problem of consistent estimation of the univariate quantile based risk-measures (VaR and CTE, see above) has received attention in literature essentially in the univariate case (e.g. see [START_REF] Brazauskas | Estimating conditional tail expectation with actuarial applications in view[END_REF][START_REF] Necir | Estimating the conditional tail expectation in the case of heady-tailed losses[END_REF][START_REF] Ahn | Large sample behavior of the CTE and VaR estimators under importance sampling[END_REF]. The estimation of multivariate riskmeasures has received some attention however, it is much less common, due to a number of theoretical and practical reasons. However in the last decade, several generalizations of the classical univariate CTE have been proposed, mainly using as conditioning events the total risk or some univariate extreme risk. This kind of measures are suitable to model risk problems with dependent and homogenous risks. Indeed these measures are based on an arbitrary real-valued aggregate transformation (sum, min, max,. . .) of risks. We remark that using an aggregate procedure between the risks can be inappropriate to measure risks with heterogeneous characteristics especially in an external risks problem. Some commonly used multivariate CTE measures are:

CTE sum α (Z i ) = E[ Z i | S > Q S (α) ], (2) 
CTE min α (Z i ) = E[ Z i | Z (1) > Q Z (1) (α) ], (3) 
CTE max α (Z i ) = E[ Z i | Z (d) > Q Z (d) (α) ], (4) 
for i = 1, . . . , d, with S = Z 1 +• • •+Z d the total risk, Z (1) = min{Z 1 , ..., Z d } and Z (d) = max{Z 1 , ..., Z d } two extreme risks.
The interested reader is referred to [START_REF] Cai | Conditional tail expectations for multivariate phase-type distributions[END_REF] for further details. For explicit formulas of CTE sum α (Z i ) in the case of Fairlie-Gumbel-Morgenstern family of copulas, see [START_REF] Bargès | TVaR-based capital allocation with copulas[END_REF]. Landsman and Valdez obtain an explicit formula for CTE sum α (Z i ) in the case of elliptic distribution functions (see [START_REF] Landsman | Tail conditional expectations for elliptical distributions[END_REF]; Cai and Li in the case of phase-type distributions (see [START_REF] Cai | Conditional tail expectations for multivariate phase-type distributions[END_REF]. Furthermore, for a comparison between measures in (2)-( 4) and (1) we refer to [START_REF] Cousin | A multivariate extension of value-at-risk and conditional-tailexpectation[END_REF]. In the recent literature, some efforts have been done to provide a consistent estimation of measures in (2)-(4). We refer the interested reader, for instance, to Hua and Joe (2011), [START_REF] Asimit | Asymptotics for risk capital allocations based on conditional tail expectation[END_REF].

In this paper we propose a new estimator for the multivariate risk measure defined by (1) above, and introduced by Di Bernardino et al. (2011), [START_REF] Cousin | A multivariate extension of value-at-risk and conditional-tailexpectation[END_REF].

A consistent estimator for CTE α (Z i ) = E[ Z i | Z ∈ L(α) ],
has already been provided by Di Bernardino et al. (2011), who proposed a plug-in estimator based on the consistent estimation of the whole level sets L(α). As the level sets are not compact, their estimation procedure requires the choice of an increasing truncation sequence (T n ) n≥1 . The non-optimal rate of convergence provided by the authors depends on the rate of convergence of (T n ) n≥1 to infinity. Making the "best choice" for (T n ) n≥1 is not trivial, and requires the knowledge of the tail behavior of Z, at least in its generic form. The interested reader is referred to Di Bernardino et al. (2011) for further details.

Contrarily to this approach, we propose in this paper a new non-parametric estimator for CTE α (Z

i ) = E[ Z i | F Z (Z) ≥ α ],
based on the estimation of the Kendall's distribution, i.e. the distribution of the univariate random variable F Z (Z). For this estimator we prove a functional central limit theorem. The main advantage of our new estimator is that it does not require the calibration of extra parameters or sequences.

Organization of the paper

The paper is organized as follows. In Section 1, we introduce some notation, tools and technical assumptions. In Section 2, we recall the Multivariate Conditional Tail Expectation, previously introduced by [START_REF] Cousin | A multivariate extension of value-at-risk and conditional-tailexpectation[END_REF], and we define our new non-parametric estimator for it. In Section 3 we state our main result, which is a functional central limit theorem for our estimator, and we give a sketch for its proof. The main lines of the proof follow then is in Sections 4 and 5. The practical properties of our estimator are further investigated on simulated data in Section 6; an hydrological real data-set is then analyzed. Finally, the proofs of auxiliary lemmas are postponed to Section 7 and to the Appendix.

A central tool: the Kendall's process

A central tool in this paper is the Kendall distribution which is a synthetical way to model dependence in multivariate problems. In this section we first introduce the Kendall's process and fix some notation. Then we introduce the Kendall empirical distribution function whose properties have been studied in [START_REF] Genest | Statistical inference procedures for bivariate Archimedean copulas[END_REF], [START_REF] Barbe | On Kendall's process[END_REF].

Definitions and notation

Let Z = (Z 1 , . . . , Z d ) be a d-dimensional random vector, d ≥ 2. As we will see later on, our study of multivariate risk measures strongly relies on the key concept of Kendall distribution function (or multivariate probability integral transformation), that is, the distribution function of the random variable F (Z), where F is the multivariate distribution of random vector Z. Let F denote the copula associated to F through the relation

F (z) = F (F 1 (z 1 ), . . . , F d (z d )).
From now on, the Kendall distribution will be denoted by K, so that K(t) = P[F (Z) ≤ t], for t ∈ [0, 1]. We also denote by K(t) the survival distribution function of F (Z), i. Remark 1 In contrast to the univariate case, it is not generally true that the distribution function K of F (Z) is uniform on [0, 1], even when F is continuous. Note also that it is not possible to characterize the joint distribution F or reconstruct it from the knowledge of K alone, since the latter does not contain any information about the marginal distributions F 1 , . . . , F d (see [START_REF] Genest | On the multivariate probability integral transformation[END_REF]. Indeed, as a consequence of Sklar's Theorem, the Kendall distribution only depends on the dependence structure or the copula function F associated with Z (see [START_REF] Sklar | Fonctions de répartition à n dimensions et leurs marges[END_REF]. Thus, we also have

K(t) = P[ F (U ) ≤ t], where U = (U 1 , . . . , U d ) and U 1 = F 1 (Z 1 ), . . . , U d = F d (Z d ), for t ∈ [0, 1].
We now define the notion of partially strictly increasing as it will be needed further: x d ) is partially strictly increasing on R d + \ {(0, . . . , 0)} if for any i = 1, . . . , d, the function of one variable g(•) = F (x 1 , . . . , x i-1 , •, x i+1 , . . . , x d ) is strictly increasing.

Definition 1.1 A function F (x 1 , . . . ,

The Kendall empirical distribution

We now recall the definition of the Kendall empirical distribution, which is a non parametric estimator of the Kendall distribution K, first introduced in Genest and Rivest (1993) (see also [START_REF] Barbe | On Kendall's process[END_REF]. Let {Z i } n i=1 be a random sample in R d + of size n ≥ 2 and with joint d-variate distribution function F and marginals F 1 , . . . , F d . Let V i,n stand for the proportion of observations Z j , j = i, such that Z j ≤ Z i componentwise, i.e.,

V i,n = 1 n -1 n j=1, j =i 1 {Z j ≤Z i } . (5) 
Let also

F n (x) = 1 n n j=1
1 {Z j ≤x} be the empirical distribution function associated to F . We then define K n as the empirical distribution function based on the V i,n s and K as the distribution function of the random variable F (Z) taking values in [0, 1].

In [START_REF] Barbe | On Kendall's process[END_REF] is proved that, under regularity conditions on K and F , the centered Kendall's process

√ n (K n (t) -K(t)
) is asymptotically Gaussian, considering the weak convergence in the space D of càdlàg functions from [0, 1] to R endowed with the Skorohod topology (see e.g., [START_REF] Billingsley | Probability and Measure[END_REF], and an explicit expression for its limiting covariance function is given (see Theorem 1 in [START_REF] Barbe | On Kendall's process[END_REF]. More precisely, let us assume that

I: the distribution function K(t) of F (Z) admits a continuous density k(t) on (0, 1] that verifies k(t) = o t -1/2 log -1/2-1 t
, for some > 0 as t → 0, and that II: there exists a version of the conditional distribution of the vector U := (F 1 (Z 1 ), ..., F d (Z d )) given F (U ) = t and a countable family P of partitions C of [0, 1] d into a finite number of Borel sets satisfying: inf

C∈P max C∈C diam(C) = 0,
such that for all C ∈ C the mapping

t → η t (C) = k(t) P[U ∈ C | F (U ) = t] is continuous on (0, 1] with η 1 (C) = k(1)1 {(1,...,1)∈C} . Remark 2 Note that { F (U ) = t} has Lebesgue-measure zero in [0, 1].
Then we make sense of Assumption II using the limit procedure in Feller (1966), Section 3.2. Furthermore we remark that Assumption II is in fact a condition on the (unique) copula function F (see [START_REF] Sklar | Fonctions de répartition à n dimensions et leurs marges[END_REF]. 

. ).

However at the moment at our knowledge nothing is proved for elliptic or meta-elliptic copulas, even if numerical experiments in Genest et al. (2009) tend to show that the limit theorem for the Kendall's process holds true even in such cases.

Remark 4 In the following, weak convergence for processes will always be considered in the space D of càdlàg functions from [0, 1] to R k endowed with the Skorohod topology, for some k ∈ N * .

In view of the definition of the V i,n s (see ( 5)), and using Remark 1, one can write (see [START_REF] Ghoudi | Empirical processes based on pseudo-observations[END_REF]:

K n (t) = 1 n n i=1 1 { Fn(U i )≤ t + 1-t n } .
We now state the main result in [START_REF] Barbe | On Kendall's process[END_REF].

Theorem 1.1 (Theorem 1 in [START_REF] Barbe | On Kendall's process[END_REF] Under Assumptions I and II above, the empirical process

α n (t) = √ n (K n (t) -K(t)) (6) 
converges in distribution to a continuous Gaussian process α with zero mean and covariance function Γ.

Remark 5 A general formulation for Γ is given in [START_REF] Barbe | On Kendall's process[END_REF]. Its exact form can be provided for specific classes of copulas. Moreover, Barbe et al. notice that even for simple copula's structures such as Farlie-Gumbel-Morgenstern copula, it does not seem possible to derive an explicit analytical expression for the covariance Γ(s, t).

A multivariate risk measure: the t-Conditional Tail Expectation

As said in the introduction, one wants to preserve the complete information about the multivariate dependence structure. To this end, we consider the Conditional Tail Expectation introduced in Di Bernardino et al. (2011) and [START_REF] Cousin | A multivariate extension of value-at-risk and conditional-tailexpectation[END_REF].

From now on, we consider non-negative absolutely-continuous random vector3 Z = (Z 1 , . . . , Z d ) (with respect to Lebesgue measure λ on R d ). We assume moreover the two following conditions: i) F is a partially strictly increasing multivariate distribution function, ii) there exists r > 2 such that E(|Z j | r ) < ∞, for j = 1, . . . , d.

These conditions will be called regularity conditions.

Remark 6

We remark that under these regularity conditions the copula F , associated to the distribution function F , has continuous and strictly positive density function on (0, 1) d (see Section 4 in Tibiletti, 1994).

Remark 7 From Theorem 2 in [START_REF] Barbe | On Kendall's process[END_REF], the regularity conditions above imply Assumption II recalled in Section 1, and it also implies that for all C ∈ C (the notation is the same as in the statement of Assumption II)

t → µ t (C) = k(t) E[Z j 1 {U ∈C} | F (U ) = t] is continuous on (0, 1] with µ 1 (C) = k(1)1 {(1,...,1)∈C} .
We can now define the Conditional Tail Expectation.

Definition 2.1 Consider a d-dimensional random vector Z satisfying the regularity conditions with associated copula function F . For t ∈ (0, 1), we define the Multivariate t-Conditional Tail Expectation by

CTE t (Z) = E[Z | F (U ) ≥ t] =       E[ Z 1 | F (U ) ≥ t ], E[ Z 2 | F (U ) ≥ t ], . . . E[ Z d | F (U ) ≥ t ].       ;
where

U := (F 1 (Z 1 ), ..., F d (Z d )).
Remark 

CTE t (Z) =               1 n n i=1 Z 1i 1 { Fn(U i )≥ t} 1 -K n (t) 1 n n i=1 Z 2i 1 { Fn(U i )≥ t} 1 -K n (t) . . . 1 n n i=1 Z di 1 { Fn(U i )≥ t} 1 -K n (t)              
, where K n is the empirical Kendall estimator of K.

In the following, we use the following notation:

CTE j t (Z) = E[ Z j | F (U ) ≥ t ] and CTE j t (Z) = 1 n n i=1 Z j i 1 { Fn(U i )≥ t} 1 -K n (t)
, for j = 1, . . . , d.

Main results and sketch of the proof

Using Theorem 1.1 recalled in Section 1, we can prove the weak convergence of the Kendall-based process:

α CTE n (t) := α CTE n, 1 (t) , . . . α CTE n, d (t) with α CTE n, j (t) = √ n ( CTE j t (Z) -CTE j t (Z)), j = 1, . . . , d. (7) 
The first step is the coordinatewise convergence (see Theorem 3.1 below).

Theorem 3.1 Under regularity conditions i) and ii) and Assumption I, the Kendall based process α CTE n, j , for j = 1, . . . , d, converges weakly to a continuous Gaussian process α CTE j with zero mean and covariance function Γ j CTE . Then, we deduce the main result (see Theorem 3.2 below). Theorem 3.2 Under regularity conditions i) and ii) and Assumption I, the Kendall based process α CTE n converges weakly to a continuous Gaussian process α CTE with zero mean and (cross-)covariance function defined by

Γ i,j CTE (s, t) = Cov(α i (s), α j (t)), (s, t) ∈ [0, 1] 2 , i = 1 . . . , d, j = 1, . . . , d.
Remark 9 Remark that the exact formulation for the (cross-)covariance function is complex. It was already discussed in Remark 5 for the limit covariance function for the centered Kendall's process

{α n (t), t ∈ [0, 1]}.
Proof of Theorem 3.2: Let j 1 < . . . < j l ∈ {1, . . . , d}, if one wants to prove the convergence of the finite-dimensional distributions of α CT E n we consider j l k=j 1 b k α CT E n,k . Then the proof is similar to the proof of the convergence of the finite-dimensional distributions of α CT E n,k for some fixed k ∈ {1, . . . , d} (see proof of Theorem 3.1). Now it remains to prove the tightness in D [0, 1], R d endowed with the Skorohod topology. As each component converges weakly in the Skorohod space D ([0, 1], R) to a continuous limit, we get the result.

Sketch of the proof of Theorem 3.1:

We first write [START_REF] Bentahar | Tail conditional expectation for vector-valued risks[END_REF] as:

α CTE n, j (t) = √ n 1 n n i=1 Z j i 1 { Fn(U i )≥ t} 1 -K n (t) - E[ Z j 1 { F (U )≥t} ] 1 -K(t) = √ n   (1 -K(t)) 1 n n i=1 Z j i 1 { Fn(U i )≥ t} -E[ Z j 1 { F (U )≥t} ] + E[ Z j 1 { F (U )≥t} ] (K n (t) -K(t)) (1 -K n (t)) (1 -K(t))   (8) 
The denominator of (8) converges (in probability) to (1 -K(t)) 2 = K(t) 2 ∈ (0, 1) (see Theorem 1.1). Thus we focus now our attention on the numerator of ( 8). We write it as ϑ n (t) := ξ n (t) + ψ n (t), with

ξ n (t) = √ n K(t) 1 n n i=1 Z j i 1 { Fn(U i )≥ t} -E[ Z j 1 { F (U )≥t} ]
and

ψ n (t) = √ n E[ Z j 1 { F (U )≥t} ] (K n (t) -K(t)).
Notice that the dependence on j has been omitted for sake of simplicity in the notation. Furthermore the process ξ n (t) may be written as the sum of two subsidiary processes:

ζ n (t) = √ n K(t) 1 n n i=1 Z j i 1 { Fn(U i )≥ t} -1 { F (U i )≥ t} , and 
φ n (t) = √ n K(t) 1 n n i=1 Z j i 1 { F (U i )≥ t} -E[ Z j 1 { F (U )≥t} ] . Then ϑ n (t) := ζ n (t) + φ n (t) + ψ n (t).
In Section 4 we study separately the convergence of these three subsidiary processes ψ n (t) (see Section 4.1), ζ n (t) (see Section 4.2) and φ n (t) (see Section 4.3). We also introduce, following [START_REF] Barbe | On Kendall's process[END_REF] , the empirical process ν n defined by

ν n (A) = √ n 1 n n i=1 1 {U i ∈ A} -P[U ∈ A] , with A ∈ A, with A := A 1,z , z ∈ [0, 1] d {A 2,t , t ∈ [0, 1]} where A 1,z := {z ∈ [0, 1] d : z ≤ z}, and A 2,t := {z ∈ [0, 1] d : F (z) ≤ t}.
Then A is a Vapnik-Cervonenkis class, and it implies that ν n converges weakly to a centered Gaussian process ν over A.

Convergence results for subsidiary processes

In this section we study the asymptotic behavior of each of the subsidiary processes. In the following we always assume that the regularity conditions i) and ii) as far as Assumption I are satisfied.

4.1. Asymptotic behavior of ψ n (t) Lemma 4.1 Under regularity conditions i) and ii) and Assumption I, the empirical process

ψ n (t) = √ n E[ Z j 1 { F (U )≥t} ] (K n (t) -K(t)) = E[ Z j 1 { F (U )≥t} ] α n (t)
converges weakly to a continuous Gaussian process with zero mean and covariance function

Γ ψ (s, t) := M s M t Γ(s, t), (9) 
where Γ(s, t) is as in Theorem 1.1 and

M c = E[ Z j 1 { F (U )≥c} ] < +∞, for c ∈ (0, 1). Proof of Lemma 4.1: We just remark that ψ n (t) = E[ Z j 1 { F (U )≥t} ] α n (t)
, where α n (t) is the Kendall's empirical process introduced by Genest and Rivest (1993) and [START_REF] Barbe | On Kendall's process[END_REF] (see [START_REF] Belzunce | Quantile curves and dependence structure for bivariate distributions[END_REF]). Then the demonstration comes down trivially from Theorem 1.1. Hence the result.

Remark 10 Note that in the following, the main element we will need is that sup

t∈[0,1] α n (t) -ν n (A 2,t ) - [0,1] d ν n (A 1,z ) η t (dz)
converges to zero in probability (see proof of Theorem 5 in [START_REF] Barbe | On Kendall's process[END_REF].

Asymptotic behavior of ζ n (t)

We now study

ζ n (t) = K(t) 1 √ n n i=1 Z j i 1 { Fn(U i )≥ t} -1 { F (U i )≥ t} .
The behavior of ζ n (t) when t is bounded away from the origin is described in Lemmas 4.2 and 4.3. Its behavior for t in the neighborhood of the origin will be the object of Lemma 4.4. Lemma 4.2 Under regularity conditions i) and ii) and Assumption I, the following quantity converges in probability to 0 for any 0 < t 0 ≤ 1:

sup t 0 ≤t≤1 -ζ n (t) + K(t) [0,1] d ν n (A 1, z ) µ t (dz) , (10) 
with µ t (C) = k(t) E[Z j 1 {U ∈C} | F (U ) = t] for any rectangle C in [0, 1] d .
Proof of Lemma 4.2: The proof is postponed to Section 7.

Lemma 4.3 Under regularity conditions i) and ii) and Assumption I, the restriction of the process ζ n (t) to the interval [t 0 , 1] converges in law to a centered, continuous Gaussian process having the representation

K(t) [0,1] d B(z) µ t (dz) in terms of the weak limit B of √ n ( F n -F )(z).
Proof of Lemma 4.3: The proof is postponed to Section 7.

The following result describes the behavior of ζ n (t) for t in the neighborhood of the origin.

Lemma 4.4 Define

δ n (t) = K(t) √ n 1 n n i=1 Z j i 1 {t< F (U i )≤ t+( Fn-F ) -(U i )} ,
and

n (t) = K(t) √ n 1 n n i=1 Z j i 1 {t-( Fn-F ) + (U i )< F (U i )≤ t} .
Under regularity conditions i) and ii) and Assumption I, for arbitrary λ > 0, one has

(i) lim t 0 →0 lim sup n→∞ P sup 0≤t≤t 0 δ n (t) ≥ λ = 0; (ii) lim t 0 →0 lim sup n→∞ P sup 0≤t≤t 0 n (t) ≥ λ = 0; (iii) lim t 0 →0 lim sup n→∞ P sup 0≤t≤t 0 |ζ n (t)| ≥ λ = 0;
Proof of Lemma 4.4:

The proof of (i) and (ii) is an adaptation of Lemma 3 in [START_REF] Barbe | On Kendall's process[END_REF]. Statement (iii) of this lemma is an immediate consequence of the first two parts. The detailed proof is postponed to Section 7.

Asymptotic behavior of φ n (t)

Lemma 4.5 Under regularity conditions i) and ii) and Assumption I, the empirical process

φ n (t) = √ n K(t) 1 n n i=1 Z j i 1 { F (U i )≥ t} -E[ Z j 1 { F (U )≥t} ]
converges weakly to a continuous Gaussian process φ with zero mean and covariance function

Γ φ (s, t) = K(t) K(s) E[Z 2 j 1 { F (U )≥t∨s} ] -E[Z j 1 { F (U )≥t} ] E[Z j 1 { F (U )≥s} ] . (11) 
Proof of Lemma 4.5: The proof is similar to the one of Lemma 7.1 (see Section 7).

Proof of Theorem 3.1

We now prove the asymptotic normality stated in Theorem 3.1. First define

χ n (t) := E[Z j 1 F (U )≥t ] ν n (A 2,t ) - [0,1] d ν n (A 1,z )η t (dz) + K(t) [0,1] d ν n (A 1,z )µ t (dz) .
We derive from Lemmas 4.1, 4.2 and 4.4 that sup t∈[0,1] |ψ n (t) + ζ n (t) -χ n (t)| converges to zero in probability.

We know that {χ n (t 

), t ∈ [0, 1]} converges in D ([0, 1], R) to some continuous process {χ(t), t ∈ [0, 1]} := E[Z j 1 F (U )≥t ] α(t) + K(t) [0,1] d ν(A 1,z )µ t (dz), t ∈ [0, 1] .
α CTE j (t) = 1 K(t) 2 (φ(t) + χ(t)) .
Remark 11 We remark that the covariance function Γ j CTE can be derived by the explicit expressions of covariance function Γ ψ (see [START_REF] Brazauskas | Estimating conditional tail expectation with actuarial applications in view[END_REF]), Γ φ (see [START_REF] Capéraà | A stochastic ordering based on a decomposition of Kendall's tau[END_REF]) and Γ (see [START_REF] Barbe | On Kendall's process[END_REF], proof of Theorem 5).

Numerical study

In this section we provide simulations which aim at studying the practical behavior of our estimator, as far as to compare its performances to the ones of the level-sets based estimator proposed in Di Bernardino et al. (2011). Simulations are performed in the 2-dimensional and 3-dimensional setting.

About asymptotic normality of

√ n( CTE α (X, Y ) -CTE α (X, Y ))
In this section we show the Q-Q plots obtained from 100 replications of our estimator computed with samples of size n = 50, 250, 800. The Q-Q plot draws the empirical quantiles against the gaussian theoretical quantiles.

We consider Z = (X, Y ) a random vector with independent and exponentially distributed components with parameter 2. The level α has been fixed to 0.38. We observe that increasing n leads to a better adequation of empirical quantiles with gaussian theoretical quantiles. 

Comparison of our

L(α) T = {x ∈ [0, T ] 2 : F (x) ≥ α} and for n ∈ N * L n (α) T = {x ∈ [0, T ] 2 : F n (x) ≥ α},
with F n the empirical distribution of F . Let T n be an increasing positive sequence. Then we define the level-sets based estimator by

CTE Tn α (X, Y ) =      n i=1 X i 1 {(X i ,Y i )∈Ln(α) Tn } n i=1 1 {(X i ,Y i )∈Ln(α) Tn } n i=1 Y i 1 {(X i ,Y i )∈Ln(α) Tn } n i=1 1 {(X i ,Y i )∈Ln(α) Tn }      . It could be interesting to consider the convergence CTE α (X, Y ) -CTE Tn α (X, Y ) . Let CTE Tn α (X, Y ) = E[(X, Y )|(X, Y ) ∈ L(α) Tn ].
We remark that the speed of this convergence will also depend on the convergence rate to zero of CTE α (X, Y ) -CTE Tn α (X, Y ) , then, in particular of P Theorem 4.1. in Di Bernardino et al., 2011). This kind of compromise provides an illustration on how to choose T n in the estimator CTE Tn α (X, Y ). In this sense, running simulations with this estimator requires tuning the truncation sequence (T n ) n≥1 , which is not always easy. Conversely, an important advantage of our new estimator is that we do not have any parameter to tune.

[(X, Y ) ∈ L(α) \ L(α) Tn ] for n → ∞. More precisely CTE α (X, Y ) -CTE Tn α (X, Y ) decays to zero at least with a convergence rate (P[X ≥ T n or Y ≥ T n ]) -1 . We remark that (P[X ≥ T n or Y ≥ T n ]) -1 is increasing in T n , whereas the speed of convergence of CTE Tn α (X, Y ) -CTE Tn α (X, Y ) is decreasing in T n (see
In the following we denote our new estimator by CTE α (X, Y ) K and the level-sets based one by CTE α (X, Y ) Lα . The performances of both estimators will be evaluated by computing for each coordinate the mean, the empirical standard deviation and the relative mean squared error whose definitions are recalled below.

We denote CTE

α (X, Y ) = CTE α 1 (X, Y ), CTE α 2
(X, Y ) the mean of CTE α (X, Y ) on 100 simulations. We denote σ = ( σ 1 , σ 2 ) the empirical standard deviation with

σ 1 = 1 99 100 j=1 CTE α 1 (X, Y ) j -CTE α 1 (X, Y ) 2
relative to the first coordinate (resp. σ 2 relative to the second one).

We denote RMSE = (RMSE 1 , RMSE 2 ) the relative mean square error with

RMSE 1 = 1 100 100 j=1 CTE 1 α (X,Y ) j -CTE 1 α (X,Y ) CTE 1 α (X,Y ) 2
relative to the first coordinate of CTE α (X, Y ) (resp. RMSE 2 relatives to the second one).

The explicit value of the theoretical CTE α (X, Y ) was obtained with Maple.

In the following we consider: Independent copula with exponentially distributed marginals; Clayton copula with parameter 1, with exponential and Burr(4, 1) univariate marginals. The sample size is fixed to n = 1000 and α = 0.10, 0.24, 0.38, 0.52, 0.66, 0.80. Results are gathered in Table 1 and2 678910111213).

We observe that the performances of our new estimator are always better in terms of relative mean squared error, and moreover as said before we did not have to tune a truncation sequence (T n ) n≥1 which is a major advantage. Moreover the performances of both estimator decrease as the level α increases. In the next section we further investigate this phenomenon. 

α CTE α (X, Y ) CTE α (X, Y ) Lα CTE α (X, Y ) K σ Lα σ K RMSE Lα RMSE K 0.
α CTE α (X, Y ) CTE α (X, Y ) Lα CTE α (X, Y ) K σ Lα σ K RMSE Lα RMSE K 0.

Deterioration of the performances of our estimator for high levels α

In this section, we first consider the case of independent and exponentially distributed marginals with resp. parameters 1 and 2, and we choose a level α = 0.9. The theoretical value is then CTE 0.9 (X, Y ) = (3.78, 1.89). As illustrated in Table 3, we need in this case between 2000 and 2500 data to get the same performances as for lower level (see Table 1). Let (X, Y ) a random vector with independent and exponentially distributed marginals with resp. parameters 1 and 2. Now we compute 100 replications of our estimate with a sample-size n = 1000.

In Figure 2, we have drawn the empirical confidence intervals for CTE α

2 (X, Y ) K : CTE 2 α (X, Y ) K -u 0.95 σ K √ n , CTE 2 α (X, Y ) K + u 0.95 σ K √ n
with u 0.95 the quantile of order 0.95 of the standard gaussian distribution, for various values of α. We observe that the length of the empirical confidence interval increases with α. It seems that the unknown limit variance Γ 2 CT E in Theorem 3.1 explodes as α tends to one.

Influence of structure of dependence on CTE α

From theoretical results in Cousin and Di Bernardino (2012), we know that for a large class of parametric families of copulas (indexed by a parameter θ of dependence), the Multivariate Condition Tail Expectation is a decreasing function of the parameter of dependence θ. For instance, it is true for Clayton, Gumbel, Frank or Ali-Mikhail-Haq families.

In the following we illustrate this result for the comprehensive 4 Clayton family (see e.g., 2.4 in [START_REF] Nelsen | Kendall distribution functions and associative copulas[END_REF]. We define for u, v ∈ [0, 1]

C(u, v) = max(u -θ + v -θ -1 , 0) -1/θ
with -1 ≤ θ ≤ +∞. The case θ = -1 corresponds to the perfect negative dependence, θ = 0 to the independence, θ = +∞ to the comonotonicity. As the behavior of CTE α (X, Y ) in terms of α and parameter dependence θ only depends on copula structure (and not on marginal distributions) we consider, in the Table 4, a Clayton copula with parameter θ and uniform marginal distributions. In particular this choice implies that CTE 

CTE α (X, Y ) 0.6419 CTE α (X, Y ) K 0.6397 σ K 0.0337 RMSE K 0.0538 CTE α (X, Y ) 0.6047 CTE α (X, Y ) K 0.6062 σ K 0.0106 RMSE K 0.0177 CTE α (X, Y ) 0.5827 CTE α (X, Y ) K 0.5831 σ K 0.0102 RMSE K 0.0176 CTE α (X, Y ) 0.5500 CTE α (X, Y ) K 0.5495 σ K 0.0091 RMSE K 0.0165 0.38 CTE α (X, Y ) 0.7757 CTE α (X, Y ) K 0.7723 σ K 0.0475 RMSE K 0.0611 CTE α (X, Y ) 0.7617 CTE α (X, Y ) K 0.7644 σ K 0.0127 RMSE K 0.0179 CTE α (X, Y ) 0.7494 CTE α (X, Y ) K 0.7521 σ K 0.0108 RMSE K 0.0178 CTE α (X, Y ) 0.6900 CTE α (X, Y ) K 0.6903 σ K 0.0105 RMSE K 0.0171 0.66 CTE α (X, Y ) 0.8825 CTE α (X, Y ) K 0.8936 σ K 0.1261 RMSE K 0.1442 CTE α (X, Y ) 0.8789 CTE α (X, Y ) K 0.8848 σ K 0.0181 RMSE K 0.0184 CTE α (X, Y ) 0.8754 CTE α (X, Y ) K 0.8799 σ K 0.0119 RMSE K 0.0182 CTE α (X, Y ) 0.8300 CTE α (X, Y ) K 0.8305 σ K 0.0117 RMSE K 0.0176 0.80 CTE α (X, Y ) 0.9321 CTE α (X, Y ) K 0.9213 σ K 0.1422 RMSE K 0.1448 CTE α (X, Y ) 0.9308 CTE α (X, Y ) K 0.9416 σ K 0.0264 RMSE K 0.0342 CTE α (X, Y ) 0.9297 CTE α (X, Y ) K 0.9385 σ K 0.0192 RMSE K 0.0229 CTE α (X, Y ) 0.9000 CTE α (X, Y ) K 0.9041 σ K 0.0187 RMSE K 0.0183
Table 4: (X, Y ) with Clayton copula with parameter θ = -0.95, 0, 1, 10 4 and α = 0.1, 0.38, 0.66, 0.8, FX and FY uniform marginals.

Real data

We consider here the estimation of CTE α in a real case: river flow data-set. The data-set comes from the National River Flow Archive of the Center for Ecology & Hydrology in UK, (see http://www.ceh.ac.uk/index.html). We consider an hydrological data-set recorded in the uplands of mid-Wales. This data-set represents the river flow data measured at the Hore site (for X random variable) at the Tanllwyth site (for Y random variable), and at the Wye-Gwy site (for Z random variable), from 1985 to 2003. The unit of measurements of river-flows is m 3 /s. The river flows are recorded each 15 minutes. In order to make the temporal data independent, we keep only 9 days spaced measurements from August the 11th 1985 to October the 20th 2003. The data-set size is now n = 2134.

The multivariate dependence structure that we have fitted on the data is a 3-dimensional Gumbel copula with parameter θ = 1.19, thus Assumptions I and II in Section 1 seems to be satisfied. In Figure 3 below, we represent the estimated Kendall distribution function (solid line), the comonotonic Kendall distribution (bold line), the independent Kendall distribution (dotted line) and the Gumbel Kendall distribution with θ = 1.19 (dashed line).

In Figure 4 we represent data-set and estimated 3-variate Conditional Tail Expectation, for several values of risk-level α. Table 5 contains the estimated components of the vectorial CTE for three different values of α. In this real setting the estimation of CTE α can be used in order to quantify the mean of the river flow in the Hore site (resp. in the Tanllwyth site or Wye-Gwy site) conditionally to the fact that the data belong jointly to the specific risk's area L(α). It seems that data on the Wye-Gwy site have an heavier tail than data on both other sites. For the three different values of α, the estimated value for the third component of the vectorial CTE is indeed greatest than the estimated values for the first and the second components. Among these three sites we may thus consider on this study that the Wye-Gwy is the most dangerous, and maybe infrastructure efforts should be focused on this area. The proof of this result follows the proof of Lemma 1 in [START_REF] Barbe | On Kendall's process[END_REF]. Let ( F n -F ) + and ( F n -F ) -respectively denote the positive and negative parts of

F n -F . Observe that ν n (A 1, z ) = √ n ( F n -F )(z) for all z ∈ [0, 1] d . Since -ζ n (t) = K(t) 1 √ n n i=1 Z j i 1 { Fn(U i )≤ t} -1 { F (U i )≤ t} , then -ζ n (t) = δ n (t) -n (t) with δ n (t) = K(t) √ n 1 n n i=1 Z j i 1 {t< F (U i )≤ t+( Fn-F ) -(U i )} , and 
n (t) = K(t) √ n 1 n n i=1 Z j i 1 {t-( Fn-F ) + (U i )< F (U i )≤ t} .
In the following we prove:

sup t 0 ≤t≤1 δ n (t) -K(t) [0,1] d √ n ( F n -F ) -(z) µ t (dz) P → n→∞ 0. (12) 
Convergence in ( 12) is established below. The convergence sup

t 0 ≤t≤1 n (t) -K(t) [0,1] d √ n ( F n -F ) + (z) µ t (dz) P → n→∞ 0, (13) 
is analogous and left to the reader. Convergence in [START_REF] Cai | Conditional tail expectations for multivariate phase-type distributions[END_REF] follows immediately from ( 12) and ( 13), since

F n -F = ( F n -F ) + -( F n -F ) -. For any elements C of a partition C = (C l ) m l=1 ∈ P, let I n,l = inf z∈C l √ n( F n -F ) -(z), S n,l = sup z∈C l √ n( F n -F ) -(z) and ρ n,C (t) = K(t) √ n 1 n n i=1 Z j i 1 { F (U i )≤ t,U i ∈C} -E[Z j 1 { F (U )≤t,U ∈C} ] .
Let also

δ n,l (t) = K(t) √ n 1 n n i=1 Z j i 1 {t< F (U i )≤ t+( Fn-F ) -(U i )} 1 {U i ∈C l } ,
so that δ n (t) = m l=1 δ n,l (t). For arbitrary integers 1 ≤ l ≤ m, one may write

δ n,l (t) ≤ K(t) √ n 1 n n i=1 Z j i 1 {t< F (U i )≤ t+ S n,l √ n } 1 {U i ∈C l } ≤ ρ n,C l (t + S n,l / √ n) -ρ n,C l (t) + K(t) √ n t+ S n,l √ n t µ s (C l )ds = ρ n,C l (t + S n,l / √ n) -ρ n,C l (t) + K(t) √ n t+ S n,l √ n t [µ s (C l ) -µ t (C l )]ds + µ t (C l ) S n,l K(t) = ρ n,C l (t + S n,l / √ n) -ρ n,C l (t) + K(t) √ n t+ S n,l √ n t [µ s (C l ) -µ t (C l )]ds + µ t (C l )S n,l K(t) -K(t) C l √ n( F n -F ) -(z) µ t (dz) + K(t) C l √ n( F n -F ) -(z) µ t (dz) ≤ ρ n,C l (t + S n,l / √ n) -ρ n,C l (t) + K(t) √ n t+ S n,l √ n t [µ s (C l ) -µ t (C l )]ds + µ t (C l ) K(t) (S n,l -I n,l ) + K(t) C l √ n( F n -F ) -(z) µ t (dz).
An analogous argument yields

δ n,l (t) ≥ K(t) √ n 1 n n i=1 Z j i 1 {t< F (U i )≤ t+ I n,l √ n } 1 {U i ∈C l } ≥ ρ n,C l (t + I n,l / √ n) -ρ n,C l (t) -K(t) √ n t+ I n,l √ n t [µ s (C l ) -µ t (C l )] ds -µ t (C l ) K(t) (S n,l -I n,l ) + K(t) C l √ n( F n -F ) -(z) µ t (dz).
Lemma 7.1 Under regularity conditions i) and ii) and Assumption I, the empirical process ρ n,C converges weakly to a continuous Gaussian process with zero mean and covariance function

K(t) K(s) E[Z 2 j 1 {U ∈C, F (U )≤t∧s} ] -E[Z j 1 {U ∈C, F (U )≤t} ] E[Z j 1 {U ∈C, F (U )≤s} ] .
Proof of Lemma 7.1:

We first observe that for arbitrary C ∈ C, the finite-dimensional distributions of the empirical process ρ n,C converges weakly to those of a centered Gaussian process with covariance function

K(t) K(s) E[Z 2 j 1 {U ∈C, F (U )≤t∧s} ] -E[Z j 1 {U ∈C, F (U )≤t} ] E[Z j 1 {U ∈C, F (U )≤s} ] .
It remains to prove the tightness of {ρ n,C (t), t}. The proof of the tightness is postponed to the Appendix.

Furthermore, it follows from Theorem 2.1.3 in Gaenssler and Stute (1979) that the multivariate empirical process √ n( F n -F ) converges, in D d = D[0, 1] d , to a continuous Gaussian process B = B + -B -, where the space of càdlàg functions D d is equipped with the Skorohod topology. As a result, f { √ n( F n -F )} converges weakly to f {B} for any D d -measurable function that is continuous at every point of C[0, 1] d . In particular, I n,l and S n,l converge in distribution to inf z∈C j B -(z) and sup z∈C j B -(z) respectively. As a result, the quantities I n,l / √ n and S n,l / √ n both converge in probability to 0 as n → ∞, and hence the same must be true of is the modulus of continuity of f . By choosing a partition C ∈ P with an appropriate mesh, it is thus possible to make R n,5 = sup t 0 ≤t≤1 R n,5 (t) arbitrarily small with high probability when n is large enough. Collecting terms, one may then conclude that sup t 0 ≤t≤1

δ n (t) -K(t)

[0,1] d √ n ( F n -F ) -(z) µ t (dz) ≤ max(R n,1 , R n,2 ) + max(R n,3 , R n,4 ) + R n,5 .

20

Since the left-hand side does not depend on the choice of the partition, the proof is complete. Since this string of inequalities must hold whatever the choice of the partition C, one may conclude that L = L, hence the result. which tends to zero as t 0 tends to zero.

Proof of (ii):

We have to adapt the proof of (ii) of Lemma 3 in [START_REF] Barbe | On Kendall's process[END_REF]. The procedure to adapt the proof is similar as for (i) and thus will be omitted here.

  e., K(t) = P[F (Z) > t]. For more details on the multivariate probability integral transformation, the interested reader is referred to Capéraà et al., (1997), Genest and Rivest (2001), Nelsen et al. (2003), Genest and Boies (2003), Genest et al. (2006) and Belzunce et al. (2007).

Remark 3

 3 In[START_REF] Barbe | On Kendall's process[END_REF],[START_REF] Genest | Goodness-of-fit procedures for copula models based on the probability integral transformation[END_REF] can be found classes of multivariate copulas which satisfy Assumptions I and II (Archimedean copulas, bivariate extreme copulas, FGM, . .

Figure 1 :( CTE 1 α

 11 Figure 1: Q-Q plot for √ n ( CTE 1 α (X, Y ) -CTE 1 α (X, Y )) on 100 simulations, with α = 0.38, n = 50, 250, 800. (X, Y ) with independent and exponentially distributed components with parameter 2.

  Kendall based estimator with the level-sets based one introduced in Di Bernardino et al. (2011) Let us first recall the definition of the level-sets based estimator of the CTE α , as it was introduced in Di Bernardino et al. (2011). To this aim, we define, for some T > 0,

.

  The choice of the truncation sequence T n is detailed in Section 5.2.1 in Di Bernardino et al. (2011) (see Tables

Figure 2 :

 2 Figure 2: Empirical confidence intervals for CTEα 2 (X, Y )K of order 0.95, for different values of α level. Red square are the theoretical values of CTE 2 α (X, Y ). X and Y are independent and exponentially distributed components with parameter 1 and 2 respectively.

Figure 3 :

 3 Figure 3: Estimated Kendall distribution function (solid line), comonotonic Kendall distribution (bold line), independent Kendall distribution (dotted line) and Gumbel Kendall distribution with θ = 1.19 (dashed line).

Figure 4 :

 4 Figure 4: River flow data; CTEα,K for different values of α: α = 0.6 (black square), α = 0.8 (star), α = 0.95 (black dot).
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 71 Proof of Lemma 4.2

1 ,z 2

 12 C l (t + I n,l / √ n) -ρ n,C l (t) , C l (t + S n,l / √ n) -ρ n,C l (t) ,because m is fixed and the processes ρ n,C l are tight for all 1 ≤ l ≤ m. The convergence of I n,l / √ n and S n,l / √ n to zero further implies that for arbitrary 0 < t 0 ≤ 1, the quantitiesR n,3 = √ n s (C l ) -µ t (C l )]ds , (C l ) -µ t (C l )]ds , converge to 0 in probability, because µ s (C l ) is continuous for all s ∈ [t 0 , 1]. Finally, note that R n,5 (t) = K(t) m l=1 µ t (C l ) (S n,l -I n,l ) ≤ m l=1 µ t (C l ) max 1≤l≤m sup z 1 ,z 2 ∈C l √ n ( F n -F ) -(z 1 ) -( F n -F ) -(z 2 ) ≤ k(t) E[Z j ] ∈C l √ n ( F n -F ) -(z 1 ) -( F n -F ) -(z 2 ) ≤ k(t) E[Z j ] ω{ √ n ( F n -F ) -, max 1≤l≤m diam(C l )},where ω{f, r} = sup z 1 ,z 2 ∈[0,1] d ,d(z 1 ,z 2 )≤z |f (z 1 ) -f (z 2 )|

µ

  t (C l ) sup z∈C l f (z) < +∞, andL = lim inf l→∞ f (z)µ t l (dz) ≥ m l=1 µ t (C l ) inf z∈C l f (z) > -∞, C l ) sup z,w∈C l |f (z) -f (w)| ≤ k(t) ω{f, max 1≤l≤m diam(C l )}.

  ; Embrechts and Puccetti, 2006; Nappo and Spizzichino, 2009; Cousin and Di Bernardino, 2012; Henry et al., 2012).
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  [START_REF] Cousin | A multivariate extension of value-at-risk and conditional-tailexpectation[END_REF] derive several properties for the multivariate extension of the classical univariate Conditional Tail Expectation proposed in Definition 2.1. In particular, it satisfies the homogeneity and the translation invariance properties, as far as a weak version of the monotonicity property, which are required properties for coherent risk measures in the sense of[START_REF] Artzner | Coherent measures of risk[END_REF]. In the simulation study we will also illustrate two other properties: -for some family of Archimedean copulas an increase of the dependence parameter θ yields a decrease in each component of CTE For further details the interested reader is referred to Sections 3.1-3.5 in Cousin and Di Bernardino (2012).We propose in this paper a new non parametric estimator for the Conditional Tail Expectation based on the Kendall empirical distribution. The Kendall-based estimator for the Multivariate t-Conditional Tail Expectation is defined by

	Definition 2.2

t (Z), -CTE i t (Z) is a non-decreasing function of risk level t, for i ∈ 1, . . . , d.

  Thus, from the multivariate central limit theorem (see e.g., 2.18 in Van de Vaart, 1996), the finite-dimensional distributions of the empirical

	process	φ n χ n	converge to those of	φ χ	. Furthermore the sequence	φ n (t) χ

n (t) , t ∈ [0, 1] is tight in D [0, 1], R 2 as both {φ n (t), t ∈ [0, 1]} and {χ n (t), t ∈ [0, 1]} converge in D ([0, 1], R) to some continuous limit process.

Then using the continuous mapping theorem (see e.g. Theorem 2.3 in Van der Vaart, 1996) we obtain that α CTE n, j converges weakly to a continuous Gaussian process α CTE j with zero mean and covariance function Γ j CTE . Moreover, the limiting process α CTE j has the following representation in terms of χ and φ:

Table 1 :

 1 (X, Y ) with independent and exponentially distributed components with parameter 1 and 2 respectively.

	10 (1.255, 0.627) (1.222, 0.638)	(1.259, 0.628) (0.044, 0.022) (0.039, 0.021) (0.043, 0.039) (0.032, 0.036)
	0.24 (1.521, 0.761) (1.488, 0.811)	(1.524, 0.761) (0.069, 0.023) (0.053, 0.023) (0.051, 0.042) (0.035, 0.037)
	0.38 (1.792, 0.896) (1.797, 0.911)	(1.791, 0.895) (0.075, 0.038) (0.068, 0.037) (0.044, 0.046) (0.037, 0.043)
	0.52 (2.102, 1.051) (2.082, 1.047)	(2.113, 1.056) (0.104, 0.052) (0.094, 0.045) (0.052, 0.052) (0.045, 0.044)
	0.66 (2.492, 1.246) (2.461, 1.255)	(2.507, 1.259) (0.139, 0.071) (0.137, 0.071) (0.057, 0.056) (0.056, 0.052)
	0.80 (3.061, 1.531) (3.011, 1.544)	(3.105, 1.535) (0.251, 0.125) (0.248, 0.122) (0.084, 0.082) (0.083, 0.081)

Table 2 :

 2 

(X, Y ) with Clayton copula with parameter 1, FX exponential distribution with parameter 1, FY Burr(

Table 3 :

 3 Comparison of the evolution of σK and RMSEK with respect to σL α and RMSEL α , in terms of sample size n for α = 0.9; (X, Y ) independent and exponentially distributed components with parameter 1 and 2 respectively.

Table 5 :

 5 CTEα,K for 3-dimensional river flow data-set, for different values of level α.

  7.2. Proof of Lemma 4.3First observe that there exists a continuous version F * n of F n with the property that sup z∈[0,1] d F * n (z) -F n (z) ≤ 1 n and √ n ( F * n -F )(z) converges weakly to B in C[0, 1] d .Note also that sup Thus, in view of Lemma 4.2, it suffices to show that for any f ∈ C[0, 1] d , the function ) m l=1 ∈ P, it is known by hypothesis that the function t → µ t (C l ) is continuous on [t 0 , 1] for any 1 ≤ l ≤ m. Thus, for any sequence (t l ) in [t 0 , 1] converging to t, one has

	t 0 ≤t≤1	[0,1] d	√	n ( F * n -F )(z) µ t (dz) -	[0,1] d	t 0 ≤t≤1 n ( F n -F )(z) µ t (dz) ≤ sup √	k(t) E[Z j ]/ √	n.
				t →				
				[0,1] L = lim sup			

d f (z) µ t (dz) belongs to C[t 0 , 1]. For if the latter is true, then the mapping f → [0,1] d f (z) µ t (dz)

will be a bounded linear (and hence continuous) functional from

C[0, 1] d to C[t 0 , 1]. Given a partition C = (C l l→∞ f (z)µ t l (dz) ≤
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We restrict ourselves to R d + because usually, in applications, components of d-dimensional vectors correspond to random losses and are then valued in R+. However extensions of our results in the case of multivariate distribution function on the entire space R d are possible.

A family of copulas that includes comonotonicity, counter-monotonicity and independence dependence structures is called comprehensive (see[START_REF] Nelsen | An introduction to copulas[END_REF].
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Proof of Lemma 4.4

The proof of (i) (resp. (ii)) in Lemma 4.4 is similar to the one of (i) (resp. (ii)) of Lemma 3 in [START_REF] Barbe | On Kendall's process[END_REF]. We detail below the few changes induced by the fact that we study the CTE and not the Kendall's process itself.

Proof of (i):

We refer the interested reader to pages 217 to 219 of the paper by [START_REF] Barbe | On Kendall's process[END_REF]. We start from the corollary which follows Theorem 4 in [START_REF] Barbe | On Kendall's process[END_REF]. Nothing is changed in the proof until the beginning of page 218. Then we write the following chain of inequalities on F n, :

where

We then get

and

The first and the third terms are handled as in [START_REF] Barbe | On Kendall's process[END_REF], page 219. The second term writes

which tends to zero as n tends to infinity. It remains to handle R n,7 .

We use once more that G is continuously differentiable on

Appendix: Proof of the tightness of {ρ n,C (t), t}:

To prove the tightness, we apply Theorem 12.3 in [START_REF] Billingsley | Probability and Measure[END_REF]. Recall that

It is sufficient to prove the tightness of

Let us denote, for any 0 < t < 1,

and for any 0

For any 0 < u < s < t < 1 the L c i (s, t), i = 1, . . . , n are i.i.d. centered random variables and for any i = j ∈ {1, . . . , n}, L c i (s, t) is independent of L c j (u, s). Let us compute, for arbitrary 0 < u < s < t < 1,

.

Let 1 < p < 2 and q > 2 be such that 1/p + 1/q = 1. From independence on has

One has

One has by independence