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Rate Distortion Behavior of Sparse Sources
Claudio Weidmann, Member, IEEE, and Martin Vetterli, Fellow, IEEE

Abstract—The rate distortion behavior of sparse memoryless
sources is studied. These serve as models of sparse signal
representations and facilitate the performance analysis of “sparsi-
fying” transforms like the wavelet transform, and nonlinear
approximation schemes. For strictly sparse binary sources with
Hamming distortion, R(D) is shown to be almost linear. For non-
strictly sparse continuous-valued sources, termed compressible,
two measures of compressibility are introduced: incomplete
moments and geometric mean. The former lead to low- and
high-rate upper bounds on mean squared error D(R), while
the latter yields lower and upper bounds on source entropy,
thereby characterizing asymptotic R(D) behavior. Thus the
notion of compressibility is quantitatively connected with actual
lossy compression. These bounding techniques are applied to two
source models: Gaussian mixtures and power laws matching the
approximately scale-invariant decay of wavelet coefficients. The
former are versatile models for sparse data, which in particular
allow to bound high-rate compression performance of a scalar
mixture compared to a corresponding unmixed transform coding
system. Such a comparison is interesting for transforms with
known coefficient decay, but unknown coefficient ordering, e.g.
when positions of highest-variance coefficients are unknown.
The use of these models and results in distributed coding and
compressed sensing scenarios is also discussed.

Index Terms—Sparse signal representations, rate distortion
theory, memoryless systems, entropy, transform coding.

I. INTRODUCTION

S
PARSE signal representations are the basis of state-of-

the-art lossy compression and applied compressive sam-

pling / compressed sensing. The fundamental appeal of sparsity

lies in the property that a small number of coefficients carries

the bulk of the signal energy, or more generally the part of

the signal that is relevant to the application, e.g. perceptually.

In the case of traditional lossy compression, sparsity provides

a first stage of compression by reducing the number of coef-

ficients needed for approximate reconstruction (by nonlinear

approximation) [1]. In the case of sparse sampling [2] and

compressed sensing [3], [4], sparsity enables sampling a signal

below its apparent Nyquist rate, while incurring a minimal

increase in distortion. This is achieved by “universally” sam-

pling the signal (e.g. using an appropriate random basis)
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and imposing a sparsity constraint on its reconstruction. Part

of the appeal of such methods comes from the fact that

the computational complexity of “sparsifying” transform and

nonlinear approximation is moved from the encoder (sampling

device) to the decoder (reconstruction device), that is, the

encoder is kept “simple” and non-adaptive.

The analysis of both nonlinear approximation (NLA) and

compressed sensing (CS) has long focused on the number

of coefficients / samples required to achieve reconstruction at

a given distortion level. However, this ignores the fact that

most applications involve some form of digital transmission or

storage, which requires quantizing analog continuous-valued

coefficients. The approach taken in this paper is to study the

number of bits needed to achieve a given distortion, by mod-

eling the output of a sparsifying transform as a sparse source,

whose rate distortion behavior can be characterized. Such

analysis has the advantage that it characterizes the ultimate

compression trade-off between rate (in bits/sample) and distor-

tion, independently of the scheme under consideration. Under

the assumption that the sparsifying transform is known to both

encoder and decoder, it does not matter whether the transform

is used at the encoder (as in quantized NLA, i.e. adaptive lossy

compression) or at the decoder (CS with quantized samples),

provided that the ultimate goal is to reconstruct the sparse

source signal with the smallest distortion possible for a given

bit budget. This means that such information-theoretic analysis

does not take into account practical complexity issues, like

e.g. encoders with limited processing capabilities, which might

favor CS over NLA.

A central aspect of our approach is how to model sparse

sources and how to measure their (approximate) sparsity.

We focus on simple memoryless models that suffice to gain

insights on the relation between sparsity and rate distortion

behavior. Wavelet coefficients will serve as a practical example

of a sparse source throughout the paper, since the material

presented here has its roots in our work on understanding

wavelet image compression. Besides this, the wavelet trans-

form is perhaps the best known sparsifying transform, and

it also plays a key role in recent CS applications such as

the “single pixel camera” [5]. Since unitary transforms (or

nearly unitary ones, like the popular 9/7 biorthogonal wavelet)

leave vector norms unchanged, for mean squared error (MSE)

distortion measure it is sufficient to study the rate distortion

function of sparse sources modeling the transform coefficients.

The main focus of this paper is thus the characterization of

non-strictly sparse continuous-valued sources. We adopt the

often-used term compressible to denote such sources. The key

questions that will be addressed are how to quantitatively

measure sparsity and how to relate such measures with the

rate distortion properties of a source.

c© 2012 IEEE
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Fig. 1. (a) Operational distortion rate points of a wavelet coder applied to
the Lena image. The knee shape, leading from steep decay at low rates to
the asymptotic −6 dB/bit slope, is typical for such image coders. (b) At low
rates, only a small fraction of coefficients is quantized to nonzero values, all
the others are not used in the reconstruction of the image.

Sparsifying transforms, which are the main tool for ob-

taining sparse signal representations, have been studied in

various compression-related settings. For example, the success

of wavelet-based coding is often attributed to the ability of

wavelets to “isolate” singularities, something Fourier bases

fail to do efficiently [1]. Thus, a piecewise smooth signal

is mapped through the wavelet transform into a sparse set

of non-zero transform coefficients, namely coefficients around

discontinuities, as well as coefficients representing the general

trend of the signal [6]. While this behavior is well understood

in terms of nonlinear approximation power (that is, approxi-

mation by the N largest terms of the wavelet transform, see [7]

for a thorough treatment), the rate distortion behavior is more

open. Early work on NLA of random functions [8] concen-

trated on approximation error as a function of the number of

approximation terms, neglecting the trade-off between the rate

needed to identify these terms and the rate used to quantize

each term. Mallat and Falzon [9] were the first to analyze

the operational low-rate behavior of image transform coding,

which is very different from the behavior expected from classic

Karhunen-Loève transform (KLT) theory. In essence, at low

rates only few wavelet coefficients are involved in the approx-

imation of piecewise smooth functions, leading to a decay

of the distortion rate function that is steeper than the classic

exponential decay in the case of Gauss-Markov processes and

the KLT. This result had been observed experimentally in low-

rate image coding; see Fig. 1 for an example.

A key difference between compressing jointly Gaussian

processes using the KLT and compressing piecewise smooth

processes with the wavelet transform lies in the identification

of the set of significant coefficients that are quantized and used

for reconstruction. In the KLT case, the optimal rate allocation

strategy is reverse water-filling [7, Sec. 11.3], [10, Sec. 13.3.3],

meaning that statistical signal properties (the eigenvalues of

the covariance matrix) determine a priori the set of coefficients

for a given reconstruction quality. The KLT approximation is

“linear” (up to quantization) and non-adaptive, in the sense that

two sample vectors with the same covariance matrix will be

approximated using the same set of coefficients, which spans

a subspace. In the wavelet approach, the approximation is

“nonlinear” and adaptive, since the set of coefficients is chosen

a posteriori based on the transformed signal realization and

may thus change from instance to instance. This underlines

the importance of coding the positions of the significant

coefficients in a sparse vector; see [11] for a thorough analysis

in the context of wavelets.

The above-cited results indicate the interest to study the

rate distortion behavior of sparse signal representations in

more depth, in particular, to narrow down rates and distortions

within constants, avoiding the loose factors in the exponent

that are often present in approximation results. Recently,

sparse sources have also received renewed attention with the

work on sparse sampling [2] and compressed sensing (CS)

[3], [4]. Their rate distortion behavior is still being studied,

with some initial results in [12]. Thus, the present paper fills

a gap, giving either precise results or tight bounds on the rate

distortion behavior of models that serve as benchmarks for

these methods.

The remainder of this paper is organized as follows. Sec-

tion II presents three classes of source models, namely strictly

sparse binary sources and mixed discrete/continuous “spike”

sources, as well as non-strictly sparse continuous sources. It

also briefly introduces some essential information-theoretic

definitions and tools.

Section III looks at strictly sparse sources. Binary vectors

with Hamming distortion are studied in Section III-A as a

model for coding the positions of a set of coefficients. Closed-

form expressions for R(D) are derived for the case when

the number of non-zero entries is known; these hold also

for non-sparse sources. For sparse binary sources, R(D) is

found to be essentially linear. Section III-B then considers a

mixed discrete/continuous spike source, in which a Bernoulli

(position) source switches a Gaussian (value) source on or off.

The MSE distortion rate behavior is characterized using upper

bounds. Sparse spikes help explaining the steep distortion

decay in low-rate NLA, but they fail to model the behavior at

medium to high rates, for which continuous sources are more

appropriate.

Section IV opens the main theme by introducing two

ways of measuring compressibility (non-strict sparsity) of

continuous-valued sources: using incomplete moments and

using the geometric mean. Based on incomplete moments,

Section V introduces upper bounds on MSE D(R) and applies

them to a popular power-law model for approximately scale-

invariant data, such as wavelet coefficients. Section VI then

presents lower and upper bounds on the source entropy using

the geometric mean and the variance, thereby characteriz-

ing the asymptotic rate distortion behavior of a source as

a function of its compressibility. In fact, these bounds on

D(R) and entropy hold for continuous sources with arbitrary



WEIDMANN AND VETTERLI: RATE DISTORTION BEHAVIOR OF SPARSE SOURCES 3

compressibility, i.e. also for non-sparse sources.

The theme of compressible sources is continued in Sec-

tion VII, which considers Gaussian mixture models, show-

ing that simple two-component mixtures already capture the

essential D(R) characteristics (the knee shape) of sparse

sources. Based on incomplete moments, a notion akin to

classic transform coding gain is introduced. In the case of

Gaussian transform coefficients, it is possible to bound the loss

in coding gain if the coefficients are randomly mixed (that is,

if one knows only their variances, but not their positions).

Finally, Section VIII briefly outlines how the results on

compressible sources can be applied to distributed coding and

compressed sensing scenarios.

II. MODELS, DEFINITIONS AND TOOLS

A. Models for Sparse Sources

When using sparse signal representations as building blocks

for lossy source coding, the goal is to concentrate most of the

signal energy in as few coefficients as possible. Lossy com-

pression then proceeds by selecting a subset of coefficients that

will be quantized. Nonlinear approximation (NLA) methods

will generally select the largest coefficients first, other (linear)

methods might select a fixed set depending on the coding rate

or some other criterion. The quality of the reconstruction from

the quantized coefficients will be measured with an appropriate

distortion measure.

The coefficients representing the signal will be modeled as

coming from a memoryless sparse source X , which emits

an i.i.d. sequence of random variables X1, X2, . . .. For sim-

plicity, we will use X to denote both the source and the

random variable(s) that it emits. Before presenting the different

models, we need to clarify the notion of “sparse source.”

We will say that a source is strictly sparse if it emits the

value zero with positive probability. Clearly, the closer this

probability is to 1, the sparser is the source. A natural measure

of sparsity in this situation is the normalized Hamming weight

of a sample vector, 1
nwH(x), which asymptotically equals

Pr{X 6= 0} < 1, such that smaller values indicate a sparser

source. The Hamming weight is wH(x) = dH(x,0), where

dH(x, x̂) = 1
n

∑n
i=1 dH(xi, x̂i) and dH(x, x̂) = 1x6=x̂ are

the Hamming distances between vectors and symbols, respec-

tively.

A more general notion of sparsity will encompass sources

that emit sparse sequences affected by weak background

noise, which has negligible energy compared to the sparse

component. Such compressible (non-strictly sparse) sources

can be modeled by proper continuous random variables. These

have Pr{X 6= 0} = 1 and therefore Hamming weight cannot

be used to measure their sparsity; alternative measures will be

proposed in Section IV.

Three different classes of sparse source models will be

studied:

1) Sparse binary sources might model a significance map

or sparsity pattern, that is, the binary map recording the

positions of significant coefficients in an NLA scheme.

(These are the coefficients which are actually used to

reconstruct the signal.) We will analyze both sources

emitting vectors of length N containing exactly K ones

and Bernoulli-p (binary memoryless) sources, emitting

sequences of i.i.d. binary random variables.

2) Spike sources are a generalization of sparse binary

sources, where each binary one is associated with a

continuous random variable. In particular, we will study

the product of a Bernoulli-p source (emitting 0 or 1) and

a memoryless Gaussian source, using the MSE distortion

measure. This might serve as a crude model of very low

rate wavelet-based NLA coding, when only a tiny subset

of coefficients is used to represent the signal.

3) Compressible sources are memoryless sources emit-

ting i.i.d. continuous random variables with a peaked

unimodal density (the mode is assumed to be zero).

Examples are power laws, Laplacians and generalized

Gaussian densities with exponent smaller than one. Such

sources can be used as a first-order model for wavelet

coefficients in e.g. image coding [13]. In particular,

we will show that very simple Gaussian mixtures are

sufficient to capture the key aspects of the rate distortion

behavior of sparse wavelet coefficients.

B. Definitions and Tools

The rate distortion function R(D) of a source was in-

troduced by Shannon to measure the minimal amount of

information rate required to describe the source output within

average distortion D [14], [15]. It is the minimal rate needed

by an optimal (high-dimensional) vector quantizer, that is by

an optimal lossy compressor. This operational definition is

found to be equal to the information rate distortion function

R(I)(D) [10, Theorem 13.2.1],

R(D) = R(I)(D) = min
f(x̂|x): E d(X,X̂)≤D

I(X; X̂), (1)

where X̂ is the reconstruction random variable defined via

the conditional probability mass (or density) function (pmf

or pdf) f(x̂|x), I(X; X̂) = E log f(X,X̂)

f(X)f(X̂)
is the mutual

information between X and X̂ , and d(x, x̂) is the distortion

measure. The expected distortion is obtained over the joint dis-

tribution f(x, x̂) = f(x)f(x̂|x). Equality (1) implies that the

information-theoretic function R(I)(D) describes the ultimate

performance limits of lossy compression (and it also allows us

to drop the superscript (I) in the following). These definitions

and results hold for discrete and continuous sources, as well

as mixed discrete/continuous sources, under appropriate con-

ditions on f(x) and d(x, x̂) [16], [10, Chap. 13]. Closed-form

expressions for R(D) are known for the binary memoryless

(Bernoulli-p) source with Hamming distortion and the Gaus-

sian source with squared error distortion. Alternatively, the

distortion rate function D(R), the inverse of R(D), measures

the minimal distortion achievable with a given description

rate. We use both functions interchangeably, but in figures we

always plot distortion over rate.

This work considers only memoryless sources and single-

letter distortion measures. For the first of the above models,

sparse binary sources, a natural distortion measure is the

Hamming distance dH(x, x̂). The other two models, spike
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sources and compressible sources, output continuous values

and correspond to situations where signal energy will be

measured with the square norm. Hence we will use the mean

squared error (MSE) as distortion measure, corresponding to

d(x, x̂) = (x − x̂)2.

Two key results on continuous sources that will be used

as tools throughout the paper are as follows. The Gaussian

upper bound states that the MSE distortion rate function of

a memoryless continuous source with variance σ2 is upper-

bounded by the distortion rate function of a Gaussian source

with the same variance [14, Theorem 23],

D(R) ≤ σ2e−2R. (2)

Note that in this work, all rates are expressed in nats and all

logarithms are natural, unless otherwise stated. The Shannon

lower bound (SLB) states that the MSE rate distortion function

of a memoryless continuous source is lower-bounded by that

of a Gaussian source with the same differential entropy [14,

Theorem 23],

R(D) ≥ RSLB(D) = h(X) − 1

2
log(2πeD), (3)

where h(X) = −E log f(X) is the differential entropy of the

source. For a large class of sources with sufficiently “nice”

densities, the MSE SLB (3) is asymptotically tight for small

distortions (large rates), that is R(D) − RSLB(D) → 0 as

D → 0; see e.g. [16, Sec. 4.3.4] or [17]. Thus we will use

bounds on the entropy of compressible sources to characterize

their asymptotic rate distortion behavior.

III. STRICTLY SPARSE SOURCES

A. Sparse Binary Sources

We will first study memoryless binary vector sources that

emit exactly K ones in a vector of length N , after which

we look at the simple scalar binary memoryless (Bernoulli-

p) source. Reconstruction fidelity is measured with Hamming

distortion, which is equivalent to a frequency of error criterion

where both types of errors have the same cost (coding a one

when there is none and vice-versa).

Definition 1 The binary (K, N) source is a memoryless

source that emits binary vectors of length N and Hamming

weight K, with uniform probability over the
(

N
K

)

possible

patterns.

Since the source alphabet size is finite, the rate distortion

problem is not a proper vector-valued problem and can actually

be solved with the methods for discrete memoryless sources

summarized in Appendix A.

a) Binary Vectors of Weight 1: The simplest case of a

binary (1, N) source X is equivalent to a memoryless uniform

source U with alphabet U = {1, 2, . . . , N}. Using the standard

basis vectors ei we can write X = eU . It can be shown (see

Theorem 14 from [16] in Appendix A) that just one additional

reconstruction letter is needed to achieve the Hamming rate

distortion bound, and it will map to the all-zero vector 0. To

see that it can only be the all-zero vector, consider the source

alphabet {e1, e2, . . . ,eN}, which consists of all vectors of
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Fig. 2. D(R) for the binary (1, N) source with Hamming distortion, N =
2 . . . 20 (bottom to top curve). The rate has been normalized by log N . For
N → ∞, D(R) becomes a straight line, see (4).

Hamming weight one. Any other non-zero vector will be at

Hamming distance one or more from these vectors and thus

can only worsen the distortion achieved by the all-zero vector,

which is exactly one. If we define Û = U ∪ {0} and e0 = 0,

then everything fits nicely. Using û = 0 corresponds to not

coding the position. We get the distortion measure

ρ(u, û) = dH(eu, eû) = dH(u, û) · (1 + dH(û, 0)).

Thus “giving the right answer” has zero distortion, a wrong

answer two, and not answering costs one distortion unit.

Proposition 1 The Hamming rate distortion function of a

binary (1, N) source for N ≥ 2 is

R(D) =

{

(1 − D) log(N − 1), 2
N < D ≤ 1,

log N − D
2 log(N − 1) − hb

(

D
2

)

, 0 ≤ D ≤ 2
N ,
(4)

where hb(p) = −p log p − (1 − p) log(1 − p) is the binary

entropy function.

The proof appears in Appendix B; Fig. 2 shows a set

of typical D(R) functions. As N becomes large, the linear

segment dominates the rate distortion characteristics. In the

special case N = 2, the solution degrades to twice the D(R)
function of a binary symmetric source.

b) Binary Vectors of Weight K: The general binary

(K, N) source for K ≥ 2 emits one of the
(

N
K

)

binary vectors

of length N and Hamming weight K, uniformly at random. Its

Hamming rate distortion function can be obtained in similar

fashion to the (1, N) source, if the additional reconstruction

letter is the all-zero vector [18, Sec. 3.2.2]. However, this

choice of Û is optimal only for low distortions. Determining

the best Û for higher distortions requires a cumbersome case-

by-case analysis that can be avoided in view of the following

result for sparse Bernoulli-p sources.
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c) Sparse Binary Memoryless Sources: The simplest

model of a sparse binary source is a Bernoulli-p binary

memoryless source (BMS) with p = Pr{X = 1} ¿ 1.

Its extension to blocks of symbols may be considered as a

randomized version of the above binary vector models, since

blocks of N samples will contain close to pN ones on average,

instead of a fixed number K.

Proposition 2 Consider a Bernoulli-p source (p ≤ 1
2 ) with

normalized distortion d = D/p, where D is Hamming

distortion. Then the normalized rate distortion function is

asymptotically linear when p → 0:

lim
p→0

R(pd)

hb(p)
= 1 − d, 0 ≤ d ≤ 1

Proof: The rate distortion function of the BMS is R(D) =
hb(p) − hb(D) for D ≤ p ≤ 1

2 [10, Thm. 13.3.1]. Therefore

R(pd)

hb(p)
= 1 − hb(pd)

hb(p)

= 1 − pd log(pd) + (1 − pd) log(1 − pd)

p log(p) + (1 − p) log(1 − p)
,

from which, by applying Bernoulli-de l’Hospital’s rule twice,

lim
p→0

R(pd)

hb(p)
= 1 − lim

p→0

d log(pd) − d log(1 − pd)

log p − log(1 − p)

= 1 − lim
p→0

d/p + d2/(1−pd)
1/p + 1/(1−p)

= 1 − d

Proposition 2 shows that if we normalize the rate and the

distortion by their maxima, hb(p) and p, respectively, the rate

distortion function becomes linear for sparse binary sources

with p → 0.

d) Remarks: For both the vector model and the BMS the

rate distortion function becomes linear for very sparse sources,

for which the average Hamming weight approaches zero. The

interest of the vector model lies mainly in the fact that it yields

analytic expressions for R(D), of which there are not many

examples in rate distortion theory.

The consequence of this “almost linear” behavior of sparse

binary sources is the following: to encode sequences of length

n at intermediate rates 0 < R < nhb(p), it is not necessary

to use a complex lossy encoder, but one can simply encode

the positions of the ones in sequential fashion using a lossless

encoder (e.g. an arithmetic coder), until the bit budget R is

used up.

B. Spike Sources

The previous section studied sparse binary sources that

may model the position of significant coefficients. Now we

also consider the values of those coefficients, by modeling

them as continuous random variables. The resulting model

is a discrete-time stochastic process that is zero almost all

the time, except in a few positions, where spikes stick out.

Distortion will be measured by the mean squared error (MSE).

A simple model of a spike source can be obtained by mul-

tiplying the outputs of a binary source (emitting 0 or 1) and

a memoryless continuous source. The binary source simply

switches the value source on or off. Here we consider only

Gaussian-distributed values, because they provide a worst-case

benchmark for MSE distortion.

Definition 2 The Bernoulli-Gaussian (BG) spike source emits

i.i.d. random variables that are the product of a binary random

variable U with Pr{U =1} = p and Pr{U =0} = 1 − p and

an independent zero-mean Gaussian random variable V with

variance σ2
v . Using Dirac’s delta function, the “pdf” of the

BG spike can be written as

f(x) = (1 − p)δ(x) + p
1√

2πσv

e−x2/2σ2
v . (5)

BG spikes are mixed random variables that have both a

discrete and a continuous component. From (5), it is clear

that the distribution function of such random variables is not

absolutely continuous in general and therefore most results

of standard rate distortion theory do not hold. The spike

entropy cannot be computed with the usual integral, but only

via mutual information conditioned on the discrete part [19,

Ch. 2]. With this method, Rosenthal and Binia [20] derived the

asymptotic (D → 0) rate distortion behavior of mixed random

variables, as well as certain mixed random vectors. Their

result coincides with the simple upper bound (6) presented

below if the continuous part is Gaussian, otherwise their

result is tighter. Later, György et al. [21] extended these

asymptotic results to random vectors with more general mixed

distributions and to a wide class of sources with memory.

A simple upper bound on D(R) of the spike source can be

derived using an adaptive two-step code: 1. all samples with

magnitudes above ε = 0 are classified as spikes and their po-

sitions encoded with a bitmap using hb(p) nats/sample; 2. the

spike values are encoded with a Gaussian random codebook

using 1
2 log

pσ2
v

D nats/spike [10, Thm. 13.3.2]. (A generalization

of this coding scheme was shown to be asymptotically optimal

in the limit of small distortions for some mixed-distribution

sources with memory in [21].) The resulting upper bound

expressed as a function of rate is

D(R) ≤ pσ2
v exp

(

−2R − 2hb(p)

p

)

, R ≥ hb(p). (6)

This bound is loose at high distortions (i.e. low rates) and

can be improved by coding only a fraction of the spikes.

In particular, a tighter bound is obtained by varying the

classification threshold ε and optimizing over the resulting

family of upper bounds; the result will be stated in Section V.

Fig. 3 shows the bound (6) and the optimized low-rate

bound (16) from Section V, together with D(R) estimated

numerically with the Blahut-Arimoto algorithm [10, Sec. 13.8]

for different values of p. The asymptotic distortion decay is on

the order of − 6
p dB/bit, which can be much steeper than the −6

dB/bit typical of absolutely continuous random variables. This

decay behavior is representative of spike sources, regardless

whether the value is Gaussian or not.
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Fig. 3. Distortion rate behavior of Bernoulli-Gaussian spikes for different values of the Bernoulli-p parameter (normalized to unit variance): (a) p = 0.11,
(b) p = 0.01, (c) p = 0.005.

Comparing with Fig. 1, we see that the spike D(R) be-

havior is very different from the one observed in actual lossy

compression. Thus the spike source is certainly not a good

general model for sparse transform coefficients. However, it

explains the steep D(R) decay that can be achieved at very

low rates, when only very few coefficients are used to represent

the data. When the rate is higher, the spike model fails, because

the abrupt change from zero to a Gaussian value distribution

does not reflect the coefficient decay actually observed (i.e.

the non-strict sparsity that will be considered in the next

section). There are other applications of spikes, such as using

them as a benchmark for transform coding. In the case of

data-independent (linear) rate allocation, any transform of the

spike process yields worse performance compared to nonlinear

approaches [1]. For constant-value spikes (“1 in N” as in

Sec. III-A), any KLT basis contains the vector [1, 1, . . . , 1]T

and thus always destroys sparsity [22].

IV. COMPRESSIBLE SOURCES: MEASURING NON-STRICT

SPARSITY

We introduce two ways of measuring compressibility (non-

strict sparsity) that are both intuitive and useful, in the sense

that they will allow us to bound the MSE distortion rate

function or the source entropy, and thus to connect the notion

of compressibility with actual lossy compression performance.

A. Incomplete Moments as Compressibility Measure

A possible qualitative characterization of compressibility

is as follows: for a fixed sample vector (x1, x2, . . . , xn) of

size n, the fewer samples k ≤ n are needed to capture a

large part of the vector’s energy, the more compressible is

the vector. This can be quantified by ordering the samples

according to their magnitudes, e.g. with a permutation π such

that xπ(i) ≥ xπ(i+1), 1 ≤ i < n, and computing the second

moment Ãk/k =
∑k

i=1 x2
π(i)/k (the average energy) of the

k largest samples. Then a vector with total energy Ãn will

be more compressible if Ãk/Ãn grows more rapidly towards

1, in the sense that the distortion of the approximation by

the k largest samples, Dk = Ãn − Ãk, will be smaller.

For asymptotic block lengths, this approach can be applied

to a memoryless continuous source X with density f(x),
by considering the proportion of largest samples µ̃ ∈ [0, 1]
(µ̃ = k/n for finite lengths) and their second moment Ã(µ̃)/µ̃.

A simple parametric way to obtain these quantities is to

compute two incomplete moments for the realizations above a

magnitude threshold t, namely the probability

µ(t) =

∫ −t

−∞

f(x) dx +

∫ ∞

t

f(x) dx (7)

and the second moment

A(t) =

∫ −t

−∞

x2f(x) dx +

∫ ∞

t

x2f(x) dx, (8)

where A(0) = σ2 is the source variance (we assume EX = 0
without loss of generality).

The parametric curve L(t) = (µ(t), A(t)/σ2), which runs

from (0, 0) to (1, 1) for t = ∞ . . . 0, can be used to measure

the compressibility of X . The parameter t may be eliminated,

yielding the moment profile Ã(µ̃) = A(µ−1(µ̃)), which is

monotonically increasing, concave-∩ for µ̃ = 0 . . . 1 (see [18,

Sec. 4.2], where the moment profile was first proposed to

characterize compressible sources). Thus the faster Ã grows

for small µ̃, the more compressible is the source.

Clearly, characterizing compressibility with a curve instead

of a single parameter is a bit cumbersome. One alternative

is to determine a special point (µ∗, A∗/σ2) on L, which

yields an upper bound on the differential entropy h(X) (see

Corollary 4 in Section V-A). A simpler alternative, which

however has no straightforward connection with entropy, is

to measure compressibility by the area under the curve L for

µ = 0 . . . 1. In fact, it turns out that incomplete moments have

long been used to measure inequality in distributions, and that

L is basically a Lorenz curve [23] for asymptotically large
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samples of the squared random variable X2. Recent work by

Hurley and Rickard [24] compared the Gini index – twice the

area between L and the diagonal from (0, 0) to (1, 1) – with

other measures of sparsity and found it to be one of the most

useful under a number of criteria.

Section V will present upper bounds on D(R) that can

be computed directly from the incomplete moments µ(t) and

A(t), thus relating compressibility with lossy compression.

B. The Geometric Mean as Compressibility Measure

This section introduces the geometric mean, normalized

by the standard deviation, as a single-parameter compress-

ibility measure. A sequence of n positive real numbers,

x1, x2, . . . , xn, has arithmetic mean An = 1
n

∑n
i=1 xi and

geometric mean Gn = (
∏n

i=1 xi)
1/n. The classic arithmetic-

geometric mean inequality is Gn ≤ An, with equality if and

only if all xi are equal. The geometric mean equals the side

length of an n-cube with the same volume as the rectangular

parallelepiped spanned by the xi. A small ratio Gn/An cor-

responds to a “thin” parallelepiped or a sparse, compressible

sequence {xi}. Conversely, Gn/An = 1 yields an n-cube,

that is the least sparse sequence {x1 = x2 = . . . = xn}. We

will use the expected geometric mean of a block of sample

magnitudes, in the limit of large block length, to measure the

compressibility of a memoryless source.

Definition 3 The geometric mean of a memoryless continuous

source X with Pr{X=0} = 0 is G(X) = exp(E log |X|).

To see that G(X) is well defined for a memoryless source X
with density f(x) and is indeed the desired quantity, consider

a block of n i.i.d. samples from X . The geometric mean of

these n samples is Gn(x) = (
∏n

i=1 xi)
1/n, while its expected

value is

EGn(X) =

∫ n
∏

i=1

|xi|1/n
n

∏

i=1

f(xi) dx

=

n
∏

i=1

∫

|xi|1/nf(xi) dxi = (E |X|1/n)n,

since Fubini’s theorem can be applied to the product density.

If we let the block size go to infinity, we obtain the geometric

mean of the source [25, p. 139]:

G(X) = lim
n→∞

(

E |X|1/n
)n

= lim
p→0+

(E |X|p)1/p
= exp(E log |X|). (9)

For a fixed source variance, if more probability mass is

concentrated around zero, G(X) will become smaller and

a sample vector of X will look sparser. Due to the fixed

variance, the density will become more heavy-tailed at the

same time.

Different sparsity (compressibility) measures have been

proposed for a variety of applications: a quite common one

is the quasi-norm ‖x‖p = (
∑n

i=1 |xi|p)1/p with 0 < p ≤ 1;

see for example [22], [24] and references therein. The obvious

question is: how to choose p? If x is a sample from a

memoryless source, choosing p = 1/n will yield the geometric

mean as n → ∞, by equation (9). This is a strong argument

in favor of the geometric mean as a compressibility measure

for continuous random variables. In this respect, it is also

interesting to observe that for vectors from a bounded set,

limp→0+ ‖x‖p
p is equal to the Hamming weight wH(x), which

is the strictest sparsity measure in the sense that only values

that are exactly zero contribute to sparsity (cf. Donoho’s l0
“norm”).

Section VI will show that the geometric mean in combina-

tion with the variance can be used to bound the source entropy

and therefore characterize asymptotic R(D) behavior.

V. COMPRESSIBLE SOURCES: DISTORTION RATE BOUNDS

A. Two Upper Bounds

This section presents two upper bounds on the MSE D(R)
of continuous random variables, which will be applied to

models of compressible sources in the following sections.

The bounds are obtained by classifying the magnitudes of the

source samples using a threshold t and applying the Gaussian

upper bound (2) to each of the two classes. They are upper

bounds on the operational rate distortion function of magnitude

classifying quantization (MCQ), which sends the classifica-

tion as side information and uses it to switch between two

codebooks. The samples with magnitude above threshold are

called significant and are characterized by the two incomplete

moments used to measure sparsity in Section IV-A, namely the

probability µ(t) (7) and the second moment A(t) (8), where

A(0) = σ2 is the source variance. From these we compute the

conditional second moment of the significant samples,

σ2
1(t) = E[X2| |X| ≥ t] =

A(t)

µ(t)
,

as well as that of the insignificant samples,

σ2
0(t) = E[X2| |X| < t] =

σ2 − A(t)

1 − µ(t)
.

The classification decision is sent as side information to the

decoder, using hb(µ) nats per sample. The encoder can now

use two separate Gaussian codebooks, one for the significant

samples with rate R1 and one for the insignificant samples

with rate R0. The average rate per sample becomes

R = hb(µ(t)) + µ(t)R1 + (1 − µ(t))R0. (10)

By standard rate allocation (reverse water-filling) over the two

codebooks we obtain an upper bound.

Theorem 3 (High-Rate Upper Bound) For all

R ≥ Rmin(t) = hb(µ(t)) +
1

2
µ(t) log

σ2
1(t)

σ2
0(t)

, (11)

the MSE distortion rate function of a memoryless continuous

source is upper-bounded by

D(R) ≤ Bhr(t, R) = c(t)σ2e−2R, (12)

where

c(t) = exp
(

2hb(µ(t))+(1−µ(t)) log
σ2
0(t)
σ2 +µ(t) log

σ2
1(t)
σ2

)

.

(13)
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The best asymptotic upper bound for R → ∞ is obtained

by finding the threshold t∗ ≥ 0 that minimizes c(t). Since

limt→0+ c(t) = 1, the Gaussian upper bound is always a

member of this family.

Proof: The variances of the insignificant and the signifi-

cant samples can be upper-bounded by the second moments,

as Var(X| |X| < t) ≤ σ2
0(t) and Var(X| |X| ≥ t) ≤ σ2

1(t).
By inserting these into the Gaussian upper bound (2) and

weighting with the respective probabilities, we obtain

E d(X, X̂) ≤ (σ2 − A(t))e−2R0 + A(t)e−2R1 .

For given t, the optimal split of the total rate (10) can be found

using Lagrangian optimization. The condition R ≥ Rmin

ensures that the rates R0 and R1 are nonnegative.

Exploiting the trivial fact that (12) also upper bounds the

Shannon lower bound DSLB(R) = e2h(X)−2R/2πe, we obtain

an upper bound on differential entropy.

Corollary 4 Let µ∗ = µ(t∗) and A∗ = A(t∗) yield the

tightest bound in Theorem 3. Define the pmf’s

µ∗ = [µ∗, 1 − µ∗] , a∗ =
[

A∗

σ2 , 1 − A∗

σ2

]

.

Then the differential entropy h(X) is upper-bounded by

h(X) ≤ 1
2 ln(2πeσ2) + hb(µ

∗) − 1
2D(µ∗‖a∗), (14)

where D(·‖·) is the divergence or Kullback-Leibler distance

between the pmf’s.

For t∗ = 0, that is µ∗ = 1, the bound (14) reduces to

the Gaussian upper bound on entropy. Highly compressible

sources with a peaked, heavy-tailed pdf will have a much

smaller entropy than a Gaussian with the same variance. In

that case the divergence term in (14) will be large, and the

side information term hb(µ
∗) becomes negligible. In a certain

sense this entropy bound generalizes and quantifies the concept

that the more confined a distribution is, the smaller its entropy

[14, Sec. 20].

A low-rate bound is obtained by upper-bounding only the

significant samples, while the other samples are quantized to

zero, thus yielding a distortion floor.

Theorem 5 (Low-Rate Upper Bound) The MSE distortion

rate function of a memoryless continuous source is upper-

bounded by

D(R) ≤ Blr(t, R), for t ≥ 0 and R ≥ 0 (15)

where

Blr(t, R) = A(t) exp
(

−2R−hb(µ(t))
µ(t)

)

+ σ2 − A(t).

For a given threshold t ≥ 0, satisfying the condition given

hereafter, this bound can be optimized to yield

D(R∗(t)) ≤ Blr(t, R
∗(t)), (16)

with the locally optimal rate (with respect to t) given by

R∗(t) = hb(µ(t)) − 1
2µ(t)

[

2h′
b(µ(t)) + γ(t)

+ W−1

(

−γ(t)e−2h′

b(µ(t))−γ(t)
) ]

, (17)

where γ is the reciprocal normalized second tail moment

γ(t) =
µ(t)

A(t)
t2 =

t2

E[X2| |X| ≥ t]
(18)

and W−1 is the second real branch of the Lambert W
function, taking values on (−∞,−1]. (The function W(x)
solves W(x)eW(x) = x.)

The condition on t in order for R∗(t) to be well-defined is

that the argument of W−1 in (17) be larger than or equal to

−1/e, that is, −γ(t)e−2h′

b(µ(t))−γ(t) ≥ −1/e. The rate R∗(t)
is only locally optimal in the sense that a small variation of

t will not tighten (16), but there might exist t′ 6= t such that

the corresponding bound is strictly tighter at R = R∗(t).

The proof appears in Appendix C, followed by detailed

discussions of when (17) has no solution, i.e. is not well-

defined, as well as its locally optimal character. Furthermore,

a corollary shows that the low-rate and high-rate bounds

coincide in the minimum of the latter, that is, as expected there

is a continuous transition between the two bounds. Expression

(17) can be simplified, at the price of yielding a looser bound,

by replacing W with an approximation [18, Sec. 2.5].

One may use (16) to trace an upper bound on D(R) by

sweeping the threshold t = ∞ . . . t∗, that is going from

R = 0 to R = Rmin(t∗), at which point the high-rate

bound (12) takes over, i.e. is tighter for all R > Rmin(t∗).
Results by Sakrison [26] and Gish and Pierce [27] imply that

the operational distortion rate function δ(R) of a magnitude

classifier followed by a Gaussian scalar quantizer (adapted to

the class variance) will be at most a factor of πe/6 (1.53 dB)

above these bounds. Actually, this gap is even smaller at low

rates, since the distortion D0(0) = σ2
0 is trivially achieved for

the insignificant samples.

The high-rate bound (12) does not apply to the spike source

(5), since its distribution is not continuous, cf. the discussion

following (5). However, the low-rate bound (16) holds for

any threshold t > 0, as the significant samples then have a

continuous density. In the limit of arbitrarily small positive t,
such that µ → p, (15) becomes the simple spike upper bound

(6). For many sparse sources, the low-rate bound (16) turns out

to be much tighter than the Gerrish-Schultheiss bound [28];

see [18, Sec. 3.5] for an example.

The bounds can also be computed directly from the moment

profile Ã(µ̃), without resorting to the underlying source pdf,

since
dÃ(µ̃)

dµ̃

∣

∣

µ̃=µ(t)
= t2 is the only additional quantity needed

to compute (16) [18, Sec. 4.2]. This reinforces the usefulness

of the moment profile as a measure of compressibility.

For most source densities it is very difficult, if not im-

possible, to compute the distortion rate function in closed

form. A popular escape route is to discretize the density and

apply the Blahut-Arimoto algorithm to compute a numerical

approximation of D(R) [10, Sec. 13.8]. To obtain plausible

results, one needs to pay close attention to the discretization
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and to the artifacts due to finite entropy (i.e. distortion falsely

dropping to zero), particularly for highly compressible sources.

Thus the bounds presented here can be a valuable alternative,

since the required incomplete moments can be easily computed

for most densities, at least numerically. Perhaps even more

interesting is the possibility to compute empirical distortion

rate bounds from a sample of the source, from which the

needed quantities t, µ(t) and A(t) can be easily estimated.

B. Application to a Power-Law Source Model

As an example, we apply the above bounds to a power-

law model for wavelet coefficients studied e.g. in [9], [7,

Sec. 11.4]. The rate R∗
min = Rmin(t∗) in the optimized

high-rate bound (12) provides an estimate of the beginning

of the high-rate region, in which distortion decays with −6
dB/bit. Together with the corresponding distortion bound

B∗
hr = Bhr(t

∗, R∗
min) it localizes the end of the typical knee

between the low-rate region with fast distortion decay and the

high-rate region.

Consider a normalized order statistic m(z) that ranks the

magnitudes of wavelet image transform coefficients in decreas-

ing order according to the normalized rank z, such that m(0)
is the largest coefficient magnitude and m(1) the smallest. The

power-law model is based on the empirical observation that

the magnitudes of the larger half (z = 0 . . . 0.5) decay approx-

imately like a negative power of z, that is m(z) ≈ Cz−γ up

to about z = 0.5. The exponent γ is on the order of 1 for

typical images.

The connection with the high-rate bound is made by notic-

ing that the classification threshold t divides the coefficients

(now thought to come from a memoryless source) into two

groups, one with magnitudes above t and one with magnitudes

below t. The expected rank of a coefficient with magnitude t
will be µ(t). Thus we may equate z = µ(t) and m(µ(t)) = t.
As mentioned in Section IV-A, the threshold t can be elim-

inated altogether by substituting it with µ in the integral

defining A, yielding the moment profile Ã(µ̃) =
∫ µ̃

0
m2(z) dz.

Since z−γ is generally not square integrable, we change the

model to m(z) = C(µ0+z)−γ , where µ0 is a positive constant

that ensures integrability. Finally, the coefficient decay above

z = 0.5 is observed to be almost linear (i.e. the magnitudes

of the 50% smallest coefficients are almost uniformly dis-

tributed). This results in the following composite model for

the moment profile:

Ã(µ̃) =











∫ µ̃

0
C2(µ0 + z)−2γ dz, 0 ≤ µ̃ ≤ 0.5,

∫ 0.5

0
C2(µ0 + z)−2γ dz

+
∫ µ̃

0.5
4m2(0.5)(1 − z)2 dz, 0.5 < µ̃ ≤ 1.

(19)

The median magnitude m(0.5) and the exponent γ can be

estimated from a sample, the normalization constant is C =
m(0.5)(µ0 + 0.5)γ , while µ0 can be determined numerically

from the condition Ã(1) = σ2.

The distortion rate bounds can be computed based on the

moment profile Ã(µ̃) alone, but if needed the implicit proba-

bilistic source model can be easily deduced. The pdf g(m) of

the magnitudes is obtained parametrically from
dÃ(µ̃)

dµ̃ = m2
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Fig. 4. Beginning of high-rate region, i.e. approximate location where the
knee in the D(R) curve ends, for the power-law wavelet coefficient model
(19). The points of the grid indexed by the model parameters (exponent γ
and median magnitude m(0.5)) correspond to the points (R, D) where the
optimized high-rate bound (12) starts to hold, i.e. starting from where −6
dB/bit decay is predicted. Also shown are the bound (16) for rates up to
R = 0.72 bits, and the bound (12) for rates above R = 0.72 bits (solid line),
for the parameters γ = 0.9, m(0.5) = 0.05, as well as the Gaussian D(R)
(all with unit variance).

and
d2Ã(µ̃)

dµ̃2 = − m
g(m) . If desired, a symmetric source model

pdf is f(x) = 1
2g(|x|).

Fig. 4 displays a grid of points (R∗
min, B∗

hr) obtained from

the model (19) for a range of parameter values. Interestingly,

the parameters have nearly orthogonal influences over a wide

range: the exponent γ affects mainly the rate R∗
min, while

the median magnitude m(0.5) affects the distortion B∗
hr. In

terms of the source pdf, a small m(0.5) implies that most of

the source energy is in the pdf tail; in turn, γ controls the

tail decay, which will be slower for smaller γ (“heavy tail”).

Points that lie on a line with slope −6 dB/bit correspond to

asymptotically equal upper bounds, i.e. to sources that can be

compressed equally well at high rates. The median m(0.5) can

be seen as an indicator of sparsity that has a strong influence on

asymptotic compressibility. The exponent γ controls how fast

the asymptotic regime is reached; to have high compression at

low rates, both m(0.5) and γ need to be small, i.e. the source

pdf must be peaked at zero and heavy-tailed at the same time.

Also shown in Fig. 4 are the bounds (12) and (16) for

γ = 0.9, m(0.5) = 0.05, which are the approximate pa-

rameters of the wavelet coefficients used to draw Fig. 1. The

estimated start of the high-rate region is R∗
min = 0.72 bits,

B∗
hr = −21.5 dB, matching quite well with Fig. 1. Due to

the roundness of the knee it is hard to visually estimate where

the asymptotic decay of −6 dB/bit begins. Gaussian mixture

models (Section VII) may show much sharper knees.

The power-law model (19) provides a valuable empirical

tool for analyzing wavelet coefficients or other approximately

scale-invariant data. However, it lacks the generality and

versatility, as well as the theoretical apparatus, of the Gaussian

mixture models that will be studied in Section VII. In partic-

ular, not every sparsifying transform will necessarily produce

the approximately scale-invariant coefficients implied by the

power-law model.
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VI. COMPRESSIBLE SOURCES: ENTROPY BOUNDS

The geometric mean introduced as a measure of compress-

ibility in Section IV-B can be used to obtain bounds on source

entropy.

A. Lower Bounds on Differential Entropy

The logarithm of the geometric mean, E log |X|, yields a

lower bound on the entropy of continuous random variables

with one- or two-sided monotone densities. Through the SLB

(3), this can be used to bound asymptotic R(D) for D → 0.

We first prove a weaker bound that has the appeal of dis-

playing the relationship with an analogous bound for discrete

entropy. Then we will prove a bound which is tight for the

class of monotone densities considered.

Notice that in general the geometric mean has to be nor-

malized by the standard deviation, σ =
√

Var(X), before it

can be used as sparsity measure. However, in the following

results this is not done, since the entropy would also have to

be normalized (as in h(σ−1X) = h(X) − log σ) and the two

normalizations cancel each other.

Proposition 6 Let X be a finite variance random variable

with a monotone one-sided pdf f and domain [x0,∞) or

(−∞, x0]. Then

h(X) ≥ E log |X − x0|.

Proof: Without loss of generality, consider a pdf f which

is monotone non-increasing on [x0,∞). The monotonicity im-

plies that f is Riemann-integrable, and the finite variance en-

sures that the entropy integral is finite (by the Gaussian upper

bound on entropy, h(X) ≤ 1
2 log(2πeσ2), [10, Thm. 9.6.5]).

We will approximate the integral h(X) − E log |X − x0| =
−

∫ ∞

x0
f(x) log(|x−x0|f(x)) dx by a Riemann sum with step

size ∆. Let xi = x0 + i ·∆ and pi = f(xi)∆, for i = 1, 2, . . ..
By monotonicity, we have p1 ≥ p2 ≥ . . . and hence

1 ≥
∞
∑

i=1

pi ≥
n

∑

i=1

pi ≥ npn. (20)

Thus we can write

h(X) − E log |X − x0| = lim
∆→0

−
∞
∑

n=1

pn log(|xn − x0|f(xn))

= lim
∆→0

−
∞
∑

n=1

pn log
(

n∆ · pn

∆

)

≥ lim
∆→0

−
∞
∑

n=1

pn log(1) = 0,

where the inequality follows from taking the logarithm of (20).

Remark: Inequality (20) was used by Wyner to prove an

analogous bound for discrete entropy [29].

Using a different proof technique, we obtain a stronger

result:

Theorem 7 Let X be a finite variance random variable with

a monotone one-sided pdf f and domain [x0,∞) or (−∞, x0].
Then

h(X) ≥ E log |X − x0| + 1, (21)

with equality if and only if f is a uniform density.

Proof: For simplicity, we assume f to be non-increasing

on [0,∞). Let B be the set of all such monotone non-

increasing, finite variance densities on [0,∞). It is easy to

verify that B is a convex set. Its boundary ∂B is the set of all

finite variance uniform densities:

∂B = {u(a, x) : a ∈ (0,∞)}, (22)

where

u(a, x) =

{

1/a if 0 ≤ x ≤ a,

0 else.

To see that (22) is indeed the boundary of B, observe first

that no uniform density u(a, x) can be written as a nontrivial

convex combination of two distinct monotone non-increasing

densities. Moreover, any once differentiable f ∈ B can be

written as a convex combination of elements of ∂B:

f(x) =

∫ ∞

0

λ(a)u(a, x) da, (23)

where λ(a) = −af ′(a), as can be shown with some simple

calculus. λ is a proper density if f has finite variance (in

particular, limx→∞ xf(x) = 0) and if f ′(x) ≤ 0, which is

indeed the case for monotone decreasing f . Using the standard

extensions to distributions, (23) also holds if f contains a

countable number of steps, e.g. if it is piecewise constant.

In fact, (23) is nothing but a disguised version of the “layer

cake” representation1 of f , namely f(x) =
∫ ∞

0
χ{f>t}(x) dt,

where χ{f>t}(x) is the indicator function of the level set

{f(x) > t}. The existence of this representation follows from

the monotonicity of f .

Looking at (21), we see that

h(X) − E log X = −
∫ ∞

0

f(x) log(xf(x)) dx (24)

is a concave-∩ functional of f , since h(X) is concave and

E log X is linear in f . Therefore a minimum of (24) over the

convex set B must necessarily lie on its boundary ∂B. We

insert an arbitrary boundary element u(a, x) (0 < a < ∞) in

(24) to obtain

h(X) − E log X = −
∫ ∞

0

u(a, x) log(xu(a, x)) dx

= −
∫ a

0

1
a log x

a dx

= log a − x
a (log x − 1)

∣

∣

a

0

= 1. (25)

Since (25) holds for any a, we conclude that it is the global

minimum, thus proving (21) and one part of the “if and only

1The term “layer cake” representation stems from the picture of cutting the
area between f(x) and the abscissa into thin horizontal stripes with widths
corresponding to the level sets [30, Sec. 1.13].
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c

d

−b −a a b

Fig. 5. Probability density (28) of a “uniform spike.”

if”. To prove the other part, it suffices to observe that h(X)−
E log X is a strictly concave functional and thus will be larger

than (25) in the interior B \ ∂B.

Remark: The tightened bound (21) can be used in turn

to tighten Wyner’s discrete entropy bound [29], leading to

improved performance bounds for a class of lossless codes

[31].

Definition 4 A weakly unimodal density with mode x0 is a pdf

which is monotone non-decreasing on (−∞, x0] and monotone

non-increasing on [x0,∞).

Corollary 8 Let X be a finite variance random variable with

weakly unimodal pdf f such that Pr{X ≤ x0} = α, where x0

is the mode. Then

h(X) ≥ E log |X − x0| + 1 + hb(α). (26)

For a density that is symmetric about x0, f(−x−x0) = f(x−
x0), (26) reduces to

h(X) ≥ E log |X − x0| + 1 + log 2. (27)

The bound (27) is asymptotically attained by a “uniform

spike” with finite variance σ2 and parameters 0 < a <√
3σ < b defining the density

f(x) =











b(b+a)+a2−3σ2

2ab(b+a) =: c, |x| ≤ a,
3σ2−a2

2b(b2−a2) =: d, a < |x| ≤ b,

0, else,

(28)

as the tail width b → ∞.

Proof: We view the weakly unimodal pdf f as a mixture

of two non-overlapping monotone one-sided densities, fl(x)
and fr(x), with weights α and 1 − α, respectively. Without

loss of generality we can assume x0 = 0. Then,

h(X) − E log |X| = −Ef log[|X|f(X)]

= −
∫ 0

−∞

αfl(x) log(−xαfl(x))

−
∫ ∞

0

(1 − α)fr(x) log(x(1 − α)fr(x))

= hb(α) − α Efl
log[|X|fl(X)]

− (1 − α) Efr
log[|X|fr(X)]

≥ hb(α) + 1,

where the last inequality follows from Theorem 7, proving

(26).

It is easily verified that “uniform spikes” exist for 0 < a <√
3σ < b, see Fig. 5. Using c and d defined in (28), the

asymptotic entropy is

lim
b→∞

h(X) = lim
b→∞

−2ac log c − 2(b − a)d log d = log(2a)

and the asymptotic logarithm of the geometric mean is

lim
b→∞

E log |X| = lim
b→∞

[

2c

∫ a

0

log xdx + 2d

∫ b

a

log xdx

]

= lim
b→∞

2ac(log a − 1)

+ 2d(a − a log a − b + b log b)

= log a − 1.

Hence the lower bound (27) is asymptotically attained by

a random variable concentrating its probability uniformly

over [−a, a] (since limb→∞ 2ac = 1), with an infinite tail

contributing only to its variance. A peakier density with the

same variance and entropy will have a smaller geometric mean.

Remark: Since only monotonicity and finite variance are

needed for Theorem 7 to hold, it can be seen that Corol-

lary 8 holds also for bounded random variables with range

[xmin, xmax] and a pdf f that is monotone non-increasing on

[xmin, x0] and monotone non-decreasing on [x0, xmax] (e.g. a

“bathtub” shape).

B. Upper Bound on Differential Entropy

If both the variance and the geometric mean are known,

an upper bound on the entropy can be easily obtained via

the maximum entropy approach. Owing to the assumptions

made in this variational approach, the results in this subsection

hold for random variables which have an absolutely continuous

distribution function F (x) with probability density f(x) =
F ′(x).

Proposition 9 The maximum entropy pdf given the constraints

EX2 = σ2 and E log |X| = θ is

f(x) = [Γ(u
2 )]−1

(

u
2σ2

)u/2 |x|u−1 exp
(

−ux2

2σ2

)

, (29)

where Γ(z) is the gamma function (Euler’s integral of the

second kind) defined as Γ(z) =
∫ ∞

0
e−ttz−1 dt (Re z > 0)

[32, 8.31]. The shape parameter u > 0 is obtained by solving

E log |X| = 1
2ψ(u

2 ) − 1
2 log u

2σ2 = θ, (30)

where ψ(x) = d
dx log Γ(x) [32, 8.36]. For any θ ≤ log σ

there is a unique solution, since E log |X| is strictly monotone

increasing in u. The resulting entropy is

h(σ, θ) = u
2 − u−1

2 ψ(u
2 ) + log Γ(u

2 ) − 1
2 log u

2σ2 . (31)

Setting u = 1 yields the Gaussian density and thus the global

entropy maximum given the variance constraint alone.

The proof appears in Appendix D.
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Corollary 10 The entropy of any random variable X with

probability density f satisfying EX2 = σ2 and E log |X| = θ
is upper bounded by (31).

The corollary is implied by the maximum entropy approach.

Theorem 11 The maximum entropy (31) for a finite variance

σ2 has the following asymptotic behavior as the geometric

mean eθ goes to zero, resp. θ → −∞ :

h(σ, θ) ∼ θ + log(−2eθ) as θ → −∞.

The symbol ∼ denotes asymptotic equality, i.e. f ∼ g as x →
∞ means that limx→∞

f(x)
g(x) = 1.

Proof: Note that θ → −∞ corresponds to u → 0+. Let

∆ = h(σ, θ) − θ − log(−2eθ)

=
u

2
− u

2
ψ

(u

2

)

− 1 + log

(

Γ(u
2 )

−ψ(u
2 ) + log u

2σ2

)

. (32)

To prove limu→0+ ∆ = 0, which is slightly stronger than re-

quired, we use the functional relationships Γ(x+1) = xΓ(x),
ψ(x + 1) = ψ(x) + 1

x and the truncated series expansions

Γ(x + 1) = 1− γx + O(x2), ψ(x + 1) = −γ + π2

6 x + O(x2),
both for |x| < 1 (see e.g. [32, 8.3]; γ = 0.5772 . . . is Euler’s

constant). We have

lim
u→0+

u
2 ψ(u

2 ) = lim
u→0+

[−1 − γ u
2 + π2

24 u2 + O(u3)] = −1,

hence limu→0+ ∆ is equal to the limit of the logarithm in (32).

But

lim
u→0+

Γ(u
2 )

−ψ(u
2 ) + log u

2σ2

=

lim
u→0+

2
u (1 − γ

2 u + O(u2))
2
u + log u

2σ2 + γ − π2

12 u + O(u2)
= 1.

This can be easily seen by extending the fraction by u
2 and

observing that limu→0+ u log u = 0. By putting these steps

together we obtain limu→0+ ∆ = 0.

Fig. 6 shows the lower bound (27) and the upper bound

(31) as a function of θ = E log |X| for unit-variance ran-

dom variables with symmetric unimodal densities. The global

maximum of the upper bound corresponds to the unit-variance

Gaussian density, which has θ ≈ −0.635. As a consequence of

Theorem 11, the gap between the lower and upper bounds is

asymptotically equal to log(−θ). The crossing between upper

and lower bounds is only a seeming contradiction, because

in fact it simply means that to the right of the crossing there

exist no unimodal densities satisfying both the geometric mean

and variance constraints. Also shown are the points (θ, h(X))
corresponding to the family of unit-variance generalized Gaus-

sian pdf’s f(t) = β/(2αΓ(β−1)) exp
(

−(|t|/α)β
)

with β as

a parameter. It can be shown that for β → 0+ one has

θ = E log |X| → −∞ and h(X) lies asymptotically halfway

between upper and lower bound at distance 1
2 log(−θ).
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Fig. 6. Differential entropy bounds for symmetric weakly unimodal densities
(normalized to unit variance). The square denotes the uniform density for
which the lower bound is tight.

VII. COMPRESSIBLE SOURCES: GAUSSIAN MIXTURE

MODELS AND CODING GAIN

The discussion on spikes in Section III-B pointed out

that continuous densities are more appropriate for modeling

compressible transform coefficients. Gaussian mixtures are a

popular approach to model and estimate unknown densities

and have been used quite successfully in various applications,

see e.g. [33] and references therein. In this section we will

study a simple memoryless Gaussian mixture (GM) source

model with pdf

f(x) =
N

∑

s=1

wsfs(x), (33)

mixing N zero-mean Gaussian components with variances

σ2
m,s,

fs(x) =
1√

2πσm,s

e−x2/2σ2
m,s ,

with weights ws ≥ 0 satisfying
∑N

s=1 ws = 1. The spike

model of Section III-B may be regarded as a special case of

a two-component GM, where one source has zero variance.

For a general GM source X (with possibly nonzero com-

ponent means), the Shannon lower bound (3) is tight for all

D < D∗ = mins{σ2
m,s}, since then X may be expressed via

a “backward test channel” as the sum of a GM with variances

{σ2
m,s −D} and independent noise Z ∼ N (0, D) [28]; D∗ is

also known as critical distortion. Thus the asymptotic D(R)
behavior is determined by the GM entropy, which in general

cannot be expressed in closed form. This motivates the bounds

presented in the first two subsections, which are followed by

a discussion of the relationship with coding gain and some

examples.

A. Distortion Rate Bounds for Gaussian Mixtures

The upper bounds introduced in Section V are easily com-

puted for GM models, but they do not exploit the particular
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model structure. A GM source may be viewed as containing

a hidden discrete memoryless source S that switches between

|S| = N Gaussian sources N (0, σ2
m,s) with selection proba-

bilities ws = Pr{S = s}. A lower bound on D(R) is found

by assuming that an oracle provides the hidden variable S to

the source encoder. Since S → X → X̂ form a Markov chain,

we have

I(X; X̂|S) ≤ I(X; X̂),

where the conditional mutual information is defined as

I(X; X̂|S) = E log f(X,X̂|S)

f(X|S)f(X̂|S)
. Computing the lower

bound Rlb(D) = minp(x̂|x,s)∈QD
I(X; X̂|S), with QD =

{p(x̂|x, s) : E(X − X̂)2 ≤ D}, is equivalent to solving the

following standard rate allocation problem:

Dlb(R) = min
{Rs}

∑

wsσ
2
m,s2

−2Rs (34)

subject to

∑

wsRs = R and Rs ≥ 0.

This yields the lower bound D(R) ≥ Dlb(R), which can

also be seen as a special case of a conditional rate distortion

function [34]. The lower bound may be turned into an upper

bound by expanding I(S, X; X̂) as follows:

I(S, X; X̂) = I(X; X̂) + I(S; X̂|X) = I(X; X̂)

= I(S; X̂) + I(X; X̂|S) ≤ I(X; X̂|S) + H(S),

using the fact that the mixing variable S is discrete. Thus we

have

minQD
I(X; X̂|S) ≤ R(D) ≤ minQD

I(X; X̂|S) + H(S).
(35)

Clearly, these bounds are not very tight in the case of a GM

with large N = |S| and close to uniform distribution of S.

Using Fano’s inequality we may see that if S can be estimated

from X̂ with low probability of error, then R(D) will be close

to the upper bound. Conversely, for large H(S|X) ≤ H(S|X̂)
it will be harder to estimate S and R(D) will be closer to the

lower bound.

As an example, we used the EM algorithm to estimate

the parameters of a two-component GM (33) modeling the

wavelet coefficients of the Lena image transformed with the

classic 9/7 biorthogonal wavelet. The parameters obtained are

w1 = 0.9141, σ2
m,1 = 0.01207 and σ2

m,2 = 11.51 (normalized

to unit variance). Plots of bound (16) for R < Rmin(t∗) =
0.82 bits, bound (12) for R ≥ Rmin(t∗) and the bounds (35)

appear in Fig. 7 together with a numerical estimate of D(R)
computed with the Blahut-Arimoto algorithm. The gap in (35)

is H(S) = hb(w1) = 0.42 bits wide. Also shown in Fig. 7 are

the (R,D) points achieved by a simple embedded (successive

refinement) scalar quantizer (see e.g. [7, Sec. 11.5]), applied

to 3 ·105 pseudo-random samples. The significance maps were

entropy coded, sign and refinements bits were left uncoded. It

can be seen that at low rates, thresholding with simple scalar

quantization performs very close to the D(R) optimum.

Up to the typical knee, distortion decays faster than −6
db/bit, since mainly the sparse coefficients from the high-

variance source are retained by the thresholding operation.
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Fig. 7. Distortion rate bounds for two-component Gaussian mixture model
of wavelet coefficients.

At higher rates, the coefficients from the low-variance source

also start being significant. If the model (33) is extended to

N ≥ 3 Gaussian components, the knee in D(R) becomes

rounder, but the basic behavior is unchanged (compare also

with Fig. 1 (a)). From these observations we can reach two

conclusions: first, two-component GMs suffice to capture the

essential features of image coding D(R), and second, the rate

Rmin(t∗) in the high-rate bound (Theorem 3) is confirmed as

estimate of the beginning of the high-rate compression region

(see Section V-B). The first observation is also supported by

[35], which considers the joint numerical optimization of a

classifier and (high-rate) uniform quantizers for each of N
classes corresponding to GM components. Simulation results

in [35] suggest that for typical image data N = 2 components

yield a substantial improvement over a single Gaussian, while

adding more components gives only minor additional gains.

A general theoretical framework for classified vector quan-

tization (CVQ) of Gaussian mixtures has been introduced by

Gray in [36]. Ideally, CVQ would be applied to samples from a

multivariate Gaussian mixture having distinct modes, leading

to reliable classification. The high-rate bound (12) could be

seen as a special case of CVQ, where two mixture components

differ only in variance. However, the CVQ approach is differ-

ent in spirit, since CVQ will usually be applied directly to the

data, without first transforming it, while our work focuses on a

transform coding setting where a transform generates a sparse

signal representation, which is then quantized. The transform

coefficients are thought as coming from a sparse memoryless

source, which in the above example is shown to be modeled

quite well by a mixture of two univariate Gaussian densities.

B. Entropy Bounds for Gaussian Mixtures

The sparsity of a GM source may be measured by the

geometric mean, as proposed in Section IV-B, leading to

entropy bounds that characterize asymptotic R(D) behavior.

The logarithm of the geometric mean of a GM with density

(33) is
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θ = E log|X| = 1
2

N
∑

s=1

ws log σ2
m,s − 1

2 log 2 − 1
2γ, (36)

where γ = 0.5772 . . . is Euler’s constant. The result follows

directly from integral 4.333 in [32] and leads to a lower bound

on the mixture entropy h(X) via Corollary 8. However, this

can be tightened by the same approach as in Section VII-A,

namely by lower-bounding the GM entropy by conditioning

on the hidden mixing variable:

h(X) ≥ h(X|S) = 1
2

∑

ws log(2πeσ2
m,s). (37)

This improves the lower bound (27) by the constant 1
2γ +

1
2 log π

e , as can be seen by inserting (36) into (27) and

comparing with (37). From the expansion I(X;S) = h(X)−
h(X|S) = H(S) − H(S|X), we obtain the upper bounds

h(X) ≤ h(X|S) + H(S) ≤ h(X|S) + log N, (38)

with h(X|S) given in (37).

Fig. 8 plots the different bounds that hold for mixtures

of zero-mean Gaussians in general and two-component GM

in particular, all normalized to unit variance. Also shown is

a set of points (E log |X|, h(X)) corresponding to different

two-component GMs. The geometric mean is mainly affected

by the ratio σm,2/σm,1, while the mixing weights determine

H(S) and thus the gap between the lower bound (37) and

the tighter upper bound in (38). For large σm,2/σm,1, it is

easy to estimate S from X and so h(X) will be close to the

upper bound. The lower bound can be asymptotically attained

with w1 À w2 (then H(S) → 0) for any σm,2/σm,1 ≥ 1;

this parallels the “uniform spike” attaining the lower bound in

Corollary 8.

Mixtures of a finite number of zero-mean Gaussian com-

ponents may be considered as a special case of continuous

Gaussian scale mixtures [37], which have also been proposed

in the context of wavelet coefficient models [1, Sec. VIII.A]. It

turns out that the maximum entropy pdf (29) can be expressed

as a Gaussian scale mixture.

Proposition 12 The maximum entropy pdf (29) that satisfies

the constraints EX2 = σ2 and E log |X| = θ can be

expressed as a continuous Gaussian mixture

f(x) =

∫ σ2/u

0

1√
2πs2

e−
x2

2s2 g(s2) ds2 (39)

with mixing density

g(s2) =

√
πs2( u

σ2 )u/2

s4Γ(u
2 )Γ( 1−u

2 )

(

1

s2
− u

σ2

)−(1+u)/2

, (40)

where the shape parameter 0 < u < 1 is obtained by solving

(30).

Proof: It is easily verified that (29) satisfies the necessary

and sufficient conditions for the existence of the representation

(39) given in [37] and thus the inversion formula from the

same work can be applied, leading to (40). A direct proof can
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Fig. 8. Differential entropy bounds for two-component Gaussian mixtures,
normalized to unit variance. The “cloud” sweeps the pairs (E log |X|, h(X))
corresponding to w1 = 0.01 . . . 0.99 and σm,2/σm,1 = 1 . . . 100. A line
in the cloud corresponds to sweeping the variance ratio while keeping the
weights fixed.

be obtained by substituting v = 1/
√

s2 in (39) and solving it

using integral 3.382(2) in [32].

It is quite surprising that only Gaussian pdf’s up to the

maximum variance σ2/u need to be mixed to obtain (29).

This is a direct result of the inversion formula, which involves

an inverse Laplace transform towards the “time” variable v =
1/
√

s2, which runs from
√

u/σ to ∞. The mixing density

(40) has a “bathtub” shape that concentrates most probability

mass close to s2 = 0 and s2 = σ2/u. For u → 1, all mass is

shifted towards s2 = σ2/u (the limit for u = 1 is a Gaussian

pdf, see Proposition 9), while for u → 0 (very sparse sources)

the probability mass is shifted towards s2 = 0. The Laplacian

is an example of a pdf that can be represented as a mixture

needing component variances going to infinity [37].

C. Coding Gain Revisited

In linear transform coding, the coding gain measures the

ratio of the asymptotic distortion of a single scalar quantizer

to the distortion of a set of quantizers with rate allocation

matched to the transform statistics,2 with both systems oper-

ating at the same average rate [39, Sec. 8.7], [38]. Here we will

show how the high-rate magnitude classifying quantization

(MCQ) upper bound (Theorem 3) leads to an expression that is

reminiscent of the coding gain of a transform coding system.

Let us briefly review the derivation of classical trans-

form coding gain. Consider a jointly Gaussian source, emit-

ting independent zero-mean Gaussian random vectors X =
[X1, X2, . . . , XN ], with autocorrelation matrix RX such that

Rii = σ2. (Except for independence, which is not necessary

for the derivation, this may be obtained by taking blocks

of N samples from a zero-mean weakly stationary discrete

2A different definition considers bit allocation for both the original and
transformed data [38]. The distinction is significative if the source is non-
stationary, e.g. emitting Gaussian random vectors with non-constant autocor-
relation vector.
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time Gaussian process.) The vector X is multiplied with an

orthonormal matrix T , yielding the transformed source vector

Y = TX , which is then quantized to Ŷ = Y + W , where

W models the quantization noise. The reconstructed vector is

X̂ = T−1Ŷ . By the Parseval-Plancherel energy conservation

formula [7, Sec. A.3], the quantization error in the signal

domain will be equal to the error in the transform domain:

‖X − X̂‖2 = ‖Y − Ŷ ‖2 = ‖W ‖2.

Also, the average variance of the transform coefficients Yi is

equal to the variance of X:

1

N

N
∑

i=1

EY 2
i =

1

N

N
∑

i=1

EX2
i = σ2.

This holds (by linearity of expectation) assuming zero mean

and can be easily extended to the general case. Let σ2
i = EY 2

i

be the variance of the i-th transform coefficient. If we use N
scalar quantizers to quantize Y , the optimal high-rate bit allo-

cation is easily found using Lagrangian optimization.3 We get

an average distortion of the form D = C
[

∏N
i=1 σ2

i

]1/N

e−2R,

with C a constant [38]. This can be compared with the

distortion of a scalar quantizer applied to the Xi’s, which is

D = Cσ2e−2R = C
[

1
N

∑N
i=1 EX2

i

]

e−2R. The transform

coding gain is now defined as the ratio of the distortion of

direct scalar quantization of the source over scalar quantization

of the transform coefficients (with bit allocation):

ΓTC =
1
N

∑N
i=1 σ2

i
(

∏N
i=1 σ2

i

)1/N
=

AN (σ2
1 , σ2

2 , . . . , σ2
N )

GN (σ2
1 , σ2

2 , . . . , σ2
N )

. (41)

In purely algebraic terms, equation (41) is the ratio of the

arithmetic mean AN of the coefficient variances to their

geometric mean GN , which might be used as the “axiomatic”

definition of coding gain. This short derivation pointed out the

implied assumptions, namely high rate and (near-)Gaussianity.

In the jointly Gaussian case, using a KLT will maximize the

coding gain, that is, minimize the geometric mean of the

coefficient variances [7, Sec. 11.3.2].

From the above, it is straightforward to define a measure

of MCQ coding gain by considering the ratio of the Gaussian

upper bound to the high-rate upper bound (12).

Definition 5 The coding gain for high-rate optimal4 magni-

tude classifying quantization is

ΓMCQ =
c(0)

c(t∗)
=

σ2

c(t∗)σ2
=

µ∗ [σ∗
1 ]2 + (1 − µ∗) [σ∗

0 ]2

e2hb(µ∗) [σ∗
1 ]2µ∗ [σ∗

0 ]2(1−µ∗)
,

(42)

where c(t) is as defined in Theorem 3, t∗ is the threshold yield-

ing the tightest upper bound and µ∗ = µ(t∗), σ∗
0 = σ0(t

∗),
σ∗

1 = σ1(t
∗).

3This relies on the assumption that either the source is jointly Gaussian
(then any orthonormal transform will yield Gaussian coefficients), or at least
that the signal components Xi and the transform coefficients Yi have the
same marginal high-rate D(R) behavior of the form Di = Cie

−2R. For
details on high-rate bit allocation, see e.g. [38] and references therein.

4Here optimal refers to the tightest upper bound of Theorem 3; directly
optimizing a MCQ would yield tighter bounds, because significant and
insignificant samples differ in D(R) behavior.

Except for the additional side information factor e2hb(µ
∗),

this definition corresponds to the classical coding gain (41)

for two sources with weights µ∗ and 1 − µ∗. This similarity

opens a new perspective on transform coding: instead of

considering each transform coefficient as a distinct random

variable, we mix all coefficients together and use a quantizer

for the marginal density. A transform that has high classical

coding gain will have a peaked marginal density, so that the

MCQ coding gain will also be large. At the same time, the

mixing approach obviously entails a loss in coding gain, which

we will study by means of an example in Section VII-D.

In general, MCQ will be suboptimal; the following def-

inition allows comparing it with an optimal quantizer that

asymptotically achieves the Shannon lower bound.

Definition 6 The coding gain for a memoryless continuous

source X is defined as the ratio of the Gaussian upper bound

on D(R) to the Shannon lower bound:

ΓSLB =
2πeσ2

exp(2h(X))
. (43)

It measures the coding gain achieved by using a codebook

matched to the source instead of a Gaussian codebook.

These coding gain definitions are connected with the ge-

ometric mean G(X) of a source (Definition 3) through the

following.

Definition 7 The normalized squared geometric mean of a

zero-mean memoryless continuous source X is

MG(X) =
exp(E log X2)

EX2
=

G(X2)

A(X2)
=

[G(X)]2

A(X2)
,

with the implicit definition A(X2) =
limn→∞ An(X2

1 , X2
2 , . . . , X2

n) = EX2 = σ2.

By the arithmetic-geometric mean inequality, MG ≤ 1, with

equality if and only if the source magnitude is constant (|X| =
σ).

Corollary 13 (to Theorem 3) The factor c(t) in the MCQ

high-rate bound (12) is lower-bounded by

c(t) ≥ αMG(X) for all t ≥ 0,

where α = 1 for general sources X , α = 2e
π if X is symmetric

weakly unimodal (Definition 4), and α = 2eγ if X is a

Gaussian mixture of the form (33).

Proof: For Gaussian mixtures, using (36) and (38) we

obtain ΓSLB

ΓMCQ
≤ c(t∗)

2eγMG
. By definition we have ΓSLB

ΓMCQ
≥ 1,

so α = 2eγ follows. (For X ∼ N (0, σ2), the bound is

trivially tight for t∗ = 0.) For symmetric weakly unimodal

X , the geometric mean yields an upper bound on ΓSLB

through Corollary 8, leading to ΓSLB

ΓMCQ
≤ c(t∗)π

2eMG
and thus

α = 2e
π . Finally, for general X , we bound E log X2 by
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Fig. 9. Magnitude classifying quantization (MCQ) of two-component Gaussian mixtures (GM) with component variances σ2
m,1, σ2

m,2, and weights 1−w2,

w2, respectively. (a) Contours of constant coding gain ΓTC (41) (in dB) for unmixed, separate sources (equivalent to GM lower bound). (b) Coding gain loss
∆CG (44) (in dB) relative to ΓTC for MCQ of the mixture.

applying Jensen’s inequality to the significant and insignificant

samples separately:

E log X2 = Pr{X2 < t2}E[log X2|X2 < t2]

+ Pr{X2 ≥ t2}E[log X2|X2 ≥ t2]

≤ [1 − µ(t)] log E[X2|X2 < t2]

+ µ(t) log E[X2|X2 ≥ t2]

= [1 − µ(t)] log 1−A(t)/σ2

1−µ(t)

+ µ(t) log A(t)/σ2

µ(t) + log σ2.

Now subtract log EX2 = log σ2 from both sides and observe

that hb(µ(t)) ≥ 0. Exponentiating both sides yields MG ≤
c(t).

An immediate consequence of this corollary is that

(αMG)−1 is an upper bound to the MCQ coding gain ΓMCQ

(42). On one hand, a sparse source (MG ¿ 1) is a necessary

condition for large MCQ coding gain, that is for the existence

of a t∗ such that c(t∗) ¿ 1. On the other hand, if MG is close

to one, ΓMCQ is necessarily small. The quantity Γs = M−1
G

might be called sample coding gain, since it is the limit in

sample size of the geometric mean of a sample divided by its

arithmetic mean (see also Definition 3).

D. Examples

1) Coding Gain Loss for Gaussian Mixtures: If a trans-

form outputs zero-mean Gaussian coefficients, such that each

coefficient has one of just two distinct variances, the resulting

marginal density will be a two-component Gaussian mixture

(33). The largest coding gain would be achieved if both en-

coder and decoder knew the mixing variable S without needing

extra rate. Then two codebooks matched to the variances could

be used, like in a classical KLT water-filling solution. That

situation corresponds exactly to the oracle lower bound (34)

in Section VII-A, and the coding gain is simply the ratio from

the Gaussian upper bound for the average variance to (34).

If instead we mix the sources and apply MCQ, the resulting

coding gain loss ∆CG (at high rate) will be the ratio of the

classical coding gain (41) to the MCQ coding gain (42), which

is equal to the ratio of the high-rate upper bound (12) to the

lower bound (34),

∆CG =
ΓTC

ΓMCQ
=

e2hb(µ
∗) [σ∗

0 ]2(1−µ∗) [σ∗
1 ]2µ∗

σ
2(1−w2)
m,1 σ2w2

m,2

. (44)

Note that here the [σ∗
i ]2 are the variances of the sample

classes in optimized MCQ (42), while the σ2
m,s are mixture

component variances of the model (33). Fig. 9 shows contour

plots of (a) the coding gain ΓTC and (b) the coding gain loss

∆CG (both in dB) for different ratios λ2 = σ2
m,2/σ2

m,1 of the

mixture variances and weights w2 = 1−w1 (λ = 1 yields the

Gaussian pdf). Large λ and small w2 lead to peaked densities;

for example the wavelet coefficient mixture from Section VII

has λ ≈ 30.9 and w2 ≈ 0.09. From the graph, we see that

these values correspond to a loss of about 2.5 dB, which can

be verified by checking the distance between the high-rate

bounds in Fig. 7.

The above definition of coding gain loss is based on the

assumption that two distinct (λ > 1) Gaussian sources are

mixed together even though they could be distinguished. That

is, we are comparing a system where encoder and decoder

know the variance (and the pdf) of each sample through

some additional means costing no rate (like in traditional KLT

transform coding) with a system where they know only the

mixture pdf. However, in the case of a true mixture source

neither the encoder nor the decoder know the variance of each

sample, i.e. they do not known from which component source

the sample originated. In that case the lower bound (34) is

not tight for λ > 1, since the mixing random variable S is

unknown, see also (35). Then a better definition of high-rate

coding gain loss is the ratio of the high-rate upper bound to

the Shannon lower bound (which asymptotically equals the
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Fig. 10. Magnitude classifying quantization (MCQ) of two-component Gaussian mixtures (GM) with component variances σ2
m,1, σ2

m,2, and weights 1−w2,

w2, respectively. (a) Contours of constant coding gain ΓSLB (43) (in dB) for mixture source (equivalent to Shannon lower bound). (b) Coding gain loss
∆CG(SLB) (45) (in dB) relative to ΓSLB for MCQ of the mixture.

distortion rate function):

∆CG(SLB) =
ΓSLB

ΓMCQ
=

e2hb(µ
∗) [σ∗

0 ]2(1−µ∗) [σ∗
1 ]2µ∗

exp (2h(X) − log(2πe))
. (45)

The GM differential entropy h(X) has to be computed with

numerical integration methods. Fig. 10 plots the coding gain

ΓSLB and the coding gain loss ∆CG(SLB) for that case (both

in dB). The loss is remarkably low over a wide range of pa-

rameter values, which shows that the magnitude classification

quantization approach is very effective for such sources. In

this example, the optimal MCQ threshold t∗ was always larger

than the threshold for the maximum likelihood classification,

tML =
√

log λ2/(1 − λ−2)σm,1. This is quite expected, since

the goal of the classification is a tight distortion bound, not

the optimal distinction of the two component sources.

2) Mixture versus Vector Coding Gain: The above example

considered two-component Gaussian mixtures as models for

sparse sources and compared different measures of coding

gain. Here we will extend that model to N Gaussian com-

ponents and exploit the simple relationship between their

variances and the geometric mean of their mixture. This can

be used to bound the coding gain of a Gaussian mixture as a

function of the coding gain for the unmixed sources.

The goal is to compare the classical vector coding gain for

N independent Gaussian sources, on the one hand, with the

coding gain for a mixture source that outputs one of these N
sources uniformly at random, on the other hand. For exam-

ple, consider a transform that outputs N independent zero-

mean Gaussian components. If we know the variance of each

component, like in the KLT case, we can achieve the vector

(transform) coding gain. If however only the distribution of

the variances is known, then we can design a codebook for

the corresponding scalar mixture source and still achieve the

mixture coding gain. This is akin to a KLT-like transform for

which the eigenvalues of the covariance matrix are known, but

not their ordering. Intuitively, wavelet transforms lie between

these two extremes, since e.g. coefficient variances are cor-

related across scales (but this also violates the independence

assumption in the definition of coding gain).

Two results from Section VII-B will be useful. The loga-

rithm of the geometric mean (lgm) of N variances,

log GN (σ2
1 , σ2

2 , . . . , σ2
N ) =

1

N

N
∑

i=1

log σ2
i , (46)

differs only by a constant from the lgm of a Gaussian mix-

ture (36) with component variances σ2
i and uniform weights

wi = 1/N . (Uniform weights are assumed for simplicity, but

the following results can be extended to non-uniform weights.)

Letting σ2 = 1
N

∑N
i=1 σ2

i , the vector coding gain of N -

dimensional Gaussian transform coding (41) relates to the lgm

(46) as

1

N

N
∑

i=1

log σ2
i = log(σ2/ΓTC). (47)

Now (46) can also be used to lower bound the mixture entropy

h(X) through (36) and (37), which leads to an upper bound

on the mixture coding gain (43). Combining this with (47)

yields ΓSLB ≤ ΓTC, which simply means that mixing does not

necessarily inflict a performance penalty. More interestingly,

the same approach can be used with the upper bound on h(X)
in Corollary 10, which then yields a lower bound on ΓSLB as

a function of ΓTC. If N is known, the second bound in (38)

leads to a tighter lower bound, but only for large ΓTC (the

gap to the upper bound will be 20 log10 N [dB]).

Fig. 11 displays the upper and lower bounds for Gaussian

mixture vs. vector coding gain. The lower curve thus limits

the maximum performance loss (in dB) of a transform coding

system that knows only the expected number of transform

coefficients with a certain variance, but not their positions,

compared to a system in which those positions are known (a

priori, in the case of the KLT). The upper bound implies that

the minimal performance loss is 0 dB.
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Fig. 11. Bounds for Gaussian mixture vs. vector coding gain.

VIII. APPLICATIONS

The aim of this section is to give a brief overview of

the rate distortion behavior of sparse sources in distributed

coding (Wyner-Ziv) settings, as well as the relationship with

compressed sensing.

A. Sparse Sources in Wyner-Ziv Settings

The Wyner-Ziv (WZ) problem [40], [41], [10, Sec. 14.9]

considers pairs (X, Y ) of dependent random variables and

asks for the minimal rate RWZ
X|Y (D) required to describe the

source X within average distortion D when side information

Y is available only at the decoder. We limit our discussion to

absolutely continuous X, Y and quadratic distortion measure

d(x̂, x) = (x̂ − x)2. The WZ rate distortion function is given

in [40], [41] as

RWZ
X|Y (D) = inf I(X;U |Y ), (48)

where the infimum is taken over all random variables U such

that Y → X → U form a Markov chain and there exists a

function f(U, Y ) = X̂ such that E d(f(U, Y ), X) ≤ D. It is

lower-bounded by the corresponding conditional rate distortion

function RX|Y (D), which is in turn lower-bounded by the

conditional Shannon lower bound [34],

RWZ
X|Y (D) ≥ RX|Y (D) = inf

{U∈R: E(U−X)2≤D}
I(X;U |Y )

≥ h(X|Y ) − 1

2
log 2πeD, (49)

where U is a real-valued random variable. These lower bounds

are asymptotically tight for the quadratic distortion measure

[42]; in particular, the rate loss RWZ
X|Y (D)−RX|Y (D) is zero

for all D when (X,Y ) are jointly Gaussian [41] and, more

generally, when X = Y + Z with Y independent from Z,

where only Z needs to be Gaussian [43].

We further specialize to models where X and Y have zero

mean and their difference can be modeled by an independent

memoryless source, yielding the following two correlation

models that are common in the WZ literature.

1) X = Y + Z, where Y,Z are Independent Memoryless

Sources: The case of Y sparse and Z ∼ N (0, σ2
Z) is trivial,

since [43] implies RWZ
X|Y (D) = RX|Y (D) = 1

2 log+
(

σ2
Z

D

)

,

where log+ x = max{log x, 0}. More interesting is the case

of sparse Z, since by [42] one has

RWZ
X|Y (D)

.
= h(X|Y ) − 1

2
log 2πeD = h(Z) − 1

2
log 2πeD,

(50)

where
.
= denotes asymptotic equality for D → 0 and the right-

hand side is the SLB for RZ(D), the MSE rate distortion

function for Z (this can also be shown directly using a

“Gaussian forward test channel,” see Fig. 4 in [41]). Thus all

the presented techniques for bounding the asymptotic behavior

of RZ(D) apply in this WZ case as well.

2) Y = X + Z, where X, Z are Independent Memoryless

Sources: A Gaussian upper bound is obtained by bounding the

rate Rg(D) = I(X;U |Y ) achieved with a Gaussian forward

test channel, which consists in letting U = α(X + Ψ) with

independent Gaussian noise Ψ, using an LMMSE reconstruc-

tion function f(U, Y ) and choosing Var(Ψ) and α such that

the distortion constraint is met (see [41]). The bound is

RWZ
X|Y (D) ≤ Rg(D) ≤ 1

2
log+

(

σ2
X|Y

D

)

, (51)

where the conditional variance σ2
X|Y =

σ2
Xσ2

Z

σ2
X

+σ2
Z

, with equality

on both sides if and only if X,Z are jointly Gaussian.

By inserting h(X|Y ) = h(X) − h(X + Z) + h(Z) in

(49) and observing that h(X + Z) ≥ max{h(X), h(Z)},

one sees that RWZ
X|Y (D) is asymptotically upper-bounded by

min{RX(D), RZ(D)}. If |h(X) − h(Z)| < 1
2 log 2, lower

bounding h(X + Z) with the entropy power inequality [10,

Sec. 16.7] yields the slightly tighter asymptotical upper bound

max{RX(D), RZ(D)} − 1
2 log 2. Upper bounds from the

previous sections may be applied; however, if tighter bounds

are desired, all three entropies h(X), h(Z), h(X + Z) need

to be bounded individually, which may require sharper tools

than those presented.

Better bounds exist if Z is a Gaussian mixture of the form

(33), with mixture components Zs ∼ N (0, σ2
s) and weights

ws. By assuming that both the encoder and the decoder have

access to the hidden mixing random variable S, one obtains

the lower bound

inf I(X;U |Y ) ≥ inf
∑

s

wsI(X;U |X + Zs),

where U is a random variable satisfying E(U−X)2 ≤ D as in

(49). This infimum can be evaluated using rate allocation like

in Section VII-A (a version of this bound for binary S first

appeared in [44]). Asymptotically for D → 0, this simplifies

to

RWZ
X|Y (D) ≥̇

∑

s

ws [h(X|X + Zs) − h(X − U)]

≥
∑

s

wsh(X|X + Zs) −
1

2
log 2πeD,



WEIDMANN AND VETTERLI: RATE DISTORTION BEHAVIOR OF SPARSE SOURCES 19

where h(X|X + Zs) = h(X) + h(Zs) − h(X + Zs) and

≥̇ denotes asymptotic inequality for D → 0. For Gaussian

X ∼ N (0, σ2
X), this further reduces to

RWZ
X|Y (D) ≥̇ 1

2

∑

s

ws log
σ2

X|X+Zs

D
, (52)

where the σ2
X|X+Zs

=
σ2

Xσ2
s

σ2
X

+σ2
s

are the conditional variances

given a single mixture component Zs. A slightly tighter bound

may be obtained by assuming that only the decoder has access

to S, using techniques from [45], which are however unlikely

to yield analytic expressions even in the Gaussian case.

An asymptotic upper bound for D → 0 is obtained

from I(X;S|Y ) = h(X|Y ) − h(X|Y, S) = H(S|Y ) −
H(S|Y,X) ≤ H(S) (F. Bassi, personal communication) as

RWZ
X|Y (D)

.
= h(X|Y ) − 1

2
log 2πeD

≤
∑

s

wsh(X|X + Zs) −
1

2
log 2πeD + H(S),

which for Gaussian X ∼ N (0, σ2
X) becomes

RWZ
X|Y (D) ≤̇ 1

2

∑

s

ws log
σ2

X|X+Zs

D
+ H(S). (53)

Whether this is sharper than the Gaussian upper bound (51)

needs to be checked on a case-by-case basis. If X,Z are jointly

Gaussian (and thus S constant), the asymptotic bounds (52)

and (53) coincide and are equal to RWZ
X|Y (D) for all D ≤

Dmax = σ2
X|X+Z . Clearly, (52) and (53) mirror (37) and (38)

in the standard R(D) case. The same comments on tightness

made after (35) in Section VII-A apply by substituting (U, Y )
for X̂ .

B. Connections with Compressed Sensing

We briefly outline how lossy coding of sparse sources is

related to compressed sensing (CS) [3], [4] (see also the

special issue [46]). A typical example of a CS problem is the

compressive representation of a signal vector x ∈ R
N of the

form x = Ψs, where Ψ is an orthonormal N -by-N matrix

and s ∈ R
N has at most K non-zero components (we say

that x is strictly K-sparse with respect to Ψ). The problem is

then to determine a sampling/compression mechanism for x

without using the sparsifying basis Ψ at the encoder (e.g. for

complexity reasons). CS typically involves sampling x using

an M -by-N random measurement matrix Φ that is “fat” (i.e.

has M ¿ N ) and has low coherence with Ψ. The key question

concerns the number M of real-valued samples (the height of

Φ) needed for the exact (lossless) reconstruction of all K-

sparse signal vectors s with high probability. Compression is

thus achieved in the sense of needing a number of samples M
that may be much smaller than N . A distributed CS problem

might consider a signal which is known to have a sparse dif-

ference with respect to a reference signal y (side information)

available only at the decoder. This can be extended to multiple

correlated signals, which may be composed of sparse and

non-sparse components, and have to be sampled and encoded

independently [47]. A related model, with correlated signals

obtained by sparse filtering, is studied in [48].

In practice, the samples Φx must be quantized, say with RCS

bits each, if they are to be sent to a remote decoder. This im-

plies some loss in the reconstruction of s (if it succeeds at all),

which will depend on the total rate MRCS. For benchmarking

purposes, it is thus interesting to study an information-theoretic

view of this noisy CS problem,5 by considering the rate needed

for approximate (lossy) reconstruction of almost all s, i.e.

the rate distortion behavior for an appropriate random model

of s. To simplify the analysis, one may consider asymptoti-

cally long sequences from a sparse memoryless source under

MSE distortion measure, e.g., a Bernoulli-Gaussian spike with

p = K
N for modeling strictly sparse signals, or a Gaussian

mixture model for sparse spikes with background noise. Notice

that the CS and information-theoretic models differ in which

quantities are considered random, which deterministic, and

what reconstruction guarantees are given. The viewpoint here

is that for a practical lossy coding system with an average

distortion constraint, if the source can be modeled as random,

the rate-distortion bounds will apply regardless whether CS is

employed in the system or not. The work [12] is among the

first to give sharper bounds on the D(R) behavior of quantized

CS of strictly sparse sources, but it does not provide a purely

information-theoretic analysis framework.

When Ψ is assumed known at the encoder, the upper and

lower bounds in this paper may be applied to appropriate

random source models in order to benchmark the operational

rate distortion behavior of practical quantized CS systems.

This also extends to distributed scenarios like the model JSM-

3 in [47], which can be related to the Wyner-Ziv setting

X = Y + Z mentioned above. The key is that knowing Ψ,

the encoder can always obtain the signal s that is sparse in

the standard basis, which can thus be modeled as a sparse

source as outlined. The theoretical performance limits hold

regardless whether a practical encoder uses Ψ or not. If R(D)
is the rate distortion function of the sparse source model, given

target distortion D, any quantized CS system must satisfy

MRCS ≥ NR(D) asymptotically for N, M → ∞. This yields

a simple trade-off between the CS sampling ratio M/N and

the rate RCS at which samples are quantized.

When Ψ is unknown at the encoder, two approaches may be

thought of. One is to postulate the existence of an algorithm

that finds a sparsifying basis Ψ knowing only the sparsity
K
N and the noisy measurements y = Φx + z (for work in

this direction, see [49]). Then one may again assume that

Ψ is known. The other approach is to consider Ψ as a side

information random variable available only at the decoder

and study this particular kind of Wyner-Ziv problem, as has

recently been suggested in [50].

CS with quantized incoherent measurements may be viewed

as a doubly non-adaptive coding scheme that is oblivious

of both the sparsifying basis Ψ and the location of nonzero

samples. When Ψ = IN , this becomes a singly non-adaptive

5The quantization noise may be modeled by parallel noisy channels, Y =
ΦX+Z, whose total capacity, assuming e.g. independent zero-mean AWGN
channels, depends on the signal-to-noise ratios E(ΦX)2

i
/ E Z2

i
. The total

channel capacity upper bounds the total rate MRCS.
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scheme that may be implemented with a lossy block code.

In [51], such a code has been constructed by combining a

q-ary nested uniform scalar quantizer with a q-ary syndrome

source code. The scheme works in a Wyner-Ziv setting if the

nonzero values are bounded, while in the standard case without

side information, one may introduce a compander to gain a

little extra performance, which for a Bernoulli-Gaussian spike

(Sec. III-B) asymptotically becomes

D(Rv) ≃ p

12
6π

√
3σ2

v2−2Rv ,

where p is the probability of a spike, σv its variance and Rv =
log2 q the quantizer rate. The total rate is R(Rv) ≃ hb(p) +
pRv , which is the same rate that a “nonlinear” adaptive code

would need, see (6).

IX. CONCLUSIONS

Sparsity is the key to nonlinear approximation and com-

pressed sensing. Work in these areas is generally more

concerned with the number of real-valued samples required

for achieving a certain approximation error or exact recon-

struction, rather than with the rate distortion trade-off that

is implicit when samples are quantized. This paper studied

the rate distortion behavior of sparse memoryless sources

modeling that situation. We proposed incomplete moments as

a compressibility measure and used them to bound low- and

high-rate D(R). Furthermore, we introduced the geometric

mean as a single-parameter compressibility measure and used

it to bound asymptotic R(D) via the entropy, and to compare

different types of transform coding gain. Thus non-strict

sparsity and lossy compression can be related in quantitative

fashion. These results apply to the MSE distortion criterion,

while for Hamming distortion we showed that R(D) can be

computed exactly in some cases and that it becomes almost

linear for very sparse sources.

APPENDIX

A. Rate Distortion Function of a Discrete Memoryless Source

(DMS)

Definition 8 (Rate distortion function of a DMS) Let X∼
P be a discrete random variable with alphabet X , QX̂|X(k|j)
a conditional distribution defining the discrete reconstruc-

tion random variable X̂ with alphabet X̂ , PX,X̂(j, k) =
P (j)Q(k|j) the corresponding joint distribution, and ρ(x, x̂)
a bounded non-negative single-letter distortion measure. The

average distortion associated with Q(k|j) is

d(Q) =
∑

j,k

P (j)Q(k|j)ρ(j, k). (54)

A conditional probability assignment Q satisfying d(Q) ≤ D
is called D-admissible and the set of all such Q is QD =
{Q(k|j) : d(Q) ≤ D}. The average mutual information

(“description rate”) induced by Q is

I(Q) =
∑

j,k

P (j)Q(k|j) log
Q(k|j)
Q(k)

, (55)

where Q(k) =
∑

j P (j)Q(k|j). The rate distortion function

is defined as R(D) = minQ∈QD
I(Q).

This convex optimization problem can be solved with the

method of Lagrange multipliers [16], [10, Sec. 13.7]. We start

with the functional

J(Q) = I(Q) + λd(Q) +
∑

j

νj

∑

k

Q(k|j), λ ≥ 0,

where the last term comes from the constraint that Q(k|j) is

a proper conditional distribution, i.e. satisfies
∑

k Q(k|j) = 1.

The minimizing conditional distribution is given by

Q(k|j) =
Q(k)e−λρ(j,k)

∑

k′ Q(k′)e−λρ(j,k′)
. (56)

The marginal Q(k) has to satisfy the following N̂ = |X̂ |
conditions:

∑

j

P (j)e−λρ(j,k)

∑

k′ Q(k′)e−λρ(j,k′)
= 1, if Q(k) > 0, (57)

∑

j

P (j)e−λρ(j,k)

∑

k′ Q(k′)e−λρ(j,k′)
≤ 1, if Q(k) = 0. (58)

For a tentative solution, given by a marginal Q(k) satisfying

(57), it can be shown that the conditions (58) are necessary and

sufficient to yield a point on the R(D) curve, either directly

as in [16, Theorem 2.5.2], or via the Kuhn-Tucker conditions

[10, Sec. 13.7]. The solution is further simplified through the

following theorem by Berger:

Theorem 14 [16, Theorem 2.6.1] No more than N = |X |
reproducing letters need be used to obtain any point on the

R(D) curve that does not lie on a straight-line segment. At

most, N̂ = N + 1 reproducing letters are needed for a point

that lies on a straight-line segment.

B. Rate Distortion of Binary (1, N) Sources

Proof of Proposition 1: The following relies heavily on

the results summarized in Appendix A, where it is shown that

R(D) can be computed by solving a set of equations involving

the marginal distribution Q(k) on the reconstruction alphabet.

The symmetry of the source distribution, P (j) = 1/N , j =
1, . . . , N , suggests the following marginal distribution (with a

slight abuse of notation):

Q = (q0, q1 = q2 = . . . = qN =
1 − q0

N
). (59)

Recall that the symbols 0, 1, . . . , N correspond to

0, e1, . . . ,eN , respectively. Let us first assume that qk > 0
holds for all k. Then the N + 1 conditions (57) have to be

met. We make the substitution β = e−λ and insert our Q(k)
into the equation, first for k 6= 0:

β0

q0β1 + 1−q0

N (β0 + (N − 1)β2)

+
(N − 1)β2

q0β1 + 1−q0

N (β0 + (N − 1)β2)
=

1

P (j)
= N,

which after some algebra becomes

q0((N − 1)β2 − Nβ + 1) = 0. (60)
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For k = 0 we get almost the same equation:

Nβ1

q0β1 + 1−q0

N (β0 + (N − 1)β2)
=

1

P (j)
= N,

which becomes

(1 − q0)((N − 1)β2 − Nβ + 1) = 0. (61)

The solution β = 1 corresponds to the point (0, Dmax = 1)
in the (R,D) plane, which is achieved by setting q0 = 1.

Therefore the interesting solution is β = 1/(N − 1), which

inserted into (56) yields

Q(k|j) = qk(N − 1)1−ρ(j,k). (62)

Inserting (62) into (54) we get the average distortion d(Q) =
1 − N−2

N (1 − q0) and from (55) the rate I(Q) = N−2
N (1 −

q0) log(N−1). Noting that these hold for q0 > 0, we combine

them to eliminate q0 and get

D(R) = 1 − R

log(N − 1)
for R <

N − 2

N
log(N − 1).

(63)

This proves the first part of (4). When R reaches its upper

bound in (63), D reaches 2/N and we have q0 = 0. At that

point, (60) will be satisfied for all β. According to condition

(58), (61) now becomes an inequality:

(N − 1)β2 − Nβ + 1 ≥ 0. (64)

This is satisfied by β ≥ 1 or β ≤ 1
N−1 , which is equivalent

to λ ≥ log(N − 1). The first solution (β ≥ 1) can be

discarded, since β = 1 has already been handled and β > 1
implies λ < 0, which is ruled out. The conditional distribution

parameterized by β is

Q(k|j) =

{

0, k = 0
βρ(j,k)

1+(N−1)β2 , k 6= 0
(65)

As before, we put this into (54) to get d(Q) = 2(N−1)β2

1+(N−1)β2 and

into (55) yielding

I(Q) = log N − (N − 1)β2

1 + (N − 1)β2
log(N − 1)

− hb

(

1

1 + (N − 1)β2

)

.

Eliminating β from the last two equations yields the second

part of (4).

C. Proof and Discussion of the Low-Rate Bound on D(R)

Proof of Theorem 5: The bound (15) itself is simply a

Gaussian upper bound on the significant samples, where the

rate is reduced by hb(µ(t)) to account for coding the positions

of those samples, plus the variance σ2 −A(t) of the uncoded

insignificant samples. It holds for all t ≥ 0 and R ≥ 0, but is

non-trivial only for R > hb(µ(t)).
The main task is thus to derive the locally optimal rate

(17). The rate trade-off is no longer between two codebooks,

but between the side information hb(µ(t)) and the rate for

significant coefficients R1; hence it cannot be solved using

water-filling. Our approach is to temporarily fix a threshold t
and determine the rate R∗(t) corresponding to the midpoint

of the common tangent of two bounds Blr(t, R) and Blr(t+
∆t, R), for ∆t → 0. The resulting point (R∗(t), Blr(t, R

∗(t)))
is a candidate member of the lower convex hull of the family

of bounds (15) and thus locally optimal (around t). Optimality

is only local, since another bound of the family (15) might lie

strictly below this candidate point; see the remarks after the

proof.

We take two curves of the family (15), say Blr(t, r) and

Blr(t+∆t, r), and determine their common tangent by solving

the following system of equations:

∂
∂r Blr(t, r)

∣

∣

r=r0
= ∂

∂r Blr(t+∆t, r)
∣

∣

r=r1
= s (66)

Blr(t+∆t, r1) − Blr(t, r0)

r1 − r0
= s. (67)

A necessary condition for this approach is that Blr(t, r) be

continuously differentiable in r, such that tangents are well-

defined. From ∂
∂r Blr(t, r) = −2A(t)

µ(t) exp
(

−2 r−h(µ(t))
µ(t)

)

, we

see that this is the case for t such that µ(t) > 0. The conditions

under which the system has no solutions are discussed in the

remarks after the proof.

Using the partial derivative ∂
∂r Blr, we solve (66) for r1:

r1 = µ(t+∆t)
µ(t) [r0 − h(µ(t))] + h(µ(t+∆t))

− 1
2µ(t+∆t) ln A(t)µ(t+∆t)

A(t+∆t)µ(t)

and start inserting this solution into (67):

s =
Blr(t+∆t, r1) − Blr(t, r0)

r1 − r0

=
A(t+∆t)e−2

r0−h(µ(t))

µ(t)
+ln

A(t)µ(t+∆t)
A(t+∆t)µ(t) − A(t)e−2

r0−h(µ(t))

µ(t)

r1 − r0

− [A(t+∆t) − A(t)]

r1 − r0

=
[µ(t+∆t)−µ(t)]A(t)

µ(t) e−2
r0−h(µ(t))

µ(t) − [A(t+∆t)−A(t)]

r1 − r0

= ∂
∂r B(t, r)

∣

∣

r=r0
= −2A(t)

µ(t) e−2
r0−h(µ(t))

µ(t) , (68)

where the last equality is actually again (66). For our con-

venience we make the substitutions ∆µ = µ(t+∆t) − µ(t),
∆A = A(t+∆t) − A(t) to obtain

A(t)
µ(t) e−2

r0−h(µ(t))

µ(t) [∆µ + 2(r1 − r0)] − ∆A = 0. (69)

Now we let

y = −2 r0

µ(t) , (70)

α = A(t)
µ(t) e2

h(µ(t))
µ(t) ,

β = ∆µ + 2(r1 − r0) − 2 r0

µ(t)∆µ

= ∆µ − 2µ(t+∆t)
µ(t) h(µ(t)) + 2h(µ(t+∆t))

− µ(t+∆t) ln A(t)µ(t+∆t)
A(t+∆t)µ(t)

so that (69) becomes

αey(−∆µ y + β) − ∆A = 0. (71)
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At this point we assume f(−t) + f(t) > 0 and hence by

continuity ∆t > 0 implies ∆µ < 0 and ∆A < 0.6 Therefore

we can divide (71) by −α∆µ and get

ey(y − β
∆µ ) + ∆A

α∆µ = 0, (72)

which can be solved using the Lambert W function:

y = β
∆µ + W

(

− ∆A
α∆µe

−
β

∆µ

)

. (73)

Using the defining equation W (x)eW (x) = x it is easy to show

that (73) actually solves (72). Before taking limits we resolve

the question which is the correct branch of W to use. From

(70) it is clear that we need negative real-valued solutions.

The principal branch W0(x) has domain [−1/e,∞) and takes

on values in [−1,∞), whereas the other real-valued branch

W−1(x) has values in (−∞,−1]. Since a more negative y
will yield a tighter bound (see (70) and (15)), we pick the

branch W−1(x). Its domain is [−1/e, 0), which implies that

for a specific pdf f(x) and threshold t, equation (73) might

have no real solution, i.e. that no common tangent exists. That

case will be analyzed in the remark following the proof.

Because W−1(x) is a continuous function, we may take the

limit ∆t → 0 of the expressions appearing in its argument:

lim
∆t→0

β
∆µ = lim

∆t→0
1 + 2µ(t)h(µ(t+∆t))−µ(t+∆t)h(µ(t))

µ(t)[µ(t+∆t)−µ(t)]

+ 2µ(t)h(µ(t))−µ(t)h(µ(t))
µ(t)[µ(t+∆t)−µ(t)]

+ µ(t+∆t) ∆t
µ(t+∆t)−µ(t)

[

ln A(t+∆t)−ln A(t)
∆t − ln µ(t+∆t)−ln µ(t)

∆t

]

= 1 + 2h′(µ(t)) − 2h(µ(t))
µ(t) + µ(t)A′(t)

µ′(t)A(t) − 1, (74)

lim
∆t→0

∆A
α∆µ = lim

∆t→0

[A(t+∆t)−A(t)]µ(t)
[µ(t+∆t)−µ(t)]A(t) e−2h(µ(t))/µ(t)

= A′(t)µ(t)
A(t)µ′(t)e

−2h(µ(t))/µ(t). (75)

By the definitions of µ and A we have µ′(t) = −f(−t)−f(t)

and A′(t) = (−f(−t) − f(t))t2, hence
µ(t)A′(t)
µ′(t)A(t) = µ(t)

A(t) t
2 =

γ(t), as defined in (18). Inserting (74)–(75) into (73) gives

y = 2h′(µ(t))− 2h(µ(t))
µ(t) +γ(t)+W

(

−γ(t)e−2h′(µ(t))−γ(t)
)

(76)

and after inserting this into (70) and solving for r0 we obtain

(17).

Remarks: As pointed out in the proof, for some values of

the threshold t there might be no solution to the common

tangent problem. This occurs when increasing t produces a

bound Blr(t+∆t, r) that for all r is larger than Blr(t, r).
Using a Taylor approximation

Blr(t+∆t, r) ≈ Blr(t, r) + ∂
∂tB(t, r)∆t

we see that there is no common tangent for those t satisfying

min
r

∂
∂tB(t, r) > 0. (77)

6If this assumption does not hold, we also have β = 0 and thus (71) is
always satisfied. This case corresponds to a pdf with symmetric holes in its
support, that is, a mixture of two (or more) densities with non-overlapping
supports. Picking the “critical” t actually separates the mixture components
into two groups.

To find this minimum we differentiate ∂
∂tB with respect to r:

∂2

∂t∂r B(t, r) = 2e−2
r−h(µ(t))

µ(t)

·





−µ2(t)A′(t)+2µ′(t)A(t)

(

1
2µ(t)−r+h(µ(t))−µ(t)h′(µ(t))

)

µ3(t)



 .

After discarding the zero at r = ∞, the rate of the candidate

minimum is found by setting the term in square brackets to 0:

r∗ = 1
2µ(t)

[

1 − γ(t) − 2h′(µ(t)) + 2h(µ(t))
µ(t)

]

. (78)

To verify that it is indeed a (unique, thus global) minimum,

we check the second derivative:

∂3

∂t∂2r B(t, r)
∣

∣

∣

r=r∗

= 2e−2
r∗−h(µ(t))

µ(t)

[

4 f(t)A(t)
µ3(t)

]

> 0.

Now we insert (78) into (77) and obtain

∂
∂tB(t, r∗) =

[

A′(t) + 2A(t)µ′(t)
µ(t)

(

h′(µ(t)) + r∗−h(µ(t))
µ(t)

)]

· e−2
r∗−h(µ(t))

µ(t) − A′(t)

= A(t)µ′(t)
µ(t) eγ(t)−1+2h′(µ(t)) − A′(t) > 0. (79)

If we divide (79) by A′(t) < 0 (thus reversing the inequality)

we see that (77) is equivalent to e−1eγ(t)+2h′(µ(t)) < γ(t) and

after another sign change we get

− 1
e > −γ(t)e−γ(t)−2h′(µ(t)). (80)

This is a reassuring result: condition (80), and thus (77), is

true exactly if and only if the argument of the W function

in (17) is less than −1/e, i.e. when there is no real-valued

solution. Nevertheless, this condition alone does not guaran-

tee that we find only convex hull points, since one of the

constituent bounds Blr(t, r) might be below all others for a

threshold t satisfying (77). In all examples we have studied, it

happened to be the Gaussian bound Blr(0, r), if at all. For a

Gaussian source, obviously no upper bound can be tighter than

Blr(0, r), while for Laplacian sources all thresholds above a

critical value yield slight improvements. For pdf’s that are even

more peaked around zero the critical threshold is (almost) zero.

Informally, these “forbidden” threshold values mean that the

reduction in the number of coded significant samples is not

sufficient to offset the increased side information rate hb(µ(t)).
From this reasoning it becomes evident that such t can only

lie between 0 and t0.5, with µ(t0.5) = 0.5. On the other hand,

this means that the bound will be useful at low rates (larger

t), which is exactly what is desired.

Corollary 15 The low-rate bound (16) and the high-rate

bound (12) coincide in proper non-boundary local extrema

of c(t), provided that f(−t) + f(t) > 0 over supp(f):

R∗(t) = Rmin(t) ⇐⇒ Blr(t, R
∗(t)) = Bhr(t, Rmin(t))

⇐⇒ c′(t) = 0, (81)

where c(t) is defined in (13) and Rmin(t) in (11).
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Proof: First we study the last equation. The derivative of

c(t) is

c′(t) = c(t)
[

µ′(t) ln
σ2
1(t)

σ2
0(t)

+ A′(t)
(

1
σ2
1(t)

− 1
σ2
0(t)

)

+ 2µ′(t)h′(µ(t))
]

= −(f(−t) + f(t))c(t)
[

ln
σ2
1(t)

σ2
0(t)

+ t2
(

1
σ2
1(t)

− 1
σ2
0(t)

)

+ 2h′(µ(t))
]

. (82)

Since we assumed f(−t) + f(t) > 0 and have c(t) > 0
by definition, the term in square brackets has to be zero for

a proper local extremum. Since the domain t ∈ [0,∞) is

half open, a possible boundary minimum at t = 0 has to be

inspected separately. (The same applies to the right boundary

tmax if the support is bounded.) Now we inspect the middle

equation:

Blr(t, R
∗(t)) = A(t) exp

[

2h′(µ(t)) + γ(t)+

W−1(−γ(t)e−2h′(µ(t))−γ(t))
]

+ σ2 − A(t)

= Bhr(t, Rmin(t)) = σ2
0(t) = σ2−A(t)

1−µ(t) ,

which after taking the logarithm is equivalent to

W−1(−γ(t)e−2h′(µ(t))−γ(t)) = −2h′(µ(t)) − γ(t) − ln
σ2
1(t)

σ2
0(t)

.

(83)

Inserting this into the defining equation W (x)eW (x) = x we

get
(

−2h′(µ(t)) − γ(t) − ln
σ2
1(t)

σ2
0(t)

)

σ2
0(t)

σ2
1(t)

e−2h′(µ(t))−γ(t) =

− γ(t)e−2h′(µ(t))−γ(t), (84)

which is equivalent to
[

ln
σ2
1(t)

σ2
0(t)

+ 2h′(µ(t)) + γ(t)
(

1− σ2
1(t)

σ2
0(t)

)]

e−2h′(µ(t))−γ(t) = 0.

(85)

Observing that γ(t) = t2

σ2
1(t)

shows that the term in brackets

is equal to the bracketed term in (82), so that (85) implies

c′(t) = 0. Finally, the first expression in (81) is

0 = R∗(t) − Rmin(t)

= −µ(t)
2

[

2h′(µ(t)) + γ(t) + W−1

(

−γ(t)e−2h′(µ(t))−γ(t)
)]

− µ(t)
2 ln

σ2
1(t)

σ2
0(t)

. (86)

Since t is not allowed to be on the right support boundary,

we can divide (86) by µ(t) > 0 and after rearranging terms

we get exactly equation (83). Thus also the first condition is

equivalent to c′(t) = 0.

Remark: For a fixed threshold t, by definition of Rmin the

point Bhr(t, Rmin(t)) is the switch-point between the low-rate

bound and the high-rate bound, that is for all R > Rmin the

high-rate bound is tighter. If now the two bounds are optimized

(“best R for given t”), Corollary 15 comes as no big surprise.

In the interesting cases, when c(t) has a single local (thus

global) minimum at t0 > 0, the consequence is that for t >
t0 (R < Rmin(t0)) the low-rate bound will be tighter, and

for R ≥ Rmin(t0) the high-rate bound will take over. In the

less interesting cases such as the Gaussian, c(t) is minimal at

t0 = 0 and takes on a global maximum for some t0 > 0. At

low rates the bound (16) is again tighter; it becomes looser up

to Rmin(t0), while from that rate on (12) will be the loosest

bound. So far we have found no examples of densities that

lead to multiple local extrema of c(t).

D. Maximum Entropy given Variance and Geometric Mean

Proof of Proposition 9:

The proof relies on the method for obtaining maximum

entropy distributions outlined in [10, Ch. 11]. The goal is to

maximize the entropy h(f) over all probability densities f
satisfying

1) f(x) ≥ 0, x ∈ R,
2)

∫

f(x) dx = 1,
3)

∫

f(x) log |x|dx = θ,
4)

∫

f(x)x2 dx = σ2,

(87)

where all integrals are over R. Using calculus of variations, it

can be shown that the maximizing density has the form

f(x) = eλ0−1|x|λ1eλ2x2

, (88)

where λ0, λ1, λ2 are chosen such that f satisfies the constraints

2, 3, 4 in (87). Using an information inequality, it can then be

shown that if there exists an f∗ of the form (88) satisfying (87),

then it is the unique maximizer over all densities satisfying

(87) [10, Thm. 11.1.1]. Thus we need only prove that (29)

satisfies the constraints (87).

The normalization constraint
∫

f(x) dx = 1 is satisfied if

and only if eλ0−1 = (−λ2)
(λ1+1)/2/Γ((λ1 + 1)/2). Further-

more, for the integral (and higher moments) to converge, we

must have λ2 < 0. Inserting the above expression for λ0

into (88) yields the second moment
∫

f(x)x2 dx = −(λ1 +
1)/(2λ2), which satisfies the corresponding constraint if and

only if λ2 = −(λ1 + 1)/(2σ2). To simplify expressions, we

substitute λ1 = u − 1. The condition λ2 < 0 thus becomes

u > 0.

We need to show that E log |X| is monotone increasing

in u, so that the mapping between θ and u defined by (30)

is one-to-one. By Jensen’s inequality we have E log |X| ≤
1
2 log EX2 = log σ. Let v = u/2 and φ(v) = 2(E log |X| −
1
2 log EX2) = ψ(v) − log v. Using a standard integral repre-

sentation for ψ(v) [32, 8.361.3] we obtain

φ(v) = − 1

2v
− 2

∫ ∞

0

t dt

(t2 + v2)(e2πt − 1)
, v > 0. (89)

The first derivative,

φ′(v) =
1

2v2
+ 4

∫ ∞

0

vtdt

(t2 + v2)2(e2πt − 1)
, (90)

is strictly positive for v > 0, so E log |X| is indeed monotone

increasing. By bounding the integral in (89), one can further

show that limu→∞ E log |X| = log σ, which means that all

admissible constraints θ ≤ log σ can be satisfied. Thus there

is a unique λ1 = u − 1 satisfying constraint 3 in (87), which

together with σ2 in turn determines λ2 (satisfying constraint

4) and finally λ0 (satisfying constraint 2).
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