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Abstract

We propose a density approximation method based on Bernstein polynomials,
consisting in superseding the classical Bernstein operator by a convenient num-
ber I∗ of iterates of a closely related operator. We mainly tackle two difficulties
met in processing real data, sampled on some mesh XN . The first one consists
in determining an optimal sub-mesh XK∗ , in order that the operator associated
with XK∗ can be considered as an authentic Bernstein operator (necessarily as-
sociated with a uniform mesh). The second one consists in optimizing I in order
that the approximated density is bona fide (positive and integrates to one). The
proposed method is tested on two benchmarks in Density Estimation, and on a
grain-size curve.

Keywords: Non-parametric density estimator, Bernstein polynomials, Bona
fide density, Optimal mesh, Hausdorff metric.

1. Introduction

S. Bernstein introduced the polynomials that bear his name in his famous
constructive proof of the Stone-Weierstrass theorem [5], using probabilistic ar-
guments to prove the uniform convergence of his approximation. This dual
belonging to the fields of Approximation Theory and Statistics benefits to both
communities : statistical arguments are often used in Approximation Theory
[20, 36], while the attractive approximation properties of Bernstein polynomials
prompted statisticians to introduce them in Density Estimation [2, 8, 14, 28].

In this paper, we propose a density approximation method also based on
both disciplines approaches. While classical Density Estimation deals with em-
pirical distribution functions (e.d.f.s), this method is designed for processing
discretized distribution functions (d.d.f.s), defined hereunder. By convention,
all these distribution functions will be defined on the unit interval, except in the
illustrating applications.
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Definition 1. An e.d.f. FK is built from the sorted sample of values of some
random variable X ,

{
0 ≤ x(1) < x(2) . . . , < x(K−1) ≤ 1

}
; FK is the step func-

tion associated with the jump set

SK :=

{(
x(0) = 0, 0

)
,

(
x(1),

1

K

)
, . . . ,

(
x(K−1),

K − 1

K

)
,
(
x(K) = 1, 1

)}
.

In contrast with e.d.f.s, whose jump sets have random abscissas and deter-
ministic ordinates, d.d.f.s have deterministic abscissas and random ordinates.

Definition 2. A d.d.f. is built from a finite list FK := {(xi, F (xi)) : 0 ≤ i ≤ K}
of values of some increasing function F sampled on a fixed mesh x0 = 0 ≤ x1 <
. . . , < xK−1 ≤ 1 = xK , whose image is in the unit interval. The associated step
function will be denoted FK too.

An e.d.f. possesses of course the same structure as a d.d.f., but there is a lot
of data used in geoscience, medicine or other fields (grain-size curves, pore-size
curves, thermal remanent magnetization curves, biomass spectra, growth curves,
...), which are d.d.f.s, not e.d.f.s. They belong to the same class of random
functions as e.d.f.s, but the individual characteristic (size, ...) of each object
(particle, pore, ...) is unknown ; furthermore, in some cases, these objects are
not even counted (ponderal grain-size curves, for instance). That is why we will
speak of density approximation, not density estimation. But even though d.d.f.s
do not consist in e.d.f.s, they can be associated too with probability measures.
In a series of works [24, 25, 26, 27], we proposed a convenient functional method
designed for the exploratory analysis of a S-sample {ν1, · · · , νS} of measures .
Roughly speaking, it consists in performing the Principal Component Analysis
(PCA) of the Radon-Nikodym densities {dν1/dµ, · · · , dνS/dµ} where µ is a
reference probability dominating all these measures. The point is that we have
shown that, ideally, the S d.d.f.s should be discretized on a mesh consisting in
fractiles of the reference distribution function Fµ (µ-optimal meshes). Thus,
a practical issue for PCA of such data (grain-size curves, for instance) is the
“fractiles problem” : given a reference distribution Fµ sampled on some imposed
mesh XN (giving rise to the observed d.d.f. FN ) how shall we extract a sub-mesh
XK consisting (at last approximately) in fractiles of Fµ?

This paper is organized as follows. In Section 2, we recall results from the
Approximation Theory literature, essential for our purpose, and prove that the
rate of point-wise convergence of the standard Bernstein approximation for a dis-
tribution function sampled on K positions is typically 1√

K
. The Sevy’s method

[31, 30] for accelerating the convergence of Bernstein approximations, based on
iterations of the associated operator, is reminded there. In Section 3, we review
recent works about the use of Bernstein polynomials in Density Estimation,
and about the numerical problems they pose. A topic of cardinal importance
[29] consists in optimizing the number of iterations in the Sevy’s scheme. This
point is tackled in the last part of Section 4. The first part of Section 4 is
dedicated to the problem of optimal sub-sampling : in order to compute the
Bernstein approximation of degree K of some continuous function F , we need a
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uniform sample of F , of size K + 1. But in general, either the sampling mesh
is not uniform, or the number of sampled values is excessive : for instance, if
K+1 = 100, the degree of the polynomial is 99! We propose tools for extracting
from the original mesh sub-meshes well-suited for our purpose. The method is
then tested on two benchmarks in Density Estimation and on a grain-size curve ;
an heuristics for the fractiles problem is proposed in this section, based on our
density approximation. At last, Section 5 is devoted to discussion.

2. The Approximation Theory viewpoint

First of all, let us briefly recall the proof of the Stone-Weierstrass theorem by
Bernstein [5, 22]. Let F ∈ C0[0, 1], and A be an event whose success probability
is x ∈ [0, 1]. Bernstein supposes a gambler performs K independent Bernoulli
trials, and wins F

(
J
K

)
if A has been drawn J (random) times. His average gain

is then :

BK [F ](x) :=

K∑

j=0

F (
j

K
)WK,j(x) (1)

with WK,j(x) :=
(
K
j

)
xj (1− x)

K−j
. Then, since J

K

P−→ x (Bernoulli’s law

of large numbers), ‖BK [F ]− F‖ −→ 0
K→∞

, where ‖G‖ := sup
x∈[0,1]

|G(x)|.

Of course, if F is positive, BK [F ] is so, but a number of researchers es-
tablished further attractive properties of BK . For instance, if F (x) ∈ [a, b],
BK [F ](x) ∈ [a, b] ; if F ∈ Cp[0, 1],

∥∥BK [F ](q) − F (q)
∥∥ −→ 0

K→∞
∀q ≤ p ; if F is

monotone, BK [F ] is monotone and if F is convex, BK [F ] is so (see e.g. [12]). But
“there is a price that must be paid for these beautiful approximation properties :
the convergence of the Bernstein polynomials is very slow” [12] . Nevertheless,
the Voronovsky theorem [12] proves that the rate of point-wise convergence is
1/K at points where F is sufficiently regular ; if F is of class Cm[0, 1] (m ≥ 2),
this convergence is uniform at the rate 1/K. When F is only continuous, Zeng
and Piriou [36] proved that the rate of uniform convergence of BK [F ] towards
F is bounded by 1.25ω

(
K−1/2, F

)
. They also gave [36] an upper bound of

the point-wise rate of convergence of BK [F ] for bounded variation functions on
[0, 1] :

Theorem 3. (Zeng and Piriou [36]) Let F be of bounded variation on [0, 1].
Then, for every x in [0, 1] and K ≥ 3 we have:

∣∣∣∣BK [F ](x) − F (x+) + F (x−)

2

∣∣∣∣ ≤
3

Kx(1− x) + 1
V(F, x,K)+

2√
Kx(1− x) + 1

C(F, x,K)

where C(F, x,K) = 0 if F is continuous at x, and V(F, x,K) =
K∑

k=1

V
x+(1−x)/

√
k

x−x/
√
k

(gx),

3



with gx(t) =





F (t)− F (x+) if t ∈]x, 1]
0 if t = x

F (t)− F (x−) if ∈ [0, x[
and V b

a (gx) denotes the total varia-

tion of gx on [a, b] .

In the particular case of d.f.s, we will give hereunder a better upper bound ;
but we need first a preliminary result.

Lemma 4. If n is large enough,

n−1∑

m=2

√
m

(
1−

√
m

m+ 1

)
=

√
n− 4

√
2

3
+

3
√

1
n

4
+O

[
1

n− 2

]
.

Proof. Consider first the functions w(x) :=
√
x
(
1−

√
x

x+1

)
, wn(x) := (n −

2)
√
(n− 2)x+ 1

(
1−

√
x(n−2)+1
(n−2)x+2

)
, and the integral

ˆ n−1

1

w(x) dx =

ˆ 1

0

wn(x) dx = −2

3

(
1 +

√
2 +

√
n− 1− 3

√
n− n

√
n− 1 + n3/2

)

=
√
n− 2

3

(
1 +

√
2
)
+

√
1
n

4
+O

[
1

n

]3/2
.

Since wn is of bounded variation, the Theorem 1(b) of Chui [9] leads to :
n−1∑

m=2

√
m
(
1−

√
m

m+1

)
−
´ 1

0
wn(x) dx = O

[
1

n−2

]
. The lemma is then proved by

keeping only the dominant terms of the integral

Remark. One can easily verify that the above approximation is indeed very good

for any n > 3 ; moreover, notice that since
√
x
(
1−

√
x

x+1

)
is decreasing, the

sum is slightly lower than the integral.

We can now prove a corollary of Theorem 3, designed for distribution func-
tions.

Corollary 5. Let F be an absolutely continuous d.f. on [0, 1] associated with
some probability P with f := dP

dλ , and suppose ‖f‖ < +∞ . Then, for K ≥ 3

|BK [F ](x) − F (x)| ≤ 6 ‖f‖
x(1− x) + 1/K

(
1√
K

−O

[
1

K − 2

])
.

Proof. Since F is continuous , gx(t) = F (t)−F (x)∀x ∈ [0, 1] and, because F is
a d.f., we can write :

V
x+(1−x)/

√
k

x−x/
√
k

(gx) = F
(
x+ (1− x) /

√
k
)
− F

(
x− x/

√
k
)

=
´

Ik(x)
f(t)dt = P (Ik(x))
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with Ik(x) :=
[
x− x/

√
k, x+ (1− x) /

√
k
]
. Notice that

IK(x)  IK−1(x)  · · · ( I1(x) = [0, 1].

As a consequence V(F, x,K) = K P (IK(x)) +
K−1∑

k=1

(K − k)P (CK−k(x)), where

CK−k(x) = IK−k(x) ∩ IK−k+1(x) is a “crown” around x, with two disjoint
components : a “left” one, CL

K−k(x) =
[
x− x/

√
K − k, x− x/

√
K + 1− k

]
,

and a “right” one : CR
K−k(x) =

[
x+ (1− x)/

√
K + 1− k, x+ (1− x)/

√
K − k

]
.

Since F is continuous, P (IK(x)) = F (xK)√
K

for some xK ∈ IK(x) ; we have also :
´

CL

K−k
(x) f(t)dt = P

(
CL

K−k(x)
)
= x∆k

K f(xL
K−k), for some xL

K−k ∈ CL
K−k(x)

and ∆k
K :=

(
1√

K−k
− 1√

K−k+1

)
≤ 1 − 1/

√
2. Similarly,

´

CR

K−k
(x)

f(t)dt =

P
(
CR

K−k(x)
)
= (1− x)∆k

K f(xR
K−k), for some xR

K−k ∈ CR
K−k(x).

We obtain at last :

V(F, x,K) =
√
Kf(xK) +

K−2∑

k=1

(K − k)∆k
K

x f(xL
K−k) + (1 − x) f(xR

K−k)

2
+

(
1− 1/

√
2
) x f(xL

1 ) + (1− x) f(xR
1 )

2

=
√
Kf(xK) +

K−1∑

j=2

√
j

(
1−

√
j

j + 1

)
x f(xL

j ) + (1− x) f(xR
j )

2
+

(
1− 1/

√
2
) x f(xL

1 ) + (1− x) f(xR
1 )

2

and finally, since f is bounded and because of lemma 4 :

3

Kx(1− x) + 1
V(F, x,K) ≤ 6 ‖f‖

x(1 − x) + 1/K

(
1√
K

−O

[
1

K

])

Thus, the rate of point-wise convergence of Bernstein approximations of

d.f.s is typically O
[

1√
K

]
on ]0, 1[ . Remember now that, in order to acceler-

ate the convergence of Bernstein approximations, Sevy [31, 30] proposed to

substitute the iterated operator IIK :=
(
1− (1−BK)

I
)

to BK . This method

has been recently re-discovered by Sahai [29], who noticed that one can write
C0[0, 1] ∋ F = BK [F ] + E, where E ∈ C0[0, 1] is an unknown error which can

be approached by BK [E]. Then, BK [F ] + BK [E] =
(
1− (1− BK)

2
)
[F ] is a

better approximation of F than BK [F ], and so on... Sevy [30] proved that if

F ∈ Cm+k[0, 1], and if the number of iterations is I > m,
∥∥∥
(
IIK [F ]

)(k) − F (k)
∥∥∥ =

5



o
(
K−m

2

)
; thus, if F ∈ C1[0, 1], for I ≥ 1, IIK [F ] uniformly converges towards

F at the rate o
[

1√
K

]
; if F ∈ C2[0, 1], for I ≥ 2, IIK [F ] uniformly converges

towards F at the rate o
[
1
K

]
, etc... Sevy also proved the following result :

Theorem 6. (Sevy [31], see also Cooper and Waldron [10]) For fixed K ≥ 1
and any function F defined on [0,1],

∥∥IIK [F ]− LK [F ]
∥∥ −→ 0

I→∞
(2)

where LK [F ] is the Lagrange polynomial interpolating F at the K+1 equidis-
tant nodes

{
k
K , 0 ≤ k ≤ K

}
.

This theorem will enable us in Section 4.3 to find a satisfactory trade-off
between BK [F ] (generally too smooth) and the Lagrange interpolation polyno-
mial, which is notoriously a bad approximate [13, 22].

3. Bernstein polynomials for Density Estimation

Bernstein polynomials were introduced in Density Estimation according to
two different strategies : the direct one consists in deriving an estimator of the
d.f., while the indirect one goes through the estimated quantile function. In this
section, N denotes the size of the studied sample.

3.1. The direct estimator

Let FN (x) be the e.d.f. associated with a N -sample of some real random
variable X supported by [0, 1], and m < N . Babu et al. [2] proposed an

estimator F̃N,m of the distribution function F of X , consisting in smoothing
FN :

F̃N,m(x) :=

m∑

k=0

FN (
k

m
)Wm,k(x) = Bm[FN ]. (3)

They proved its almost sure convergence when the associated d.f. is contin-
uous; moreover, they gave conditions under which its rate of stochastic conver-
gence can be determined, as well as the rate of convergence of the associated
density estimator f̃N,m(x) := d

dx F̃N,m(x). The properties of f̃N,m were also in-
vestigated by Bouezmarni and Rolin [8], who proved not only its convergence
under weaker conditions, but also that the estimation of a density supported
by [0, 1] and unbounded at x = 0 is itself asymptotically unbounded at x = 0
(another type of shape-preserving property).

3.2. The indirect estimator

In an interesting paper, de Bruin et al. [14] proposed another estimator of
f . It consists in the inverse of the derivative of the increasing function :

HN (p) :=
N+1∑

i=0

x(i)WN+1,i(p).
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Indeed, since x(i) is an estimate of F−1 (i/(N + 1)), according to (1), HN (p) =
BN+1[F

−1](x) estimates the quantile function of X . Consequently, they esti-
mate f(x) by d

dxH
−1
N (x).

It is noteworthy that their paper evades several practical problems. First,
if N is large (100, say) HN (p) will be a polynomial of degree N + 1 - not
easily manageable with a computer! Moreover, in such cases, finding the root of
the polynomial equation x = HN (px) before obtaining d

dxH
−1
N (x) = 1/H ′

N(px)
would be computer-challenging too. Such numerical problems have been tackled
by Farouki and his co-authors [18, 16, 17] (see also [3]). Indeed, the central
difficulty with Bernstein polynomials lies in the following proposition, proved in
[17] :

Proposition 7. The condition number for the transformation of polynomials of
degree N from the Bernstein basis on t ∈ [0, 1] to the power basis (or vice-versa)
in the ‖ ‖1 and ‖ ‖∞ norms is κ(N) ≈ 3N+1

√
N + 1/

√
2π .

Thus one must avoid to switch between these bases. Consequently, Farouki
and Rajan [16] described algorithms for processing polynomials inside the
Bernstein polynomials system : degree elevation, addition, subtraction, multi-
plication, division, differentiation, integration, substitution, GCD, resultant of
two polynomials, real roots isolation and computation. Even though we only
used the direct estimator, such numerical difficulties were met, and resolved by
using such algorithms (see Section 4.3.1).

4. Synthesis: the proposed method

To sum up the above facts, the usual Bernstein d.f. and density estimators
have contradictory properties. They converge towards well-suited functions,
but too slowly : if N is the sample size, we saw in Section 2 that the rate of

point-wise convergence of BN is typically O
[

1√
N

]
. But unfortunately, if N is

large, because of the numerical problems mentioned above, it is impossible to
manage with the associated approximation. Thus, in such cases, it is natural
to supersede the step function FN , supported by the original mesh XN , by
a step function FK obtained by restricting ourselves to a well-suited sub-mesh
XK of smaller size K . Consider then the “pseudo-Bernstein” approximation
corresponding to XK :

B̂K [F ](x) :=
K∑

j=0

F (xj)WK,j(x). (4)

It is tempting to supersede (1) by (4), but does it make sense if XK is
not uniform? We will prove that the answer is positive if F is differentiable
and if XK is close enough to uniformity. Suppose now such a sub-mesh has
been determined ; in order to improve the fit, we could substitute some Sevy’s
operator to BK , but what number of iterations I∗ shall we use in (2)?

Thus, we will face to two problems for processing some d.d.f. FN :

7



• find a well-suited sub-mesh of order K such that, simultaneously, K is
“reasonable” (e.g. K ≤ 30), while FK is a good approximation of FN (see
Sections 4.1 and 4.2)

• choose I∗ as large as possible under the constraint that the derivative of
II

∗

m [Fm] is bona fide [19] i.e. belongs to both the closed convex cone of
positive functions F+ and the closed convex set of functions integrating
to one, F1 (see Section 4.3).

4.1. Optimizing the mesh

We first build a finite sequence of sub-meshes from the initial ordered mesh
XN := {0, x1, . . . , xN−1, 1} and the sequence of uniform meshes {UK : 1 ≤ K ≤ N};
UK :=

{
i
K , 0 ≤ i ≤ K

}
.

The sub-mesh XK :=
{
0, xN1

, . . . , xNK−1
, 1
}

is such that :

∀ 0 ≤ m ≤ K, xNm
:= arg min

x∈XN

∣∣∣x− m

K

∣∣∣ .

Thus there are often duplicate points in such sub-meshes, which we call degen-
erate.

4.1.1. Good (sub)meshes via the Hausdorff metric

Suppose F has been sampled on the original mesh XN , which is not uniform :
for some i, xi /∈ UN . The crucial point is that in (1), the value of F ( k

m )

is absolutely required. In their paper, Babu et al. [2] proposed FN ( k
m ) as

an estimator of F ( k
m ) but notice that, unless m divides N , FN ( k

m ) should be
interpolated from the d.d.f. We stress now that the set SN of jumps of FN

consist in the only experimental points, supported by XN . For instance, if FN

is a d.d.f.,

SN := {(x0 = 0, F (x0)) , (x1, F (x1)) , . . . , (xN−1, F (xN−1)) , (xN = 1, F (xN ))} .

But, for x /∈ XN , F (x) could be approached by any arbitrary positive increas-
ing function bounded by 1 and interpolating SN , not especially FN . That is
why we will avoid interpolating the d.d.f., as far as it is possible.

Let us denote ρ(x) the nearest integer function, and introduce the notion of
meshes homologous to a uniform one.

Definition 8. We will say that XK is homologous to UK if ∀ 1 ≤ k ≤ K −
1, ρ (K xk) = k, i.e. the application ρ (K •) : XK 7→ UK is injective.

Suppose first the original mesh XN is homologous to UN ; we can write :

∀k, F (xk) = F
(

ρ(N xk)
N + ǫk

)
, with ǫk ∈]− 1

N , 1
N [ , and thus F (xk) = F

(
ρ(N xk)

N

)
+

8



ǫk f(ξk) for some ξk ∈
]
ρ(N xk)

N , ρ(N xk)
N + ǫk

[
. Consequently, we have :

∣∣∣B̂N [F ](x)−BN [F ](x)
∣∣∣ =

∣∣∣∣∣
N∑

k=0

ǫk f(ξk)WN,k(x)

∣∣∣∣∣ < max
i=0,N

(|ǫi|)
∣∣∣∣∣

N∑

k=0

f(ξk)WN,k(x)

∣∣∣∣∣

< 1
N

∣∣∣∣∣
N∑

k=0

f(ξk)WN,k(x)

∣∣∣∣∣ ≈
1
N |f(x)| .

(5)
Since this desirable situation is generally unfulfilled (if XN is not uniform,

for instance), or N is too large for practical use (see Section 3.2), it seems a good
idea to look for a subset of K−1 jump positions, XK :=

{
0, xN1

, . . . , xNK−1
, 1
}
,

such that, for each k ≤ K, xNk
≈ k

K ; in this case, the relation (5) will be true,
with K instead of N . For this purpose, we need first a measure of distance
between XK and UK . We consider the Hausdorff distance [11, 35] :

dH (XK , UK) = max

{
max

0≤k≤K
d (xk, UK) , max

0≤k≤K
d (XK , k/K)

}

where d (xk, UK) := min
0≤j≤K

∣∣xk − j
K

∣∣ and d (XK , k/K) := min
0≤j≤K

∣∣xj − k
K

∣∣.
There is an equivalent definition, based on Minkovski ε-sausages [35] :

Definition 9. Let (E, d) be a metric space, and P ⊂ E. If B(x, ε) denotes the
closed ball of ray ε centered on x, the ε-sausage of P is :

P (ε) :=
⋃

x∈P

B(x, ε).

The alternative definition of dH is :

dH (XK , UK) = inf {ε : (XK ⊆ UK(ε)) ∧ (UK ⊆ XK(ε))} .

Let us now define the resolution of a (sub)mesh.

Definition 10. The resolution of XK is R (XK) := min
0≤i≤K−1

{|xi − xi+1|}.

So, the resolution of degenerate sub-meshes is null. We can now prove the
following intermediary issue.

Lemma 11. If δ := dH (XK , UK) < max
(

1
K , R(XK)

2

)
, XK is homologous to

UK.

Proof. Suppose that, under this hypothesis, there exist a pair (xk, xk′) of distinct
points such that ρ (K xk) = ρ (K xk′ ) = m. Then, xk = m

K + ǫk and xk′ =
m
K + ǫk′ , with max {|ǫk| , |ǫk′ |} < 1

K . Thus, we should have simultaneously
{xk, xk′} ⊂ B

(
m
K , δ

)
and |xk − xk′ | ≥ R (XK) > 2δ, which is impossible. Thus

ρ (K •) : XK 7→ UK must be injective

We have finally the following result, much better than (5) :
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Theorem 12. If F is differentiable, we have, under the conditions of Lemma 11 :

∀x ∈ [0, 1],
∣∣∣B̂K [F ](x) −BK [F ](x)

∣∣∣ < dH (XK , UK) |f(x)| .

Proof. Immediate from the demonstration of (5), since ∀ 1 ≤ k ≤ K−1, d (xk, UK) =
d
(
XK , k

K

)
= |ǫk|

Consequently, when XK is homologous to UK , it is potentially a good mesh.

4.1.2. Good (sub)meshes via divergence between binomial distributions

Let’s come back to the seminal paper of Bernstein [5], and remember that,
since the mode of B(N, i

N ) is i, F ( i
N ) has the maximum weight WN,i (

i
N ) in

the approximation of F ( i
N ) by (1). Reciprocally, since the mode of WN,k is k

N ,
formula (1) can be written :

BN [F ] =

N∑

k=0

F (arg max (WN,k)) WN,k.

This stresses how this approximation is deeply linked with Bernoulli trials
and the corresponding urn model, studied and generalized by Goldman [20].
Consequently, it is quite natural to measure the closeness of XK and UK through
distances canonically associated with binomial distributions.

In the light of Informative Geometry [1, 21], the canonical distance between
two distributions belonging to some parametric family is given by the geodesic
distance between their parameters (Rao distance). In the particular case of
B(N, a) and B(N, b), it is

dR(a, b) := 2 arccos
(√

a b+
√
(1 − a) (1− b)

)

(also named Bhattacharyya distance). We will also use the Kullback-Leibler
divergence

K(a, b) := a ln
(a
b

)
+ (1 − a) ln

(
1− a

1− b

)

which is closely linked to Rao distance by geometrical considerations [1, 21].
The Rao distance dR(a, b) is well-suited for exploratory analyzes while K(a, b) is

closely linked with the likelihood ratio test of the hypothesis : a
?
= b (prescribed)

- see [15]. Indeed, K(a, b) is asymmetric : it is a divergence, not a distance!
Our two first measures of global divergence of XK from UK (wished) are

then

dR (XK , UK) := max
1≤m<K

dR

(
xNm

,
m

K

)

from the one hand, and

K (XK , UK) := max
1≤m<K

K
(
xNm

,
m

K

)
.

10



from the other hand.
We introduce too a geometrical criterion, based on dR. Consider the vector

−−−−−→
Ψ(XK) :=

1

K

(√
xN1

,
√
1− xN1

, · · · , √xNK−1
,
√
1− xNK−1

)
.

Since it belongs to the unit sphere of R2(K − 1), as well as
−−−−→
Ψ(UK), a natural

distance between XK and UK is the arc length

A (XK , UK) := arccos
(−−−−−→
Ψ(XK).

−−−−→
Ψ(UK)

)
<

π

2
.

We can now propose a synthetic definition for good meshes, alias G-meshes,
as local Pareto optima of the considered criteria.

Definition 13. A sub-mesh XKG is a G-mesh if the four criteria dH (XK , UK),
dR (XK , UK), K (XK , UK) and A (XK , UK) simultaneously present a local min-
imum for K = KG .

4.2. Optimal sub-meshes for d.d.f.s

Generally, several G-meshes stem from the original mesh XN , but notice
that they are independent from the studied d.d.f. or, equivalently, its set of
jumps SN . For instance, the reader can see on Figure 1 that we had to select a
single mesh from five G-meshes. That is why we propose an additional criterion
for selecting an optimal sub-mesh, taking into account the whole data set, and
not only the mesh : if FKG denotes the d.d.f. corresponding to the sub-set of
jumps located on XKG , we will choose KG < N as small as possible, in order
that the Hausdorff distance dH (FKG , FN ) is small too (see Figure 2).

The choice of this distance is supported by the works of Beer [4] and Cuevas
and Fraiman [11] : dH is a metric in the space of Upper Semi Continuous func-
tions, and any d.f. is USC. Furthermore, if the theoretical d.f. F is continuous,
the propositions ‖FK − F‖ −→ 0

K→∞
and dH (FK , F ) −→ 0

K→∞
are equivalent [4].

Remark. Since FKG and FN are step functions, dH (FKG , FN ) only depends on
the position of the vertices of the completed graphs [11] VN and VKG of these
functions. For instance, if FN is a e.d.f.

VN := SN

⋃{(
x(1), 0

)
,

(
x(2),

1

N

)
, . . . ,

(
x(N−1),

N − 2

N

)
,

(
x(N) = 1,

N − 1

N

)}
.

One can easily prove that ∀K 6 N, dH (FK , FN ) = dH (VK , VN ), and the last
distance is much easier to compute than the first one.

4.2.1. A benchmark in Density Estimation : the explosions in mines data

These data consist in the time-interval (in days) between severe explosions
in British mines, between 6 December 1875 and 29 May 1951. They were ex-
tensively studied by Simonoff [33], after Boneva et al. [6]. We start with a
uniform discretization of these data into 55 classes ([33], p.222).
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All the criteria proposed in Section 4.1 are represented on Figure 1. On each
panel of this this figure, seven points are put in evidence with markers : the only
G-meshes. Six of these points, labeled by a black diamond, are associated with
sub-meshes homologous to the corresponding uniform mesh ; they correspond
to KG ∈ {3, 6, 7, 13, 27, 55}. The seventh one (KG = 23) is labeled by an
empty circle. Choosing 3 or 55 is unreasonable, but what about 13 or 27 knots?
Indeed, one can clearly see on Figure 2 that K∗ = 27 seems the best choice.
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Figure 2:
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4.3. Optimizing the number of iterations

We will suppose from now that F is differentiable with derivative f , and that
we could determine an optimal G-mesh XK∗ homologous to UK∗ ; for simplicity
of notations, we will fix here : K = K∗.

In accordance with Theorem 12, the approximation (4) is close to (1), and
dH (FK , FN ) is small. Since K is small too, we will improve the approximation

of F by B̂K [F ] through Sevy’s iterations. We show hereunder that a bona fide
approximation [19] of f can be obtained this way.

Let us first introduce an ad hoc d.d.f. F̃ , such that ∀ 0 ≤ k ≤ K, F̃
(

k
K

)
=

F (xk) ; then B̂K [F ] = BK [F̃ ] . While BK [F̃ ] is also a d.f., due to the shape-

preserving properties of Bernstein operator, it is likely that lim
I→∞

IIK [F̃ ] = LK [F̃ ]

has no special structure, since Lagrange interpolation is unconstrained. Fur-

thermore, the error
∥∥∥LK [F̃ ]− F̃

∥∥∥ can grow exponentially with K in our case,

because “uniform spacing of data can have bad consequences” (de Boor [13,
Ch. 2]; see also Laurent [22, Ch. 5]), due to the unboundedness of Lebesgue’s
functions associated with such meshes.

Thus, both of these approximations have bad properties. Searching for a
trade-off, Cooper and Waldron [10] proposed to run across the whole segment

tBK [F̃ ]+(1−t)LK [F̃ ], 0 ≤ t ≤ 1. We will follow a slightly different line, specific

to density approximation. Notice that the trajectory

{
f̂K

(i)
=

dIi

K
[F̃ ](x)
dx , 1 ≤ i

}

consists in a sequence of functions starting in F+ ∩ F1 (f̂K := dB̂K [F ](x)
dx =

dBK [F̃ ](x)
dx =

dI1

K
[F̃ ](x)
dx is bona fide) and progressively getting out this closed

convex set (in general,
dI∞

K
[F̃ ](x)
dx = dLK [F̃ ](x)

dx /∈ F+ ∩ F1). Consequently, it is
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quite natural to select the first I∗ such that f̂K
(I∗)

belongs to F+ ∩ F1, while

f̂K
(I∗+1)

doesn’t. For that purpose, we will control the graph of f̂K
(i)

through
two “stresses” : the positivity one

π(i) :=

1
ˆ

0

(∣∣∣∣f̂K
(i)
∣∣∣∣− f̂K

(i)
)
(x)dx (6)

and the normality one

ν(i) :=

1
ˆ

0

(
f̂K

(i)
+

∣∣∣∣f̂K
(i)
∣∣∣∣
)
(x)dx − 2. (7)

The estimator f̂K
(i)

is bona fide if and only if both these stresses are null.

Remark. Since in our case
´ 1

0

∣∣∣∣f̂K
(i)
∣∣∣∣ (x)dx ≈ 1, the curves π and ν are very

similar to each other.

4.3.1. Computational aspects

Let us denote BK the linear space generated by {WK,j : 0 ≤ j ≤ K}, ∂K ∈
L (BK ,BK−1 ) the differentiation operator, and σK ∈ L (BK ,BK+1 ) the inte-
gration operator. Using well-known results [20, 16], one can easily verify that
the matrix of ∂K relatively to Bernstein bases is the (K,K + 1) band matrix :




−K K 0 · · · 0

0 −K K 0
...

... 0
. . .

. . . 0
0 · · · 0 −K K




and that Ker (∂K) is the unit vector of RK+1 (because of the partition of unity

property :

K∑

k=0

Wn,k(x) = 1). We can thus write :

f̂K =
dBK [F̃ ](x)

dx
= ∂K ◦ F̃K = K

K−1∑

i=0

WK−1,i

(
F̃

(
i+ 1

K

)
− F̃

(
i

K

))

which is positive because F̃ is increasing and all the WK−1,i are positive.
Reciprocally, the matrix of σK relatively to Bernstein bases is the (K + 2,K + 1)

lower-triangular matrix :



0 · · · 0

1
K+1

. . .
...

...
. . . 0

1
K+1 · · · 1

K+1




.
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One can easily show that ∂K+1 ◦ σK = IdK+1, while

σK ◦ ∂K+1 = IdK+2 −




1 0 · · · 0
...

...
. . .

...
1 0 · · · 0


 .

Consequently, σK−1◦f̂K = F̃K−F̃ (0) .




1
...
1


, and

´ 1

0
f̂K(x)dx =

(
σK−1 ◦ f̂K

)
(K) =

F̃ (1)− F̃ (0) = 1 (this show once more that f̂K is bona fide).

Notice now that any polynomial BK−1 ∋ P :=

K∑

i=0

piWK−1,i can be de-

composed in a non-negative component P+ :=
K∑

i=0

{piWK−1,i : pi > 0} and a

negative component P− :=

K∑

i=0

{piWK−1,i : pi < 0}.

From f̂K
(i)

= f̂+
K

(i)

+ f̂−
K

(i)

, we get :

1
ˆ

0

f̂K
(i)
(x)dx 6

1
ˆ

0

∣∣∣∣f̂K
(i)
∣∣∣∣ (x)dx 6

1
ˆ

0

f̂+
K

(i)

(x)dx −
1
ˆ

0

f̂−
K

(i)

(x)dx,

which can be re-written in an alternative form :

(
σK−1 ◦ f̂K

(i)
)
(K) 6

1
ˆ

0

∣∣∣∣f̂+
K

(i)
∣∣∣∣ (x)dx 6

(
σK−1 ◦ f̂+

K

(i)
)
(K)−

(
σK−1 ◦ f̂−

K

(i)
)
(K).

(8)
Formulas (6) and (7) can be re-written too in a simpler form :

π(i) =

1
ˆ

0

∣∣∣∣f̂K
(i)
∣∣∣∣ (x)dx −

(
σK−1 ◦ f̂K

(i)
)
(K) (9)

and

ν(i) =

(
σK−1 ◦ f̂K

(i)
)
(K) +

1
ˆ

0

∣∣∣∣f̂K
(i)
∣∣∣∣ (x)dx − 2. (10)

While computing the first right member of these formulas is easy and nu-

merically stable [16], computing
´ 1

0

∣∣∣∣f̂K
(i)
∣∣∣∣ (x)dx can be a problem when one has
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to transform f̂K
(i)

to the power form for integration, because of Proposition 7.
In such cases, the inequation (8) is very useful to point numerical problems.

4.3.2. Back to the data

The frequency of explosions in mines

We plotted on Figure 3 both the stresses (9) and (10), together with the Kol-

mogorov distance (in percents) K.D.(i) := 100 sup
x∈XN

∣∣∣∣
´ x

0
f̂K

(i)
(t)dt− FN (x)

∣∣∣∣, for

i 6 7. The reader can see on this figure that this function steeply decreases un-
til i = 3, and then remains approximately constant around 0.018%. According
to this figure, I∗ must be chosen in [3, 7], since both stresses are very small(
< 10−3%

)
; we chose 6, which corresponds to the minimum Kolmogorov dis-

tance (0.018%).

Figure 3:
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The obtained approximations are plotted on Figure 4. The reader can com-
pare our results to those of Simonoff [33], who tested on these data six density
estimation methods (kernel (p. 49-50), boundary kernel (p. 53-54), local likeli-
hood (p.68, 242-243), logsplines (p.71), local polynomial regression (p. 223-224)
and Loess (p. 240)), or those of Boneva et al. [6], who used the histospline.
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Figure 4:
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This exemplifies the excellent behavior of our approximation near the bound-
ary, probably linked with the results of Bouezmarni and Rolin [8] ; indeed, if
the occurrence of such explosions approximately obeys a Poisson process, it
is natural that the densities plotted on Figure 4 are close to an exponential
distribution, as noticed by Boneva et al. [6].

The Bulgarian maternity data

These data can be found in Boneva et al. [6] (p.23), and consist in the
number of maternities in Bulgaria in 1963, per age class of the mother. There
were no birth to women younger than 15 years or older than 50 years. The
complete curve has N = 36 points spread on a uniform mesh, but our method
led us to select a sufficient sub-mesh of K∗ = 16 points. One can see on Figure 5
that in this case the stress curves are not L-shaped as in Figure 3 : both stresses
grow until i = 4 and then decrease until i = 10 = I∗.
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Figure 5:
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The approximated distribution functions and densities are shown on Fig-
ure 6, which can be compared with Figure 9 of [6] (p. 69).

Figure 6:
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Our approximation is far better than the classical Bernstein’s one, and
doesn’t show any “rabbit”, contrary to the histospline of [6]. But it shares
several interesting features of the histospline : its positive skewness, and small
negative ordinates for mothers around 15 years. According to L. Boneva [6, p.
69], this is not a flaw : this is due to truncation of the data, since mothers
younger than 15 years were not investigated.

Sedimentology : processing a reference grain-size curve

In order to investigate the impact of macrobenthic fauna activity on sedi-
mentary structures, an experiment was carried out, giving rise to a set of 552
grain-size curves. These curves were discretized according to a common mesh
of size N = 92, which was not uniform. Our goal here is to find, at last ap-
proximately, the correct number and positions of fractiles of one of these curves
(a control sediment), denoted Fµ. The associated d.d.f. is plotted on Figure 7.
Following the same strategy as in previous examples, we first selected an optimal
sub-mesh (K∗ = 30), and then a convenient number of iterations (I∗ = 3).

Consider now the obtained approximation of Fµ, P:=II
∗

K∗ [F̃ ]. It is a poly-

nomial of degree 29, strictly increasing since f̂K∗

(I∗)
= dP

dx is positive. Thus, for
any M ≤ N , we can compute the vector of fractiles :

Q(M) :=

(
P−1

(
1

M

)
, · · · ,P−1

(
M − 1

M

))

and compare it to its closest sub-mesh of size M extracted from XN , denoted
QM (notice that QM 6= XM is often degenerate, while Q(M) is not). Notice
that here, QM plays the part that UM played in Section 4.1.

Plotting the Hausdorff distances {dH (X3, Q3) , · · · , dH (XN , QN )} (after elim-
inating duplicate abscissa) and the Hausdorff distances between d.d.f.s (after
eliminating duplicate points), as in section 4.2, we found that M∗ = 17 is likely
the best choice. The crude data and both approximations of Fµ are represented
on Figure 7, while both densities are plotted on Figure 8.
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Figure 7:
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5. Discussion

We emphasized in the introduction the dual belonging of Bernstein approx-
imation to the fields of Approximation Theory and Statistics ; it will be also
invoked here. We propose in this work a two-step method for density approxima-
tion. The first step consists in putting ourselves in position to use the Bernstein
operator, by choosing an optimal G-mesh XK∗ . In the second one, we select a

number of iterations I∗ such that the density approximation f̂K
(I∗)

belongs to

F+ ∩ F1, while f̂K
(I∗+1)

is outside.
From a statistical perspective, the optimization of I∗ could be slightly dif-

ferent if FN is an e.d.f. Remember that, for I ≤ I∗, each IIK [F̃ ] ∈ BK has
the structure of a d.f. parametrized by K + 1 coordinates. Consequently, we

can consider in this case the Kolmogorov distance sup
x∈XN

∣∣∣IIK [F̃ ](x) − FN (x)
∣∣∣ as

a supplementary stopping test for I. This cannot be done straightforwardly, be-
cause the K+1 coordinates of IIK [F̃ ] must be estimated, but this function as well
as the d.f. can be separately estimated on two different random sub-samples,
and the goodness-of-fit tested [34]. Another testing method would be to estimate

IIK [F̃ ] on the first half-sample, and compute UI :=
{
IIK [F̃ ](xj), 1 6 j 6 [N/2]

}

on the second half-sample. If the fit is good, UI obeys the standard uniform law,
and this hypothesis can be easily checked by Hilbertian tests (see for instance
[7, 23]).

From an Approximation perspective, notice that the heart of the method
is quite versatile : the main point is that F ∈ C , where C is a convex set
of continuous functions, preserved by the Bernstein operator. Here, we were
interested in the set F+∩F1 and the stresses used were associated with that C.
But we could proceed the same way with other constraints. Suppose for instance
C is the set of convex functions supported by [0, 1] and differentiable twice : in

this case, the relevant stress would be c(i) :=
´ 1

0

(
F̃K”−

∣∣∣F̃K”
∣∣∣
)
(x)dx since

F̃K” := ∂K−1 ◦ ∂K ◦ IIK [F̃ ] should be positive.
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Figures captions

Figure 1: Plot of the four quality criteria for sub-meshes. See comments in
the text.

Figure 2: The Hausdorff distance between d.d.f.s in the case of G-meshes.

Figure 3: Plot of both stresses versus Kolmogorov distance for the Mines
data, as parameric curves of the iterations numberI.

Figure 4: Plot of the approximate d.f. and density for Mines data. In gray :
Bernstein approximation ; in black : approximation with the iterated operator
(I∗ = 6). Abscissas are expressed in days.

Figure 5: Plot of both stresses versus the Kolmogorov distance for the ma-
ternity data, as parameric curves of the iterations number I.

Figure 6: Plot of the approximate d.f. and density of births relative to
mother’s age. In gray : Bernstein approximation ; in black : approximation
with the iterated operator (I∗ = 10). Abscissas are expressed in years.

Figure 7: Plot of the approximate d.f.s associated with the reference grain-
size curve (dotted curve). Thin black curve : the Bernstein approximation ; in
gray : approximation with the iterated operator (I∗ = 3). The stars correspond
to the d.d.f. FM∗ associated with QM∗ , while the horizontal grid gives the
position of the fractiles of both approximations.

Figure 8: Plot of the approximate grain-size densities. Thin black curve : the
Bernstein approximation ; in gray : approximation with the iterated operator.
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