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Functional PCA of measures for
investigating the influence of
bioturbation on sediment structure

Claude Mante, Aix-Marseille Universite, claude.mante@univ-amu.fr
Georges Stora, Aix-Marseille Universite, georges.stora@univ-amu.fr

Abstract. After describing the main characteristics of grain-size curves, we recall previous
results about Principal Components Analysis of absolutely continuous measures, in connection
with grain-size curves analysis. This method simultaneously takes into account a chosen reference
probability (r.p.) µ (associated with a Radon-Nikodym derivation operator), and the imposed
sampling mesh Tp. The point is that it amounts to usual PCA in some metrics M− (Tp;µ);
consequently, analyzing a set of grain-size curves in reference to different r.p.s amounts to carry
out PCA with different metrics. Three complementary r.p.s were chosen to analyze a set of
552 grain-size curves issued from an experiment designed for investigating the influence of a
Polychaetes, Nereis diversicolor , on the sediment structure. The obtained results show that
this worm is actually able to alter the sediment. Furthermore, it is shown that its influence
depends on its density in the sedimentary column, but not on its position.

Keywords. Functional Data Analysis, Radon-Nikodym derivative, Metrics in PCA, Homogene-
ity test, ANOVA, Sedimentology

1 Introduction

The interpretation of sedimentological field data is frequently based on the analysis of cumulative
curves produced by sieving sediments, or by other devices devoted to particle-size analysis. Such
grain-size curves possess four main characteristics:

1. the curve Fν associated with each sediment ν is supported by some fixed common interval
[a, b] ⊂ [0,+∞[

2. Fν is similar to a distribution function: Fν(x) = ν ([a, x[) is the relative weight (or number,
etc.) of particles of ν smaller than x
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3. the grain-size x is associated with a scale: classically, x is expressed according either metric
units (MU) or the so-called φ-units (φ := ln (MU)) [2]

4. each curve is sampled according to some common p-mesh Tp depending on the device used.

Now, why should we care about “bioturbation”? This term refers to the movement of particles
generated by the displacement of organisms in the sedimentary column. Recently, using grain-
size analysis, Ciutat et al [3] have shown that tubicifid worms are able to alter the structure
of the sedimentary column. We will study the ability of Nereis diversicolor (another worm,
living in the first 20 cm of the sediment, in brackish water ecosystems) to do a similar job. This
Polychaete is also aggregative (one can generally observe densities > 800 organisms per m2),
and builds many galleries down to 20 cm in the sediment.

2 What is special about functional PCA (FPCA) of measures?

Notice first that a probability is not a function. It is generally represented by its distribution
function (depending on a fixed scale), or by its Radon-Nikodym density, relative to some ref-
erence probability (r.p.). In this section, we recall previous works about FPCA of grain-size
distributions (or measures), taking into account the influence of the chosen r.p. on the similarity
between grain-size curves, in connection with possible scale changes.

A functional setting for PCA of grain-size curves [13, 14]

Let µ be a r.p. equivalent to Lebesgue’s mesure λ on [a, b], ν a sediment, Fν(x) := ν ([a, x[) the
associated curve, and fν := dν

dµ ∈ L2
µ. It has been proven [13] that:

1. the integral operator ‹ℑ : fν 7→ Fν ∈ L
Ä
L2
µ, L

2
ä
has a bounded inverse iff Fν ∈ Hµ , the

reproducing kernel Hilbert space (r.k.H.s.) of kernel Kµ(x, y) := µ ([a, inf (x, y)])

2. the restricted operator ℑ ∈ L
Ä
L2
µ, Hµ

ä
is unitary, and thus ‖Fν1−Fν2‖

2
Hµ

=
´

Ä
dν1
dµ −

dν2
dµ

ä2
dµ

3. to any p-mesh Tp ⊂]a, b[ is associated a unique r.k.H.s. Hp
µ ( Hµ.

Remark: thanks to (2), we don’t need to compute derivatives: the metrics does the job.
The role of scale changes is clarified by the following isometry theorem.

Theorem 2.1. Let η and ν be in Hµ, and S be a scale change (homeomorphism). Then we
have:

‖η − ν‖Hµ = ‖S∗ν − S∗η‖HS∗µ

where S∗µ denotes the probability induced by S.

As a consequence, once a reference probability space (r.p.s.) {[a, b] ,B ([a, b]) , µ} has been
fixed (B denotes the borelian σ-field), the distance between two measures is independent of the
scale used, if the same transformation is applied to the r.p. In other words, if S is increasing

{[a, b] ,B ([a, b]) , µ} ≈ {[S(a), S(b)] ,B ([S(a), S(b)]) , S∗µ}

and both these spaces belong to a common equivalence class of r.p.s .

COMPSTAT 2012 Proceedings
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Corollary 2.2. (Standardization) If the d.f. Fµ associated with µ is strictly increasing, we have:

‖η − ν‖Hµ = ‖Fµ∗ν − Fµ∗η‖L2[0,1].

The symbolical case

In [14], we only considered symbolical (as opposed to empirical) reference probabilities, in con-
nection with scale changes. In such cases, the reference probability is symbolically expressed -
for instance, its density relative to Lebesgue’s measure is a given function f(x).
We defined in that paper three different r.k.H.s. designed for FPCA of grain-size curves:

1. HMU , corresponding to the metric units scale, associated with the r.p.s.

{[a, b] ,B ([a, b]) ,U} ≈ {[ln (a) , ln (b)] ,B ([ln (a) , ln (b)]) , ln∗ U}

where U denotes the uniform probability

2. Hφ, naturally associated with φ-units, and with the r.p.s.

{[ln (a) , ln (b)] ,B ([ln (a) , ln (b)]) ,U}

3. Hτcr , associated with sediment transport theory (τcr is a critical shear stress function,
closely linked with erosion).

Remarks: working in HMU amounts using an exponential r.p. with φ-units, because d ln∗ U

dλ =
exp(•)
(b−a) . Reciprocally, since d exp

∗
U

dλ = 1
(•)(ln(b)−ln(a)) , working in Hφ amounts using as a reference

the truncated Pareto of parameters (1, a, b) in the system MU; according to Devoto and Martinez
[5], it is actually a relevant distribution for ground rocks distributions.

In our case, FPCA in Hµ does not only depends on µ, but also on the common mesh Tp.
More precisely, FPCA in Hp

µ amounts to usual PCA in some metrics M− (Tp;µ) [14], and it
was shown [13] that this metrics is particularly simple and well-conditioned (µ-optimal) when
Tp consists of fractiles of µ.

Definition 2.3. Tp = {t1, · · · , tp} is µ-optimal if:

∀ 1 ≤ k ≤ p, Fµ(tk) =
k

p
.

Thus, FPCA in Hp
µ merely amounts to the spectral decomposition of the matrix Vp ◦

M− (Tp;µ), where Vp is the usual covariance matrix computed from the grain-size curves.
The situation would be different if there were no common mesh, or if we faced a family F ⊂ Hµ

of distributions of individual measurements, i.e. of empirical distribution functions (e.d.f.s).
In this cases, the sample F := {Fνi : 1 ≤ i ≤ N} consists of e.d.f.s, and Fν̄ will denote their
average. FPCA of F takes place in the whole space Hµ, and the empirical covariance operator
is V/N , where the operator V is given by [9]:

Vξ =
N∑

i=1

〈Fνi − Fν̄ , ξ〉Hµ
(Fνi − Fν̄) .
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Because the reproducing kernel Kµ(x, y) is continuous, Hµ is separable ([17], p.126) and
possesses countable Hilbert bases. Consequently, V can be identified with a semi-infinite matrix.
In order that its eigendecomposition is computationally tractable, it is classical to restrict oneself
to a subspace of rank p ≤ N , generated for instance by vectors of some orthonormal basis (to
build). A more elegant solution was proposed in [9]: it consisted in calculating the N×N matrix
M of scalar products between centered densities, of general termMij :=

¨
Fνi − Fν̄ , Fνj − Fν̄

∂
Hµ

.

Thanks to the r.k.H.s. properties, these integrals can be approximated from the interpolated
e.d.f.s (see the appendix A.1 of [13]). Afterwards, the best Euclidean representation of F can be
obtained from the eigendecomposition of the matrix of general term Mij −M•j −Mi• +M••

([12], see also [9] p. 522); this analysis is formally equivalent to the spectral decomposition of
V. Thus, if N is not too big, FPCA of F could be carried on by using this alternative method.
Other connections between the method proposed in [9] and ours were reported in [14].

The mesh used

It is noteworthy that here, the sizes measured were in geometrical progression. This kind of
mesh is universally adopted by geologists, both for practical and theoretical reasons. From
the practical side [2], “the grade scale must be designed to accommodate comparatively large
class (size) intervals from the coarsest detrital materials and extremely small intervals for the
smallest particles. A geometrical scale is suitable for this purpose.” From the theoretical side,
Kolmogorov proved in 1940 [10] that under suitable conditions, the frequency distribution of the
size (any size criterion: length, volume, etc.) of particles under grinding tends to be lognormal.
One can easily determine µ-optimal meshes in the symbolical case, but notice that the actual
mesh Tp imposed by experimental condition has no reason for being optimal. This important
point is tackled in the next section.

The empirical case

Suppose now that the r.p. corresponds to a given “source” sediment ν0, and that the data con-
sists in a sample {ν1, · · · , νN} of sediments stemming from different alterations of ν0. It is quite
natural to consider the densities

¶
dν1
dν0

, · · · , dνNdν0

©
for describing in Hν0 the sedimentary evolution;

this is indeed the core of the McLaren & Bowles theory of Sediment Transport [18].
In this paper, ν0 will be a typical control sediment named Ta3, some kind of initial unper-

turbed state. But is Tp well-suited for FPCA in Hν0? When it is the case (i.e. Tp is ν0-optimal),
FPCA in Hp

ν0 amounts to classical PCA of the associated histograms. But generally, Tp has
not been designed for that purpose. Consequently, in the empirical case, we have to face the
“fractiles problem”: given a r.p. ν0 and an imposed mesh Tp, find a ν0-optimal (or quasi-optimal)

sub-mesh TK ⊂ Tp such that: ∀ 1 ≤ i ≤ K, F̂ν0

(
T i
K

)
≈ i

K , where F̂ν0 is an approximation of Fν0 .
In [15], we proposed a solution to this problem, based on the Bernstein operator. This operator
has nice shape-preserving properties but unfortunately, its convergence is sluggish [4]. Conse-
quently, we superseded it by a more rapidly convergent sequence of approximants, proposed by
Sevy [21] and based on iterates of this operator.

The reader can see on Figure 1 how a quasi-optimal sub-mesh, well-suited for the particular
control sediment ν0 = Ta3, could be extracted from Tp. Notice that the approximation F̂ν0

based on iterated operators is much better than the classical Bernstein approximation.

COMPSTAT 2012 Proceedings
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Figure 1: The approximate d.f.s associated with some reference sediment ν0 = Ta3 (dotted
curve). Thin black curve: usual Bernstein approximation; in gray: F̂ν0 . Stars correspond to the
obtained quasi-optimal sub-mesh.

3 An experiment with Nereis diversicolor

In order to investigate the impact of Nereis diversicolor (N.d.) on sedimentary structures, an
experiment was carried out. Some quantity of natural sediment was sterilized (frozen at -20◦C),
mixed and split up into 29 tanks of 14 cm depth. Five tanks were kept as control ones (i.e.
without any worm), while the other ones were colonized by a fixed number norg ∈ {1, 2, 4, 8}
of living N.d.; three tanks were associated with each value of norg (replicates). At the end
of the experiment, each tank was cut into 20 slices, and one (control tanks) or two (colonized
tanks) samples were took into each slice. In the case of colonized tanks, in each slice, a sample
was taken inside a gallery (IG sediments) and another one outside galleries (NCOG sediments.
Notice that this was done visually; thus, one cannot be absolutely sure that NCOG sediments
were not altered by N.d.; that is why they were named NCOG (Not Control OG). On the
contrary, control sediments (COG) are necessarily outside galleries.

This experiment resulted in a set of 552 grain-size curves (the 28 missing sediments could
not be sampled); these curves were sampled according to a mesh of size p = 92. Since distances
between sediments depend on the chosen reference probability, we performed three complemen-
tary analyses, and kept in each case the three first principal components (always corresponding
to more than 90% of total variance):

1. PCA in Hφ (symbolical, focuses on coarse particles; 94% of total variance)

2. PCA in HMU (symbolical and ”equitable”, because of the uniform weight in the MU
system; 91% of total variance)

@ COMPSTAT 2012



536 PCA of grain-size curves

3. PCA in HTa3 (empirical, focuses on the control unperturbed sediment Ta3; 92% of total
variance).

Notice that in the case of PCA in HTa3, all the distributions, originally sampled according
a 92-knots mesh, were sub-sampled according to the 17-knots sub-mesh adapted for Ta3, the
reference sediment (see Figure 1).

Now, does N.d. causes noticeable alterations to sediments grain-size structure? We will
break this vague question into three simpler ones:

1. can differences between Control (COG) and Not Control Outside Gallery (NCOG) sedi-
ments be statistically detected?

2. if it is not the case, are Inside Gallery (IG) and Outside Gallery (OG := COG ∪NCOG)
sediments statistically different?

3. if IG 6= OG, is there an influence on IG sediments of:

 depth (20 slices)

 the number of organisms, norg ∈ {1, 2, 4, 8}?

Homogeneity of the OG sediments group in factor space

We first suppose that the three first components of the control group obey a Gaussian distribu-
tion: Ä

XCOG
1 , XCOG

2 , XCOG
3

ä′
∼ N (µCOG,ΣCOG) .

It is possible to test whether each NCOG sediment X := (X1, X2, X3)
′ belongs to the COG

group by using the distribution of the associated Mahalanobis distance. The test statistic is
[11]:

(X − µ̂COG)
′ Σ̂−1

COG (X − µ̂COG)∼
3
(
n2 − 1

)

n (n− 3)
F3,n−3. (1)

The obtained results are summed up in Table 1; we can see that for all the analyses, more
than 95% of the NCOG sediments fell into the 95% Gaussian confidence region (associated
with formula (1)) of the control group. Thus one can reasonably infer that NCOG ≈ COG.
On the contrary, since about 50% of the IG sediments fell in these regions, we conclude that
IG 6= COG.

In E(MU) Out E(MU) In E(φ) Out E(φ) In E(Ta3) Out E(Ta3)

NCOG 0.955 0.044 0.959 0.04 0.988 0.012

IG 0.422 0.577 0.495 0.505 0.51 0.49

Table 1: Comparison of the groups NCOG and IG with the control group COG, based on 95%
Gaussian confidence regions of the control data in factor spaces.
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Are OG and IC sediments identical?

Let us now compare the IG sediments with the whole OG group. We can see on Table 2 that in
every analysis, about 60% of the IG sediments fall outside the 95% OG Mahalanobis confidence
regions in R3.

This is illustrated from a slightly different viewpoint on Figure 2, in the special case of PCA
in HMU . To obtain this figure, we determined the 95% confidence ellipsoid of the OG group
in R3 (i.e. the ellipsoid holding 95% of the OG points). Its parameters are (c, ρ,Ω), where c is
the center, ρ is the vector of moments of inertia and Ω = (̟1, ̟2, ̟3) is the matrix of normed
principal direction. On Figure 2, all the sediments were projected on the plane generated by
the principal directions of the ellipsoid, ̟1 and ̟2. It is noteworthy that for all the analyses
(PCA in Hφ, HMU and HTa3), about 60% of the IG sediments (the “altered sediments”, clearly
different from the OG ones) fell outside the corresponding confidence ellipsoids again.
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Figure 2: Representation of OG (left panel) and IG (right panel) sediments, projected on the
principal confidence ellipse. Because of possible perspective errors, we labeled by a i points
inside the ellipsoid, and by a o points outside.

In E(MU) Out E(MU) In E(φ) Out E(φ) In E(Ta3) Out E(Ta3)

OG 0.948 0.052 0.948 0.052 0.948 0.052

IG 0.383 0.616 0.393 0.607 0.432 0.568

Table 2: Comparison of the groups OG and IG, based on 95% Gaussian confidence regions for
the group OG in factor spaces.

Since these analyses focus on complementary aspects of grain-size distributions, it is natural
to consider the three sets of altered sediments: AsMU , Asφ and AsTa3. It is noteworthy that
AsTa3  Asφ∪AsMU , and that Asφ∪AsMU corresponded to about 65% of the IG sediments,
while about 83% of the altered sediments were common to these three sets.

In conclusion, one will agree that IG 6= OG, and that N.d. actually altered important
features of the sedimentary structure.
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538 PCA of grain-size curves

Testing slice and norg effects

For that purpose, we merely used ANOVA, separately for each component. We found that
generally, the factor slice had no significant influence on the three first components of all the
analyses. On the contrary, as the reader can see on Tables 3, 4 and 5, the factor norg always
significantly contributed to at least two main components of each FPCA.
We also investigated the pairwise equality of means by using classical tests: Tukey-Kramer,
Duncan and Newman-Keuls. Since they gave consistent issues, we only show those from the
former, which is especially recommended [22].

variance (%) F ratio p-value distinguishable pairs (Tukey-Kramer)

PC1 68 34.13 < 10−9 {1,2},{1,4},{1,8},{2,8},{4,8}

PC2 18 5.87 0.00073 {1,8},{4,8}

PC3 8 13.8 < 10−6 {1,2},{1,4},{1,8}

Table 3: Main results of the ANOVA in Hφ.

In all cases, multiple comparisons didn’t evidenced differences between norg=2 and norg=4;
consequently, these classes were merged in a unique class denoted 2 ∪ 4. One can deduce from
Table 3 that the best plane of PCA in Hφ for illustrating the influence of norg on the curves
structure is generated by the first and the third components. The sediments are projected on
this plane on Figure 3.

variance (%) F ratio p-value distinguishable pairs (Tukey-Kramer)

PC1 52 1.65 0.18 None

PC2 22.5 26.3 < 10−9 {1,2},{1,4},{1,8},{2,8},{4,8}

PC3 17 12.76 < 10−6 {1,2},{1,4},{1,8},{2,8},{4,8}

Table 4: Main results of the ANOVA in HMU .

variance (%) F ratio p-value distinguishable pairs (Tukey-Kramer)

PC1 50 14.47 < 10−6 {1,2},{1,4},{1,8},{2,8}

PC2 27.4 21.45 < 10−9 {1,2},{1,4},{1,8},{2,8},{4,8}

PC3 15.6 0.65 0.582 None

Table 5: Main results of the ANOVA in HTa3.
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In conclusion, the number of N.d.s present in the sedimentary column had an influence on
the sediment structure, irrespective of the depth. Surprisingly, the alteration of the sediment
decreased with norg, as one can see on Figure 3. A single worm (small disks) was more perturbing
than 2 or 4 worms (medium size disks), while 8 worms (big disks) seem quite inefficient. This
could be explained by mixing: each N.d. probably destroys the job of its fellow creatures...

-60 -40 -20

PC1

-15

-10

-5

5

10

15

PC3

Figure 3: Representation of the IG sediments, for PCA in Hφ. The diameter of each disk
depends on norg ∈ {1, 2 ∪ 4, 8}.

4 Discussion

We will first tackle an important point raised by one of the referees and, second, discuss rela-
tionships between our work and multivariate exploratory methods prevailing in the Geosciences
community.

FPCA or FLDA?

In Section 3, we examined only the three first components of each analysis for testing differences
between the classes OG, NCOG and IG. But would the assertion NCOG ≈ COG remain
acceptable in a larger space, e.g. of dimension d = 10?
We proceeded that way because the three first components corresponded to a high level of
variance (> 90%) and because keeping too many components may be hazardous, due to possible
degeneracies of

∑
COG and

∑
OG causing numerical problems in Formula (1). But we agree

that sometimes classes are not ”visible” in the first principal planes of an exploratory analysis.
For instance, in [8], we obtained satisfactory results with 7 principal components, but none of
them was able to separate the considered classes. In such cases, it is necessary to supersede
FPCA by Functional Linear Discriminant Analysis (FLDA) whose goal is to separate classes,
irrespective of their quality of representation. As a consequence, the components issued from
FLDA may not correspond to important structural aspects of the data. Furthermore, such
axes may signify nothing: it is well-known ([20], Ch. 10) that in the functional case, one must
beware of spurious correlations due to the great number of explicative variables. Consequently,
most authors recommend to include a regularization step in FLDA. The most sophisticated
regularization method is penalization ([20], Ch. 12), while the simplest one consists in smoothing
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540 PCA of grain-size curves

(or filtering) the data by keeping only the first d components of a preliminary FPCA [7, 8]. Thus,
in both cases (FPCA or FLDA), the point is to determine the right dimension d before practicing
either method. This can be done by incorporating sphericity tests (see for instance [19]) in the
procedures.

Connections with compositional data analysis

The proposed method is widely applicable for analyzing families of measures, but, of course,
other methods are available, associated with other geometrical settings for FPCA [9, 20]. This
was discussed in [14], and we will rather focus on connections with other methods, introduced
in Geosciences by Aitchison [1]. Egozcue et al. [6] proposed a nice generalization of Aitchison’s
geometry [1] to probability density function (relative to Lebesgue’s measure), but did not men-
tion neither the possibility of another reference measure, nor the possibility of scale changes.
Tolosana-Delgado et al. [23] introduced a reference distribution N(z), but with a goal different
from ours: it is essentially used for building an orthonormal basis for the Hilbert space A2 (N)
of densities associated with N and Aitchison’s geometry. But the main problem with compo-
sitional methods is the possible presence of zeros (or very small values) in the data (see for
instance [16]). This results in a heavy constraint upon the function of A2 (N): their logarithm
must be square-integrable with respect to N . On the contrary, our method can be widely used,
even with signed measures [14], and we have no problem with zeros, at least in the symbolical
case.
In the empirical case, the situation is different: firstly, the common interval [a, b] should be
included in the support of the “source” sediment ν0, but this is not enough to avoid numerical
difficulties: it is possible that there exists some ν0-negligible interval ∅ 6= [α, β] ( [a, b], such
that ν0 ([α, β]) ≈ 0. Solving the ”fractile problem” gives a practical solution to this problem,
because if TK is (quasi-)optimal, there is an index i such that [α, β] ( [T i−1

K , T i
K [∪[T i

K , T i+1
K [,

with ν0
Ä
[T i−1

K , T i
K [
ä
≈ ν0

Ä
[T i

K , T i+1
K [
ä
≈ 1

K . Thus, PCA in HK
ν0 is not problematic. This con-

struction should be also useful for applying compositional methods to grain-size (or similar)
curves. Indeed, the most widely used compositional method (Logcontrast PCA [1]) consists
in performing PCA on vectors of the K-simplex, after transformation by the centered logra-

tio function clr (s) := ln
(

s
g(s)

)
, where g(s) :=

(
K∏

i=1

si

)1/K

is the geometrical mean. Denot-

ing IK := (1, · · · , 1) /K the neutral perturbation [1] on the K-simplex, one can observe that
clr (IK) = 0. Thus, using an (quasi-)optimal mesh put the reference distribution near the neu-
tral perturbation, while its image under clr put it close to the origin of the cloud of sub-sampled
distributions, which is quite desirable.
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