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Analysis of a model of phosphorus uptake by plant roots

Myriam Comte · Jean-Michel Coron · Sergio Guerrero ·
Pierre-Henri Tournier

Abstract In this paper, we consider a model of phosphorus uptake by plant roots, governed by a quasilinear
parabolic equation. We first study the well-posedness of the associated Cauchy problem. Then, we consider a
shape optimization problem: how to deform the shape of the root in order to increase phosphorus uptake. Finally,
we give some numerical results of the shape optimization process.

Keywords quasilinear parabolic equations; regularity estimates; phosphorus uptake; plant roots; shape
optimization

Mathematics Subject Classification (2000) 35K20, 35K55

1 Introduction

Phosphorus (P) is an essential element for plant growth and metabolism. It is involved in many plant processes
such as energy transfer, the synthesis of nucleic acids and membranes, plant respiration, photosynthesis and en-
zyme regulation. Adequate phosphorus nutrition stimulates early plant growth and hastens maturity.
P is one of the limiting factors for plant growth in many agricultural systems. P uptake by plants is often con-
strained by the very low solubility of P in the soil, as P is mostly present in unavailable forms because of adsorp-
tion, precipitation, or conversion to the organic form.
This leads to the application of up to four times the fertilizer necessary for crop production. This practice can
result in polluted water systems, imbalanced ecosystems and degradation of the environement. Moreoever, at the
current rate of usage of P fertilizer, readily available sources of phosphate rocks could be depleted in as little as
60-90 years.

This brings us to consider the problem of reducing fertilizer usage of P, which suggests improved efficiency of
fertilizer methods in the short term, and adaptation of genotypes to P-deficient soils in the long term.

We therefore propose to study the transfer of P in the soil as well as its uptake by plant roots, as was done by
Doussan et al. (1998), Roose et al. (2001) and Mollier et al. (2008). P moves in soil through both diffusion and
mass flow, although diffusion is dominant.

Let us consider a shape modeling the root surface. The exterior domain around the root is the studied section
of the soil. Let us denote by Ω ⊂ Rd(d = 2,3) the soil domain, delimited by the root surface and the domain
boundaries. Let Γ1 be the boundary representing the root surface and Γ2 = ∂Ω \Γ1.
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Fig. 1 Configuration of the domain

Let T > 0 be given and I = [0,T ]. The evolution of the concentration c of P in the soil is governed by the
following convection-diffusion equation:

∂t(θc+ϕ(c)) = div
(
A∇c−qc

)
−R in I×Ω ,

αh(c) =−
(
A∇c−qc

)
·n on I×Γ1,

0 =
(
A∇c−qc

)
·n on I×Γ2 = I× (∂Ω \Γ1),

c(0,x) = c0(x) in Ω ,

(1.1)

where

– n is the unit outward normal to the boundary of the domain,
– c0 is the initial P concentration,
– A is the diffusion coefficient of P in the soil,
– θ is the volumetric water content,
– q is the groundwater flow,
– ϕ is an adsorption/desorption isotherm relating the amount of adsorbed P to the equilibrium concentration of

P in solution; an example is the Freundlich adsorption isotherm (McGechan and Lewis 2002), defined by:

ϕ(c) = κcb for c ∈ [0,+∞) , κ > 0 , b ∈ (0,1),

– h is a model of enzyme kinetics, relating in this case the root uptake rate of P to its concentration at the root
surface; an example is the Michaelis-Menten model (Barber 1984), given by:

h(c) =
Fmc

Km + c
for c ∈ [0,+∞) , Fm > 0 , Km > 0,

– R represents additional optional source/sink terms to the system. We will only consider source terms, such as
fertilizer application,

– α is a parameter we introduce in order to obtain sufficient regularity of the boundary condition in the case
Γ1∩Γ2 6= 0: α ∈C2(∂Ω) such that for x ∈ ∂Ω{

0 < α(x)≤ 1 on Γ1

α(x) = 0 on Γ2.
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We do not restrict ourselves to considering explicit forms for ϕ or h: we only use general properties of these
functions throughout this paper.
Since ϕ is defined on [0,+∞[, we consider positive solutions of problem (1.1).
The paper is organized as follows: we first discuss existence and uniquess of solutions to problem (1.1). Then we
introduce a shape optimization method which enables us to modify the shape of the domain in order to maximize
the amount of absorbed P.

For simplicity and clarity, we only take α into account while proving existence and uniqueness of the solution,
and we drop it later in the shape optimization study.

We begin by introducing some notations:

– S is the boundary of Ω ,
– Q is the cylinder (0,T )×Ω ,
– ST is the lateral surface of Q: ST = {(t,x) | t ∈ [0,T ],x ∈ S},
– θ 0(x) := θ(0,x) for x ∈Ω .

Let us make the following assumptions:
hypotheses on S

S ∈C2+β , (1.2)

hypotheses on c0

c0 ∈C2+β (Ω) , c0 > 0,(
A∇c0−qc0

)
·n+h(c0) = 0 on Γ1,(

A∇c0−qc0
)
·n = 0 on Γ2,

(1.3)

hypotheses on ϕ

ϕ ∈C3((0,+∞)) , ϕ
′ > 0, (1.4)

hypotheses on A
A ∈C1+β/2,2+β (Q) , Am ≥ A(t,x)≥ A0 > 0 in Q, (1.5)

hypotheses on θ

θ ∈C1+β/2,2+β (Q) , θm ≥ θ(t,x)≥ θ0 > 0 in Q, (1.6)

hypotheses on R
R ∈C1+β/2,2+β (Q) , R < 0 in Q, (1.7)

hypotheses on q
qi ∈C1+β/2,2+β (Q) , i = 1, ..,d, (1.8)

let us extend h to R so that

h ∈C2(R) , h(0) = 0 , ‖h‖L∞(R)+‖h′‖L∞(R)+‖h′′‖L∞(R) ≤Ch. (1.9)

Here and in the sequel,
β ∈ (0,1) . (1.10)

2 A priori estimates

In this section, we derive upper and lower bounds for the solutions of problem (1.1) in the space C1,2(Q). Let c be
a solution of problem (1.1) in the space C1,2(Q), c≥ 0 in Q.

• Estimate from below:

Let ε > 0, and let T ′ = max{t ∈ [0,T ] | c≥ ε in [0,T ′]×Ω}.
We now find a lower bound for c in [0,T ′]×Ω .



4 Myriam Comte et al.

Let us introduce the following function

ĉ(t,x) := δe−Kt ĉ0(x), (t,x) ∈ Q, (2.1)

where δ ,K > 0 are chosen below and where ĉ0 ∈C2(Ω) is a strictly positive function satisfying

A0
∂ ĉ0

∂n
<−‖q‖L∞(Q)ĉ0(x)− (h′(0)+1)ĉ0(x) ∀x ∈ S, (2.2)

and
0 < ĉ0(x)< 1 ∀x ∈Ω . (2.3)

Choosing now K large enough and δ small enough, ĉ satisfies
θ ĉt −div

(
A∇ĉ−qĉ

)
+R+θt ĉ < 0 in Q,

A
∂ ĉ
∂n

< (q ·n)ĉ−αh(ĉ) on ST ,

ĉ(0,x)< c0(x) in Ω .

(2.4)

Since ϕ ′ ≥ 0, we can see that

(θ +ϕ
′(ĉ))ĉt −div

(
A∇ĉ−qĉ

)
+R+θt ĉ < 0 in Q. (2.5)

We now apply a comparison principle which results from the following theorem:

Theorem 1 (Friedman (1964), Theorem 17 p. 53) Let v and w be two continuous functions in Q, and let the
first t-derivative and the first two x-derivatives of v,w be continuous in Q. Let F(t,x, p, pi, pi j) (i, j = 1, ...,d) be a
continuous function together with its first derivatives with respect to the phk in a domain E containing the closure
of the set of points (t,x, p, pi, pi j) where

(t,x) ∈ Q, p ∈ (v(t,x),w(t,x)), pi ∈
(

∂v(t,x)
∂xi

,
∂w(t,x)

∂xi

)
, pi j ∈

(
∂ 2v(t,x)
∂xi∂x j

,
∂ 2w(t,x)
∂xi∂x j

)
;

here (a,b) denotes the interval connecting a to b. Assume also that (∂F/∂ phk) is a positive semidefinite matrix.
If 

∂v
∂ t

> F
(

t,x,v,
∂v
∂xi

,
∂ 2v

∂xi∂x j

)
in Q,

∂w
∂ t
≤ F

(
t,x,w,

∂w
∂xi

,
∂ 2w

∂xi∂x j

)
in Q,

v(0,x)> w(0,x) on Ω ,

∂v
∂n

+ γ(t,x,v)>
∂w
∂n

+ γ(t,x,w) on ST ,

(2.6)

for some function γ , then also v > w in Q.

We have {
ct = (θ +ϕ ′(c))−1(div

(
A∇c−qc

)
−R)−θtc in [0,T ′]×Ω ,

A∇c ·n = (q ·n)c−αh(c) on [0,T ′]×S,
(2.7)

and {
ĉt < (θ +ϕ ′(ĉ))−1(div

(
A∇ĉ−qĉ

)
−R)−θt ĉ in [0,T ′]×Ω ,

A∇ĉ ·n < (q ·n)ĉ−αh(ĉ) on [0,T ′]×S.
(2.8)

Moreover, ĉ(0,x)< c(0,x) in Ω .
It is easy to see that in our case F satisfies the hypotheses of Theorem 1 thanks to (1.4), (1.5), (1.6), (1.7) and

(1.8).
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Thus, we can apply Theorem 1 to c and ĉ in [0,T ′]×Ω in order to deduce that

c > ĉ≥ δe−KT min
x∈Ω

ĉ0(x)> 0 in [0,T ′]×Ω . (2.9)

We proved that for every ε > 0, we have c > δe−KT min
x∈Ω

ĉ0(x) in [0,T ′]×Ω , with T ′ = max{t ∈ [0,T ] | c≥ ε

in [0,T ′]×Ω}. Note that the lower bound is independent of the choice of ε . Then, it is easy to see that if we
take ε small enough and we suppose that T ′ < T , by a continuity argument (c ∈C1,2(Q)) we obtain that c≥ ε in
[0,T ′+δ t]×Ω for some δ t > 0, which leads to a contradiction. Thus T ′ = T , and we can conclude that

c > δe−KT min
x∈Ω

ĉ0(x)> 0 in Q. (2.10)

• Estimate from above:

Let č0 ∈C2(Ω) satisfy

A0
∂ č0

∂n
> ‖q‖L∞(Q)č0(x) ∀x ∈ S, (2.11)

and

‖c0‖L∞(Ω) < č0(x)< ‖c0‖L∞(Ω)+1 ∀x ∈Ω . (2.12)

Let us define

č(t,x) := eλ t č0(x), (t,x) ∈ Q, (2.13)

for λ > 0. Then, for λ large enough it is clear that

θ čt −div
(
A∇č−qč

)
+R+θt č > 0 in Q, (2.14)

which means that

(θ +ϕ
′(č))čt −div

(
A∇č−qč

)
+R+θt č > 0 in Q. (2.15)

We have {
ct = (θ +ϕ ′(c))−1(div

(
A∇c−qc

)
−R)−θtc in Q,

A∇c ·n = (q ·n)c−αh(c) on ST ,
(2.16)

and {
čt > (θ +ϕ ′(č))−1(div

(
A∇č−qč

)
−R)−θt č in Q,

A∇č ·n > (q ·n)č−αh(č) on ST .
(2.17)

Moreover, č(0,x)> c(0,x) in Ω .
Since we know that c > δe−KT min

x∈Ω

ĉ0(x) in Q, we can now apply Theorem 1 to c and č in Q to deduce that

c(t,x)< č(t,x), (t,x) ∈ Q.

Thus, we can conclude that there exist cmin,cmax such that

0 < cmin ≤ c(t,x)≤ cmax, (t,x) ∈ Q. (2.18)
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3 Uniqueness of solutions in C1,2(Q)

In this section, we prove the uniqueness of solutions of problem (1.1) in the space C1,2(Q).
Let c1,c2 be two solutions of (1.1) belonging to C1,2(Q). From section 2, we know that

0 < cmin ≤ c1(t,x),c2(t,x)≤ cmax, (t,x) ∈ Q. (3.1)

Let us multiply the equation satisfied by c1− c2 by c1− c2, integrate in Ω and integrate by parts. This yields:

1
2

d
dt

∫
Ω

(θ +ϕ
′(c1))|c1− c2|2dx− 1

2

∫
Ω

(−θt +ϕ
′′(c1)c1,t)(c1− c2)

2dx

+
∫

Ω

(ϕ ′(c1)−ϕ
′(c2))(c1− c2)c2,tdx+

∫
Ω

A|∇c1−∇c2|2dx

−
∫

Ω

q ·∇(c1− c2)(c1− c2)dx−
∫

∂Ω

A
∂

∂n
(c1− c2)(c1− c2)dσ

+
∫

∂Ω

(q ·n)(c1− c2)
2dσ = 0.

(3.2)

We use that θt ∈ L∞(Ω × (0,T )) (see (1.6)), ϕ ′′(c1) ∈ L∞(Ω × (0,T )) (thanks to (1.4) and (3.1)) and q ∈ L∞(Ω × (0,T )).
We obtain:

1
2

d
dt

∫
Ω

(θ +ϕ
′(c1))|c1− c2|2dx+

∫
Ω

A|∇c1−∇c2|2dx

≤ K
(∫

Ω

(1+ |c1,t |+ |c2,t |)|c1− c2|2 +
∫

Γ1

|c1− c2|2dσ

)
.

(3.3)

Here, we have also used that |αh(c1)−αh(c2)| ≤ K|c1− c2| and the same property for ϕ ′.

•We estimate the first term in the right-hand side:∣∣∣∣∫
Ω

|c1− c2|2(|c1,t |+ |c2,t |)dx
∣∣∣∣≤ (‖c1,t‖L2(Ω)+‖c2,t‖L2(Ω))‖c1− c2‖2

L4(Ω).

Using that
‖ f‖L4(Ω) ≤ ‖ f‖1/4

L2(Ω)
‖ f‖3/4

L6(Ω)
,

we deduce that ∣∣∣∣∫
Ω

|c1− c2|2(|c1,t |+ |c2,t |)dx
∣∣∣∣

≤ (‖c1,t‖L2(Ω)+‖c2,t‖L2(Ω))‖c1− c2‖1/2
L2(Ω)

‖c1− c2‖3/2
L6(Ω)

.

Using now Young’s inequality (for parameters 4 and 4/3), we obtain, for every ε ∈ [0,1] there exists Kε such that∣∣∣∣∫
Ω

|c1− c2|2(|c1,t |+ |c2,t |)dx
∣∣∣∣

≤ Kε(‖c1,t‖4
L2(Ω)+‖c2,t‖4

L2(Ω))‖c1− c2‖2
L2(Ω)+ ε‖c1− c2‖2

L6(Ω)
.

From the continuous injection H1(Ω) ↪→ L6(Ω) (recall that d = 2,3), we get∣∣∣∣∫
Ω

|c1− c2|2(1+ |c1,t |+ |c2,t |)dx
∣∣∣∣

≤ K′ε(1+‖c1,t‖4
L2(Ω)+‖c2,t‖4

L2(Ω))‖c1− c2‖2
L2(Ω)+ ε‖c1− c2‖2

H1(Ω),

(3.4)

where K′ε does not depend on Kε .
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• For the second term in the right-hand side of (3.2), we consider a function ρ ∈C2(Ω) satisfying ∂ρ

∂n ≥ 1 on
S. Then, ∫

∂Ω

∂ρ

∂n
|c1− c2|2dσ = 2

∫
Ω

(∇ρ ·∇(c1− c2))(c1− c2)dx+
∫

Ω

∆ρ (c1− c2)
2dx.

From Young’s inequality, we easily deduce that for every ε ∈ [0,1] there exists Kε such that∫
Γ1

|c1− c2|2dσ ≤ Kε‖c1− c2‖2
L2(Ω)+ ε‖∇(c1− c2)‖2

L2(Ω).

Putting this together with (3.4) and using (1.4), (1.5) and (1.6), we find

1
2

d
dt

∫
Ω

(θ +ϕ
′(c1))|c1− c2|2dx+

∫
Ω

A|∇c1−∇c2|2dx

≤ Kε θ
−1
0 (1+‖c1,t‖4

L2(Ω)+‖c2,t‖4
L2(Ω))

∫
Ω

(θ +ϕ
′(c1))|c1− c2|2dx

+ε

∫
Ω

A|∇c1−∇c2|2dx.

(3.5)

Finally, taking ε > 0 small enough and using Gronwall’s Lemma, we deduce that c1 = c2.

4 Existence and uniqueness of solutions in C1+β/2,2+β (Q)

Recall that β ∈ (0,1) is fixed (1.10).
In order to apply an existence and uniqueness theorem we need to define a new problem by truncating the function
ϕ:

Let us define ϕM as follows, with M :=
(

M1
M2

)
,0 < M1 < M2:



ϕM(c) = ϕ(c) for M1 ≤ c≤M2,

ϕM(c) =−εM for c≤−εM,

ϕM(c) = ϕ(M2)+ εM for c≥M2 + εM,

ϕM ∈C3([−εM,M1]∪ [M2,M2 + εM]),

ϕ
′
M ≥ 0,

for some εM > 0.
It is clear that such ϕM exists. Note, in particular, that ϕ ′M(c) = ϕ ′′M(c) = ϕ ′′′M (c) = 0 for |c|> M2 +εM and that ϕM
and its derivatives of up to order three are bounded.

Let us now define the new problem: find cM such that
∂t(θcM +ϕM(cM)) = div

(
A∇cM−qcM

)
−R in Q,

αh(c) =−
(
A∇cM−qcM

)
·n on I×Γ1,

0 =
(
A∇cM−qcM

)
·n on I×Γ2,

cM(0,x) = c0(x) in Ω .

(4.1)

Let us make the following change of variables:
let y := θcM +ϕM(cM)−θ(0,x)c0(x)−ϕM(c0).
Note that y is strictly monotonically increasing in the variable cM (recall that θ ≥ θ0 > 0 in Q and ϕ ′M ≥ 0). Thus,
we have cM = k(t,x,y) with k strictly monotonically increasing in the variable y. Moreover, k is three times
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continuously differentiable with respect to y.
We can write the problem as follows:

∂ty−div(A∇k−qk)+R = 0 in Q,

(A∇k−qk) ·n+αh(k) = 0 on I×Γ1,

(A∇k−qk) ·n = 0 on I×Γ2,

y(0,x) = 0 in Ω .

(4.2)

We use the following notations for derivatives:

d
dx

[a(x,u(x))] =
∂a
∂x

+
∂a
∂u

ux = ax +auux.

The equation in Q gives:

∂ty−∑
i

d
dxi

(A
d

dxi
k)+∑

i

d
dxi

(qik)+R = 0.

Using the chain rule yields:

∂ty−∑
i

A
d2

dx2
i

k−∑
i

d
dxi

A
d

dxi
k+∑

i
(k

d
dxi

qi +qi
d

dxi
k)+R = 0.

We obtain:
∂ty−A∑

i

[
kxixi + kyyxixi + kyxiyxi + kxiyyxi + kyyy2

xi

]
−∑

i

[
Axikxi +Axikyyxi − kqixi

−qikxi −qikyyxi

]
+R = 0.

The equation in I×∂ (Ω) gives:

∑
i
(A

d
dxi

k−qik)cos(n,xi)+αh(k) = 0.

Using the chain rule again yields:

A∑
i

kyyxicos(n,xi)+∑
i
(Akxi −qik)cos(n,xi)+αh(k) = 0.

Finally, we can see that our problem is of the general form
Ly := yt −ai j(x, t,y)yxix j +b(x, t,y,yx) = 0,

L(S)y := ai j(x, t,y)yx j cos(n,xi)+ψ(x, t,y)|ST = 0,

y|t=0 = 0,

(4.3)

with 

ai j = 0 for i 6= j,

aii = Aky,

b =−A∑
i

[
kxixi + kyxiyxi + kxiyyxi + kyyy2

xi

]
−∑

i

[
Axikxi +Axikyyxi − kqixi

−qikxi −qikyyxi

]
+R,

ψ = ∑
i
(Akxi −qik)cos(n,xi)+αh(k).

(4.4)

We can now apply the following theorem to problem (4.3):
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Theorem 2 (Ladyzhenskaya et al. (1968), Theorem 7.4 p. 491) Suppose the following conditions are fulfilled:

There exists µ1 > 0 and c0,c1,c2,c3,c4 ≥ 0 such that for arbitrary y,

0≤∑
i, j

ai j(x, t,y)ξiξ j ≤ µ1ξ
2 for (t,x) ∈ Q, (4.5a)

−yb(x, t,y, p)≤ c0 p2 + c1y2 + c2 for (t,x) ∈ Q, (4.5b)

−yψ(x, t,y)≤ c3y2 + c4 for (t,x) ∈ ST , (4.5c)

∑
i, j

ai j(x, t,y)ξiξ j ≥ ν1ξ
2 for (t,x) ∈ ST . (4.5d)

There exists ν ,µ > 0 such that for (t,x) ∈ Q , |y| ≤ N and for arbitrary p the functions ai j(x, t,y), b(x, t,y, p)
and ψ(x, t,y) are continuous in their arguments, possess the derivatives entering into the following conditions and
satisfy these conditions:

νξ
2 ≤∑

i, j
ai j(x, t,y)ξiξ j ≤ µξ

2, (4.6a)∣∣∣∣∂ai j(x, t,y)
∂y

,
∂ai j

∂x
, ψ ,

∂ψ

∂y
,

∂ψ

∂x

∣∣∣∣≤ µ, (4.6b)

|b(x, t,y, p)| ≤ µ(1+ p2), (4.6c)

|ψyy(x, t,y) , ψyx , ψyt , ai jt , ψt | ≤ µ, (4.7a)

|bp|(1+ |p|)+ |by|+ |bt | ≤ µ(1+ p2), (4.7b)
|ai jyy , ai jyt , ai jyx j

, ai jx jt
| ≤ µ. (4.7c)

For (t,x) ∈ Q , |y| ≤ N and |p| ≤ N, the functions ai jx(x, t,y) are Hölder continuous in the variables x with
exponent β , ψx(x, t,y) is Hölder continuous in x and t with exponent β and β/2 respectively, and b(x, t,y, p) is
Hölder continuous in x with exponent β . (4.8)

S ∈C2+β . (4.9a)
ψ(x,0,0)|x∈S = 0. (4.9b)

Then problem (4.3) has a unique solution y(t,x) in the class C1+β/2,2+β (Q).

Let us verify hypotheses (4.5a) to (4.9b) for our problem:

Proof of (4.5a) (4.5d) (4.6a). We have

ky =
1

yk ◦ k
=

1
θ +ϕ ′M(k)

,

and since 0 < A0 ≤ A(t,x)≤ Am in Q and 0 < θ0 ≤ θ(t,x)+ϕ ′M(k)<+∞ in Q×R, it follows that (4.5a), (4.5d)
and (4.6a) hold.

Proof of (4.5b) (4.5c). We have

−yb(x, t,y, p) =∑
i

[
Akxixiy+Axikxiy− kqixi

y−qikxiy
]
−Ry

+A∑
i

[
kyxi piy+ kxiy piy+ kyy p2

i y
]
+∑

i
[Axiky piy−qiky piy] .
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– Terms not involving p, for example Akxixiy, are handled in this way:

kxix j =−
θxix j k

θ +ϕ ′M(k)
+

2θxiθx j k
(θ +ϕ ′M(k))2 −

θxiθx j ϕ
′′
M(k)k2

(θ +ϕ ′M(k))3

+
θ 0

xix j
c0 +θ 0

xi
c0

x j
+(θ 0 +ϕ ′M(c0))c0

xix j
+(θ 0

x j
+ϕ ′′M(c0)c0

x j
)c0

xi

θ +ϕ ′M(k)

−
(
θ

0
xi

c0 +(θ 0 +ϕ
′
M(c0))c0

xi

)(
θx j

(θ +ϕ ′M(k))2 +
ϕ ′′M(k)(θ 0

xi
c0 +(θ 0 +ϕ ′M(c0))c0

xi
)

(θ +ϕ ′M(k))3 − ϕ ′′M(k)θxik
(θ +ϕ ′M(k))3

)
.

We have θ0≤ θ(t,x)+ϕ ′M(k)<+∞. Moreover, for |y| large enough there holds k = θ−1y+ct (with ct bounded
and independent of y) and ϕ ′′M(k) = 0.
Taking into account that θ ,A,θ 0,c0 and their space derivatives of up to order two are bounded , it follows that
there exists c3a,c3b ≥ 0 such that for arbitrary y

|Akxixiy| ≤ c3ay2 + c3b for (t,x) ∈ Q.

Remaining terms not involving p are handled similarly.
– ky, kyxi and kxiy, the derivatives appearing in terms involving p, can be bounded independently of y. In the case

of the term Akyxi piy, we have

kyxi =
−θxi

(θ +ϕ ′M(k))2 +
θxiϕ

′′
M(k)k

(θ +ϕ ′M(k))3 −
ϕ ′′M(k)

(
θ 0

xi
c0 +(θ 0 +ϕ ′M(c0))c0

xi

)
(θ +ϕ ′M(k))3 ,

which leads to the fact that there exists ct2 ,c5a,c5b ≥ 0 such that for arbitrary y

|Akyxi piy| ≤ ct2 |pi||y| ≤ c5a p2 + c5by2 for (t,x) ∈ Q.

– The term Akyy p2
i y remains. We have

kyy =
−ϕ ′′M(k)ky

(θ +ϕ ′M(k))2 =
−ϕ ′′M(k)

(θ +ϕ ′M(k))3 ,

which vanishes for |y| large enough. It follows that there exists c6 ≥ 0 such that for arbitrary y

|Akyy p2
i y| ≤ c6 p2 for (t,x) ∈ Q.

Consequently, (4.5b) holds.
(4.5c) can be verified in the same way as (4.5b).

Proof of (4.6b) (4.6c) (4.7a) (4.7b) (4.7c). It is easy to see that under the assumptions we made, all appearing
quantities in these hypotheses are defined and bounded, thus it is clear that these conditions are verified.

Proof of (4.8). We have

∂aii(x, t,y)
∂x j

= Ax j ky +Akyx j ,

∂ψ

∂x j
= ∑

i
[(Ax j kxi +Akxix j −qix j

k−qikx j)ni +(Akxi −qik)nix j
]+αh′(k)kx j +αx j h(k),

and one can easily verify that under the assumptions we made, the Hölder continuity hypotheses on ai jx(x, t,y),ψx(x, t,y)
and b(x, t,y, p) required by (4.8) hold true.

Proof of (4.9a). We made the assumption that S ∈C2+β .
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Proof of (4.9b). We have the following initial and boundary compatibility condition:

(A∇c0−qc0) ·n+αh(c0) = 0 on S,

which, since k|t=0 = c0, leads to

ψ(x,0,0) = ∑
i
(Ac0

xi
−qic0)cos(n,xi)+αh(c0) = 0 on S,

and (4.9b) holds.

Thus, problem (4.3) has a unique solution y in the class C1+β/2,2+β (Q).
Consequently, problem (4.1) has a unique solution cM in the class C1+β/2,2+β (Q).
Now, note that we can find estimates for solutions cM of problem (4.1) in exactly the same way we did for problem

(1.1) in section 2. Moreover, one can easily see that cM can be bounded independently of M: ∀M =

(
M1
M2

)
, 0 <

M1 < M2 ,
0 < cmin ≤ cM(t,x)≤ cmax, (t,x) ∈ Q. (4.10)

We can then choose M so that M1 < cmin and M2 > cmax. It follows that the unique solution cM of problem (4.1)
is also a solution of the original problem (1.1). Thus, using the fact that problem (1.1) has at most one solution in
the space C1,2(Q) which was proven in section 3, we can deduce that problem (1.1) has a unique solution in the
space C1+β/2,2+β (Q).

5 Shape optimization

In this section, we use the tools of shape optimization presented by Sokolowski and Zolesio (1992), Haslinger and
Makinen (2003) and Henrot and Pierre (2005) to find root shapes that increase the amount of absorbed P. More
specifically, we want to deform Ω so as to maximize the shape functional

J(c) =
∫ T

0

∫
Γ1

h(c),

where |Ω |= a given constant.
It is assumed that A and q are constants for simplicity.
We first calculate the material and shape derivatives of c with respect to the domain:
We introduce a vector field V ∈C2(Rd ,Rd) and we consider Ωs = (Id+ sV)(Ω) where s is a small parameter. Let
Ts(V) = Id + sV and let cs be the unique solution of

∂t(θcs +ϕ(cs)) = div
(
A∇cs−qcs

)
−R in I×Ωs,

h(cs) =−
(
A∇cs−qcs

)
·n on I×Γ1,s,

0 =−
(
A∇cs−qcs

)
·n on I×Γ2,s = I× (∂Ω \Γ1,s),

cs(0,x) = z(x) ∈ H1(Rn).

(5.1)

We first determine the form of ċ, the material derivative of c, which is the derivative of s→ cs ◦Ts at s = 0.
For s small enough, cs satisfies∫ T

0

∫
Ωs

−(θcs +ϕ(cs))∂tΦ +(A∇cs−qcs
)
·∇Φ +RΦ

=
∫

Ωs

(θz+ϕ(z))Φ(0,x)dx−
∫ T

0

∫
Γ1,s

Φh(cs)σdt,
(5.2)

for all Φ ∈ H1(Ωs) such that
Φ(T, ·) = 0.

We use the change of variable x = Ts(V)(X) and introduce cs = cs ◦Ts(V) and Φ s
V = Φ ◦Ts(V). The Jacobian

of the transformation is then det(D(Ts(V)) = det(DTs).
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Using this change of variable in (5.2) leads to

∫ T

0

∫
Ω

−(θcs +ϕ(cs))∂tΦ
s
V|det(DTs)|

+
∫ T

0

∫
Ω

(A(∗D(Ts))
−1∇cs−qcs) · (∗D(Ts))

−1∇Φ
s
V|det(DTs)|

+
∫ T

0

∫
Ω

R◦TsΦ
s
V|det(DTs)|

=
∫

Ω

(θz◦Ts +ϕ(z◦Ts))Φ
s
V(0,x)|det(DTs)|

−
∫ T

0

∫
Γ1

Φ
s
Vh(cs)|det(DTs)| ‖(∗D(Ts))

−1(n)‖,

(5.3)

with

Φ(T, ·) = 0.

As Φ is any element in H1(Ωs), Φ s
V describes H1(Ω). Then using (5.3) leads to

∫ T

0

∫
Ω

−(θcs +ϕ(cs))∂tΦ |det(DTs)|

+
∫ T

0

∫
Ω

(A(∗D(Ts))
−1∇cs−qcs) · (∗D(Ts))

−1∇Φ |det(DTs)|

+
∫ T

0

∫
Ω

R◦TsΦ |det(DTs)|=
∫

Ω

(θz◦Ts +ϕ(z◦Ts))Φ(0,x)|det(DTs)|

−
∫ T

0

∫
Γ1

Φh(cs)|det(DTs)| ‖(∗D(Ts))
−1(n)‖.

(5.4)

Furthermore, using (1.1) gives

∫ T

0

∫
Ω

−(θc+ϕ(c))∂tΦ +(A∇c−qc
)
·∇Φ

+
∫ T

0

∫
Ω

RΦ =
∫

Ω

(θz+ϕ(z)Φ(0,x)−
∫ T

0

∫
Γ1

Φh(c).
(5.5)

Subtracting (5.3) to (5.4), dividing by s and letting s go to 0 leads to

∫ T

0

∫
Ω

−(θ ċ+ϕ
′(c)ċ+θcdivV+ϕ(c)divV)∂tΦ

+
∫ T

0

∫
Ω

A(∇ċ+(divV−∗DV −DV )∇c) ·∇Φ

+
∫ T

0

∫
Ω

−q ·
(
ċ− c∗DV + cdivV

)
∇Φ +

∫ T

0

∫
Ω

(∇R ·V+RdivV)Φ

=
∫

Ω

(θ∇z ·V+θzdivV+∇(ϕ ◦ z) ·∇V+ϕ(z)divV)Φ(0,x)

−
∫ T

0

∫
Γ1

(h′(c)ċ+h(c)(divV−DV n ·n))Φ .

(5.6)
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Integrating by parts the first term gives

∫ T

0

∫
Ω

∂

∂ t
(θ ċ+ϕ

′(c)ċ+θcdivV+ϕ(c)divV)Φ

+
∫ T

0

∫
Ω

A(∇ċ+(divV−∗DV −DV )∇c) ·∇Φ

+
∫ T

0

∫
Ω

−q ·
(
ċ− c∗DV + cdivV

)
∇Φ +

∫ T

0

∫
Ω

(∇R ·V+RdivV)Φ

=
∫

Ω

(
θ∇z ·V−

(
θ +ϕ

′(c(0,x))
)
ċ(0,x)+∇(ϕ ◦ z) ·∇V

)
Φ(0,x)

−
∫ T

0

∫
Γ1

(h′(c)ċ+h(c)(divV−DV n ·n))Φ .

Integrating by parts the following two terms leads to

∫ T

0

∫
Ω

∂

∂ t

(
θ ċ+ϕ

′(c)ċ+θcdivV+ϕ(c)divV
)
Φ

−
∫ T

0

∫
Ω

A
(
∆ ċ+div(divV−∗DV −DV )∇c

)
Φ

+
∫ T

0

∫
∂Ω

A
(∂ ċ

∂n
+(divV−∗DV −DV )∇c ·n

)
Φ

+
∫ T

0

∫
Ω

q ·
(
∇ċ− c∇(divV)+divV∇c

)
Φ+∫ T

0

∫
Ω

(
−DV q ·∇c+ cdiv(DV q)

)
Φ+

+
∫ T

0

∫
∂Ω

(
− ċq ·n+DV (cq) ·n−divVcq ·n

)
Φ +

∫ T

0

∫
Ω

(∇R ·V+RdivV)Φ

=
∫

Ω

(
θ∇z ·V−

(
θ +ϕ

′(c(0,x))
)
ċ(0,x)+∇(ϕ ◦ z) ·∇V

)
Φ(0,x)+

−
∫ T

0

∫
Γ1

(h′(c)ċ+h(c)(divV−DV n ·n))Φ .

Finally, the equation verified by ċ in Q is

∂

∂ t

(
θ ċ+ϕ

′(c)ċ+θcdivV+ϕ(c)divV
)

−A
(
∆ ċ+div(divV−∗DV −DV )∇c

)
+q ·

(
∇ċ− c∇(divV)+divV∇c

)
−

−DV q ·∇c+ cdiv(DV q) =−∇R ·V−RdivV,

(5.7)

with boundary conditions
A
(

∂ ċ
∂n +(divV−∗DV −DV )∇c ·n

)
− ċq ·n+DV (cq) ·n−divVcq ·n =

−h′(c)ċ−h(c)(divV−DV n ·n) on I×Γ1,

A
(

∂ ċ
∂n +(divV−∗DV −DV )∇c ·n

)
− ċq ·n+DV (cq) ·n−

−divVcq ·n = 0 on I×Γ2,

(5.8)

and initial value

(θ +ϕ
′(c(0,x)))ċ(0,x) = θ∇z ·V+∇(ϕ ◦ z) ·∇V. (5.9)
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Using the original equation satisfied by c, we obtain

∂

∂ t

(
θ ċ+ϕ

′(c)ċ
)
−A∆ ċ+q ·

(
∇ċ− c∇(divV)

)
−A∇(divV) ·∇c−DV q ·∇c+ cdiv(DV q)

+A
(

div(∗DV +DV )∇c
)
=−∇R ·V in Q,

(5.10)

with boundary conditions
A
(

∂ ċ
∂n − (∗DV +DV )∇c ·n

)
− ċq ·n

+DV (cq) ·n =−h′(c)ċ+h(c)DV n ·n on I×Γ1,

A
(

∂ ċ
∂n − (∗DV +DV )∇c ·n

)
− ċq ·n+DV (cq) ·n

= 0 on I×Γ2,

(5.11)

and initial value

(θ +ϕ
′(c(0,x)))ċ(0,x) = θ∇z ·V+∇(ϕ ◦ z) ·∇V. (5.12)

Let us now denote by c′ the derivative of c with respect to the domain: c′ = ċ−∇c ·V.
The equation satisfied by c′ is

∂

∂ t

(
θc′+ϕ

′(c)c′
)
−A∆c′+q ·∇c′ = 0 in Q, (5.13)

with boundary conditions
A ∂c′

∂n − c′q ·n+h′(c)c′ =
(
−A ∂ 2c

∂n2 −
∂h(c)

∂n +∇c ·q
)
(V ·n)

+A∇T (V ·n) ·∇T c−∇T (cV ·n) ·q on I×Γ1,

A ∂c′
∂n − c′q ·n =

(
−A ∂ 2c

∂n2 +∇c ·q
)
(V ·n)

+A∇T (V ·n) ·∇T c−∇T (cV ·n) ·q on I×Γ2,

(5.14)

and initial value

c′(0,x) = 0, (5.15)

where ∇T is the tangential part of the gradient.

Now, consider the derivative of the functional J at Ω in the direction V:

dJ(c,V) =
∫ T

0

(∫
Γ1

h′(c)c′+
∫

Γ1

Hh(c)(V ·n)+
∫

Γ1

h′(c)
∂c
∂n

(V ·n)
)
, (5.16)

where H is the mean curvature of the boundary of the domain.

In order to get rid of the shape derivative c′ (which we would have to compute for every choice of V) in the
expression of dJ, we use the adjoint state technique. Let us introduce p the solution to the following adjoint state
problem: 

− (θ +ϕ
′(c))∂t p−div(A∇p)−q ·∇p = 0 in Q,

(A∇p) ·n+h′(c)p = h′(c) on I×Γ1,

(A∇p) ·n = 0 on I×Γ2,

p(T,x) = 0 in Ω?

(5.17)

Multiplying by c′ and integrating over Q yields:

−
∫ T

0

∫
Ω

(θ +ϕ
′(c))∂t pc′−

∫ T

0

∫
Ω

−div(A∇p)c′−
∫ T

0

∫
Ω

q ·∇pc′ = 0. (5.18)
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Successive integrations by parts lead to

∫ T

0

∫
Ω

∂t(θc′+ϕ
′(c)c′)p−

∫
Ω

(θ +ϕ
′(c(x,T )))c′(x,T )p(x,T )+

∫
Ω

(θ +ϕ
′(c(x,0)))c′(x,0)p(x,0)

+
∫ T

0

∫
Ω

A∇c′ ·∇p−
∫ T

0

∫
Γ

Ac′
∂ p
∂n

+
∫ T

0

∫
Ω

pdiv(qc′)−
∫ T

0

∫
Γ

c′pq ·n = 0,
(5.19)

and finally

∫ T

0

∫
Ω

∂t(θc′+ϕ
′(c)c′)p−

∫ T

0

∫
Ω

div(A∇c′)p+
∫ T

0

∫
Γ

A
∂c′

∂n
p−

∫ T

0

∫
Γ

Ac′
∂ p
∂n

+
∫ T

0

∫
Ω

pdiv(qc′)−
∫ T

0

∫
Γ

c′pq ·n = 0.
(5.20)

On another hand, recall that

∂t(θc′+ϕ
′(c)c′)−div(A∇c′−qc′) = 0 in Q. (5.21)

Using (5.21) in (5.20) gives∫ T

0

∫
Γ

A
∂c′

∂n
p−

∫ T

0

∫
Γ

Ac′
∂ p
∂n
−
∫ T

0

∫
Γ

c′pq ·n = 0.

Considering the boundary conditions satisfied by p, it follows that∫ T

0

∫
Γ

A
∂c′

∂n
p+

∫ T

0

∫
Γ1

h′(c)c′p−
∫ T

0

∫
Γ

c′pq ·n =
∫ T

0

∫
Γ1

h′(c)c′. (5.22)

We can now use (5.22) in equation (5.16) verified by dJ in order to get rid of c′:

dJ(c,V) =
∫ T

0

(∫
Γ1

h′(c)c′+
∫

Γ1

Hh(c)(V ·n)+
∫

Γ1

h′(c)
∂c
∂n

(V ·n)
)

=
∫ T

0

(∫
Γ

A
∂c′

∂n
p+

∫
Γ1

h′(c)c′p−
∫ T

0

∫
Γ

c′pq ·n+
∫

Γ1

Hh(c)(V ·n)+
∫

Γ1

h′(c)
∂c
∂n

(V ·n)
)

=
∫ T

0

(∫
Γ

A∇T c ·∇T (V ·n)p−A
∂ 2c
∂n2 (V ·n)p−∇T (cV ·n) ·qp+q ·∇c(V ·n)p

)
−
∫ T

0

(∫
Γ1

h′(c)
∂c
∂n

(V ·n)p− (Hh(c)+h′(c)
∂c
∂n

)(V ·n)
)
,

(5.23)

where the last equality comes from using the boundary conditions satisfied by c′.

Now, note that ∫
Γ

A∇T c ·∇T (V ·n)p =−
∫

Γ

divT (Ap∇T c)(V ·n)

=−
∫

Γ

A∇T p ·∇T c(V ·n)−
∫

Γ

pdivT (A∇T c)(V ·n).
(5.24)

On the other hand, we have

divT (A∇T c) = A∆T c = A∆c−AH
∂c
∂n
−A

∂ 2c
∂n2

= ∂t(θc+ϕ(c))+div(qc)−AH
∂c
∂n
−A

∂ 2c
∂n2 .

(5.25)
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It follows that

∫
Γ

A∇T c ·∇T (V ·n)p =−
∫

Γ

A∇T p ·∇T c(V ·n)−
∫

Γ

∂t(θc+ϕ(c))p(V ·n)

−
∫

Γ

div(qc)p(V ·n)+
∫

Γ

AH
∂c
∂n

p(V ·n)+
∫

Γ

A
∂ 2c
∂n2 p(V ·n).

Finally,

dJ(c,V) =−
∫ T

0

(∫
Γ

A∇Γ p ·∇Γ c(V ·n)−
∫

Γ

c∇T p ·q(V ·n)+
∫

Γ

∂t(θc+ϕ(c))p(V ·n)
)

+
∫ T

0

(∫
Γ

AH
∂c
∂n

p(V ·n)−
∫

Γ1

h′(c)
∂c
∂n

(V ·n)p+
∫

Γ1

Hh(c)(V ·n)+
∫

Γ1

h′(c)
∂c
∂n

(V ·n)
)
.

Note that the shape gradient dJ is now expressed in the following convenient way:

dJ(c,V) =
∫

Γ

j(V ·n),

where j does not depend on V.

With that in mind, a simple yet effective approach to maximize J consists in choosing V such that V · n = j,
i.e. V = jn. this brings

dJ(c,V) =
∫

Γ

j2 > 0,

which ensures that J increases as the domain is iteratively deformed.

Note that this method restricts the choice of the deformation, as V is taken colinear with n.

Numerical resolution of the state and adjoint equations in two spatial dimensions is carried out using the free
finite element software FreeFEM++. Spatial discretization is done using Lagrange P2 finite elements. The back-
ward Euler method is applied for the discretization in time. Nonlinearities in the state equation are handled by
Newton’s method. A built-in adaptive anisotropic mesh refinement algorithm is used in order to improve accuracy
near the boundary while preserving an acceptable computational cost. The constant volume constraint is enforced
by a lagrange multiplier. Additionally, a minimum diameter constraint is put on the shape in order to prevent un-
suitable deformations of the domain.

Numerical values used in this example are as follows:

– Fm = 0.282 µmolcm−2 d−1, Km = 5.8×10−3 µmolcm−3,
– κ = 6.15 , b = 0.72,
– θ = 0.35 cm3 cm−3,
– A = 0.102 cm2 d−1,
– c0 = 2.9×10−3 µmolcm−3,
– q = 0,R = 0.
– The initial shape is an ellipse of diameters 1.33 cm and 2.66 cm.
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Fig. 2 Snapshots of the domain and P concentration at different steps of the shape optimization process
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Fig. 3 Evolution of the total amount of absorbed P during the optimization process

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0.00045

 0.0005

 0  200  400  600  800  1000  1200

shape optimization iteration

shape gradient dJ

Fig. 4 Evolution of the shape gradient dJ during the optimization process
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6 Conclusion

As expected, this example shows that maximizing root surface area to volume ratio is indeed an essential compo-
nent of root uptake efficiency. Future work could consist in coupling a similar shape sensitivity analysis with an
explicit geometry root system growth model, in order to study and improve the efficiency of different types of root
systems regarding nutrient and water uptake in heterogeneous soils.
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