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In this paper, we consider a model of phosphorus uptake by plant roots, governed by a quasilinear parabolic equation. We first study the well-posedness of the associated Cauchy problem. Then, we consider a shape optimization problem: how to deform the shape of the root in order to increase phosphorus uptake. Finally, we give some numerical results of the shape optimization process.

Introduction

Phosphorus (P) is an essential element for plant growth and metabolism. It is involved in many plant processes such as energy transfer, the synthesis of nucleic acids and membranes, plant respiration, photosynthesis and enzyme regulation. Adequate phosphorus nutrition stimulates early plant growth and hastens maturity. P is one of the limiting factors for plant growth in many agricultural systems. P uptake by plants is often constrained by the very low solubility of P in the soil, as P is mostly present in unavailable forms because of adsorption, precipitation, or conversion to the organic form. This leads to the application of up to four times the fertilizer necessary for crop production. This practice can result in polluted water systems, imbalanced ecosystems and degradation of the environement. Moreoever, at the current rate of usage of P fertilizer, readily available sources of phosphate rocks could be depleted in as little as 60-90 years. This brings us to consider the problem of reducing fertilizer usage of P, which suggests improved efficiency of fertilizer methods in the short term, and adaptation of genotypes to P-deficient soils in the long term.

We therefore propose to study the transfer of P in the soil as well as its uptake by plant roots, as was done by [START_REF] Doussan | Modelling of the hydraulic architecture of root systems: an integrated approach to water absorption. Model description[END_REF], [START_REF] Roose | A mathematical model of plant nutrient uptake[END_REF] and [START_REF] Mollier | A two dimensional simulation model of phosphorus uptake including crop growth and P response[END_REF]. P moves in soil through both diffusion and mass flow, although diffusion is dominant.

Let us consider a shape modeling the root surface. The exterior domain around the root is the studied section of the soil. Let us denote by Ω ⊂ R d (d = 2, 3) the soil domain, delimited by the root surface and the domain boundaries. Let Γ 1 be the boundary representing the root surface and 

Γ 2 = ∂ Ω \ Γ 1 . Ω Γ 1 Γ 2 1
         ∂ t (θ c + ϕ(c)) = div A∇c -qc -R in I × Ω , αh(c) = -A∇c -qc • n on I × Γ 1 , 0 = A∇c -qc • n on I × Γ 2 = I × (∂ Ω \ Γ 1 ), c(0, x) = c 0 (x) in Ω , (1.1) 
where -n is the unit outward normal to the boundary of the domain, c 0 is the initial P concentration, -A is the diffusion coefficient of P in the soil, θ is the volumetric water content, -q is the groundwater flow, ϕ is an adsorption/desorption isotherm relating the amount of adsorbed P to the equilibrium concentration of P in solution; an example is the Freundlich adsorption isotherm (McGechan and Lewis 2002), defined by:

ϕ(c) = κc b for c ∈ [0, +∞) , κ > 0 , b ∈ (0, 1),
h is a model of enzyme kinetics, relating in this case the root uptake rate of P to its concentration at the root surface; an example is the Michaelis-Menten model [START_REF] Barber | Soil nutrient bioavailability: a mechanistic approach[END_REF], given by:

h(c) = F m c K m + c for c ∈ [0, +∞) , F m > 0 , K m > 0,
-R represents additional optional source/sink terms to the system. We will only consider source terms, such as fertilizer application, α is a parameter we introduce in order to obtain sufficient regularity of the boundary condition in the case

Γ 1 ∩ Γ 2 = 0: α ∈ C 2 (∂ Ω ) such that for x ∈ ∂ Ω 0 < α(x) ≤ 1 on Γ 1 α(x) = 0 on Γ 2 .
We do not restrict ourselves to considering explicit forms for ϕ or h: we only use general properties of these functions throughout this paper. Since ϕ is defined on [0, +∞[, we consider positive solutions of problem (1.1). The paper is organized as follows: we first discuss existence and uniquess of solutions to problem (1.1). Then we introduce a shape optimization method which enables us to modify the shape of the domain in order to maximize the amount of absorbed P.

For simplicity and clarity, we only take α into account while proving existence and uniqueness of the solution, and we drop it later in the shape optimization study.

We begin by introducing some notations:

-S is the boundary of Ω , -Q is the cylinder (0, T ) × Ω , -S T is the lateral surface of Q: S T = {(t, x) | t ∈ [0, T ], x ∈ S}, -θ 0 (x) := θ (0, x) for x ∈ Ω .
Let us make the following assumptions:

hypotheses on S S ∈ C 2+β , (1.2) hypotheses on c 0 c 0 ∈ C 2+β (Ω ) , c 0 > 0, A∇c 0 -qc 0 • n + h(c 0 ) = 0 on Γ 1 , A∇c 0 -qc 0 • n = 0 on Γ 2 , (1.3) 
hypotheses on ϕ ϕ ∈ C 3 ((0, +∞)) , ϕ > 0, (1.4) 
hypotheses on A A ∈ C 1+β /2,2+β (Q) , A m ≥ A(t, x) ≥ A 0 > 0 in Q, (1.5) hypotheses on θ θ ∈ C 1+β /2,2+β (Q) , θ m ≥ θ (t, x) ≥ θ 0 > 0 in Q, (1.6) hypotheses on R R ∈ C 1+β /2,2+β (Q) , R < 0 in Q, (1.7) 
hypotheses on q

q i ∈ C 1+β /2,2+β (Q) , i = 1, .., d, (1.8) 
let us extend h to R so that

h ∈ C 2 (R) , h(0) = 0 , h L ∞ (R) + h L ∞ (R) + h L ∞ (R) ≤ C h . (1.9)
Here and in the sequel, β ∈ (0, 1) .

(1.10)

A priori estimates

In this section, we derive upper and lower bounds for the solutions of problem (1.1) in the space C 1,2 (Q). Let c be a solution of problem (1.1) in the space C 1,2 (Q), c ≥ 0 in Q.

• Estimate from below:

Let ε > 0, and let

T = max{t ∈ [0, T ] | c ≥ ε in [0, T ] × Ω }.
We now find a lower bound for c in [0, T ] × Ω .

Let us introduce the following function ĉ(t, x) := δ e -Kt ĉ0 (x), (t, x) ∈ Q, (

where δ , K > 0 are chosen below and where ĉ0 ∈ C 2 (Ω ) is a strictly positive function satisfying

A 0 ∂ ĉ0 ∂ n < -q L ∞ (Q) ĉ0 (x) -(h (0) + 1) ĉ0 (x) ∀x ∈ S, (2.2) 
and 0 < ĉ0 (x) < 1 ∀x ∈ Ω .

(2.3)

Choosing now K large enough and δ small enough, ĉ satisfies

         θ ĉt -div A∇ ĉ -q ĉ + R + θ t ĉ < 0 in Q, A ∂ ĉ ∂ n < (q • n) ĉ -αh( ĉ) on S T , ĉ(0, x) < c 0 (x) in Ω .
(2.4)

Since ϕ ≥ 0, we can see that

(θ + ϕ ( ĉ)) ĉt -div A∇ ĉ -q ĉ + R + θ t ĉ < 0 in Q. (2.5)
We now apply a comparison principle which results from the following theorem:

Theorem 1 [START_REF] Friedman | Partial differential equations of parabolic type[END_REF], Theorem 17 p. 53) Let v and w be two continuous functions in Q, and let the first t-derivative and the first two x-derivatives of v, w be continuous in Q. Let F(t, x, p, p i , p i j ) (i, j = 1, ..., d) be a continuous function together with its first derivatives with respect to the p hk in a domain E containing the closure of the set of points (t, x, p, p i , p i j ) where

(t, x) ∈ Q, p ∈ (v(t, x), w(t, x)), p i ∈ ∂ v(t, x) ∂ x i , ∂ w(t, x) ∂ x i , p i j ∈ ∂ 2 v(t, x) ∂ x i ∂ x j , ∂ 2 w(t, x) ∂ x i ∂ x j ;
here (a, b) denotes the interval connecting a to b. Assume also that (∂ F/∂ p hk ) is a positive semidefinite matrix.

If                        ∂ v ∂t > F t, x, v, ∂ v ∂ x i , ∂ 2 v ∂ x i ∂ x j in Q, ∂ w ∂t ≤ F t, x, w, ∂ w ∂ x i , ∂ 2 w ∂ x i ∂ x j in Q, v(0, x) > w(0, x) on Ω , ∂ v ∂ n + γ(t, x, v) > ∂ w ∂ n + γ(t, x, w) on S T , (2.6) 
for some function γ, then also v > w in Q.

We have

c t = (θ + ϕ (c)) -1 (div A∇c -qc -R) -θ t c in [0, T ] × Ω , A∇c • n = (q • n)c -αh(c) on [0, T ] × S, (2.7) 
and ĉt < (θ + ϕ ( ĉ)) -1 (div A∇ ĉ -q ĉ -R) -θ t ĉ in [0, T ] × Ω , A∇ ĉ • n < (q • n) ĉ -αh( ĉ) on [0, T ] × S. (2.8) 
Moreover, ĉ(0, x) < c(0, x) in Ω .

It is easy to see that in our case F satisfies the hypotheses of Theorem 1 thanks to (1.4), (1.5), (1.6), (1.7) and (1.8).

Thus, we can apply Theorem 1 to c and ĉ in

[0, T ] × Ω in order to deduce that c > ĉ ≥ δ e -KT min x∈Ω ĉ0 (x) > 0 in [0, T ] × Ω .
(2.9)

We proved that for every ε > 0, we have c > δ e -KT min

x∈Ω ĉ0 (x) in [0, T ] × Ω , with T = max{t ∈ [0, T ] | c ≥ ε in [0, T ] × Ω }.
Note that the lower bound is independent of the choice of ε. Then, it is easy to see that if we take ε small enough and we suppose that T < T , by a continuity argument (c

∈ C 1,2 (Q)) we obtain that c ≥ ε in [0, T + δt]
× Ω for some δt > 0, which leads to a contradiction. Thus T = T , and we can conclude that

c > δ e -KT min x∈Ω ĉ0 (x) > 0 in Q.
(2.10)

• Estimate from above:

Let č0 ∈ C 2 (Ω ) satisfy A 0 ∂ č0 ∂ n > q L ∞ (Q) č0 (x) ∀x ∈ S, (2.11) 
and

c 0 L ∞ (Ω ) < č0 (x) < c 0 L ∞ (Ω ) + 1 ∀x ∈ Ω . (2.12) Let us define č(t, x) := e λt č0 (x), (t, x) ∈ Q, (2.13) 
for λ > 0. Then, for λ large enough it is clear that

θ čt -div A∇ č -q č + R + θ t č > 0 in Q, (2.14) 
which means that

(θ + ϕ ( č)) čt -div A∇ č -q č + R + θ t č > 0 in Q. (2.15)
We have

c t = (θ + ϕ (c)) -1 (div A∇c -qc -R) -θ t c in Q, A∇c • n = (q • n)c -αh(c) on S T , (2.16 
)

and čt > (θ + ϕ ( č)) -1 (div A∇ č -q č -R) -θ t č in Q, A∇ č • n > (q • n) č -αh( č) on S T . (2.17) Moreover, č(0, x) > c(0, x) in Ω .
Since we know that c > δ e -KT min x∈Ω ĉ0 (x) in Q, we can now apply Theorem 1 to c and č in Q to deduce that

c(t, x) < č(t, x), (t, x) ∈ Q.
Thus, we can conclude that there exist c min , c max such that

0 < c min ≤ c(t, x) ≤ c max , (t, x) ∈ Q. (2.18) 3 Uniqueness of solutions in C 1,2 (Q)
In this section, we prove the uniqueness of solutions of problem (1.1) in the space C 1,2 (Q).

Let c 1 , c 2 be two solutions of (1.1) belonging to C 1,2 (Q). From section 2, we know that

0 < c min ≤ c 1 (t, x), c 2 (t, x) ≤ c max , (t, x) ∈ Q. (3.1)
Let us multiply the equation satisfied by c 1c 2 by c 1c 2 , integrate in Ω and integrate by parts. This yields:

1 2 d dt Ω (θ + ϕ (c 1 ))|c 1 -c 2 | 2 dx - 1 2 Ω (-θ t + ϕ (c 1 )c 1,t )(c 1 -c 2 ) 2 dx + Ω (ϕ (c 1 ) -ϕ (c 2 ))(c 1 -c 2 )c 2,t dx + Ω A|∇c 1 -∇c 2 | 2 dx - Ω q • ∇(c 1 -c 2 )(c 1 -c 2 ) dx - ∂ Ω A ∂ ∂ n (c 1 -c 2 )(c 1 -c 2 )dσ + ∂ Ω (q • n)(c 1 -c 2 ) 2 dσ = 0. (3.2)
We use that (1.4) and (3.1)) and q ∈ L ∞ (Ω × (0, T )).

θ t ∈ L ∞ (Ω × (0, T )) (see (1.6)), ϕ (c 1 ) ∈ L ∞ (Ω × (0, T )) (thanks to
We obtain: 1 2

d dt Ω (θ + ϕ (c 1 ))|c 1 -c 2 | 2 dx + Ω A|∇c 1 -∇c 2 | 2 dx ≤ K Ω (1 + |c 1,t | + |c 2,t |)|c 1 -c 2 | 2 + Γ 1 |c 1 -c 2 | 2 dσ . (3.3)
Here, we have also used that |αh(c 1 )αh(c 2 )| ≤ K|c 1c 2 | and the same property for ϕ .

• We estimate the first term in the right-hand side:

Ω |c 1 -c 2 | 2 (|c 1,t | + |c 2,t |)dx ≤ ( c 1,t L 2 (Ω ) + c 2,t L 2 (Ω ) ) c 1 -c 2 2 L 4 (Ω ) .
Using that

f L 4 (Ω ) ≤ f 1/4 L 2 (Ω ) f 3/4 L 6 (Ω ) , we deduce that Ω |c 1 -c 2 | 2 (|c 1,t | + |c 2,t |)dx ≤ ( c 1,t L 2 (Ω ) + c 2,t L 2 (Ω ) ) c 1 -c 2 1/2 L 2 (Ω ) c 1 -c 2 3/2 L 6 (Ω ) .
Using now Young's inequality (for parameters 4 and 4/3), we obtain, for every ε ∈ [0, 1] there exists K ε such that

Ω |c 1 -c 2 | 2 (|c 1,t | + |c 2,t |)dx ≤ K ε ( c 1,t 4 L 2 (Ω ) + c 2,t 4 L 2 (Ω ) ) c 1 -c 2 2 L 2 (Ω ) + ε c 1 -c 2 2 L 6 (Ω ) . From the continuous injection H 1 (Ω ) → L 6 (Ω ) (recall that d = 2, 3), we get Ω |c 1 -c 2 | 2 (1 + |c 1,t | + |c 2,t |)dx ≤ K ε (1 + c 1,t 4 L 2 (Ω ) + c 2,t 4 L 2 (Ω ) ) c 1 -c 2 2 L 2 (Ω ) + ε c 1 -c 2 2 H 1 (Ω ) , (3.4)
where K ε does not depend on K ε .

• For the second term in the right-hand side of (3.2), we consider a function ρ

∈ C 2 (Ω ) satisfying ∂ ρ ∂ n ≥ 1 on S. Then, ∂ Ω ∂ ρ ∂ n |c 1 -c 2 | 2 dσ = 2 Ω (∇ρ • ∇(c 1 -c 2 ))(c 1 -c 2 ) dx + Ω ∆ ρ (c 1 -c 2 ) 2 dx.
From Young's inequality, we easily deduce that for every ε ∈ [0, 1] there exists K ε such that

Γ 1 |c 1 -c 2 | 2 dσ ≤ K ε c 1 -c 2 2 L 2 (Ω ) + ε ∇(c 1 -c 2 ) 2 L 2 (Ω ) .
Putting this together with (3.4) and using (1.4), (1.5) and (1.6), we find 1 2

d dt Ω (θ + ϕ (c 1 ))|c 1 -c 2 | 2 dx + Ω A|∇c 1 -∇c 2 | 2 dx ≤ K ε θ -1 0 (1 + c 1,t 4 
L 2 (Ω ) + c 2,t 4 
L 2 (Ω ) ) Ω (θ + ϕ (c 1 ))|c 1 -c 2 | 2 dx +ε Ω A|∇c 1 -∇c 2 | 2 dx. (3.5)
Finally, taking ε > 0 small enough and using Gronwall's Lemma, we deduce that c 1 = c 2 .

4 Existence and uniqueness of solutions in

C 1+β /2,2+β (Q) Recall that β ∈ (0, 1) is fixed (1.10).
In order to apply an existence and uniqueness theorem we need to define a new problem by truncating the function ϕ:

Let us define ϕ M as follows, with

M := M 1 M 2 , 0 < M 1 < M 2 :                ϕ M (c) = ϕ(c) for M 1 ≤ c ≤ M 2 , ϕ M (c) = -ε M for c ≤ -ε M , ϕ M (c) = ϕ(M 2 ) + ε M for c ≥ M 2 + ε M , ϕ M ∈ C 3 ([-ε M , M 1 ] ∪ [M 2 , M 2 + ε M ]), ϕ M ≥ 0, for some ε M > 0. It is clear that such ϕ M exists. Note, in particular, that ϕ M (c) = ϕ M (c) = ϕ M (c) = 0 for |c| > M 2 + ε M and that ϕ M
and its derivatives of up to order three are bounded.

Let us now define the new problem: find c M such that

         ∂ t (θ c M + ϕ M (c M )) = div A∇c M -qc M -R in Q, αh(c) = -A∇c M -qc M • n on I × Γ 1 , 0 = A∇c M -qc M • n on I × Γ 2 , c M (0, x) = c 0 (x) in Ω . (4.1)
Let us make the following change of variables:

let y := θ c M + ϕ M (c M ) -θ (0, x)c 0 (x) -ϕ M (c 0 ).
Note that y is strictly monotonically increasing in the variable c M (recall that θ ≥ θ 0 > 0 in Q and ϕ M ≥ 0). Thus, we have c M = k(t, x, y) with k strictly monotonically increasing in the variable y. Moreover, k is three times continuously differentiable with respect to y.

We can write the problem as follows:

         ∂ t y -div(A∇k -qk) + R = 0 in Q, (A∇k -qk) • n + αh(k) = 0 on I × Γ 1 , (A∇k -qk) • n = 0 on I × Γ 2 , y(0, x) = 0 in Ω . (4.2)
We use the following notations for derivatives:

d dx [a(x, u(x))] = ∂ a ∂ x + ∂ a ∂ u u x = a x + a u u x .
The equation in Q gives:

∂ t y -∑ i d dx i (A d dx i k) + ∑ i d dx i (q i k) + R = 0.
Using the chain rule yields:

∂ t y -∑ i A d 2 dx 2 i k -∑ i d dx i A d dx i k + ∑ i (k d dx i q i + q i d dx i k) + R = 0.
We obtain:

∂ t y -A ∑ i k x i x i + k y y x i x i + k yx i y x i + k x i y y x i + k yy y 2 x i -∑ i A x i k x i + A x i k y y x i -kq i x i -q i k x i -q i k y y x i + R = 0.
The equation in I × ∂ (Ω ) gives:

∑ i (A d dx i k -q i k)cos(n, x i ) + αh(k) = 0.
Using the chain rule again yields:

A ∑ i k y y x i cos(n, x i ) + ∑ i (Ak x i -q i k)cos(n, x i ) + αh(k) = 0.
Finally, we can see that our problem is of the general form

    
Ly := y ta i j (x,t, y)y x i x j + b(x,t, y, y x ) = 0, L (S) y := a i j (x,t, y)y x j cos(n, x i ) + ψ(x,t, y)| S T = 0, There exists µ 1 > 0 and c 0 , c 1 , c 2 , c 3 , c 4 ≥ 0 such that for arbitrary y,

y| t=0 = 0, (4.3) with                          a i j = 0 for i = j, a ii = Ak y , b = -A ∑ i k x i x i + k yx i y x i + k x i y y x i + k yy y 2 x i -∑ i A x i k x i + A x i k y y x i -kq i x i -q i k x i -q i k y y x i + R, ψ = ∑ i (Ak x i -q i k)cos(n, x i ) + αh(k).
0 ≤ ∑ i, j a i j (x,t, y)ξ i ξ j ≤ µ 1 ξ 2 for (t, x) ∈ Q, (4.5a) -yb(x,t, y, p) ≤ c 0 p 2 + c 1 y 2 + c 2 for (t, x) ∈ Q, (4.5b) -yψ(x,t, y) ≤ c 3 y 2 + c 4 for (t, x) ∈ S T , (4.5c) 
∑ i, j a i j (x,t, y)ξ i ξ j ≥ ν 1 ξ 2 for (t, x) ∈ S T . (4.5d)

There exists ν, µ > 0 such that for (t, x) ∈ Q , |y| ≤ N and for arbitrary p the functions a i j (x,t, y), b(x,t, y, p) and ψ(x,t, y) are continuous in their arguments, possess the derivatives entering into the following conditions and satisfy these conditions:

νξ 2 ≤ ∑ i, j a i j (x,t, y)ξ i ξ j ≤ µξ 2 , (4.6a) ∂ a i j (x,t, y) ∂ y , ∂ a i j ∂ x , ψ , ∂ ψ ∂ y , ∂ ψ ∂ x ≤ µ, (4.6b) |b(x,t, y, p)| ≤ µ(1 + p 2 ), (4.6c 
)

|ψ yy (x,t, y) , ψ yx , ψ yt , a i j t , ψ t | ≤ µ, (4.7a 
)

|b p |(1 + |p|) + |b y | + |b t | ≤ µ(1 + p 2 ), (4.7b) 
|a i j yy , a i j yt , a i j yx j , a i j x j t | ≤ µ.

For (t, x) ∈ Q , |y| ≤ N and |p| ≤ N, the functions a i jx (x,t, y) are Hölder continuous in the variables x with exponent β , ψ x (x,t, y) is Hölder continuous in x and t with exponent β and β /2 respectively, and b(x,t, y, p) is Hölder continuous in x with exponent β . Let us verify hypotheses (4.5a) to (4.9b) for our problem:

Proof of (4.5a) (4.5d) (4.6a). We have Proof of (4.5b) (4.5c). We have

k y = 1 
y k • k = 1 θ + ϕ M (k) , 
and since 0 < A 0 ≤ A(t, x) ≤ A m in Q and 0 < θ 0 ≤ θ (t, x) + ϕ M (k) < +∞ in Q × R,
-yb(x,t, y, p) = ∑ i Ak x i x i y + A x i k x i y -kq i x i y -q i k x i y -Ry + A ∑ i k yx i p i y + k x i y p i y + k yy p 2 i y + ∑ i [A x i k y p i y -q i k y p i y] .
-Terms not involving p, for example Ak x i x i y, are handled in this way:

k x i x j = - θ x i x j k θ + ϕ M (k) + 2θ x i θ x j k (θ + ϕ M (k)) 2 - θ x i θ x j ϕ M (k)k 2 (θ + ϕ M (k)) 3 + θ 0 x i x j c 0 + θ 0 x i c 0 x j + (θ 0 + ϕ M (c 0 ))c 0 x i x j + (θ 0 x j + ϕ M (c 0 )c 0 x j )c 0 x i θ + ϕ M (k) -θ 0 x i c 0 + (θ 0 + ϕ M (c 0 ))c 0 x i θ x j (θ + ϕ M (k)) 2 + ϕ M (k)(θ 0 x i c 0 + (θ 0 + ϕ M (c 0 ))c 0 x i ) (θ + ϕ M (k)) 3 - ϕ M (k)θ x i k (θ + ϕ M (k)) 3 .
We have θ 0 ≤ θ (t, x)+ϕ M (k) < +∞. Moreover, for |y| large enough there holds k = θ -1 y+c t (with c t bounded and independent of y) and ϕ M (k) = 0. Taking into account θ , A, θ 0 , c 0 and their space derivatives of up to order two are bounded , it follows that there exists c 3a , c 3b ≥ 0 such that for arbitrary y

|Ak x i x i y| ≤ c 3a y 2 + c 3b for (t, x) ∈ Q.
Remaining terms not involving p are handled similarly.

k y , k yx i and k x i y , the derivatives appearing in terms involving p, can be bounded independently of y. In the case of the term Ak yx i p i y, we have

k yx i = -θ x i (θ + ϕ M (k)) 2 + θ x i ϕ M (k)k (θ + ϕ M (k)) 3 - ϕ M (k) θ 0 x i c 0 + (θ 0 + ϕ M (c 0 ))c 0 x i (θ + ϕ M (k)) 3 ,
which leads to the fact that there exists c t 2 , c 5a , c 5b ≥ 0 such that for arbitrary y

|Ak yx i p i y| ≤ c t 2 |p i ||y| ≤ c 5a p 2 + c 5b y 2 for (t, x) ∈ Q.
-The term Ak yy p 2 i y remains. We have

k yy = -ϕ M (k)k y (θ + ϕ M (k)) 2 = -ϕ M (k) (θ + ϕ M (k)) 3 ,
which vanishes for |y| large enough. It follows that there exists c 6 ≥ 0 such that for arbitrary y |Ak yy p 2 i y| ≤ c 6 p 2 for (t, x) ∈ Q. Consequently, (4.5b) holds. (4.5c) can be verified in the same way as (4.5b).

Proof of (4.6b) (4.6c) (4.7a) (4.7b) (4.7c). It is easy to see that under the assumptions we made, all appearing quantities in these hypotheses are defined and bounded, thus it is clear that these conditions are verified.

Proof of (4.8). We have

∂ a ii (x,t, y) ∂ x j = A x j k y + Ak yx j , ∂ ψ ∂ x j = ∑ i [(A x j k x i + Ak x i x j -q i x j k -q i k x j )n i + (Ak x i -q i k)n i x j ] + αh (k)k x j + α x j h(k),
and one can easily verify that under the assumptions we made, the Hölder continuity hypotheses on a i jx (x,t, y), ψ x (x,t, y) and b(x,t, y, p) required by (4.8) hold true.

Proof of (4.9a). We made the assumption that S ∈ C 2+β .

Using this change of variable in (5.2) leads to

T 0 Ω -(θ c s + ϕ(c s ))∂ t Φ s V | det(DT s )| + T 0 Ω (A( * D(T s )) -1 ∇c s -qc s • ( * D(T s )) -1 ∇Φ s V | det(DT s )| + T 0 Ω R • T s Φ s V | det(DT s )| = Ω (θ z • T s + ϕ(z • T s ))Φ s V (0, x)| det(DT s )| - T 0 Γ 1 Φ s V h(c s )| det(DT s )| ( * D(T s )) -1 (n) , (5.3) 
with

Φ(T, •) = 0.
As Φ is any element in H 1 (Ω s ), Φ s V describes H 1 (Ω ). Then using (5.3) leads to

T 0 Ω -(θ c s + ϕ(c s ))∂ t Φ| det(DT s )| + T 0 Ω (A( * D(T s )) -1 ∇c s -qc s • ( * D(T s )) -1 ∇Φ| det(DT s )| + T 0 Ω R • T s Φ| det(DT s )| = Ω (θ z • T s + ϕ(z • T s ))Φ(0, x)| det(DT s )| - T 0 Γ 1 Φh(c s )| det(DT s )| ( * D(T s )) -1 (n) . (5.4) 
Furthermore, using (1.1) gives

T 0 Ω -(θ c + ϕ(c))∂ t Φ + (A∇c -qc • ∇Φ + T 0 Ω RΦ = Ω (θ z + ϕ(z)Φ(0, x) - T 0 Γ 1
Φh(c).

(5.5) Subtracting (5.3) to (5.4), dividing by s and letting s go to 0 leads to

T 0 Ω -(θ ċ + ϕ (c) ċ + θ c div V + ϕ(c) div V)∂ t Φ + T 0 Ω A(∇ ċ + (div V - * DV -DV )∇c) • ∇Φ + T 0 Ω -q • ċ -c * DV + c div V ∇Φ + T 0 Ω (∇R • V + R div V)Φ = Ω (θ ∇z • V + θ z div V + ∇(ϕ • z) • ∇V + ϕ(z) div V)Φ(0, x) - T 0 Γ 1 (h (c) ċ + h(c)(div V -DV n • n))Φ. (5.6) 
Integrating by parts the first term gives

T 0 Ω ∂ ∂t (θ ċ + ϕ (c) ċ + θ c div V + ϕ(c) div V)Φ + T 0 Ω A(∇ ċ + (div V - * DV -DV )∇c) • ∇Φ + T 0 Ω -q • ċ -c * DV + c div V ∇Φ + T 0 Ω (∇R • V + R div V)Φ = Ω θ ∇z • V -θ + ϕ (c(0, x)) ċ(0, x) + ∇(ϕ • z) • ∇V Φ(0, x) - T 0 Γ 1 (h (c) ċ + h(c)(div V -DV n • n))Φ.
Integrating by parts the following two terms leads to

T 0 Ω ∂ ∂t θ ċ + ϕ (c) ċ + θ c div V + ϕ(c) div V Φ - T 0 Ω A ∆ ċ + div(div V - * DV -DV )∇c Φ + T 0 ∂ Ω A ∂ ċ ∂ n + (div V - * DV -DV )∇c • n Φ + T 0 Ω q • ∇ ċ -c∇(div V) + div V∇c Φ+ T 0 Ω -DV q • ∇c + c div(DV q) Φ+ + T 0 ∂ Ω -ċq • n + DV (cq) • n -div Vcq • n Φ + T 0 Ω (∇R • V + R div V)Φ = Ω θ ∇z • V -θ + ϕ (c(0, x)) ċ(0, x) + ∇(ϕ • z) • ∇V Φ(0, x)+ - T 0 Γ 1 (h (c) ċ + h(c)(div V -DV n • n))Φ.
Finally, the equation verified by ċ in Q is

∂ ∂t θ ċ + ϕ (c) ċ + θ c div V + ϕ(c) div V -A ∆ ċ + div(div V - * DV -DV )∇c +q • ∇ ċ -c∇(div V) + div V∇c - -DV q • ∇c + c div(DV q) = -∇R • V -R div V, (5.7) 
with boundary conditions

         A ∂ ċ ∂ n + (div V - * DV -DV )∇c • n -ċq • n + DV (cq) • n -div Vcq • n = -h (c) ċ -h(c)(div V -DV n • n) on I × Γ 1 , A ∂ ċ ∂ n + (div V - * DV -DV )∇c • n -ċq • n + DV (cq) • n- -div Vcq • n = 0 on I × Γ 2 ,
(5.8) and initial value

(θ + ϕ (c(0, x))) ċ(0, x) = θ ∇z • V + ∇(ϕ • z) • ∇V.
(5.9)

Using the original equation satisfied by c, we obtain

∂ ∂t θ ċ + ϕ (c) ċ -A∆ ċ + q • ∇ ċ -c∇(div V) -A∇(div V) • ∇c -DV q • ∇c + c div(DV q) +A div( * DV + DV )∇c = -∇R • V in Q, (5.10) 
with boundary conditions

         A ∂ ċ ∂ n -( * DV + DV )∇c • n -ċq • n +DV (cq) • n = -h (c) ċ + h(c)DV n • n on I × Γ 1 , A ∂ ċ ∂ n -( * DV + DV )∇c • n -ċq • n + DV (cq) • n = 0 on I × Γ 2 ,
(5.11) and initial value

(θ + ϕ (c(0, x))) ċ(0, x) = θ ∇z • V + ∇(ϕ • z) • ∇V.
(5.12)

Let us now denote by c the derivative of c with respect to the domain:

c = ċ -∇c • V.
The equation satisfied by c is

∂ ∂t θ c + ϕ (c)c -A∆ c + q • ∇c = 0 in Q, (5.13) 
with boundary conditions

         A ∂ c ∂ n -c q • n + h (c)c = -A ∂ 2 c ∂ n 2 -∂ h(c) ∂ n + ∇c • q (V • n) +A∇ T (V • n) • ∇ T c -∇ T (cV • n) • q on I × Γ 1 , A ∂ c ∂ n -c q • n = -A ∂ 2 c ∂ n 2 + ∇c • q (V • n) +A∇ T (V • n) • ∇ T c -∇ T (cV • n) • q on I × Γ 2 ,
(5.14) and initial value c (0, x) = 0, (5.15) where ∇ T is the tangential part of the gradient. Now, consider the derivative of the functional J at Ω in the direction V:

dJ(c, V) = T 0 Γ 1 h (c)c + Γ 1 Hh(c)(V • n) + Γ 1 h (c) ∂ c ∂ n (V • n) , (5.16) 
where H is the mean curvature of the boundary of the domain.

In order to get rid of the shape derivative c (which we would have to compute for every choice of V) in the expression of dJ, we use the adjoint state technique. Let us introduce p the solution to the following adjoint state problem:

         -(θ + ϕ (c))∂ t p -div(A∇p) -q • ∇p = 0 in Q, (A∇p) • n + h (c)p = h (c) on I × Γ 1 , (A∇p) • n = 0 on I × Γ 2 , p(T, x) = 0 in Ω ?
(5.17)

Multiplying by c and integrating over Q yields:

- T 0 Ω (θ + ϕ (c))∂ t pc - T 0 Ω -div(A∇p)c - T 0 Ω q • ∇pc = 0. ( 5 

.18)

Successive integrations by parts lead to

T 0 Ω ∂ t (θ c + ϕ (c)c )p - Ω (θ + ϕ (c(x, T )))c (x, T )p(x, T ) + Ω (θ + ϕ (c(x, 0)))c (x, 0)p(x, 0) + T 0 Ω A∇c • ∇p - T 0 Γ Ac ∂ p ∂ n + T 0 Ω p div(qc ) - T 0 Γ c pq • n = 0, (5.19) 
and finally

T 0 Ω ∂ t (θ c + ϕ (c)c )p - T 0 Ω div(A∇c )p + T 0 Γ A ∂ c ∂ n p - T 0 Γ Ac ∂ p ∂ n + T 0 Ω p div(qc ) - T 0 Γ c pq • n = 0.
(5.20)

On another hand, recall that 

∂ t (θ c + ϕ (c)c ) -div(A∇c -qc ) = 0 in Q. ( 5 
T 0 Γ A ∂ c ∂ n p - T 0 Γ Ac ∂ p ∂ n - T 0 Γ c pq • n = 0.
Considering the boundary conditions satisfied by p, it follows that

T 0 Γ A ∂ c ∂ n p + T 0 Γ 1 h (c)c p - T 0 Γ c pq • n = T 0 Γ 1 h (c)c . (5.22) 
We can now use (5.22) in equation (5.16) verified by dJ in order to get rid of c :

dJ(c, V) = T 0 Γ 1 h (c)c + Γ 1 Hh(c)(V • n) + Γ 1 h (c) ∂ c ∂ n (V • n) = T 0 Γ A ∂ c ∂ n p + Γ 1 h (c)c p - T 0 Γ c pq • n + Γ 1 Hh(c)(V • n) + Γ 1 h (c) ∂ c ∂ n (V • n) = T 0 Γ A∇ T c • ∇ T (V • n)p -A ∂ 2 c ∂ n 2 (V • n)p -∇ T (cV • n) • qp + q • ∇c(V • n)p - T 0 Γ 1 h (c) ∂ c ∂ n (V • n)p -(Hh(c) + h (c) ∂ c ∂ n )(V • n) , (5.23) 
where the last equality comes from using the boundary conditions satisfied by c . Now, note that

Γ A∇ T c • ∇ T (V • n)p = - Γ div T (Ap∇ T c)(V • n) = - Γ A∇ T p • ∇ T c(V • n) - Γ p div T (A∇ T c)(V • n).
(5.24)

On the other hand, we have

div T (A∇ T c) = A∆ T c = A∆ c -AH ∂ c ∂ n -A ∂ 2 c ∂ n 2 = ∂ t (θ c + ϕ(c)) + div(qc) -AH ∂ c ∂ n -A ∂ 2 c ∂ n 2 .
(5.25)

It follows that

Γ A∇ T c • ∇ T (V • n)p = - Γ A∇ T p • ∇ T c(V • n) - Γ ∂ t (θ c + ϕ(c))p(V • n) - Γ div(qc)p(V • n) + Γ AH ∂ c ∂ n p(V • n) + Γ A ∂ 2 c ∂ n 2 p(V • n).
Finally,

dJ(c, V) = - T 0 Γ A∇ Γ p • ∇ Γ c(V • n) - Γ c∇ T p • q(V • n) + Γ ∂ t (θ c + ϕ(c))p(V • n) + T 0 Γ AH ∂ c ∂ n p(V • n) - Γ 1 h (c) ∂ c ∂ n (V • n)p + Γ 1 Hh(c)(V • n) + Γ 1 h (c) ∂ c ∂ n (V • n) .
Note that the shape gradient dJ is now expressed in the following convenient way:

dJ(c, V) = Γ j(V • n),
where j does not depend on V.

With that in mind, a simple yet effective approach to maximize J consists in choosing V such that V • n = j, i.e. V = jn. this brings dJ(c, V) = Γ j 2 > 0, which ensures that J increases as the domain is iteratively deformed.

Note that this method restricts the choice of the deformation, as V is taken colinear with n.

Numerical resolution of the state and adjoint equations in two spatial dimensions is carried out using the free finite element software FreeFEM++. Spatial discretization is done using Lagrange P2 finite elements. The backward Euler method is applied for the discretization in time. Nonlinearities in the state equation are handled by Newton's method. A built-in adaptive anisotropic mesh refinement algorithm is used in order to improve accuracy near the boundary while preserving an acceptable computational cost. The constant volume constraint is enforced by a lagrange multiplier. Additionally, a minimum diameter constraint is put on the shape in order to prevent unsuitable deformations of the domain.

Numerical values used in this example are as follows:

-F m = 0.282 µmol cm -2 d -1 , K m = 5.8 × 10 -3 µmol cm -3 , κ = 6.15 , b = 0.72, θ = 0.35 cm 3 cm -3 , -A = 0.102 cm 2 d -1 , c 0 = 2.9 × 10 -3 µmol cm -3 , -q = 0, R = 0.

-The initial shape is an ellipse of diameters 1.33 cm and 2.66 cm. As expected, this example shows that maximizing root surface area to volume ratio is indeed an essential component of root uptake efficiency. Future work could consist in coupling a similar shape sensitivity analysis with an explicit geometry root system growth model, in order to study and improve the efficiency of different types of root systems regarding nutrient and water uptake in heterogeneous soils.
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Proof of (4.9b). We have the following initial and boundary compatibility condition:

(A∇c 0 -qc 0 ) • n + αh(c 0 ) = 0 on S, which, since k| t=0 = c 0 , leads to ψ(x, 0, 0) = ∑ i (Ac 0

x iq i c 0 )cos(n, x i ) + αh(c 0 ) = 0 on S, and (4.9b) holds. 

We can then choose M so that M 1 < c min and M 2 > c max . It follows that the unique solution c M of problem (4.1) is also a solution of the original problem (1.1). Thus, using the fact that problem (1.1) has at most one solution in the space C 1,2 (Q) which was proven in section 3, we can deduce that problem (1.1) has a unique solution in the space C 1+β /2,2+β (Q).

Shape optimization

In this section, we use the tools of shape optimization presented by Sokolowski and Zolesio (1992), [START_REF] Haslinger | Introduction to Shape Optimization: Theory, Approximation, and Computation[END_REF] and [START_REF] Henrot | Variation et optimisation de formes: une analyse géométrique[END_REF] to find root shapes that increase the amount of absorbed P. More specifically, we want to deform Ω so as to maximize the shape functional

where |Ω | = a given constant. It is assumed that A and q are constants for simplicity. We first calculate the material and shape derivatives of c with respect to the domain:

We introduce a vector field V ∈ C 2 (R d , R d ) and we consider Ω s = (Id + sV)(Ω ) where s is a small parameter. Let T s (V) = Id + sV and let c s be the unique solution of

We first determine the form of ċ, the material derivative of c, which is the derivative of s → c s • T s at s = 0. For s small enough, c s satisfies

for all Φ ∈ H 1 (Ω s ) such that Φ(T, •) = 0. We use the change of variable x = T s (V)(X) and introduce c s = c s • T s (V) and Φ s V = Φ • T s (V). The Jacobian of the transformation is then det(D(T s (V)) = det(DT s ).