
HAL Id: hal-00739857
https://hal.science/hal-00739857

Submitted on 9 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A UML profile for model-driven design of software
defined radio applications

Mercury Jair Gonzalez Pina

To cite this version:
Mercury Jair Gonzalez Pina. A UML profile for model-driven design of software defined radio appli-
cations. (RTSS-SOMRES 2011), Nov 2011, Vienna, Austria. pp.1-6. �hal-00739857�

https://hal.science/hal-00739857
https://hal.archives-ouvertes.fr


A UML profile for model-driven design of software

defined radio applications

Jair Gonzalez

Telecom ParisTech, LTCI CNRS

2229 Route des Cretes, B.P. 193, 06904 Sophia-Antipolis Cedex, France

Email: Jair@telecom-paristech.fr

Abstract—Model-driven design (MDD) is considered a very
promising approach to cope with complex software applications
such as software defined radio (SDR). This paper proposes a
MDD approach for SDR applications. Our approach comprises:
(1) DiplodocusDF, a domain-specific modelling language for
telecommunication applications, which is based on UML. (2) The
mechanism to transform DiplodocusDF models into C-language
code ready for compilation, and (3) a runtime environment for the
generated code. Moreover, the proposed UML profile is supported
by Ttool, which is a framework for design exploration and formal
verification at model level. We illustrate the potential of our
methodology designing a SDR application.

I. INTRODUCTION

Current design methodologies cannot cope efficiently

with the high complexity of software defined radio (SDR)

applications[1]. SDR applications are extremely complex

as they have to conciliate many different opposing fac-

tors, for example: high-performance and hard-real-time, inter-

operability and safety, etc. Also, novel SDR platforms, such

as expressMIMO[2], account for the software complexity, as

they are tuned for computation efficiency, in terms of speed

and power consumption, but its operation is hard and error-

prone. It is compulsory to introduce an automated tool that

abstracts the execution platform and allow the domain expert

to concentrate only on the pure application matters.

Model driven design (MDD) is considered to be a promising

approach to handle the development of complex software sys-

tems, [3], [4], [5]. MDD allows describing the applications in

the problem-space rather than in the solution-space. In MDD,

the problem is described by the designer using an intuitive

specific-domain modelling language, and the implementation

solution is found automatically by synthesis mechanisms. This

releases the designer of having to be a platform and a low-

level language expert. This sole abstraction simplifies the

design effort and reduces the possibility of implementation

errors. MDD also allows for design exploration at model level,

therefore the model can be simulated and evaluated without

writing a single line of code.

This paper proposes a model driven design methodology for

software defined radio (SDR) applications. SDR applications

are constructed based on coarse grain operations that are

common to most of the existing telecommunications standards.

These operations have a set of parameters that configure the

behaviour of the operations according to a given standard. SDR

applications coordinate the execution of the course grain op-

erations. Data-flow modelling is a good candidate to describe

SDR applications as it helps to exhibit the potential parallelism

among operators, and thus take profit from multiprocessing

platforms such as expressMIMO[2] or others.

This methodology includes the SDR domain-specific mod-

elling language DiplodocusDF, and the synthesis mechanisms

capable of generating executable code from the DiplodocusDF

model description. The proposed domain-specific modelling

language is based on UML. It was chosen to use UML due to

its robust graphical notation and its flexibility to be extended

to cover domain-specific applications. Previous works [4], [5]

advocate the potential of UML for embedded MDD, thanks

its broad adoption. The synthesis mechanism of our MDD

approach translates DiplodocusDF models into C-code, and

will also find scheduling and memory allocation solutions.

The solutions will consider the characteristics of the target

execution platform. Moreover, our methodology is supported

by Ttool[6], which is a model-level design exploration tool.

Ttool allows fast model simulation and formal verification.

The main contribution of this paper is the definition of

DiplodocusDF. This UML profile captures the semantics of the

software defined radio domain and allows automatic code gen-

eration in an incremental way, from just translation (of detailed

DiplodocusDF models into ready-to-compile C-code) to full

synthesis (from abstract models into ready-to-compile C-code,

including generation of scheduling and memory management

solutions). The synthesis aspects of our MDD methodology are

part of ongoing research work that will be discussed briefly

in this paper.

The rest of the paper is organized as follows: The related

work is described in section II. Section III discus with more

detail the MDD methodology proposed in this paper. Section

IV describes the proposed modelling profile DiplodocusDF.

SectionVI elaborates on the runtime environment that supports

the execution of the generated applications. A case of study is

presented in section V. The future work and conclusions are

discussed in section VII.

II. RELATED WORK

Considerable research has been conducted to propose MDD

methodologies based on UML. The papers [4] and [5] discuss

the potential of UML for model-driven design, in particular

for embedded systems. The paper [7] proposes a UML based



methodology for code generation of embedded applications,

such as SDR. It describes a series of transformations into

intermediate languages and assumes a last transformation into

executable code, no details are given on how to take into

account the platform aspects of the system. The authors of

[8], [9], [10], [11] propose MDD/UML methodologies to

generate hardware components of stream systems, without

considerations of the software components. The papers [12],

[13] propose MDD/UML/MARTE methodologies for embed-

ded applications. UML/MARTE itself lacks the notations to

describe dataflow applications (such as SDR) in a pure abstract

way. The authors of [14] study the possibility to integrate

synchronous dataflow models with UML and they propose a

dataflow notation based on UML-RT profile. The paper [15]

presents an approach to use activity diagrams of UML 2.0

for business dataflow applications. Their proposal is similar to

ours in covering flat control-flow and data-flow, as suggested

in [16], but their objective is only modelling and no concepts

of synthesis are taken into account.

III. PROPOSED DESIGN METHODOLOGY

The proposed design methodology is depicted in figure 1.

The processing steps are: (1) Model Capture, (2) Mapping, (3)

Simulation and verification, (4) Synthesis, and (5) Compilation

and Linking.

Steps (1) and (5) are common in current design flows, but

they are done independetly from each other. As it is noted

in [3], [5], this separation leads to problems of synchrony

between the model and the actual implementation. Also noted

in [3], [5], several previous modelling languages failed to be

adopted because they were too general, or failed to capture the

semantics of the given applications. We defined DiplodocusDF,

a UML profile for the domain of telecommunications, de-

scribed in more details in section IV.

The steps (2) and (3) have been studied in [17], [18]. They

propose profiles and tools for design exploration at model

level, aided of model simulation and formal verification. This

helps the designer to take informed design choices before

implementation. It is important to note that this methodology

separates, as suggested in [19], the application model from the

execution platform model. The relation between application

and platform is established in step (2). This is a very nat-

ural approach for Software Defined Radios, where the same

application can be executed in different platforms.

Model simulation and formal verification improve the de-

sign flow by helping the designer to take better design choices.

But the problem of synchrony is still there, the model will no

longer represent the final implementation. Step (4) establishes

a link between the model and the implementation by generat-

ing automatically the source code that will be compiled and

then executed. The DiplodocusDF profile was designed in such

a way that it allows for incremental automation of the code

generation, from translation to real synthesis. Until now we

have results on translation of the model into C-code, this is

described in section VI, although we are already working on

the synthesis.

model
Application

model
Platform 

description
Intermediate

Simulation &
Verification

RunTime

Compilation

Library of
components

C−code
Applications

C−code

MP−RTOS

executable

& Linking

Model 
capture

Mapping

Synthesis

Fig. 1: Proposed model-driven design methodology.

IV. DIPLODOCUSDF

A key component of a MDD methodology is the domain-

specific modelling language (DSML) that captures accurately

the semantics of the given application. A DSML should

meet certain criteria in order to be really effective. First,

it should differentiate the pure application aspects from the

implementation choices, i.e. the models should avoid including

implementation constraints as it reduces the solution-space.

Second, it should be complete in the sense that it captures all

the information that is necessary to generate executable code.

Other aspects to consider when defining a DSML are: It should

be an intuitive language for the domain expert and it should

be predictive, that is, it should be evident what the result will

be after automatic code generation.

DiplodocusDF is a UML profile specific for SDR applica-

tions. It allows the description of the pure application aspects

following a declarative data-flow approach. This approach

contrasts to the procedural approach (followed by regular

UML/MARTE profiles) in that dataflow describes what the so-

lution is, contrary to the procedural approach which describes

how to find the solution. Procedural approaches lead to models

where a component is on charge of controlling the execution of

the rest. That controlling component represents in fact schedul-

ing design choices, which are unnecessary when modelling the

pure aspects of a given application. DiplodocusDF describes

only data dependencies between process operators, it does

not constraints the order of execution of two non-dependent

operators. Its is in a high degree similar to Kahn process

networks[20], which are appropriate for SDR as it enforces

portability, determinism and parallelism [16], but in our case

we have memory limitations.

In fact, DiplodocusDF extends the UML profile

DIPLODOCUS[18] to cover synchronous dataflow models.

DIPLODOCUS is a UML/MARTE compliant profile

meant for modelling embedded applications, but it leads

to procedural modelling approach. It is convenient to use

DIPLODOCUS as starting point because it already allows

modelling the applications as a set of independent components

that communicate with each other through data-channels.



DiplodocusDF describes a network of dataflow operators

interconnected by dataflow links through dataflow ports.

Dataflow is a sequence of pairs made of data-block and clock

signalling when the data-block is present. This is similar

to the flow concept in [21], although we need a coarser

representation of data, in our case data blocks, in their case

single data elements.

A. DiplodocusDF notations

DiplodocusDF offers three types of model notations to

create SDR models: (1) Dataflow operators (2) Dataflow ports

and (3) Dataflow links. They extend, in the same order,

the component, port and link concepts of DIPLODOCUS to

support the pair (data-block, clock) of synchronous dataflow

models.

a) Dataflow ports: are the interface to exchange dataflow

between dataflow operators. They support dataflow semantics,

i.e. data-block and clock transference. For this they merge

two types of ports supported in DIPLODOCUS: channels

and events. The channel part models the data-block part of

dataflow, while the event part models the clock part. The event

signals the presence of a valid data-block in the channel. The

channel is configured to be non-blocking read / non-blocking

write (NBR / NBW), this allows dynamic data-block size

during model simulation, therefore component re-utilization.

Each dataflow port can be linked to only one other port. A

dataflow operator can have one or more input and output ports.

b) Dataflow operators: are composed of two subcom-

ponents: DBox and FBox. When fired, the DBox processes

the data-blocks. The process involves: reading the operation

parameters, reading the data-block from the input dataflow

port(s), execute the operation, and sending the resulting data-

block though the NBR / NBW output port. The FBox waits for

input clock signal, generates the configuration parameters, fires

the corresponding DBox, and sends a clock event through the

output dataflow port(s). The parameters of execution are sent

to the DBox through an internal request port. The behaviour

of both sub-components is described using activity diagrams.

An example of dataflow operator is depicted in 2a. The FBox

is called fire_FFT, it fires the execution of the DBox

called FFT through the request signal sc_fft. Figure 2c

shows the behaviour of the FBox sub-component, it waits

for the clk_in blocking event, then it sends the request

signal sc_fft with the parameters size and p_fft, and

waits again for the clk_in event. The figure 2b shows the

activity diagram of the DBox. It gets the request arguments,

then it reads the src channel a block of size elements. Then

it models the execution of the operation, which in this example

takes 1 time units. Finally it writes the resulting data-block

through the fft_dest channel.

there are two types of operators: execution based and router

based. The execution operators transform the data-block values

while the router operators transform the sequence of the

values. For example, a modulus operator will change the

values of the input data, while a multiplexer overlapping

operator will not change the values but its sequence. This

(a) FFT operator. (b) FFT DBox
behaviour.

(c) FFT FBox behaviour.

Fig. 2: Example of dataflow operator.

approach permits defining reusable model operators, that can

be instantiated and configured by the user. The router operators

also introduce the notion of abstract memory, necessary to

store data-blocks that can be re-send later.

c) Dataflow links: are used to stablish the data-block de-

pendencies among the dataflow operators through the dataflow

ports.

B. DiplodocusDF semantics

DiplodocusDF captures the semantics of software defined

radio applications, and also the semantics of the target appli-

cation in which the model will be translated.

d) Operators: As said before, SDR application involve

the coordination of the execution of coarse grain operations,

which are common to most telecommunications standards.

Examples of these operations are: Fast-Fourier transformation,

interleaving, component-wise product of two vectors, etc. The

operations are implemented to be configurable, according to

the given telecommunications standard for which the operation

is been used.

The model operators are translated to C as coordination

functions (CF) which are executed when its input data is avail-

able. The attributes of the UML operator model are translated

as variables and the activity diagram of the FBox is translated

to C-code. For now, we include in the models what we call

code-boxes where the designer can write the corresponding C-

code that will be embedded inside the coordination function.

The figure 2c shows code-box example. The coordination

functions involves generating the parameters for the course

grain operations and its scheduling for execution.

When targeting multi-processor platforms such as express-

MIMO, frequently, data has to be transferred from one mem-

ory space to another. That implies extra operations, which

are not part of the pure application model. This situation is

identified at mapping time, when the designer has to specify in

which memory space will be located each port. If two linked

ports lay in different memory spaces, a new operator has to

be introduced, which implements a data transference between



memory spaces. The input port of the new operator inherits

the name and parameters of the original source port, while the

output port inherits the name and parameters of the original

destination port.

e) Router operators: These operators do not transform

the input data but its sequence. The output blocks are created

based on the data elements of the received blocks. The data

is the same but is output in different order. For example: Data

overlapping, data repetition, data multiplexing, data demulti-

plexing, etc. These operators are mapped to a general-purpose

processor.

f) Dataflow ports: A dataflow port is an abstract repre-

sentation of an operand, including its name and its memory

location. Writing to a dataflow port means writing to a memory

location, same for reading. A dataflow port is translated as an

instance of a dataflow signal class. This class has different

attributes, some depend on the target platform and some are

common to all the platforms. The common attributes are: (1) a

flag to indicate when the data-block is valid, (2) the length of

the data-block, and (3) the block number. The block number is

used by the routing operators to take decisions on how to deal

with that block. If the target platform was expressMIMO[2],

then the dataflow signal class includes: (1) a base address, (2)

a bank number, and (3) the type of data to be stored. If the

platform was a PC, it would only be required a pointer to

memory. Other platforms might require different attributes to

describe the location of the operands.

g) Dataflow links: Represent dataflow dependencies

among operators. After mapping once data-transference oper-

ators were inferred, When the ports connected by a dataflow

link have the same name, they refer to the same signal. Then

the link inherits that name and it is shown in the model as

such.

V. DIPLODOCUSDF EXAMPLE: WELCH PERIODOGRAM

DETECTOR

This section demonstrates the use of DiplodocusDF by

describing the Welch periodogram application for opportunis-

tic spectrum sensing, recently proposed in [22]. Welch peri-

odogram helps to identify the significance of the frequency

contributors in a signal by calculating sub-band’s energy,

and comparing to its designated threshold. The algorithm is

described in 1 and the model is shown in figure 3.

The line 3 in algorithm 1 describes the overlapping of

block elements. This operation is modelled in figure 3 by

component OVLP. The behaviour of OVLP is described in

an activity diagram. It simply waits for the arrival of data

blocks at its input port, whenever Ns elements are available,

they are sent to the next component through the output port.

After sending, the first Ns − Os elements are discarded.

This process is repeated m times. The operation parameters

(Ns, Os, etc.) are read from the input channel, which allows

dynamic configuration of components.

The line 4 corresponds to the component FFT in the model.

Here the input data is transformed to the frequency domain.

The line 5 corresponds to MOD component in the model, there

the magnitude of each element of the input block is calculated.

Line 6 accumulates the magnitude of each element of the

block, this corresponds to CWA in the model. These three

execution operations have similar behaviours, they wait for

the input signals, after receiving them they are operated and

the output is sent through the output port. In the case of CWA,

it waits for the two input signals and they have to be present

before proceeding. The difference between the operators is

more important at runtime, described in section VI.

The components A, B and C are used to construct the data-

flow loop of line 2. The A component is described in such a

way that the first block is routed to the output port out2 (the

lower one), the rest of the blocks are routed to the output port

out1 (upper one). It is important to note that each data-block

carries its data-block identifier. The component B is described

to retransmit from input port in1 only the first block, its port

in2 is always retransmitted. These components are executed

when at least one of the input signals is available. Component

C is described in such a way that the input is retransmitted

through output out1 only when it is the number m− 1, the

block is retransmitted through out2 in any other case.

The execution operator SUM corresponds to line 10, it

adds the elements of the received block and sends the one-

element result block through its output. The REP receives

one full block of Ns elements and sends L sub-blocks of its

corresponding Li size. The parameters (L, Li, f
i
off ) are also

received as part of the input block information. The COLL

data-flow operator receives m one-element blocks and sends

one block of m elements. The DES operator receives the block

and compares each of its elements to its corresponding thresh-

old Ywd. DES generates a block of L elements containing the

decisions for each element (sub-band). This corresponds to the

output of the Welch periodogram model, which will activate

a next operator in the overall model.

VI. RUNTIME ENVIRONMENT

The applications are executed with the support of a runtime

environment. The functioning of the environment is depicted in

figure 4, which shows a configuration made of n applications

that are executed on a m + 1 processors platform. One of the

processors (general purpose) is on charge of executing the co-

ordination applications, the rest of the processors (potentially

specialized) execute the SDR operations.

The runtime environment architecture follows a data-driven

approach. In a data-driven approach, the functions are ex-

ecuted when its input data is available. It was said before

that a DiplodocusDF model is translated into a coordination

application. The coordination applications are composed of

a runtime, a set of coordination functions (list CF in figure

4), one for each operator in the model, and a set of signals

(list S in figure 4), one for each dataflow link. The runtime

executes the functions when its input signals are valid. This

is similar to what happens at model level. It was chosen in

this way in order to maintain the determinism and parallelism

properties as described by the model. It also allows to generate



Fig. 3: Welch detector design based on DiplodocusDF profile.

Algorithm 1: Welch detector algorithm

input : m, Number of segments.

input : rk, Overlaped block.

input : Ns, Os, Block and overlap sizes.

input : L, Number of SBs of interest.

input : f i
off , List SB’s central frequencies.

input : Li, List of SB’s widths.

input : Ywd, List of SB’s thesholds.

output : Twd, List of resulting statistics.

output : Dwd, List of resulting decisions.

temporal: X, Y, Z,Rs, Buffers of size Ns.

1 Ss ← Ns −Os;

2 for k ← 0 to m− 1 do

3 rk ← [r(kSs), r(1 + kSs), . . . , r(kSs + Ns + 1)];
4 X ← FFT(Ns, rk);

5 Y ← MOD(Ns, X);

6 Z ← CWA(Ns, Z, Y );

7 end

8 for j ← 1 to L do

9 start← f
j
off −

L
j

i

2
;

10 T
j
wd ← SUM(Li, start, Rs) ;

11 if T
j
wd > Y

j
wd then

12 D
j
wd ← 1;

13 else

14 D
j
wd ← 0;

15 end

16 end

regular code, predictable from the model, as suggested in [3]

for effective model-driven design.

The coordination function manages the parameters of the

SDR operations,and sets them for execution by aggregating

them into the execution queue of a co-processor. In figure

4, there are m ordered priority lists (oPLm) which hold the

operations from all the applications in the configuration. The

ordered list is reordered every time a new operation is pushed

into, such a way that a pop from the list will return the operator

with the highest priority. The idea is to keep the co-processors

in constant execution.

The scheduling of the coordination applications is done

in a cooperative way, similar to the time-triggered hybrid

(TTH) approach proposed in [23], where a set of software

applications are executed according to a schedule defined

before of execution. The applications cannot preempt each

others but can be preemted by a third type of tasks that

are interrupt dependent, for example, an interrupt coming

from a analog-to-digital converter, signalling the reception of

data. Another source of interruption can be an specialized co-

processor signalling that it is ready to execute another SDR

operation. The interruption routines should be very quick, such

a way that its execution does not deviate significantly the static

scheduling of the coordination applications.

S SS CF CF CF

Proc1

App1 App2 Appn

ISRx

ProcmProc2

oPL1 oPL2 oPLm

Fig. 4: Runtime environment

In the coordination functions, there are two main classes of

objects, the coordination functions (CF) and the signals (S).

Each CF object corresponds to one of the components from

the its DiplodocusDF model. Each S object in the system

corresponds to one of the dataflow links. The CF class has

two properties, CF id, and CR priority. The Signal class

is more complex, it does not carry the actual data but its

location in memory. This is platform dependent information

that is added to the model by the user at mapping time.

For the case of expressMIMO, the signal parameters are:

Base address, length of data vector, data type, memory bank,

and memory block. It also includes a valid flag to indicate

when the data is ready to be read. The Operator class has

four methods: The constructor, the execution, the signalRule,

and the destructor. The constructor method initializes the

parameters of its corresponding output signal(s). That means

that the operators know in advance where in memory they will

write their results. This information is captured in the model by

the user at mapping time. There is also the execution method,

which implements a c-language version of its activity diagram

in the model of figure 3. The method is implemented in a



run-to-completion approach, i.e. the method should not block.

The signalRule method is used to evaluate the signal condition

before firing the execution method. For example, while the A

component is executed whenever one of its inputs is valid, the

CWA component requires both input signals to be present.

The target system is depicted in figure 5. The applications

run on top of a real-time operating system, including the run-

time support. The target is very general, it can be customized

for any platform. Porting a configuration from one platform to

another would require changing the hardware abstraction layer

and the drivers in figure 5, the rest would remind the same.

Platform

HAL

Kernel Libraries

Drivers

Runtime support

App2App1 Appn

Fig. 5: Target system architecture

VII. CONCLUSIONS

This work presents model-driven design methodology to

overcome the deficiencies of current design flows for software

defined radio applications. This work is in progress and

much remains to be defined and implemented. However, the

described domain-specific UML profile meets the require-

ments for a MDD methodology, it captures the semantics

of SDR applications, and allows the implementation of the

envisioned synthesis mechanisms, and allows automatic code

generation. Also, a runtime environment was described, to

support the execution of the generated code. A software

defined radio application was designed to demonstrate the use

of DiplodocusDF language. The model was simulated using

the capabilities of Ttool and the model was translated into

C-language, compiled, and executed successfully.

So far, the translation mechanisms requires a detailed model

description, including the memory management solutions,

further research efforts will be dedicated to generate memory

management solutions automatically. Also, the current runtime

implements a time- triggered scheduling approach, mixed with

preemtive interrupt service routines. We will work on the def-

inition and implementation of educated scheduling solutions

based on model simulation results.

REFERENCES

[1] T. Ulversoy, “Software defined radio: Challenges and opportunities,”
Communications Surveys Tutorials, IEEE, vol. PP, no. 99, pp. 1–20,
2010.

[2] D. Nussbaum, K. Kalfallah, R. Knopp, C. Moy, A. Nafkha, P. Leray,
M. Delorme, J. Palicot, J. Martin, F. Clermidy, B. Mercier, and
R. Pacalet, “ropen platform for prototyping of advanced software defined
radio and cognitive radio techniques,” in Digital System Design, Archi-

tectures, Methods and Tools, 2009. DSD ’09. 12th Euromicro Conference

on, 27-29 2009, pp. 435–440.

[3] D. Schmidt, “Guest editor’s introduction: Model-driven engineering,”
Computer, vol. 39, no. 2, pp. 25–31, feb. 2006.

[4] R. France, S. Ghosh, T. Dinh-Trong, and A. Solberg, “Model-driven
development using uml 2.0: promises and pitfalls,” Computer, vol. 39,
no. 2, pp. 59–66, feb. 2006.

[5] B. Selic, “The pragmatics of model-driven development,” Software,

IEEE, vol. 20, no. 5, pp. 19–25, sept.-oct. 2003.
[6] L. Apvrille, J.-P. Courtiat, C. Lohr, and P. de Saqui-Sannes, “Turtle: a

real-time uml profile supported by a formal validation toolkit,” Software

Engineering, IEEE Transactions on, vol. 30, no. 7, pp. 473–487, july
2004. [Online]. Available: http://labsoc.comelec.enst.fr/turtle/ttool.html

[7] G. Papadopoulos, “Automatic code generation: A practical approach,” in
Information Technology Interfaces, 2008. ITI 2008. 30th International

Conference on, june 2008, pp. 861–866.
[8] Y. Zhu, Z. Sun, W.-F. Wong, and A. Maxiaguine, “Using uml 2.0 for

system level design of real time soc platforms for stream processing,” in
Embedded and Real-Time Computing Systems and Applications, 2005.

Proceedings. 11th IEEE International Conference on, aug. 2005, pp.
154–159.

[9] J. Vidal, F. de Lamotte, G. Gogniat, J.-P. Diguet, and P. Soulard,
“Uml design for dynamically reconfigurable multiprocessor embedded
systems,” in Design, Automation Test in Europe Conference Exhibition

(DATE), 2010, march 2010, pp. 1195–1200.
[10] J. Vidal, F. de Lamotte, G. Gogniat, P. Soulard, and J.-P. Diguet, “A co-

design approach for embedded system modeling and code generation
with uml and marte,” in Design, Automation Test in Europe Conference

Exhibition, 2009. DATE ’09., april 2009, pp. 226–231.
[11] T. Moreira, M. Wehrmeister, C. Pereira, J.-F. Petin, and E. Levrat,

“Automatic code generation for embedded systems: From uml specifi-
cations to vhdl code,” in Industrial Informatics (INDIN), 2010 8th IEEE

International Conference on, july 2010, pp. 1085–1090.
[12] I. et al Perseil, “An efficient modeling and execution framework for

complex systems development,” in Engineering of Complex Computer

Systems (ICECCS), 2011 16th IEEE International Conference on, april
2011, pp. 317–331.

[13] M. Brun, J. Delatour, and Y. Trinquet, “Code generation from aadl to a
real-time operating system: An experimentation feedback on the use of
model transformation,” in Engineering of Complex Computer Systems,

2008. ICECCS 2008. 13th IEEE International Conference on, 31 2008-
april 3 2008, pp. 257–262.

[14] P. Green and S. Essa, “Integrating the synchronous dataflow model
with uml,” in Design, Automation and Test in Europe Conference and

Exhibition, 2004. Proceedings, vol. 1, feb. 2004, pp. 736–737 Vol.1.
[15] H. Störrle, “Semantics of uml 2.0 activities with data-flow,” 2004.
[16] J. Dennis, “Data flow supercomputers,” Computer, vol. 13, no. 11, pp.

48–56, nov. 1980.
[17] C. Jaber, A. Kanstein, L. Apvrille, A. Baghdadi, P. Le Moenner, and

R. Pacalet, “High-level system modeling for rapid hw/sw architecture
exploration,” in Rapid System Prototyping, 2009. RSP ’09. IEEE/IFIP

International Symposium on, june 2009, pp. 88–94.
[18] L. Apvrille, W. Muhammad, R. Ameur-Boulifa, S. Coudert, and

R. Pacalet, “A uml-based environment for system design space explo-
ration,” in Electronics, Circuits and Systems, 2006. ICECS ’06. 13th

IEEE International Conference on, dec. 2006, pp. 1272–1275.
[19] B. Kienhuis, E. Deprettere, K. Vissers, and P. Van Der Wolf, “An

approach for quantitative analysis of application-specific dataflow archi-
tectures,” in Application-Specific Systems, Architectures and Processors,

1997. Proceedings., IEEE International Conference on, Jul. 1997, pp.
338–349.

[20] G. Kahn, “The semantics of a simple language for parallel program-
ming,” in IFIP Cong., 1974.

[21] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous
data flow programming language lustre,” Proceedings of the IEEE,
vol. 79, no. 9, pp. 1305–1320, sep 1991.

[22] A. Hekkala, I. Harjula, D. Panaitopol, T. Rautio, and R. Pacalet,
“Cooperative spectrum sensing study using welch periodogram,” in
Telecommunications (ConTEL), Proceedings of the 2011 11th Interna-

tional Conference on, june 2011, pp. 67–74.
[23] M. J. Pont, “Applying time-triggered architectures in reliable

embedded systems: challenges and solutions,” e & i Elektrotechnik und

Informationstechnik, vol. 125, pp. 401–405, 2008, 10.1007/s00502-
008-0587-z. [Online]. Available: http://dx.doi.org/10.1007/s00502-008-
0587-z


