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Abstract

The present work deals with dynamic vehicle routing problems in which new
customers appear during the design or execution of the routing. We propose a
parallel Adaptive Large Neighborhood Search (pALNS) that produces high qual-
ity routes in a limited computational time. Then, we introduce the notion of
driver inconvenience and deVne a bi-objective optimization problem that mini-
mizes the cost of routing while maintaining its consistency throughout the day.
We consider a problem setting in which vehicles have an initial routing plan at
the beginning of the day, that is periodically updated by a decision maker. We
introduce a measure of the driver inconvenience resulting from each update and
propose a bi-objective approach based on pALNS that is able to produce a set of
non-dominated solutions in reasonable computational time. These solutions of-
fer diUerent tradeoUs between cost eXciency and consistency, and can be used by
the decision maker to update the routing of the vehicles introducing a controlled
number of changes.

Keywords: Dynamic vehicle routing, route consistency, bi-objective opti-
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1 INTRODUCTION

1 Introduction
The problem of operating a Weet of vehicles arises in many contexts, from pickup
and delivery of goods to the transportation of patients in hospitals. More speciVcally,
Vehicle Routing Problems (VRP) deal with the design of a set of minimal-cost vehi-
cle routes that serve the demand for goods or services of a group of geographically
spread customers, satisfying operational constraints. From an information perspec-
tive, such problems generally include two dimensions: evolution and quality of infor-
mation [30]. Information evolution relates to the fact that the data available to the
planner may change during the execution of the routes, for example with the arrival
of new customer requests. Information quality reWects possible uncertainty on the
available data, for instance, when the demand of a customer is only known as a range
estimate of its real demand, or when the geographical distribution of customers can
be forecasted. Based on these dimensions, Pillac et al. [24] classify vehicle routing
problems in four categories depending on whether the problem is static/dynamic and
deterministic/stochastic. Dynamism in routing can emerge from diUerent aspects of
the problem. The most common source of dynamism is the arrival of new customers
with a demand for goods or services. Other sources of dynamic include dynamically
revealed demands for a set of known customers, dynamic travel times, and vehicle
availability.

The present work focuses on dynamic and deterministic routing, also referred to as
online routing, in which part or all of the input is unknown and revealed dynamically
and unpredictably during the execution of the routes. Vehicle routes are redeVned
in an ongoing fashion, requiring technological support for real time communication
between the vehicles and the decision maker (e.g., mobile phones and global position-
ing systems). More speciVcally, we study the Dynamic Vehicle Routing Problem with
Time Windows (D-VRPTW), in which a limited Weet of identical capacitated vehicles
must deliver a product to a set of customers over a single day horizon. Each customer
has a geographic position, requires a known quantity of product, and must be served
within a given time frame. While a set of (static) customers is known beforehand,
new (dynamic) customers may appear during the day.
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Figure 1: Illustration of a typical dynamic vehicle routing problem.

Figure 1 illustrates the routing of two vehicles in a dynamic context. Before the
vehicles leave the depot (1a.), two routes are designed to visit the currently known
customers: (A,B,C) and (D,E). While the vehicles execute their route, two new
customers (X and Y ) appear at time t1 (1b.). At this stage, the dispatcher must
decide whether or not it should accept or reject the new requests. In this case, Y
is far from the current routes and vehicles, therefore its service may not be feasible
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1 INTRODUCTION

or may be too costly. Customer Y is thus rejected and a penalty is paid. On the
other hand, X is accepted and inserted in the second route. Finally, at time tf the
executed route are (A,B,C) and (D,X,E) (1c.). This example reveals how dynamic
routing inherently adjusts routes in an ongoing fashion, which requires real-time
communication between vehicles and the dispatching center. In this context, the
problem is Vrst to design an initial set of routes, visiting all the static customers.
Then, each time a new customer appears, the problem is to decide whether it can be
served or not, and eventually, to reoptimize the vehicle routes. We assume that by
rejecting customers we incur a penalty that can be interpreted as an outsourcing cost.

Dynamic routing problems introduce new challenges as they require to react
quickly to changes in the available data. According to Ichoua et al. [17], the level
of dynamism of a problem can be characterized according to two dimensions: the
frequency of changes and the urgency of customer requests. The former is the rate at
which new information becomes available, while the latter is the period of time be-
tween the disclosure of a new customer and its expected service time. From this
observation diUerent metrics have been proposed to measure the dynamism of a
problem (or instance). Lund et al. [22] deVned the degree of dynamism δ as the ratio
between the number of dynamic customers nd and the total number of customers
ntot: δ = nd

ntot
. Larsen [20] extended the degree of dynamism to take into account

the disclosure date and the time windows of the dynamic customers.
To the best of our knowledge, the Vrst application of an optimization technique to

dynamic routing is due to Psaraftis [30] with the development of a dynamic program-
ming approach. His research focuses on the Dial A Ride Problem (DARP) and consists
in Vnding the optimal route each time a new customer is known. The main drawback
of dynamic programming is the well-known curse of dimensionality [28, Chap. 1],
which often prevents its application to large instances. Few research was conducted
on dynamic routing between Psaraftis [30] and the late 1990s. However, the last
decade has seen a renewed interest in dynamic routing, with numerous approaches
tackling a variety of problems. This section classiVes the major contributions in this
Veld in two categories: 1) periodic reoptimization and 2) continuous reoptimization.
The reader is referred to the reviews, books, and special issues by Gendreau and
Potvin [11], Ghiani et al. [12], Ichoua et al. [17], Larsen et al. [21], Pillac et al. [24],
and Zeimpekis et al. [40], to complement our review.

Figure 1 presents an overview of periodic reoptimization approaches: the algo-
rithm starts at the beginning of the day and a Vrst optimization produces an initial
solution S0. Then, the procedure waits for an update in the available data, or for a
Vxed period of time, followed by a new optimization trigger that leads to an updated
solution St+1. The advantage of periodic reoptimization approaches is that they can
be based on algorithms developed for static routing, for which extensive research has
been conducted. Their main drawback is that all the optimization has to be performed
before updating the solution, which can increase the delays for the dispatcher, while
the computational power is unused during waiting times.

Periodic reoptimization approaches were used in diUerent contexts to tackle dy-
namic routing problems. Chen and Xu [7] designed a dynamic column generation
algorithm (DYCOL) for the D-VRPTW. The authors use the concept of decision epochs
over the planning horizon, which are the dates when the optimization process runs.
It is worth noting that a new customer is not handled until the next decision epoch,
hence, the optimization is run statically and independently at each decision epoch.
The main advantage of this time partition is that similar computational eUort is al-
lowed for each time slice. The novelty of their approach relies on dynamically gen-
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Figure 2: Overview of periodic reoptimization approaches

erating columns for a set-partitioning model, using columns from the previous deci-
sion epoch. The authors compared DYCOL to a traditional column generation with
no time limit (COL). Computational results based on the Solomon benchmark [35]
demonstrate that DYCOL yields comparable results in terms of objective function,
but with running times limited to 10 seconds, opposed to the various hours con-
sumed by COL. Using a notion similar to decision epochs, Montemanni et al. [23]
developed an Ant Colony System (ACS) to solve the D-VRP. An interesting feature of
their approach is the use of the pheromone trace to transfer characteristics of a good
solution to the next time slice. ACS was also used by Gambardella et al. [9] and Riz-
zoli et al. [31]. Other heuristic approaches, such as Tabu Search (TS), were also used
to tackle the Dynamic Pickup and Delivery Problem (D-PDP) [2, 6] and the Dynamic
Dial-a-Ride Problem (D-DARP) [1, 3].

In contrast, continuous reoptimization approaches perform the optimization through-
out the day in an optimization loop and store information on good solutions in an
adaptive memory (see Figure 1). In parallel, a decision loop aggregates the information
from the memory whenever needed. The advantage of such approaches is that the
computational power utilization is maximized, at the price of possibly cumbersome
implementation.

To the best of our knowledge, the Vrst application of continuous reoptimization
is due to Gendreau et al. [10]. Their approach consists in the adaptation of the Tabu
Search (TS) framework introduced by Taillard et al. [36] to a dynamic context mo-
tivated by the local operation of long distance express courier services, which can
be seen as a D-VRPTW. The general idea is to maintain a pool of good routes–the
adaptive memory [37]–which is used to generate initial solutions for a parallel tabu
search. The parallelized search is done by partitioning the routes of the current solu-
tion and optimizing them in independent threads. Whenever a new customer request
arrives, it is checked against all the solutions from the adaptive memory to decide
whether it should be accepted or rejected. This framework was also implemented for
the D-VRP [15, 16]. Bent and Van Hentenryck [4] generalized this framework and
introduced the Multiple Plan Approach (MPA) to tackle the D-VRPTW. The general
idea is to populate and maintain a solution pool (the routing plans) that are used to
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Figure 3: Overview of continuous reoptimization approaches

generate a distinguished solution. Whenever a new customer arrives, a procedure is
called to check whether it can be served or not; if it can be served, then the cus-
tomer is inserted in the solution pool and incompatible solutions are discarded. Pool
updates are performed periodically or whenever a vehicle Vnishes servicing a cus-
tomer. This pool-update phase is crucial and ensures that all solutions are coherent
with the current state of vehicles and customers. The pool can be seen as an adaptive
memory that maintains a set of alternative solutions. Following a diUerent approach,
Benyahia and Potvin [5] studied the D-PDP and proposed a Genetic Algorithm (GA)
that models the decision process of a human dispatcher. More recently, other GAs
were also used for the same problem [8, 13] and for the D-VRP [38]. Genetic algo-
rithms in dynamic contexts are very similar to those designed for static problems,
except that they run throughout the planning horizon and solutions are constantly
adapting to the changes made to the input.

In this work we propose two parallelized periodic reoptimization approaches.
Section 2 presents a parallel adaptive large neighborhood search to tackle the D-
VRPTW; Section 3 introduces a bi-objective extension of the D-VRPTW and proposes
a reoptimization approach; Vnally, Section 4 concludes this work and gives directions
for further research.

2 Fast reoptimization for dynamic routing
The proposed approach is based on a parallel Adaptive Large Neighborhood Search
(pALNS) algorithm which is used to compute an initial solution, and then, to reopti-
mize the solution whenever a new customer request arrives. In the remainder of this
section we present the original Adaptive Large Neighborhood Search (ALNS) algo-
rithm, discuss the proposed parallelization scheme and the reoptimization approach,
and present computational results on the D-VRPTW.
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2 FAST REOPTIMIZATION 2.1 The Adaptive Large Neighborhood Search

2.1 The Adaptive Large Neighborhood Search

The ALNS algorithm, originally proposed by Pisinger and Ropke [25], is an extension
of the Large Neighborhood Search (LNS) algorithm [34]. LNS works by successively
destroying (removing customers) and repairing (inserting customers back) a current
solution, using destroy and repair operators. ALNS adds an adaptive layer that ran-
domly selects operators depending on their past performance, automatically Vtting
the algorithm to the instance at hand. We refer the interested reader to Pisinger and
Ropke [26] for a detailed description of LNS, ALNS, and related methods.

Algorithm 1 Adaptive Large Neighborhood Search (ALNS) algorithm

Input: Π0 initial solution, z evaluation function, Θ−/Θ+ set of destroy/repair op-
erators, I number of iterations

Output: Π∗ the best solution found
1: Π∗ ← Π0 . Initialize best solution
2: Π← Π0 . Initialize current solution
3: for I iterations do
4: d← select (Θ−) ; r ← select (Θ+) . Select destroy/repair
5: Π′ ← r (d (Π)) . Generate a neighbor
6: if accept (Π′,Π) then .Π′ is accepted as current solution
7: Π← Π′ . Update current solution
8: end if
9: if z(Π′) < z(Π∗) then . An improvement has been found
10: Π∗ ← Π′ . Update best solution
11: end if
12: updateScore (d, r,Π′) . Update scores
13: end for
14: return Π∗

Algorithm 1 presents the outline of the ALNS approach. ALNS starts with an
initial solution Π0. Then for I iterations, the algorithm selects destroy and repair
operators (line 4) with a roulette wheel that reWects their past performance. Destroy
operators remove a subset of customers from the current solution, while repair oper-
ators reinsert them using heuristics that are known to perform well on the problem
at hand (line 5). The resulting new solution is conditionally accepted as current solu-
tion according to a simulated annealing criterion (line 6). At the end of each iteration,
the scores of the destroy and repair operators are updated depending on the solution
they generated (line 12).

2.2 Parallel Adaptive Large Neighborhood Search

We propose pALNS, an extension of the Adaptive Large Neighborhood Search (ALNS)
algorithm that includes a novel parallelization scheme that eXciently spreads the
computational eUort among independent processors.

Algorithm 2 presents the outline of pALNS. The algorithm maintains a pool P
of N promising solutions that are optimized in K subprocesses (note that N ≥ K).
For each master iteration, a subset of K promising solutions is selected randomly
(line 2) and distributed among independent subprocesses. Each subprocess performs
Ip ALNS iterations (lines 3-14) by destroying and repairing the current solution Πp

as in the original ALNS algorithm. The Vnal current solution of each subprocess is
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Algorithm 2 Parallel Adaptive Large Neighborhood Search (pALNS) algorithm

Input: P initial solutions, z evaluation function, Θ−/Θ+ set of destroy/repair op-
erators, N maximum size of the solution pool, K number of subprocesses, Im

number of master iterations, Ip number of iterations performed in parallel.
Output: Π∗, the best solution found
1: for Im iterations do
2: P ′ ← selectSubset (P,K) . Select a subset ofK solutions
3: parallel forall Π in P ′ do
4: Πp ← Π . Current solution for this subprocess
5: for Ip iterations do
6: d← select (Θ−) ; r ← select (Θ+) . Select destroy/repair
7: Π′ ← r (d (Πp)) . Destroy and repair current solution
8: if accept (Π′,Πp) then
9: Πp ← Π′ .Π′ is accepted as current solution
10: end if
11: updateScore (d, r,Π′) . Update d and r scores
12: end for
13: P ← P ∪ {Πp} . AddΠp to the pool P
14: end forall
15: P ← retain (P, N) . Retain at most N solutions in the pool P
16: end for
17: return Π∗ = arg minΠ∈P {z(Π)}

added to the pool of promising solutions (line 13) and a Vltering procedure ensures
that the pool contains at most N solutions, including the best solution found so far
(line 15). The algorithm stops after Im master iterations, which corresponds to I =
Im × Ip ALNS iterations. Note that the implementation of pALNS ensures that no
synchronization is required between subprocesses to avoid deadlocks. The following
paragraphs present in more detail the diUerent components of the algorithm.

2.2.1 Destroy

Destroy operators remove a random fraction ξ ∈ [ξmin, ξmax] of the customers from
the current solution. We denoteR the set of customers served in the solution, and U
the set of customers that are not served. We used three destroy operators originally
proposed by Pisinger and Ropke [25]: random, related, and critical.

The random destroy operator selects customers randomly and removes them from
their actual tours.

The related destroy attempts to remove customers that share some characteristics.
Let the relatedness rij of customers i and j be a measure of how related two customers
are (the lower the rij , the more related i and j). The procedure starts by randomly
removing a seed customer i (U = {i}), then it iteratively selects a customer i ∈ U ,
and removes the most related customer j∗:

j∗ = arg min
j∈R
{rij} (1)

There are diUerent ways to measure the relatedness. We propose a new metric that
can be precalculated, namely a-priori relatedness, that does not depend on the actual
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position of customers in tours:

rsij =

(
1 +

cij
Mc

)θc (
1 +
|bi − bj |
Mt

)θt
(2)

Where cij is the distance between i and j, bi and bj are the end of the time windows of
customers i and j,Mc andMt are scaling constants, θc and θt deVne the weight given
to the geographic distance between the two customers, and the diUerence between
due dates respectively.
On the other hand, time-oriented relatedness [25] measures the diUerence between
the current times of service Ai and Aj of customers i and j:

rtij = |Ai −Aj | (3)

Finally, critical destroy consists in removing the customer i∗ such that the cost of
the resulting solution is minimal:

i∗ = arg max
i∈R
{ci−1,i+1 − ci−1,i − ci,i+1} (4)

Where i− 1 and i+ 1 are the predecessor and successor of i.
In practice related and critical operators are randomized and the byp|R|c-th best

customer is selected, where y is a random number in [0, 1) and p ≥ 1 is a parame-
ter that controls the level of randomness (the lower the p, the more randomness is
introduced).

2.2.2 Repair

Repair operators attempt to insert customers that are currently unserved. Our imple-
mentation is based on regret-q heuristics [27]: at each iteration the algorithm inserts
(at the best position) the customer with the lowest regret value. The regret-q value
rqi of customer i is a measure of how desirable it is to insert i in the current iteration
assuming that the best insertion will no longer be feasible in the next iteration. It is
deVned as:

rqi =

q∑
h=2

(
∆zhi −∆z1

i

)
(5)

Where ∆zqi is the cost of the q-th best insertion of customer i ∈ U . Note that ties are
resolved by selecting the customer with the lowest ∆z1

i value, and therefore regret-
1 corresponds to the classical best insertion heuristic. We used three regret levels:
regret-1, regret-2, and regret-3.

2.2.3 Adaptive layer

At each iteration, the pALNS algorithm selects a destroy and a repair operator using a
selection roulette, such that operator θ ∈ Θ� is selected with probabilitywθ , where Θ�

is either the set of destroy (Θ−) or repair (Θ+) operators. Probabilities are initialized
with value 1

|Θ.| , and then updated every l iterations (a segment) as follows:

wθ ← (1− ρ)wθ + ρ
sθ∑
θ∈Θ. sθ

(6)

Where ρ ∈ [0, 1] is the reaction factor which deVnes how quickly probabilities are
adjusted, and sθ is the score of operator θ in the last l iterations. The scores sθ are
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reset to 0 every l iterations and updated at the end of each iteration depending on the
new solution: a score of σ1 is granted for a new best solution, σ2 for an improving
solution, σ3 for a non-improving but accepted solution, and σ4 for a rejected solution.
It is worth noting that in contrast with the adaptive scheme originally proposed by
Pisinger and Ropke [25], this formula ensures that

∑
θ∈Θ� wθ = 1 at all time, which

makes it easier to interpret the relative weight of each component.

2.2.4 Objective function

The initial solution or the solution resulting from the destroy operator can leave
some customers unserved (U 6= ∅). Therefore we need to be able to evaluate a partial
solution Π′ to account for the unserved customers. Given an evaluation function z
and an initial solutionΠ0, Pisinger and Ropke [25] deVne the cost of partial solution
Π′ as follows:

zφ(Π′) = z(Π′) + φ|U|z(Π0) (7)

Where φ is a parameter that controls the unserved customer penalty.

2.2.5 Acceptance criterion

As in the original ALNS, the pALNS algorithm relies on a simulated annealing accep-

tance criterion which accepts a new solution Π′ with probability e
z(Π)−z(Π′)

T , where
T is the temperature parameter. The temperature is initialized with the value T0 and
it is reduced at each iteration by a cooling factor c. The two parameters T0 and c are
set depending on the initial solution and the target number of iterations [32]. Given
an initial solution Π0, T0 is deVned such that a solution with value (1 + w)z(Π0) is
accepted with probability p, and c is set such that the temperature after n iterations
is equal to αT0.

2.2.6 Computation of an initial solution

The pALNS algorithm requires an initial solution which is computed with a regret-
3 constructive heuristic: starting with empty routes for each vehicle, the algorithm
iteratively inserts the customer with the lowest regret value as described in §2.2.2.

2.2.7 Solution pool

The solution pool acts as a shared memory and allows subprocesses to collaborate
eXciently. In the original algorithm, the simulated annealing acceptance criterion
results in a search scheme that starts from a diversiVcation phase, in which poor
solutions may be accepted as current solutions, and progressively switch to an in-
tensiVcation phase, in which only improving solutions are accepted. The use of a
solution pool that would contains the N best solutions found so far tend to break
this scheme, as poor solutions may never be kept in the pool and will therefore not
be exploited properly. To overcome this limitation we propose to maintain a pool of
diverse solutions that are promising in terms of cost.

This is achieved by the retainmethod (line 15) which ensures that P contains at
mostN solutions: if |P| > N then the method retains theN best solutions according
to the Vtness function f :

f(Π) = (1− λ)rankz(Π) + λrankd(Π) (8)
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Where λ is a weight between 0 and 1, rankz(Π) is the rank of solution Π according
to its objective value, and rankd(Π) is the rank ofΠ according to its average broken-
pairs distance [29] relative to the other solutions from P . The broken pairs distance
counts the number of arcs that diUer between two solutions. This Vtness function
is inspired by the biased Vtness introduced by Vidal et al. [39] in a genetic algorithm
with diversity management. The weight λ can either be Vxed a-priori, or adjusted
throughout the search to switch from diversiVcation (λ = 1) to intensiVcation (λ =
0). Note that we ensure that P always contains the best solution found so far.

2.3 Parallel reoptimization approach for the D-VRPTW

Figure 4 illustrates the proposed reoptimization approach: the algorithm starts by
producing an initial solution S0 by using a constructive heuristic coupled with the
pALNS described in the previous section. Then each time a new customer appears, it
Vxes the currently executed portion of the routes, and re-runs the pALNS for a limited
number of iterations to produce an updated solution S′t. If pALNS is able to insert the
new customer request, then the customer is accepted and S′t becomes the new current
solution, otherwise the customer is rejected and St remains as the current solution.

Start

pALNS

End 
of day?

NO

YES

pALNS

Updated solution 
St+1

End

NO

Wait until a new 
customer appears

Initial solution 
S0

Accept? Select new current
solution

YES

Candidate solution
St'

Figure 4: Overview of the proposed approach

It is important to note that the immediate commitment of idle vehicles to cus-
tomers may lead to diXculties when new customers appear. Figure 5 illustrates this
with a single vehicle. Suppose that at time t a vehicle is assigned to a customer i,
if the vehicle is dispatched immediately to i (upper left time line), it will travel to i
then wait at its destination until the start of the time window (black brackets). On
the other hand, if a waiting strategy is used (lower left time line), the vehicle will
remain idle until the latest moment such that it will not wait at i. If at time t + 1 a
new customer j appears, in the Vrst case j cannot be served as the vehicle is already
waiting at i, while in the second case a visit to j can be inserted right before i. As a
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2 FAST REOPTIMIZATION 2.4 Computational results

consequence, vehicles are considered to remain idle at their current location until the
latest departure time such that it will not wait at the next customer, leaving time for
further insertions.

i

i

i

ij

Immediate
commitment

Waiting
strategy

t t+1

travel wait serve

idle travel serve

executed

Figure 5: Illustration of the waiting strategy.

2.4 Computational results

To assess the eUect of parallelization we tested our algorithm on the static instances
for the VRPTW proposed by Solomon [35] on a quad-core desktop computer1. For
the detailed parameter setting of the algorithm please refer to Appendix A.

Parallel - Num. of Threads
Seq. 1 2 3 4 5 6 7 8

Gap 0.74% 0.72% 0.55% 0.69% 0.54% 0.70% 0.52% 0.66% 0.48%
Gap (st. dev.) 0.87% 0.88% 0.76% 0.89% 0.70% 0.86% 0.74% 0.82% 0.66%
Time (s) 36.58 37.32 22.07 17.60 14.70 14.69 13.39 12.37 11.32
Time (s, st. dev.) 6.27 6.33 4.06 3.17 2.72 2.57 2.50 2.27 2.15

Table 1: Comparison of gap to the best known solutions and running times for dif-
ferent levels of parallelization.

Table 1 presents aggregated values over the 53 instances, with ten run per in-
stance and 25,000 ALNS iterations2. The Vrst column corresponds to the original
sequential (Seq.) implementation of the ALNS, and the following to the parallel im-
plementation with 1 to 8 threads. The Vrst and second rows contain the mean and
standard deviation of the gap value relative to either the optimal or the best known
solution. Finally, the third and fourth rows show the mean and standard deviation of
the CPU times. Note that increasing the number of threads has a limited impact on
the gap to the best known solutions, which is consistently around 0.6%, but it allows
a reduction of running times by a factor 3.3. Figure 6 presents the box plot of the
distribution of the gap and CPU times for the sequential (S) and parallel implementa-
tions with 1, 2, 4, and 8 threads. A graphical analysis shows that the median gap and
variance slightly decrease with the number of threads. In contrast, the median run-
ning time and variance decreases sharply with the number of threads. Therefore, we
selected the conVguration with 8 threads as it oUers the best compromise between

1CPU: Intel i7 860 (4x2.8GHz), RAM: 6GB DDR3, OS: Ubuntu 11.10 x64, Java 7
2To ensure that I = Im × Ip ×K ' 25000, we used Im =

⌈
25000
40×K

⌉
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Figure 6: Impact of the number of threads on the gap and CPU time.

speed and quality. Note that the processor used is a quad-core with Intel hyper-
threading technology which allows two threads per core. This partially explains the
relatively small reduction of CPU times when switching from 4 to 8 threads.

We tested the pALNS algorithm on the instances proposed by Lackner [19] and
based on the Solomon [35] benchmark, in which a fraction of the customers is re-
vealed dynamically. The instances contain 100 customers located randomly (R), in
clusters (C), or combining both (RC); while the planning horizon is either short (type
1) or long (type 2); and the number of dynamic customers (or degree of dynamism, δ)
is either 10, 30, 50, 70, or 90. These instances are organized combining location, hori-
zon length, and degree of dynamism. We consider the minimization of the traveled
distance. For each instance, we performed 10 simulations in which pALNS is initially
run for 25,000 iterations to produce an initial solution. Then, each time a new cus-
tomer appears, pALNS is run for 5,000 iterations to produce a solution that will be
used until the next customer is revealed. Finally, pALNS is run for 50,000 iterations
to solve the a-posteriori problem, in which all the accepted customers are assumed to
be known beforehand.

Table 2 presents the Value of Information (VI) [22] for each instance group and
degree of dynamism (δ). The value of information for instance I is deVned as the
ratio z(I)−z(Ioff )

z(Ioff )
where z(I) is the value of the solution found by the algorithm for

the dynamic instance, and z(Ioff) is the value of the solution for a-posteriori instance
Ioff . As expected, results indicate that the VI increases with the degree of dynamism,
which can be explained by the fact that suboptimal routing decisions add up over
time, and more decisions are made in highly dynamic instances. However, even when
90 out of 100 customers appear dynamically, the VI is of just 11% on average, which
means that the algorithm is still able to produce a Vnal routing that is very close to
what would have been done if all the customers were known from the beginning of
the day.

Table 3 presents a comparison of approaches for the Lackner [19] instances. The
Vrst and second columns present the traveled distance and number of rejected cus-
tomers for pALNS, averaged over 10 runs and for each group and degree of dy-
namism. The third and fourth columns report the average distance, relative average
additional distance (in parenthesis), and number of rejected customers for the Large
Neighborhood Search (LNS) approach proposed by Hong [14], while the Vfth and
sixth columns report the same values for the Genetic Algorithm (GA) developed by

École des Mines de Nantes 13/22 Pillac, Guéret, Medaglia - Report 12/6/AUTO



3 BI-OBJECTIVE D-VRP

δ R1 C1 RC1 R2 C2 RC2 Avg.

10 2.05% 2.89% 3.06% 1.70% 1.66% 1.61% 2.14%
30 4.67% 5.83% 5.83% 4.34% 1.74% 4.70% 4.54%
50 6.41% 9.28% 9.03% 8.15% 2.82% 5.38% 6.93%
70 8.29% 11.18% 10.24% 10.17% 5.41% 8.60% 9.03%
90 9.33% 12.49% 11.84% 11.83% 6.51% 12.33% 10.71%

Table 2: Average value of information for the Lackner [19] instances

Lackner [19]. Note that the experimental setting of the two cited studies is not explic-
itly presented, which limits the relevance of direct comparisons. Nonetheless, Vgures
show that our approach is competitive both in terms of traveled distance and number
of rejected customers. In addition, average running times are of just 5.3s for the ini-
tial optimization, and 2.0s for subsequent reoptimizations, which is signiVcantly less
than the 33s and 47s reported by Hong [14] and Lackner [19] respectively.

3 Route consistency in dynamic routing:
a bi-objective approach

Most studies on dynamic routing consider that routes are designed online, which
means that vehicle drivers do not know their next destination until they Vnish serv-
ing their current customer. Although this assumption is theoretically appealing and
allows a better optimization of the cost function, it may not be desirable if drivers are
used to know their routes from the beginning of the day. In practice, having a set of
routes known a-priori that are then changed may be desirable over purely dynamic
routing. Hence there is a need for approaches able to maintain consistency in the
vehicles routes throughout the day while ensuring cost eXciency.

To the best of our knowledge, all studies on dynamic routing focus on the opti-
mization of a single criterion, such as the minimization of the total traveled distance
or the maximization of the number of served customers. On the other hand, and
as surveyed by Jozefowiez et al. [18], a growing number of studies on static routing
consider multiple objectives in an attempt to better Vt operational contexts. In this
section we present a preliminary study that takes into account driver inconvenience.
The proposed approach is an adaptation of the pALNS algorithm that simultaneously
minimizes a cost function and maximizes the route consistency throughout the day.

3.1 Measuring consistency

Assuming that an initial set of routes are handed to the drivers at the beginning of the
day, it seems natural to consider them as the reference routes for each driver. To pre-
vent multiple and unnecessary changes in routes, we assume that drivers will only be
informed of changes in their routes at the last possible moment. As a consequence,
a change will take eUect only when necessary. From the driver’s perspective, four
types of changes can be made to the route: one or more customers may be a) inserted
between existing customers; b) removed; c) swapped within the same route; d) substi-
tuted by a customer previously unvisited. In this context, minimizing inconvenience
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pALNS Hong [14] Lackner [19]

Group δ Dist. Rej. Dist. Rej. Dist. Rej.

R1 10 1197.4 0.25 1257.1 ( 4.99%) 0.17 1278.1 ( 6.74%) 0.47
30 1212.9 0.80 1286.6 ( 6.08%) 0.58 1337.9 ( 10.30%) 0.72
50 1225.0 1.25 1295.8 ( 5.78%) 0.67 1330.0 ( 8.57%) 0.78
70 1237.3 1.71 1331.3 ( 7.60%) 1.75 1336.1 ( 7.98%) 0.94
90 1230.1 2.55 1335.9 ( 8.60%) 2.33 1278.3 ( 3.92%) 0.75

C1 10 850.6 0.11 895.8 ( 5.31%) 0.22 996.4 ( 17.14%) 0.00
30 874.9 0.11 962.1 ( 9.97%) 0.33 1066.9 ( 21.95%) 0.00
50 903.4 0.11 1001.2 ( 10.82%) 0.22 1236.1 ( 36.82%) 0.00
70 919.1 0.11 1031.7 ( 12.25%) 0.22 1261.3 ( 37.24%) 0.00
90 929.9 0.11 1039.8 ( 11.81%) 0.22 1479.6 ( 59.11%) 0.00

RC1 10 1389.4 0.04 1436.2 ( 3.37%) 1.13 1426.9 ( 2.70%) 0.46
30 1421.5 0.28 1492.2 ( 4.98%) 1.13 1439.7 ( 1.28%) 0.42
50 1463.4 0.23 1514.7 ( 3.50%) 1.38 1448.1 ( -1.05%) 0.46
70 1470.1 0.58 1511.3 ( 2.80%) 1.88 1488.4 ( 1.25%) 0.58
90 1495.5 0.51 1513.9 ( 1.23%) 2.00 1475.2 ( -1.36%) 0.42

R2 10 893.0 0.00 950.0 ( 6.39%) 0.09 1052.9 ( 17.90%) 0.03
30 915.6 0.00 985.5 ( 7.63%) 0.00 1085.4 ( 18.54%) 0.15
50 948.6 0.00 1016.5 ( 7.17%) 0.00 1138.8 ( 20.05%) 0.21
70 967.7 0.00 1032.0 ( 6.65%) 0.09 1116.9 ( 15.42%) 0.30
90 981.7 0.00 1047.8 ( 6.73%) 0.09 1193.3 ( 21.55%) 0.52

C2 10 597.2 0.00 594.7 ( -0.42%) 0.00 629.1 ( 5.35%) 0.00
30 597.6 0.00 651.4 ( 9.01%) 0.00 632.3 ( 5.81%) 0.04
50 604.0 0.00 605.0 ( 0.17%) 0.00 689.3 ( 14.12%) 0.13
70 619.2 0.00 636.5 ( 2.79%) 0.00 743.8 ( 20.12%) 0.21
90 625.7 0.00 636.8 ( 1.78%) 0.00 792.5 ( 26.66%) 0.29

RC2 10 1024.4 0.00 1103.3 ( 7.70%) 0.00 1220.9 ( 19.18%) 0.00
30 1053.1 0.00 1166.0 ( 10.73%) 0.25 1244.9 ( 18.21%) 0.04
50 1060.5 0.00 1190.5 ( 12.26%) 0.13 1244.9 ( 17.38%) 0.00
70 1091.4 0.00 1239.5 ( 13.57%) 0.00 1269.3 ( 16.30%) 0.00
90 1130.3 0.00 1257.2 ( 11.23%) 0.13 1346.8 ( 19.16%) 0.13

Average 0.29 (+6.75%) 0.50 (+15.61%) 0.27

Table 3: Comparison of approaches for the Lackner [19] instances.
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3 BI-OBJECTIVE D-VRP 3.2 The proposed approach

is therefore equivalent to minimizing the number of changes communicated to the
driver.

We use the edit distance (or Levenshtein distance) as a proxy for the driver’s in-
convenience. The edit distance between two routes is deVned as the minimum num-
ber of insertions, removals, or substitutions of customers that have to be applied to
transform one route into the other. Therefore the inconvenience of a new solution
relative to a reference solution is equal to the sum of edit distances between each ve-
hicle’s reference and new routes. The advantage of this metric is that it is eXciently
computed and models accurately the changes described above, and it can be adapted
to give weights to each type of change. The main limitation of this proxy is that
it does not necessarily reWect the eUective number of changes communicated to the
driver as sections of the route may be changed later.

Figure 7 illustrates the evaluation of the edit distance between a reference and a
new route. The gray nodes correspond to the portion of the route that has already
been executed. The distance between the reference and new route is 3, with 1 substi-
tution (SUB), 1 insertion (INS), and 1 removal (REM).
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Figure 7: Example of the edit distance between two routes.

3.2 The proposed approach

The proposed approach, namely parallel Bi-objective Adaptive Large Neighborhood
Search (pBiALNS), is an extension of the pALNS algorithm described in Section 2,
and it is inspired by the bi-objective LNS proposed by Schmid and Hartl [33]. In a
nutshell, the central idea is to maintain and optimize a set of non-dominated and
possibly infeasible solutions. In addition, our approach introduces a parallelization
scheme that improves performance and allows its use in a dynamic context.

The adaptation of the pALNS algorithm to deal with the bi-objective case is
straightforward: the algorithm maintains the set P̄ of non-dominated solutions that
are optimized in K subprocesses. For Im master iterations, a subset of K non-
dominated solutions is selected randomly and distributed among independent sub-
processes. Each subprocess performs Ip ALNS iterations by destroying and repairing
the current solution, considering only the main objective (cost). In contrast to the
original pALNS algorithm, each temporary solution is considered for inclusion in the
set of non-dominated solutions, and the number of solutions stored in P̄ is not lim-
ited. Finally, the algorithm returns the whole set of non-dominated solutions P̄ , from
which the decision maker selects a single solution.

It is important to note that the optimization itself, which takes place in the ALNS
iterations, only considers the minimization of the cost. Therefore, there is an implicit
lexicographic ordering of the objectives, the maximization of the consistency being
handled implicitly with the set of non-dominated solutions. This choice is motivated
by the fact that at each ALNS iteration the algorithm needs to introduce changes
in the current solution by removing and inserting customers, and introducing the
consistency at this level would steer the approach away from cost-eUective solutions.

École des Mines de Nantes 16/22 Pillac, Guéret, Medaglia - Report 12/6/AUTO



3 BI-OBJECTIVE D-VRP 3.3 Computational results

Note that pBiALNS may visit infeasible solutions that do not visit all customers.
Therefore, we deVne a dominance relation that ensures that no feasible solution will
be dominated by an infeasible solution:

DeVnition 1 (Dominance). A solution Π dominates (denoted ≺) a solution Π′ if and
only if Π is as good as Π′ in both objectives, and strictly better in one objective, and
either Π is feasible or both Π and Π′ are infeasible.

3.3 Computational results

We tested the pBiALNS approach on the Lackner [19] instances described in §2.4 with
a similar experimental setting. pALNS is Vrst run for 25,000 iterations to produce the
reference (initial) solution; then, each time a new customer appears pBiALNS is run
for 5,000 iterations to produce a set of candidate new solutions to choose from; Vnally,
pALNS is run for 50,000 iterations to produce the a-posteriori solution to the problem.

Figure 8 represents the objective space explored by pBiALNS after 5,0000 itera-
tions for one instance, at a given step of the simulation (ie., after a new customer
appeared). The graph illustrates the diversity of solutions oUered to the decision
maker, ranging from the least-cost solution (upper left) to the most similar to the
reference solution (lower right). For the purpose of benchmarking and to assess the
tradeoU between the two objectives, we deVne a threshold selection policy and select
the non-dominated solution that is closest to the reference, allowing a deviation in
cost of at most γ percent from the least-cost solution (green diamond). This policy
models the behavior of an expert dispatcher who would select one solution among
the non-dominated set.
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Figure 8: Objective space for instance R101 and illustration of the threshold policy.

Table 4 presents (a) the average edit distance between the Vnal solution and the
reference solution, and (b) the average gap between the cost of the Vnal solution
and the cost of a solution evaluated a-posteriori and the average number of rejected
requests, for diUerent values of γ and degree of dynamism (δ). Running times are of
2.5 seconds on average at each decision. As expected, the edit distance relative to the
reference solution is negatively correlated to γ, and is minimal for γ = ∞. In this
case we always choose the solution which is the closest to the reference solution, in
other words we simply insert new customers in the current solution, which leads to a
distance equal to the number of accepted dynamic customers. It is important to note
that the quality of the routing, measured by the gap to the static solution, is positively
correlated to γ. This conVrms the intuition that poor routing decisions tend to add
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up over time and can lead to larger deviations at the end of the day. Our results also
indicate that, for problems with low degree of dynamism, it can be worth sacriVcing
quality of solution to gain route stability. For instance, with δ = 10, the value γ = 5%
leads to a gap of 6% versus 2% with γ = 0%, but it reduces the number of required
changes by a factor 3. However, this statement no longer holds for instances with
higher degrees of dynamism where numerous changes are necessary to insert all
customers. In this case it is better to focus on optimizing the routing, as it does not
lead to excessive instability in routes.

(a) Average edit distance to reference solution

γ
δ 0% 1% 2% 5% 10% ∞
10 32.8 19.3 17.0 12.9 12.6 9.8
30 59.4 48.1 44.2 39.2 36.4 29.6
50 78.2 70.3 65.9 61.4 58.2 49.4
70 87.6 84.0 81.7 78.5 75.7 69.2
90 95.7 94.5 93.9 92.7 91.3 88.9

(b) Average gap to a-posteriori solution (%) and number of rejected requests (in parenthesis)

γ
δ 0% 1% 2% 5% 10% ∞
10 2.0 (0.1) 2.8 (0.1) 4.2 (0.1) 6.1 (0.1) 8.1 (0.1) 11.2 (0.2)
30 4.3 (0.3) 5.6 (0.3) 6.5 (0.3) 10.9 (0.2) 16.3 (0.2) 29.3 (0.4)
50 6.4 (0.3) 7.6 (0.3) 9.1 (0.4) 13.1 (0.3) 18.7 (0.3) 50.1 (0.6)
70 9.0 (0.4) 10.3 (0.4) 11.8 (0.5) 15.3 (0.5) 20.5 (0.4) 71.0 (0.8)
90 9.8 (0.7) 10.8 (0.7) 11.6 (0.6) 14.4 (0.6) 19.4 (0.7) 95.5 (1.1)

Table 4: Evolution of the distance to reference solution and gap to a-posteriori solu-
tion for diUerent degrees of dynamism and values of γ

4 Conclusions
In this work we proposed an eXcient parallelization scheme for an Adaptive Large
Neighborhood Search, namely pALNS. This algorithm distributes the optimization of
promising solutions across multiple processors, resulting in factor 3.3 speedups on
a quad-core desktop machine. The eXciency of pALNS relies on the presence of a
promising solution pool with diversity management, which prevents deadlocks be-
tween optimization threads, and improves the exploration of the search space. We il-
lustrated the eXciency of pALNS on the Solomon [35] CVRPTW instances, for which
it produces solutions in average 0.7% away from the optimal/best known solution in
just 12s.

We also introduced a fast-reoptimization approach based on pALNS to tackle the
dynamic VRPTW. This approach consists in running pALNS to produce an initial
solution at the beginning of the day, and then running it for a limited number of
iterations whenever a new customer appears. We tested our approach on the instance
set proposed by Lackner [19]. Computational results show that pALNS is capable of
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achieving state of the art results in competitive time, bringing improvements of up to
12% over previous approaches.

Finally, we presented a preliminary bi-objective extension of the classical D-
VRPTW that attempts to captures the drivers inconvenience resulting from dynamic
routing. It is based on the notion of having a reference routing plan handled to
the drivers at the beginning of the period, that will then undergo changes as new
customers arrive. We introduced an inconvenience metric that measures the con-
sistency between an updated routing plan and the reference plan. We proposed a
fast bi-objective optimization approach based on pALNS, namely pBiALNS, which
maintains and optimizes in parallel the set of non-dominated solutions.

This optimization algorithm was used coupled with a threshold policy modeling
an expert dispatcher to tackle the D-VRPTW instances proposed by Lackner [19].
Our results indicate that there is a clear tradeoU between minimizing the traveled
distance and maintaining consistency in routes. Furthermore, it appears that for
problems with a low degree of dynamism it can be worth sacriVcing cost eXciency to
maintain consistency. In contrast, in highly dynamic problems the priority should be
given to the minimization of the cost, as it does not lead to excessive inconsistency
in routing.

Future research should focus on the development of a continuous reoptimiza-
tion approach based on pALNS that runs throughout the day and maintains a pool
of alternative promising solutions as adaptive memory. In addition, pALNS could
be improved by having completely independent subprocesses that pull their starting
solution from the pool, and push their Vnal solution, without waiting for other sub-
processes to Vnish. pBiALNS could be reVned to better approximate the Pareto front,
Vrst in the selection of the non-dominated solutions to optimize, then by applying a
local search or a path relinking between non-dominated solutions.
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Appendices
A Parameter setting
Table 5 presents the detail parameter setting used in the pALNS algorithm. The num-
ber of parallel iterations and the maximum size of the pool where selected after run-
ning experiments with values Ip ∈ {10, 50, 100, 500, 1000} and N ∈ {1, 5, 10, 20,
30, 40, 50}. We also tested two schemes for the solution pool, the Vrst with a Vxed
value of 0.5 for λ, the second using an adaptive scheme starting with λ = 0.5 and
decreasing its value using the same process as the one used to decrease the simulated
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annealing temperature. Over all our experiments the combination of an adaptive di-
versity management with Ip = 50 and N = 40 showed the best results for 25,000
pALNS iterations, and Ip = 100 and N = 10 for 5,000 pALNS iterations. The re-
maining parameters were directly derived from the work by Pisinger and Ropke [25].

Parameter Value Description

K 8 Number of threads
Ip 50 (100) Number of parallel iterations
N 40 (10) Maximum promising solution pool size

φ 0.10 Penalization for unserved customers
ξmin 0.10 Minimum proportion of customers to be removed
ξmax 0.40 Maximum proportion of customers to be removed

w 0.05 Reference objective degradation
p 0.5 Initial probability of accepting a degrading solution
α 0.002 Fraction of the initial temperature to be reached at the end

ρ 0.40 Reaction factor
σ1 1.00 Score for new best solution
σ2 0.25 Score for improving solution
σ3 0.40 Score for non-improving accepted solution
σ4 0.00 Score for rejected solution
l 100 Operator probability (wθ) update frequency

Table 5: Detailed parameter setting for the pALNS algorithm for 25,000 iterations,
values in parenthesis indicate adjusted values for 5,000 iterations.
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