A fast re-optimization approach for dynamic vehicle routing

Keywords: Dynamic vehicle routing, route consistency, bi-objective optimization

The present work deals with dynamic vehicle routing problems in which new customers appear during the design or execution of the routing. We propose a parallel Adaptive Large Neighborhood Search (pALNS) that produces high quality routes in a limited computational time. Then, we introduce the notion of driver inconvenience and de ne a bi-objective optimization problem that minimizes the cost of routing while maintaining its consistency throughout the day. We consider a problem setting in which vehicles have an initial routing plan at the beginning of the day, that is periodically updated by a decision maker. We introduce a measure of the driver inconvenience resulting from each update and propose a bi-objective approach based on pALNS that is able to produce a set of non-dominated solutions in reasonable computational time. These solutions offer di erent tradeo s between cost e ciency and consistency, and can be used by the decision maker to update the routing of the vehicles introducing a controlled number of changes.

Introduction

The problem of operating a eet of vehicles arises in many contexts, from pickup and delivery of goods to the transportation of patients in hospitals. More speci cally, Vehicle Routing Problems (VRP) deal with the design of a set of minimal-cost vehicle routes that serve the demand for goods or services of a group of geographically spread customers, satisfying operational constraints. From an information perspective, such problems generally include two dimensions: evolution and quality of information [START_REF] Psaraftis | A dynamic-programming solution to the single vehicle many-to-many immediate request dial-a-ride problem[END_REF]. Information evolution relates to the fact that the data available to the planner may change during the execution of the routes, for example with the arrival of new customer requests. Information quality re ects possible uncertainty on the available data, for instance, when the demand of a customer is only known as a range estimate of its real demand, or when the geographical distribution of customers can be forecasted. Based on these dimensions, Pillac et al. [START_REF] Pillac | A review of dynamic vehicle routing problems[END_REF] classify vehicle routing problems in four categories depending on whether the problem is static/dynamic and deterministic/stochastic. Dynamism in routing can emerge from di erent aspects of the problem. The most common source of dynamism is the arrival of new customers with a demand for goods or services. Other sources of dynamic include dynamically revealed demands for a set of known customers, dynamic travel times, and vehicle availability.

The present work focuses on dynamic and deterministic routing, also referred to as online routing, in which part or all of the input is unknown and revealed dynamically and unpredictably during the execution of the routes. Vehicle routes are rede ned in an ongoing fashion, requiring technological support for real time communication between the vehicles and the decision maker (e.g., mobile phones and global positioning systems). More speci cally, we study the Dynamic Vehicle Routing Problem with Time Windows (D-VRPTW), in which a limited eet of identical capacitated vehicles must deliver a product to a set of customers over a single day horizon. Each customer has a geographic position, requires a known quantity of product, and must be served within a given time frame. While a set of (static) customers is known beforehand, new (dynamic) customers may appear during the day. Figure 1 illustrates the routing of two vehicles in a dynamic context. Before the vehicles leave the depot (1a.), two routes are designed to visit the currently known customers: (A, B, C) and (D, E). While the vehicles execute their route, two new customers (X and Y) appear at time t 1 (1b.). At this stage, the dispatcher must decide whether or not it should accept or reject the new requests. In this case, Y is far from the current routes and vehicles, therefore its service may not be feasible or may be too costly. Customer Y is thus rejected and a penalty is paid. On the other hand, X is accepted and inserted in the second route. Finally, at time t f the executed route are (A, B, C) and (D, X, E) (1c.). This example reveals how dynamic routing inherently adjusts routes in an ongoing fashion, which requires real-time communication between vehicles and the dispatching center. In this context, the problem is rst to design an initial set of routes, visiting all the static customers. Then, each time a new customer appears, the problem is to decide whether it can be served or not, and eventually, to reoptimize the vehicle routes. We assume that by rejecting customers we incur a penalty that can be interpreted as an outsourcing cost.

Dynamic routing problems introduce new challenges as they require to react quickly to changes in the available data. According to Ichoua et al. [START_REF] Ichoua | Planned route optimization for real-time vehicle routing[END_REF], the level of dynamism of a problem can be characterized according to two dimensions: the frequency of changes and the urgency of customer requests. The former is the rate at which new information becomes available, while the latter is the period of time between the disclosure of a new customer and its expected service time. From this observation di erent metrics have been proposed to measure the dynamism of a problem (or instance). Lund et al. [START_REF] Lund | Vehicle routing problems with varying degrees of dynamism[END_REF] de ned the degree of dynamism δ as the ratio between the number of dynamic customers n d and the total number of customers

n tot : δ = n d ntot .
Larsen [START_REF] Larsen | The Dynamic Vehicle Routing Problem[END_REF] extended the degree of dynamism to take into account the disclosure date and the time windows of the dynamic customers.

To the best of our knowledge, the rst application of an optimization technique to dynamic routing is due to Psaraftis [START_REF] Psaraftis | A dynamic-programming solution to the single vehicle many-to-many immediate request dial-a-ride problem[END_REF] with the development of a dynamic programming approach. His research focuses on the Dial A Ride Problem (DARP) and consists in nding the optimal route each time a new customer is known. The main drawback of dynamic programming is the well-known curse of dimensionality [28, Chap. 1], which often prevents its application to large instances. Few research was conducted on dynamic routing between Psaraftis [START_REF] Psaraftis | A dynamic-programming solution to the single vehicle many-to-many immediate request dial-a-ride problem[END_REF] and the late 1990s. However, the last decade has seen a renewed interest in dynamic routing, with numerous approaches tackling a variety of problems. This section classi es the major contributions in this eld in two categories: 1) periodic reoptimization and 2) continuous reoptimization. The reader is referred to the reviews, books, and special issues by Gendreau and Potvin [11], Ghiani et al. [START_REF] Ghiani | Real-time vehicle routing: Solution concepts, algorithms and parallel computing strategies[END_REF], Ichoua et al. [START_REF] Ichoua | Planned route optimization for real-time vehicle routing[END_REF], Larsen et al. [START_REF] Larsen | Recent developments in dynamic vehicle routing systems[END_REF], Pillac et al. [START_REF] Pillac | A review of dynamic vehicle routing problems[END_REF], and Zeimpekis et al. [START_REF] Zeimpekis | Dynamic Fleet Management[END_REF], to complement our review.

Figure 1 presents an overview of periodic reoptimization approaches: the algorithm starts at the beginning of the day and a rst optimization produces an initial solution S 0 . Then, the procedure waits for an update in the available data, or for a xed period of time, followed by a new optimization trigger that leads to an updated solution S t+1 . The advantage of periodic reoptimization approaches is that they can be based on algorithms developed for static routing, for which extensive research has been conducted. Their main drawback is that all the optimization has to be performed before updating the solution, which can increase the delays for the dispatcher, while the computational power is unused during waiting times.

Periodic reoptimization approaches were used in di erent contexts to tackle dynamic routing problems. Chen and Xu [START_REF] Chen | Dynamic column generation for dynamic vehicle routing with time windows[END_REF] designed a dynamic column generation algorithm (DYCOL) for the D-VRPTW. The authors use the concept of decision epochs over the planning horizon, which are the dates when the optimization process runs. It is worth noting that a new customer is not handled until the next decision epoch, hence, the optimization is run statically and independently at each decision epoch. The main advantage of this time partition is that similar computational e ort is allowed for each time slice. The novelty of their approach relies on dynamically gen- erating columns for a set-partitioning model, using columns from the previous decision epoch. The authors compared DYCOL to a traditional column generation with no time limit (COL). Computational results based on the Solomon benchmark [START_REF] Solomon | Algorithms for the vehicle-routing and scheduling problems with time window constraints[END_REF] demonstrate that DYCOL yields comparable results in terms of objective function, but with running times limited to 10 seconds, opposed to the various hours consumed by COL. Using a notion similar to decision epochs, Montemanni et al. [START_REF] Montemanni | Ant colony system for a dynamic vehicle routing problem[END_REF] developed an Ant Colony System (ACS) to solve the D-VRP. An interesting feature of their approach is the use of the pheromone trace to transfer characteristics of a good solution to the next time slice. ACS was also used by Gambardella et al. [START_REF] Gambardella | Ant colony optimization for vehicle routing in advanced logistics systems[END_REF] and Rizzoli et al. [START_REF] Rizzoli | Ant colony optimization for real-world vehicle routing problems[END_REF]. Other heuristic approaches, such as Tabu Search (TS), were also used to tackle the Dynamic Pickup and Delivery Problem (D-PDP) [START_REF] Barcelo | Vehicle routing and scheduling models, simulation and city logistics[END_REF][START_REF] Chang | Real-time vehicle routing problem with time windows and simultaneous delivery/pickup demands[END_REF] and the Dynamic Dial-a-Ride Problem (D-DARP) [START_REF] Attanasio | Parallel tabu search heuristics for the dynamic multi-vehicle dial-a-ride problem[END_REF][START_REF] Beaudry | Dynamic transportation of patients in hospitals[END_REF]. In contrast, continuous reoptimization approaches perform the optimization throughout the day in an optimization loop and store information on good solutions in an adaptive memory (see Figure 1). In parallel, a decision loop aggregates the information from the memory whenever needed. The advantage of such approaches is that the computational power utilization is maximized, at the price of possibly cumbersome implementation.

To the best of our knowledge, the rst application of continuous reoptimization is due to Gendreau et al. [START_REF] Gendreau | Parallel tabu search for real-time vehicle routing and dispatching[END_REF]. Their approach consists in the adaptation of the Tabu Search (TS) framework introduced by Taillard et al. [START_REF] Taillard | A tabu search heuristic for the vehicle routing problem with soft time windows[END_REF] to a dynamic context motivated by the local operation of long distance express courier services, which can be seen as a D-VRPTW. The general idea is to maintain a pool of good routes-the adaptive memory [START_REF] Taillard | Adaptive memory programming: A uni ed view of metaheuristics[END_REF]-which is used to generate initial solutions for a parallel tabu search. The parallelized search is done by partitioning the routes of the current solution and optimizing them in independent threads. Whenever a new customer request arrives, it is checked against all the solutions from the adaptive memory to decide whether it should be accepted or rejected. This framework was also implemented for the D-VRP [START_REF] Ichoua | Diversion issues in real-time vehicle dispatching[END_REF][START_REF] Ichoua | Vehicle dispatching with time-dependent travel times[END_REF]. Bent and Van Hentenryck [4] generalized this framework and introduced the Multiple Plan Approach (MPA) to tackle the D-VRPTW. The general idea is to populate and maintain a solution pool (the routing plans) that are used to Whenever a new customer arrives, a procedure is called to check whether it can be served or not; if it can be served, then the customer is inserted in the solution pool and incompatible solutions are discarded. Pool updates are performed periodically or whenever a vehicle nishes servicing a customer. This pool-update phase is crucial and ensures that all solutions are coherent with the current state of vehicles and customers. The pool can be seen as an adaptive memory that maintains a set of alternative solutions. Following a di erent approach, Benyahia and Potvin [START_REF] Benyahia | Decision support for vehicle dispatching using genetic programming[END_REF] studied the D-PDP and proposed a Genetic Algorithm (GA) that models the decision process of a human dispatcher. More recently, other GAs were also used for the same problem [START_REF] Cheung | Dynamic routing model and solution methods for eet management with mobile technologies[END_REF][START_REF] Haghani | A dynamic vehicle routing problem with time-dependent travel times[END_REF] and for the D-VRP [START_REF] Van Hemert | Dynamic routing problems with fruitful regions: Models and evolutionary computation[END_REF]. Genetic algorithms in dynamic contexts are very similar to those designed for static problems, except that they run throughout the planning horizon and solutions are constantly adapting to the changes made to the input.

In this work we propose two parallelized periodic reoptimization approaches. Section 2 presents a parallel adaptive large neighborhood search to tackle the D-VRPTW; Section 3 introduces a bi-objective extension of the D-VRPTW and proposes a reoptimization approach; nally, Section 4 concludes this work and gives directions for further research.

Fast reoptimization for dynamic routing

The proposed approach is based on a parallel Adaptive Large Neighborhood Search (pALNS) algorithm which is used to compute an initial solution, and then, to reoptimize the solution whenever a new customer request arrives. In the remainder of this section we present the original Adaptive Large Neighborhood Search (ALNS) algorithm, discuss the proposed parallelization scheme and the reoptimization approach, and present computational results on the D-VRPTW.

The Adaptive Large Neighborhood Search

The ALNS algorithm, originally proposed by Pisinger and Ropke [START_REF] Pisinger | A general heuristic for vehicle routing problems[END_REF], is an extension of the Large Neighborhood Search (LNS) algorithm [START_REF] Shaw | Using constraint programming and local search methods to solve vehicle routing problems[END_REF]. LNS works by successively destroying (removing customers) and repairing (inserting customers back) a current solution, using destroy and repair operators. ALNS adds an adaptive layer that randomly selects operators depending on their past performance, automatically tting the algorithm to the instance at hand. We refer the interested reader to Pisinger and Ropke [START_REF] Pisinger | Large neighborhood search[END_REF] for a detailed description of LNS, ALNS, and related methods.

Algorithm 1 Adaptive Large Neighborhood Search (ALNS) algorithm

Input: Π 0 initial solution, z evaluation function, Θ -/Θ + set of destroy/repair operators, I number of iterations Output: Π * the best solution found 1:

Π * ← Π 0 Initialize best solution 2: Π ← Π 0 Initialize current solution 3: for I iterations do 4: d ← select (Θ -) ; r ← select (Θ +)
Select destroy/repair 5:

Π ← r (d (Π)) Generate a neighbor 6: if accept (Π , Π) then Π is accepted as current solution 7: Π ← Π Update current solution 8: end if 9:
if z(Π) < z(Π *) then An improvement has been found 10:

Π * ← Π Update best solution 11: end if 12:
updateScore (d, r, Π) Update scores 13: end for 14: return Π * Algorithm 1 presents the outline of the ALNS approach. ALNS starts with an initial solution Π 0 . Then for I iterations, the algorithm selects destroy and repair operators (line 4) with a roulette wheel that re ects their past performance. Destroy operators remove a subset of customers from the current solution, while repair operators reinsert them using heuristics that are known to perform well on the problem at hand (line 5). The resulting new solution is conditionally accepted as current solution according to a simulated annealing criterion (line 6). At the end of each iteration, the scores of the destroy and repair operators are updated depending on the solution they generated (line 12).

Parallel Adaptive Large Neighborhood Search

We propose pALNS, an extension of the Adaptive Large Neighborhood Search (ALNS) algorithm that includes a novel parallelization scheme that e ciently spreads the computational e ort among independent processors. Algorithm 2 presents the outline of pALNS. The algorithm maintains a pool P of N promising solutions that are optimized in K subprocesses (note that N ≥ K). For each master iteration, a subset of K promising solutions is selected randomly (line 2) and distributed among independent subprocesses. Each subprocess performs I p ALNS iterations (lines 3-14) by destroying and repairing the current solution Π p as in the original ALNS algorithm. The nal current solution of each subprocess is Algorithm 2 Parallel Adaptive Large Neighborhood Search (pALNS) algorithm Input: P initial solutions, z evaluation function, Θ -/Θ + set of destroy/repair operators, N maximum size of the solution pool, K number of subprocesses, I m number of master iterations, I p number of iterations performed in parallel. Output: Π * , the best solution found 1: for I m iterations do 2:

P ← selectSubset (P, K) Select a subset of K solutions 3:

parallel forall Π in P do 4:

Π p ← Π Current solution for this subprocess 5:

for I p iterations do 6:

d ← select (Θ -) ; r ← select (Θ +) Select destroy/repair 7: Π ← r (d (Π p))
Destroy and repair current solution 8:

if accept (Π , Π p) then 9:

Π p ← Π Π is accepted as current solution P ← retain (P, N) Retain at most N solutions in the pool P 16: end for 17: return Π * = arg min Π∈P {z(Π)} added to the pool of promising solutions (line 13) and a ltering procedure ensures that the pool contains at most N solutions, including the best solution found so far (line 15). The algorithm stops after I m master iterations, which corresponds to I = I m × I p ALNS iterations. Note that the implementation of pALNS ensures that no synchronization is required between subprocesses to avoid deadlocks. The following paragraphs present in more detail the di erent components of the algorithm.

Destroy

Destroy operators remove a random fraction ξ ∈ [ξ min , ξ max] of the customers from the current solution. We denote R the set of customers served in the solution, and U the set of customers that are not served. We used three destroy operators originally proposed by Pisinger and Ropke [START_REF] Pisinger | A general heuristic for vehicle routing problems[END_REF]: random, related, and critical.

The random destroy operator selects customers randomly and removes them from their actual tours.

The related destroy attempts to remove customers that share some characteristics. Let the relatedness r ij of customers i and j be a measure of how related two customers are (the lower the r ij , the more related i and j). The procedure starts by randomly removing a seed customer i (U = {i}), then it iteratively selects a customer i ∈ U, and removes the most related customer j * :

j * = arg min j∈R {r ij } (1)
There are di erent ways to measure the relatedness. We propose a new metric that can be precalculated, namely a-priori relatedness, that does not depend on the actual

r s ij = 1 + c ij M c θc 1 + |b i -b j | M t θt (2)
Where c ij is the distance between i and j, b i and b j are the end of the time windows of customers i and j, M c and M t are scaling constants, θ c and θ t de ne the weight given to the geographic distance between the two customers, and the di erence between due dates respectively. On the other hand, time-oriented relatedness [START_REF] Pisinger | A general heuristic for vehicle routing problems[END_REF] measures the di erence between the current times of service A i and A j of customers i and j:

r t ij = |A i -A j | (3)
Finally, critical destroy consists in removing the customer i * such that the cost of the resulting solution is minimal:

i * = arg max i∈R {c i-1,i+1 -c i-1,i -c i,i+1 } (4)
Where i -1 and i + 1 are the predecessor and successor of i.

In practice related and critical operators are randomized and the y p |R| -th best customer is selected, where y is a random number in [0, 1) and p ≥ 1 is a parameter that controls the level of randomness (the lower the p, the more randomness is introduced).

Repair

Repair operators attempt to insert customers that are currently unserved. Our implementation is based on regret-q heuristics [START_REF] Potvin | A parallel route building algorithm for the vehicle routing and scheduling problem with time windows[END_REF]: at each iteration the algorithm inserts (at the best position) the customer with the lowest regret value. The regret-q value r q i of customer i is a measure of how desirable it is to insert i in the current iteration assuming that the best insertion will no longer be feasible in the next iteration. It is de ned as:

r q i = q h=2 ∆z h i -∆z 1 i (5)
Where ∆z q i is the cost of the q-th best insertion of customer i ∈ U. Note that ties are resolved by selecting the customer with the lowest ∆z 1 i value, and therefore regret-1 corresponds to the classical best insertion heuristic. We used three regret levels: regret-1, regret-2, and regret-3.

Adaptive layer

At each iteration, the pALNS algorithm selects a destroy and a repair operator using a selection roulette, such that operator θ ∈ Θ is selected with probability w θ , where Θ is either the set of destroy (Θ -) or repair (Θ +) operators. Probabilities are initialized with value 1 |Θ . | , and then updated every l iterations (a segment) as follows:

w θ ← (1 -ρ)w θ + ρ s θ θ∈Θ . s θ (6)
Where ρ ∈ [0, 1] is the reaction factor which de nes how quickly probabilities are adjusted, and s θ is the score of operator θ in the last l iterations. The scores s θ are

École des Mines de Nantes 9/22 Pillac, Guéret, Medaglia -Report 12/6/AUTO reset to 0 every l iterations and updated at the end of each iteration depending on the new solution: a score of σ 1 is granted for a new best solution, σ 2 for an improving solution, σ 3 for a non-improving but accepted solution, and σ 4 for a rejected solution.

It is worth noting that in contrast with the adaptive scheme originally proposed by Pisinger and Ropke [START_REF] Pisinger | A general heuristic for vehicle routing problems[END_REF], this formula ensures that θ∈Θ w θ = 1 at all time, which makes it easier to interpret the relative weight of each component.

Objective function

The initial solution or the solution resulting from the destroy operator can leave some customers unserved (U = ∅). Therefore we need to be able to evaluate a partial solution Π to account for the unserved customers. Given an evaluation function z and an initial solution Π 0 , Pisinger and Ropke [START_REF] Pisinger | A general heuristic for vehicle routing problems[END_REF] de ne the cost of partial solution Π as follows:

z φ (Π) = z(Π) + φ|U|z(Π 0) (7)
Where φ is a parameter that controls the unserved customer penalty.

Acceptance criterion

As in the original ALNS, the pALNS algorithm relies on a simulated annealing acceptance criterion which accepts a new solution Π with probability e

z(Π)-z(Π) T
, where T is the temperature parameter. The temperature is initialized with the value T 0 and it is reduced at each iteration by a cooling factor c. The two parameters T 0 and c are set depending on the initial solution and the target number of iterations [START_REF] Ropke | An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows[END_REF]. Given an initial solution Π 0 , T 0 is de ned such that a solution with value (1 + w)z(Π 0) is accepted with probability p, and c is set such that the temperature after n iterations is equal to αT 0 .

Computation of an initial solution

The pALNS algorithm requires an initial solution which is computed with a regret-3 constructive heuristic: starting with empty routes for each vehicle, the algorithm iteratively inserts the customer with the lowest regret value as described in §2.2.2.

Solution pool

The solution pool acts as a shared memory and allows subprocesses to collaborate e ciently. In the original algorithm, the simulated annealing acceptance criterion results in a search scheme that starts from a diversi cation phase, in which poor solutions may be accepted as current solutions, and progressively switch to an intensi cation phase, in which only improving solutions are accepted. The use of a solution pool that would contains the N best solutions found so far tend to break this scheme, as poor solutions may never be kept in the pool and will therefore not be exploited properly. To overcome this limitation we propose to maintain a pool of diverse solutions that are promising in terms of cost. This is achieved by the retain method (line 15) which ensures that P contains at most N solutions: if |P| > N then the method retains the N best solutions according to the tness function f :

f (Π) = (1 -λ)rank z (Π) + λrank d (Π) (8)
École des Mines de Nantes 10/22 Pillac, Guéret, Medaglia -Report 12/6/AUTO

Where λ is a weight between 0 and 1, rank z (Π) is the rank of solution Π according to its objective value, and rank d (Π) is the rank of Π according to its average brokenpairs distance [START_REF] Prins | Two memetic algorithms for heterogeneous eet vehicle routing problems[END_REF] relative to the other solutions from P. The broken pairs distance counts the number of arcs that di er between two solutions. This tness function is inspired by the biased tness introduced by Vidal et al. [START_REF] Vidal | A hybrid genetic algorithm with adaptive diversity management for a large class of vehicle routing problems with time windows[END_REF] in a genetic algorithm with diversity management. The weight λ can either be xed a-priori, or adjusted throughout the search to switch from diversi cation (λ = 1) to intensi cation (λ = 0). Note that we ensure that P always contains the best solution found so far.

Parallel reoptimization approach for the D-VRPTW

Figure 4 illustrates the proposed reoptimization approach: the algorithm starts by producing an initial solution S 0 by using a constructive heuristic coupled with the pALNS described in the previous section. Then each time a new customer appears, it xes the currently executed portion of the routes, and re-runs the pALNS for a limited number of iterations to produce an updated solution S t . If pALNS is able to insert the new customer request, then the customer is accepted and S t becomes the new current solution, otherwise the customer is rejected and S t remains as the current solution. It is important to note that the immediate commitment of idle vehicles to customers may lead to di culties when new customers appear. Figure 5 illustrates this with a single vehicle. Suppose that at time t a vehicle is assigned to a customer i, if the vehicle is dispatched immediately to i (upper left time line), it will travel to i then wait at its destination until the start of the time window (black brackets). On the other hand, if a waiting strategy is used (lower left time line), the vehicle will remain idle until the latest moment such that it will not wait at i. If at time t + 1 a new customer j appears, in the rst case j cannot be served as the vehicle is already waiting at i, while in the second case a visit to j can be inserted right before i. As a

Computational results

To assess the e ect of parallelization we tested our algorithm on the static instances for the VRPTW proposed by Solomon [START_REF] Solomon | Algorithms for the vehicle-routing and scheduling problems with time window constraints[END_REF] on a quad-core desktop computer 1 . For the detailed parameter setting of the algorithm please refer to Appendix A. 1 presents aggregated values over the 53 instances, with ten run per instance and 25,000 ALNS iterations 2 . The rst column corresponds to the original sequential (Seq.) implementation of the ALNS, and the following to the parallel implementation with 1 to 8 threads. The rst and second rows contain the mean and standard deviation of the gap value relative to either the optimal or the best known solution. Finally, the third and fourth rows show the mean and standard deviation of the CPU times. Note that increasing the number of threads has a limited impact on the gap to the best known solutions, which is consistently around 0.6%, but it allows a reduction of running times by a factor 3.3. Figure 6 presents the box plot of the distribution of the gap and CPU times for the sequential (S) and parallel implementations with 1, 2, 4, and 8 threads. A graphical analysis shows that the median gap and variance slightly decrease with the number of threads. In contrast, the median running time and variance decreases sharply with the number of threads. Therefore, we selected the con guration with 8 threads as it o ers the best compromise between q q q q q q q q q qq qq q q q q q q q q 0 1 2 3 4 5

Gap

Threads a. Gap (%) vs. number of threads S 1 2 4 8 q q q q q q q q q q q q q qq q q qq qq q q q q q q q q q q q q q q q 10 20 30 speed and quality. Note that the processor used is a quad-core with Intel hyperthreading technology which allows two threads per core. This partially explains the relatively small reduction of CPU times when switching from 4 to 8 threads.

We tested the pALNS algorithm on the instances proposed by Lackner [START_REF] Lackner | Dynamische Tourenplanung mit ausgewählten Metaheuristiken[END_REF] and based on the Solomon [START_REF] Solomon | Algorithms for the vehicle-routing and scheduling problems with time window constraints[END_REF] benchmark, in which a fraction of the customers is revealed dynamically. The instances contain 100 customers located randomly (R), in clusters (C), or combining both (RC); while the planning horizon is either short (type 1) or long (type 2); and the number of dynamic customers (or degree of dynamism, δ) is either 10, 30, 50, 70, or 90. These instances are organized combining location, horizon length, and degree of dynamism. We consider the minimization of the traveled distance. For each instance, we performed 10 simulations in which pALNS is initially run for 25,000 iterations to produce an initial solution. Then, each time a new customer appears, pALNS is run for 5,000 iterations to produce a solution that will be used until the next customer is revealed. Finally, pALNS is run for 50,000 iterations to solve the a-posteriori problem, in which all the accepted customers are assumed to be known beforehand.

Table 2 presents the Value of Information (VI) [START_REF] Lund | Vehicle routing problems with varying degrees of dynamism[END_REF] for each instance group and degree of dynamism (δ). The value of information for instance I is de ned as the ratio z(I)-z(I off)

z(I off)
where z(I) is the value of the solution found by the algorithm for the dynamic instance, and z(I off) is the value of the solution for a-posteriori instance I off . As expected, results indicate that the VI increases with the degree of dynamism, which can be explained by the fact that suboptimal routing decisions add up over time, and more decisions are made in highly dynamic instances. However, even when 90 out of 100 customers appear dynamically, the VI is of just 11% on average, which means that the algorithm is still able to produce a nal routing that is very close to what would have been done if all the customers were known from the beginning of the day.

Table 3 presents a comparison of approaches for the Lackner [START_REF] Lackner | Dynamische Tourenplanung mit ausgewählten Metaheuristiken[END_REF] instances. The rst and second columns present the traveled distance and number of rejected customers for pALNS, averaged over 10 runs and for each group and degree of dynamism. The third and fourth columns report the average distance, relative average additional distance (in parenthesis), and number of rejected customers for the Large Neighborhood Search (LNS) approach proposed by Hong [START_REF] Hong | An improved lns algorithm for real-time vehicle routing problem with time windows[END_REF], while the fth and sixth columns report the same values for the Genetic Algorithm (GA) developed by Lackner [START_REF] Lackner | Dynamische Tourenplanung mit ausgewählten Metaheuristiken[END_REF]. Note that the experimental setting of the two cited studies is not explicitly presented, which limits the relevance of direct comparisons. Nonetheless, gures show that our approach is competitive both in terms of traveled distance and number of rejected customers. In addition, average running times are of just 5.3s for the initial optimization, and 2.0s for subsequent reoptimizations, which is signi cantly less than the 33s and 47s reported by Hong [START_REF] Hong | An improved lns algorithm for real-time vehicle routing problem with time windows[END_REF] and Lackner [START_REF] Lackner | Dynamische Tourenplanung mit ausgewählten Metaheuristiken[END_REF] respectively.

Route consistency in dynamic routing: a bi-objective approach

Most studies on dynamic routing consider that routes are designed online, which means that vehicle drivers do not know their next destination until they nish serving their current customer. Although this assumption is theoretically appealing and allows a better optimization of the cost function, it may not be desirable if drivers are used to know their routes from the beginning of the day. In practice, having a set of routes known a-priori that are then changed may be desirable over purely dynamic routing. Hence there is a need for approaches able to maintain consistency in the vehicles routes throughout the day while ensuring cost e ciency.

To the best of our knowledge, all studies on dynamic routing focus on the optimization of a single criterion, such as the minimization of the total traveled distance or the maximization of the number of served customers. On the other hand, and as surveyed by Jozefowiez et al. [START_REF] Jozefowiez | Multi-objective vehicle routing problems[END_REF], a growing number of studies on static routing consider multiple objectives in an attempt to better t operational contexts. In this section we present a preliminary study that takes into account driver inconvenience. The proposed approach is an adaptation of the pALNS algorithm that simultaneously minimizes a cost function and maximizes the route consistency throughout the day.

Measuring consistency

Assuming that an initial set of routes are handed to the drivers at the beginning of the day, it seems natural to consider them as the reference routes for each driver. To prevent multiple and unnecessary changes in routes, we assume that drivers will only be informed of changes in their routes at the last possible moment. As a consequence, a change will take e ect only when necessary. From the driver's perspective, four types of changes can be made to the route: one or more customers may be a) inserted between existing customers; b) removed; c) swapped within the same route; d) substituted by a customer previously unvisited. In this context, minimizing inconvenience is therefore equivalent to minimizing the number of changes communicated to the driver.

We use the edit distance (or Levenshtein distance) as a proxy for the driver's inconvenience. The edit distance between two routes is de ned as the minimum number of insertions, removals, or substitutions of customers that have to be applied to transform one route into the other. Therefore the inconvenience of a new solution relative to a reference solution is equal to the sum of edit distances between each vehicle's reference and new routes. The advantage of this metric is that it is e ciently computed and models accurately the changes described above, and it can be adapted to give weights to each type of change. The main limitation of this proxy is that it does not necessarily re ect the e ective number of changes communicated to the driver as sections of the route may be changed later.

Figure 7 illustrates the evaluation of the edit distance between a reference and a new route. The gray nodes correspond to the portion of the route that has already been executed. The distance between the reference and new route is 3, with 1 substitution (SUB), 1 insertion (INS), and 1 removal (REM).

The proposed approach

The proposed approach, namely parallel Bi-objective Adaptive Large Neighborhood Search (pBiALNS), is an extension of the pALNS algorithm described in Section 2, and it is inspired by the bi-objective LNS proposed by Schmid and Hartl [START_REF] Schmid | Large neighborhood search for solving the Bi-Objective Capacitated m-Ring-Star Problem[END_REF]. In a nutshell, the central idea is to maintain and optimize a set of non-dominated and possibly infeasible solutions. In addition, our approach introduces a parallelization scheme that improves performance and allows its use in a dynamic context. The adaptation of the pALNS algorithm to deal with the bi-objective case is straightforward: the algorithm maintains the set P of non-dominated solutions that are optimized in K subprocesses. For I m master iterations, a subset of K nondominated solutions is selected randomly and distributed among independent subprocesses. Each subprocess performs I p ALNS iterations by destroying and repairing the current solution, considering only the main objective (cost). In contrast to the original pALNS algorithm, each temporary solution is considered for inclusion in the set of non-dominated solutions, and the number of solutions stored in P is not limited. Finally, the algorithm returns the whole set of non-dominated solutions P, from which the decision maker selects a single solution.

It is important to note that the optimization itself, which takes place in the ALNS iterations, only considers the minimization of the cost. Therefore, there is an implicit lexicographic ordering of the objectives, the maximization of the consistency being handled implicitly with the set of non-dominated solutions. This choice is motivated by the fact that at each ALNS iteration the algorithm needs to introduce changes in the current solution by removing and inserting customers, and introducing the consistency at this level would steer the approach away from cost-e ective solutions.

Note that pBiALNS may visit infeasible solutions that do not visit all customers. Therefore, we de ne a dominance relation that ensures that no feasible solution will be dominated by an infeasible solution:

De nition 1 (Dominance). A solution Π dominates (denoted ≺) a solution Π if and only if Π is as good as Π in both objectives, and strictly better in one objective, and either Π is feasible or both Π and Π are infeasible.

Computational results

We tested the pBiALNS approach on the Lackner [START_REF] Lackner | Dynamische Tourenplanung mit ausgewählten Metaheuristiken[END_REF] instances described in §2.4 with a similar experimental setting. pALNS is rst run for 25,000 iterations to produce the reference (initial) solution; then, each time a new customer appears pBiALNS is run for 5,000 iterations to produce a set of candidate new solutions to choose from; nally, pALNS is run for 50,000 iterations to produce the a-posteriori solution to the problem.

Figure 8 represents the objective space explored by pBiALNS after 5,0000 iterations for one instance, at a given step of the simulation (ie., after a new customer appeared). The graph illustrates the diversity of solutions o ered to the decision maker, ranging from the least-cost solution (upper left) to the most similar to the reference solution (lower right). For the purpose of benchmarking and to assess the tradeo between the two objectives, we de ne a threshold selection policy and select the non-dominated solution that is closest to the reference, allowing a deviation in cost of at most γ percent from the least-cost solution (green diamond). This policy models the behavior of an expert dispatcher who would select one solution among the non-dominated set. Table 4 presents (a) the average edit distance between the nal solution and the reference solution, and (b) the average gap between the cost of the nal solution and the cost of a solution evaluated a-posteriori and the average number of rejected requests, for di erent values of γ and degree of dynamism (δ). Running times are of 2.5 seconds on average at each decision. As expected, the edit distance relative to the reference solution is negatively correlated to γ, and is minimal for γ = ∞. In this case we always choose the solution which is the closest to the reference solution, in other words we simply insert new customers in the current solution, which leads to a distance equal to the number of accepted dynamic customers. It is important to note that the quality of the routing, measured by the gap to the static solution, is positively correlated to γ. This con rms the intuition that poor routing decisions tend to add up over time and can lead to larger deviations at the end of the day. Our results also indicate that, for problems with low degree of dynamism, it can be worth sacri cing quality of solution to gain route stability. For instance, with δ = 10, the value γ = 5% leads to a gap of 6% versus 2% with γ = 0%, but it reduces the number of required changes by a factor 3. However, this statement no longer holds for instances with higher degrees of dynamism where numerous changes are necessary to insert all customers. In this case it is better to focus on optimizing the routing, as it does not lead to excessive instability in routes.

Conclusions

In this work we proposed an e cient parallelization scheme for an Adaptive Large Neighborhood Search, namely pALNS. This algorithm distributes the optimization of promising solutions across multiple processors, resulting in factor 3.3 speedups on a quad-core desktop machine. The e ciency of pALNS relies on the presence of a promising solution pool with diversity management, which prevents deadlocks between optimization threads, and improves the exploration of the search space. We illustrated the e ciency of pALNS on the Solomon [START_REF] Solomon | Algorithms for the vehicle-routing and scheduling problems with time window constraints[END_REF] CVRPTW instances, for which it produces solutions in average 0.7% away from the optimal/best known solution in just 12s.

We also introduced a fast-reoptimization approach based on pALNS to tackle the dynamic VRPTW. This approach consists in running pALNS to produce an initial solution at the beginning of the day, and then running it for a limited number of iterations whenever a new customer appears. We tested our approach on the instance set proposed by Lackner [START_REF] Lackner | Dynamische Tourenplanung mit ausgewählten Metaheuristiken[END_REF]. Computational results show that pALNS is capable of achieving state of the art results in competitive time, bringing improvements of up to 12% over previous approaches.

Finally, we presented a preliminary bi-objective extension of the classical D-VRPTW that attempts to captures the drivers inconvenience resulting from dynamic routing. It is based on the notion of having a reference routing plan handled to the drivers at the beginning of the period, that will then undergo changes as new customers arrive. We introduced an inconvenience metric that measures the consistency between an updated routing plan and the reference plan. We proposed a fast bi-objective optimization approach based on pALNS, namely pBiALNS, which maintains and optimizes in parallel the set of non-dominated solutions.

This optimization algorithm was used coupled with a threshold policy modeling an expert dispatcher to tackle the D-VRPTW instances proposed by Lackner [START_REF] Lackner | Dynamische Tourenplanung mit ausgewählten Metaheuristiken[END_REF]. Our results indicate that there is a clear tradeo between minimizing the traveled distance and maintaining consistency in routes. Furthermore, it appears that for problems with a low degree of dynamism it can be worth sacri cing cost e ciency to maintain consistency. In contrast, in highly dynamic problems the priority should be given to the minimization of the cost, as it does not lead to excessive inconsistency in routing.

Future research should focus on the development of a continuous reoptimization approach based on pALNS that runs throughout the day and maintains a pool of alternative promising solutions as adaptive memory. In addition, pALNS could be improved by having completely independent subprocesses that pull their starting solution from the pool, and push their nal solution, without waiting for other subprocesses to nish. pBiALNS could be re ned to better approximate the Pareto front, rst in the selection of the non-dominated solutions to optimize, then by applying a local search or a path relinking between non-dominated solutions.

annealing temperature. Over all our experiments the combination of an adaptive diversity management with I p = 50 and N = 40 showed the best results for 25,000 pALNS iterations, and I p = 100 and N = 10 for 5,000 pALNS iterations. The remaining parameters were directly derived from the work by Pisinger and Ropke [START_REF] Pisinger | A general heuristic for vehicle routing problems[END_REF].

Parameter

Figure 1 :

 1 Figure 1: Illustration of a typical dynamic vehicle routing problem.

Figure 2 :

 2 Figure 2: Overview of periodic reoptimization approaches

Figure 3 :

 3 Figure 3: Overview of continuous reoptimization approaches

Figure 4 :

 4 Figure 4: Overview of the proposed approach

Figure 5 :

 5 Figure 5: Illustration of the waiting strategy.

12

 CPU: Intel i7 860 (4x2.8GHz), RAM: 6GB DDR3, OS: Ubuntu 11.10 x64, Java 7 To ensure that I = I m × I p × K 25000, we used I m = 25000 40×K École des Mines de Nantes 12/22 Pillac, Guéret, Medaglia -Report 12/6/AUTO

Figure 6 :

 6 Figure 6: Impact of the number of threads on the gap and CPU time.

Figure 7 :

 7 Figure 7: Example of the edit distance between two routes.

Figure 8 :

 8 Figure 8: Objective space for instance R101 and illustration of the threshold policy.

Table 1 :

 1 Comparison of gap to the best known solutions and running times for different levels of parallelization.

					Parallel -Num. of Threads		
		Seq.	1	2	3	4	5	6	7	8
	Gap	0.74%	0.72%	0.55%	0.69%	0.54%	0.70%	0.52%	0.66%	0.48%
	Gap (st. dev.)	0.87%	0.88%	0.76%	0.89%	0.70%	0.86%	0.74%	0.82%	0.66%
	Time (s)	36.58	37.32	22.07	17.60	14.70	14.69	13.39	12.37	11.32
	Time (s, st. dev.)	6.27	6.33	4.06	3.17	2.72	2.57	2.50	2.27	2.15
	Table									

Table 2 :

 2 Average value of information for the Lackner[START_REF] Lackner | Dynamische Tourenplanung mit ausgewählten Metaheuristiken[END_REF] instances

	δ	R1	C1	RC1	R2	C2	RC2	Avg.
	10	2.05%	2.89%	3.06%	1.70%	1.66%	1.61%	2.14%
	30	4.67%	5.83%	5.83%	4.34%	1.74%	4.70%	4.54%
	50	6.41%	9.28%	9.03%	8.15%	2.82%	5.38%	6.93%
	70	8.29%	11.18%	10.24%	10.17%	5.41%	8.60%	9.03%
	90	9.33%	12.49%	11.84%	11.83%	6.51%	12.33%	10.71%

Table 3 :

 3 Comparison of approaches for the Lackner[START_REF] Lackner | Dynamische Tourenplanung mit ausgewählten Metaheuristiken[END_REF] instances.

	École des Mines de Nantes	15/22	Pillac, Guéret, Medaglia -Report 12/6/AUTO

Table 4 :

 4 Evolution of the distance to reference solution and gap to a-posteriori solution for di erent degrees of dynamism and values of γ

	(a) Average edit distance to reference solution			
				γ			
	δ	0%	1%	2%	5%	10%	∞
	10	32.8	19.3	17.0	12.9	12.6	9.8
	30	59.4	48.1	44.2	39.2	36.4	29.6
	50	78.2	70.3	65.9	61.4	58.2	49.4
	70	87.6	84.0	81.7	78.5	75.7	69.2
	90	95.7	94.5	93.9	92.7	91.3	88.9
	(b) Average gap to a-posteriori solution (%) and number of rejected requests (in parenthesis)	
				γ			
	δ	0%	1%	2%	5%	10%	∞
	10	2.0 (0.1)	2.8 (0.1)	4.2 (0.1)	6.1 (0.1)	8.1 (0.1)	11.2 (0.2)
	30	4.3 (0.3)	5.6 (0.3)	6.5 (0.3)	10.9 (0.2)	16.3 (0.2)	29.3 (0.4)
	50	6.4 (0.3)	7.6 (0.3)	9.1 (0.4)	13.1 (0.3)	18.7 (0.3)	50.1 (0.6)
	70	9.0 (0.4)	10.3 (0.4)	11.8 (0.5)	15.3 (0.5)	20.5 (0.4)	71.0 (0.8)
	90	9.8 (0.7)	10.8 (0.7)	11.6 (0.6)	14.4 (0.6)	19.4 (0.7)	95.5 (1.1)

Table 5 :

 5 Detailed parameter setting for the pALNS algorithm for 25,000 iterations, values in parenthesis indicate adjusted values for 5,000 iterations.

École des Mines de Nantes 22/22 Pillac, Guéret, Medaglia -Report 12/6/AUTO

École des Mines de Nantes 6/22 Pillac, Guéret, Medaglia -Report 12/6/AUTO

École des Mines de Nantes

Pillac, Guéret, Medaglia -Report 12/6/AUTO

Acknowledgements Financial support for this work was provided by the CPER Vallée du Libre (Contrat de Projet Etat Region, France); and the CEIBA (Centro de Estudios Interdisciplinarios Básicos y Aplicados en Complejidad, Colombia). This support is gratefully acknowledged.