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Abstract

The Technician Routing and Scheduling Problem (TRSP) consists in routing staU to

serve requests for service, taking into account time windows, skills, tools, and spare

parts. Typical applications include maintenance operations and staU routing in tele-

coms, public utilities, and in the health care industry. In this paper we tackle the Dy-

namic TRSP (D-TRSP) in which new requests appear over time. We propose a fast reop-

timization approach based on a parallel Adaptive Large Neighborhood Search (pALNS)

and a Multiple Plan Approach (MPA). Finally, we present computational experiments

on randomly generated instances.
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1 INTRODUCTION

1 Introduction

The Technician Routing and Scheduling Problem (TRSP) deals with a limited crew of tech-

nicians K that serves a set of requests R. The TRSP can be seen as an extension of the

Vehicle Routing Problem with Time Windows (VRPTW), where technicians play the role

of vehicles and requests are made by clients. In the TRSP, each technician has a set of

skills, tools, and spare parts, while requests require a subset of each. The problem is then

to design a set of tours such that each request is visited exactly once, within its time win-

dow, by a technician with the required skills, tools, and spare parts. The TRSP naturally

arises in a wide range of applications, including telecoms, public utilities, and maintenance

operations.

This problem introduces compatibility constraints between technicians and requests.

While skills are intrinsic attributes, technicians may carry diUerent tools and spare parts

over the planning horizon. Technicians usually start their tour from their home with an

initial set of tools and spare parts that allows them to serve an initial set of requests. They

also have the opportunity to replenish their tools and spare parts at a central depot at any

time to serve more requests. Tools can be seen as renewable resources, while spare parts

are non renewable and consumed once the technician serves a customer.

Figure 1 illustrates an instance of the TRSP with two technicians and six requests. Tech-

nician A has the green skill, while B has both green and blue skills. Technician A starts its

tour at home (gray diamond) with a hammer and a screwdriver, then serves requests 1, 2,

and 3, before returning home. Technician B Vrst serves 4, then goes to the central depot

(black square) to pick up a drill that allows him/her to serve request 6 after serving request

5. Note that although request 5 is close to the tour of technician A, only technician B can

serve it due to skill constraints.

Skills

Tools

A

B

1

6

3

5

2
Pickup

4

Main depot

Home

Home

Skills

Tools

Figure 1: Example of a technician routing and scheduling problem with two technicians,
three tools, and two skills

The static deVnition of the TRSP was introduced by the authors in Pillac et al. [22]. In

this work, we tackle a dynamic variant of the problem, namely the D-TRSP, in which new

requests appear while the technicians are executing their routes. In this context, two types

of decisions have to be taken in real time. First, whenever a technician Vnishes serving

a request, it must be decided what will be the next request to visit. Second, whenever a

request appears, the algorithm must decide whether it is possible or desirable to accept it

or not. If not the request is said to be rejected, it leads to a cost penalty corresponding to
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1 INTRODUCTION

the outsourcing/postponing of the request.

Despite its numerous practical applications and its challenging features, static techni-

cian routing and scheduling problems have received limited attention until recently, and

to the best of our knowledge, no study simultaneously considers skills, tools, and spare

parts. For instance, Xu and Chiu [37] studied the Field Technician Scheduling Problem

(FTSP) seen as a variant of the VRPTW, in which the objective is to maximize the number

of requests served while accounting for skill constraints, request priorities, multiple de-

pots, and overtime. The authors describe a mixed integer formulation and develop three

heuristics including a GRASP algorithm. Similarly, Weigel and Cao [36] present a software

solution developed for Sears, a US retailer that serves its customers with home delivery

and on-site technical assistance. The proposed solution works by Vrst assigning techni-

cians to requests, and then optimizing technician routes individually. Tsang and Voudouris

[33] studied the technician workforce scheduling problem faced by British Telecom. Their

study does not consider skill constraints, but uses a proVciency factor that reduces the ser-

vice time depending on the technician experience. They propose a Fast Local Search and a

Guided Local Search to solve this problem. Borenstein et al. [7] extended this problem ac-

counting for dynamic requests and skill compatibility constraints. They cluster the requests

using a k-mean algorithm followed by a heuristic that assigns technicians to areas. Finally,

they propose a rule-based system that assigns and sequences the requests. They conclude

their study by assessing the impact of soft clustering and show that it can increase system

performance under certain assumptions.

Maintenance operations planning is a problem closely related to the TRSP. Blakeley

et al. [6] present the optimization of periodic maintenance operations for Schindler Eleva-

tor Corporation in North America, a company that manufactures, installs, and maintains

elevators and escalators. The problem faced by this company consists in designing a set

of routes for technicians to perform periodic maintenance and repairs taking into account

travel times, working regulations, and skill constraints. A similar application was studied

by Tang et al. [31] who formulate the problem as a multi-period maximum collection prob-

lem in which time-dependent rewards are granted for the completion of a request. This

approach allows the modeling of soft constraints such as the desirability of performing a

task in a given day (job-to-time penalties). The authors propose a Tabu Search (TS) algo-

rithm that yields near-optimal solutions on real instances in reasonable time.

In 2007 the French Operations Research Society (ROADEF) organized a challenge based

on a problem submitted by France Telecom. The problem consists in Vnding a schedule

for technicians to execute a set of tasks on a multiple-day horizon. Each task requires

one or more skills with diUerent minimum proVciency levels, while technicians can have

multiple skills with a given proVciency. An important aspect is the creation of teams that

work together during one day, combining the skills of their members, and the possibility

to outsource the execution of a task. However, this problem ignores the routing aspects.

Cordeau et al. [11] proposed a mathematical model and an Adaptive Large Neighborhood

Search (ALNS), while Hashimoto et al. [15] proposed a Greedy Randomized Adaptive Search

procedure (GRASP) approach to tackle this problem.

Work regulation is an important aspect of technician routing and scheduling. Tricoire

[32] presents a technician routing problem faced by Veolia, a water distribution and treat-

ment company. In this application, technicians have the skills to perform all requests that
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1 INTRODUCTION

are divided in two categories: user requested interventions and company scheduled vis-

its. As new requests appear on a daily basis, the routing of technicians is performed on a

rolling horizon, taking into account work regulations and customer service standards. The

main contributions are a column generation approach and a memetic algorithm [8]. Their

approaches take advantage of partial solutions from previous plans in the rolling horizon

framework to reduce computational times.

A number of technological advances have led to a renewed interest in dynamic vehicle

routing problems, leading to the development of new optimization approaches. Pillac et al.

[19] classify dynamic routing problems in two categories: deterministic and stochastic. In
both cases the information available to the stackholder changes over time. In stochastic set-

ting, data is available on the dynamically revealed information in the form of known proba-

bility distributions, while in deterministic problems, changes are simply unpredictable. The

present work falls in the dynamic and deterministic category, for which approaches are

based either on periodic reoptimization or continuous reoptimization.
Periodic reoptimization approaches start at the beginning of the day by producing an

initial set of routes that are communicated to the vehicles. As the available information

is updated along the day, or at given intervals of time, an optimization is performed using

the currently available information to update the routing. Such approaches can be based

on algorithms developed for static problems and are therefore relatively easy to implement,

however, they may introduce delays between the update of the information and the routing

plan. Such approaches include the Ant Colony Systems (ACS) proposed by Montemanni

et al. [18] to solve the Dynamic VRP (D-VRP). A novel feature of their approach is the use

of the pheromone trace to transfer characteristics of a good solution between reoptimiza-

tions. ACS was also used by Gambardella et al. [12] and Rizzoli et al. [26]. Other heuristic

approaches, such as Tabu Search (TS), were also used to tackle the Dynamic Pickup and

Delivery Problem (D-PDP) [2, 9] and the Dynamic Dial-a-Ride Problem (D-DARP) [1, 3].

Continuous reoptimization approaches run throughout the day and are generally based

on an adaptive memory [30] that stores alternative solutions. The adaptive memory is then

used to react to changes in the available information, thus avoiding a complete reoptimiza-

tion of the problem. Gendreau et al. [13] developed a parallel TS with adaptive memory to

tackle a Dynamic VRPTW (D-VRPTW), that was later applied to the D-VRP [16, 17]. Bent

and Van Hentenryck [4] generalized this framework and introduced the Multiple Plan Ap-

proach (MPA) to tackle the D-VRPTW. Following a diUerent approach, Benyahia and Potvin

[5] studied the Dynamic Pickup and Delivery Problem (D-PDP) and proposed a Genetic Al-

gorithm (GA) that models the decision process of a human dispatcher. More recently, GAs

were also used for the same problem [10, 14] and for the D-VRP [34].

To the best of our knowledge, no work considers simultaneously skills, tools, spare

parts, and dynamically arriving requests, four important components of technician routing

and scheduling. The present work addresses this aspect and proposes two optimization

approaches for the dynamic version of the problem, noted D-TRSP, where new requests

arrive during the execution of the routes. Section 2 introduces a fast reoptimization ap-

proach based on a parallel adaptive large neighborhood search; then Section 3 introduces a

continuous reoptimization algorithm based on a multiple plan approach; Vnally, Section 4

presents the computational results and Section 5 concludes this paper and draws directions

for future research.
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2 PALNS

2 A fast reoptimization approach

The proposed approach is based on the parallel Adaptive Large Neighborhood Search (pALNS)

reoptimization algorithm introduced by Pillac et al. [21], which is used to Vrst compute an

initial solution, and then to reoptimize the solution whenever a new customer request ar-

rives. The pALNS extends the Adaptive Large Neighborhood Search (ALNS) algorithm [23],

which in turn is an extension of the Large Neighborhood Search (LNS) algorithm [24, 28].

LNS works by successively destroying (removing customers) and repairing (inserting cus-

tomers back) a current solution, using destroy and repair operators. ALNS adds a layer that
randomly selects operators depending on their past performance, allowing a self-adaptive

version of the algorithm to the instance at hand.

Algorithm 1 presents the outline of pALNS as introduced in Pillac et al. [21]. The algo-

rithm maintains a pool P of N promising solutions that are optimized in K subprocesses

(note thatN ≥ K). For eachmaster iteration, a subset ofK promising solutions is selected

randomly (line 3) and distributed among independent subprocesses. Then for Ip iterations,

each subprocess selects destroy and repair operators with a roulette wheel that adaptively

reWects their past performance (line 7). The resulting new solution is either accepted as

the subprocess current solution or rejected according to a simulated annealing criterion

(line 9), the weights of the destroy and repair operators are updated depending on their

performance (line 15). The Vnal current solution is added to the pool of promising solu-

tions (line 17) and a Vltering procedure ensures that the pool contains at most N solutions,

including the best solution found so far (line 19). The algorithm stops after Im master

iterations, which corresponds to I = Im × Ip ALNS iterations.

Algorithm 1 Parallel Adaptive Large Neighborhood Search (pALNS) algorithm

Input: P , initial solutions; z, evaluation function; Θ−/Θ+, set of destroy/repair operators;
N , maximum size of the solution pool; Km number of subprocesses; Im, number of
master iterations; Ip, number of iterations performed in parallel.

Output: Π∗, the best solution found
1: Π∗ ← arg minΠ∈P {z(Π)}
2: for Im iterations do
3: P ′ ← selectSubset (P,K) . Select a subset ofK solutions
4: parallel forall Π in P ′ do
5: Πp ← Π . Current solution for this subprocess
6: for Ip iterations do
7: d← select (Θ−) ; r ← select (Θ+) . Select destroy/repair
8: Π′ ← r (d (Πp)) . Destroy and repair current solution
9: if accept (Π′,Πp) then
10: Πp ← Π′ .Π′ is accepted as current solution
11: end if
12: if z(Π′) < z(Π∗) then
13: Π∗ ← Π′ .Π′ is the best solution found so far
14: end if
15: updateScore (d, r,Π′) . Update d and r scores
16: end for
17: P ← P ∪ {Πp} . Add Πp to the pool P
18: end forall
19: P ← retain (P,Π∗, N) . Retain at most N solutions in the pool P
20: end for
21: return Π∗
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3 A MULTIPLE PLAN APPROACH

the pALNS algorithm uses three destroy operators (random, related, and critical), and

three repair operators (regret-1, regret-2, regret-3). The promising solution pool P main-

tains theN best solutions according to a Vtness function that considers both the cost of the

solution and its diversity relative to the other solutions in the pool. The interested reader

is referred to the work by Pillac et al. [21] and Pillac et al. [22] for more details on the

approach.

To tackle the D-TRSP, we modiVed the related destroy operator, which attempts to

remove a subset of requests that share some characteristics. We deVne the relatedness
rij of requests i and j as a measure of how related two requests are (the lower the rij ,

the more related i and j). The procedure starts by randomly removing a seed request i

(U = {i}), then it iteratively selects a request i ∈ U , and removes the most related request

j∗ = arg minj∈R′ {rij} from the set of unserved requests R′. In practice the selection

process is randomized and the byp|R′|c-th most related request is selected, where y is a

random number in [0, 1) and p ≥ 1 is a parameter that controls the level of randomness

(the lower the p, the more randomness is introduced). For the D-TRSP we introduced the

a-priori relatedness, which is a precalculated metric that does not depend on the actual

position of requests in the tours:

rsij =

(
1 +

cij
Mc

)θc (
1 +
|bi − bj |
Mt

)θt (
2− |Ki ∩ Kj |

min {|Ki|, |Kj |}

)θs
(1)

WhereMc andMt are scaling constants, and θc, θt, and θs are factors that deVne the weight

given to each metric component. The Vrst component, measures the geographic distance

between the two requests (cij ). The second is the diUerence of due dates bi and bj . The third

measures the number of technicians that can serve both requests, which is modeled by the

intersection of the setsKi andKj of technicians that can serve request i and j respectively.

The second major adaptation focuses on the objective function that considers the min-

imization of the total working time (i.e., the sum of traveling times, service times, and

waiting times). We used the concept of forward time slack introduced by Savelsbergh [27]

to eXciently evaluate the minimal duration of a tour and the cost of inserting a request in

a tour.

Figure 2 presents an overview of the proposed approach. The algorithm starts by pro-

ducing an initial solution S0 by using a constructive heuristic coupled with pALNS. Then

each time a new customer appears, it Vxes the currently executed portion of the solution,

and re-runs the pALNS for a limited number of iterations, producing an updated solution

S′t. If pALNS is able to insert the new customer request, then the customer is accepted and

S′t becomes the new current solution, otherwise, the customer is rejected and St remains as

the current solution.

3 A Multiple Plan Approach

The second proposed approach for the D-TRSP is based on the Multiple Plan Approach

(MPA) introduced by Bent and Van Hentenryck [4] to tackle the D-VRPTW. MPA is a gen-

eralization of the tabu search with adaptive memory proposed by Gendreau et al. [13]. The

general idea is to populate and maintain a solution pool (the routing plans) that are used
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Start

pALNS

End 
of day?
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pALNS

Updated solution 
St+1

End

NO

Wait until a new 
customer appears

Initial solution 
S0

Accept? Select new current
solution

YES

Candidate solution
St'

Figure 2: Overview of the proposed fast reoptimization approach

to generate a distinguished solution. Whenever a new request arrives, a procedure is called

to check whether it can be served or not; if it can be served, then the request is inserted

in each plan of the solution pool and incompatible solutions are discarded. Pool updates

are performed periodically or whenever a vehicle Vnishes serving a customer. This pool-

update phase is crucial and ensures that all solutions are coherent with the current state of

vehicles and customers. The pool can be seen as an adaptive memory that maintains a set

of alternative solutions.

The present work is based on the event-driven optimization framework for dynamic

vehicle routing proposed by the authors, namely jMSA [20]. By design, jMSA is a Wexible,

parallel, and event-driven Java implementation of the Multiple Scenario Approach (MSA)

[35], which is an extension of MPA for dynamic and stochastic routing problems. The pro-

posed framework is designed to facilitate and accelerate the development and deployment

of MSA-based algorithms embeddable in decision support systems.

Kernel

Problem layer

Events Handlers

MSA 
procedure Event 

queue
Handler
manager

Callback

Components Plan

Plan 
pool

Plan 
generator

Plan 
optimizer

Plan 
updater

…

Figure 3: Design overview of the jMSA framework

Figure 3 outlines the main aspects of the jMSA framework: the kernel contains the com-
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3 A MULTIPLE PLAN APPROACH 3.1 Plan generation

ponents that deVne the event-driven behavior, and a generic deVnition of the problem layer
components. To adapt the framework for a speciVc problem, the user needs only to im-

plement a subset of components, mainly to generate, optimize, and update plans. The

following paragraphs give more details on how jMSA was adapted to tackle the D-TRSP.

Event loopMain loop

Start

Generate
plans

End 
of day?

NO

YES

Optimize
plans

End

Wait until 
next event

Plan
pool

End 
of day?

YES

Make decision

End

Update pool

NO

Routing decision

Figure 4: Overview of the multiple plan approach implemented with jMSA

Figure 4 presents a conceptual overview of the MPA procedure as implemented in the

jMSA framework. jMSA starts two subprocesses: a main loop and an event loop. The main

loop is responsible for continuously generating and optimizing a set of alternative solutions

(the routing plans) stored in the plan pool. This main loop maximizes the utilization of the

computational resources when the system is idle, i.e., when no decision is required. On

the other hand, the event loop reacts to events from the environment, which can be of

two types: a) a customer calls in and requests a service; b) a technician Vnishes serving a

request and becomes idle. In the Vrst case, the algorithm looks for a feasible insertion of the

new request in all the solutions in the pool. If at least a given fraction of the solutions can

accommodate the request, then it is accepted, otherwise it is rejected. In the second case,

the algorithm selects a solution from the pool and assigns a request to all idle technicians.

The event loop is also responsible for updating the pool and ensuring that all plans are

coherent with the current state of the environment.

3.1 Plan generation

The goal of the plan pool is to maintain a set of diverse solutions for the current routing

problem that could be used later to cope with the arrival of new requests. It is therefore

necessary to have a randomized constructive heuristic that will produce a set of solutions

that are both diverse and of good quality.

Our implementation is based on a randomized regret-3 heuristic [25] which iteratively

inserts requests at their best position. More formally let U be the set of requests that are

currently not visited in the solution and let ∆zki be the cost of insertion of request i ∈ U
in its k-th best route. The regret-q value rqi associated with request i is a measure of how

desirable it is to insert i in the current iteration assuming that the best insertion will no
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3 A MULTIPLE PLAN APPROACH 3.2 Optimization procedure

longer be feasible in the next iteration. It is deVned as:

rqi =

q∑
k=2

(
∆zki −∆z1i

)
(2)

The randomized regret-3 algorithm iteratively selects the next request to insert using a

roulette wheel in which each request is given a probability pi:

pi =
r3i∑
j∈U r

3
j

(3)

3.2 Optimization procedure

The optimization procedure continuously optimizes the pool of solutions. The fact that a

solution might go through the optimization process more than once requires an algorithm

able to escape from local optima to further improve a solution. Therefore, we implemente

an Adaptive Large Neighborhood Search (ALNS) similar to the pALNS presented in Sec-

tion 2. Note that the choice of having a sequential optimization algorithm is motivated by

the fact that jMSA will optimize various plans in parallel.

Algorithm 2 outlines the ALNS algorithm. ALNS starts with an initial solutionΠ. Then

for I iterations, the algorithm selects destroy and repair operators (line 4) with a roulette

wheel that reWects their past performance. The destroy operator removes a subset of re-

quests from the current solution that are then reinserted by the repair operator (line 5). The

resulting new solution is accepted as current solution according to a simulated annealing

criterion (line 6). At the end of each iteration, the scores of the destroy and repair operators

are updated depending on the solution they generated (line 12).

Algorithm 2 Adaptive Large Neighborhood Search (ALNS) algorithm

Input: Π0 initial solution, z evaluation function, Θ−/Θ+ set of destroy/repair operators,
I number of iterations

Output: Π∗ the best solution found
1: Π∗ ← Π0 . Initialize best solution
2: Π← Π0 . Initialize current solution
3: for I iterations do
4: d← select (Θ−) ; r ← select (Θ+) . Select destroy/repair
5: Π′ ← r (d (Π)) . Generate a neighbor
6: if accept (Π′,Π) then .Π′ is accepted as current solution
7: Π← Π′ . Update current solution
8: end if
9: if z(Π′) < z(Π∗) then . An improvement has been found
10: Π∗ ← Π′ . Update best solution
11: end if
12: updateScore (d, r,Π′) . Update scores
13: end for
14: return Π∗

3.3 Interactions with the decision maker

The decision maker interacts with MPA by raising events. In the context of the D-TRSP,

there are two major events: the arrival of a new request and the end-of-service of a request.
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3 A MULTIPLE PLAN APPROACH 3.3 Interactions with the decision maker

Arrival of new requests Whenever a new request appears, a procedure attempts to

insert it in all the plans in the pool. The procedure starts by trying to insert the request

directly, if it fails, it removes a fraction of the requests and uses regret-3 to attempt to

reinsert all requests. If at least a given fraction of the plans can accommodate the new

request then it is accepted and the plans are updated accordingly, otherwise the request is

marked as rejected.

Real-time routing decisions When a technician Vnishes serving a request and becomes

idle, a decision needs to be taken on what will be his/her next assignment. To this end we

use the consensus algorithm [35] which aggregates the information contained in the plans

from the pool to select a distinguished solution and assign requests to idle technicians. The

intuition behind consensus is to assign to each technician the requests that appear Vrst

with the highest frequency across plans. As multiple technicians are involved, the con-

sensus algorithm selects a solution from the pool that maximizes the consensus across all

technicians. Algorithm 3 presents the details of the algorithm. Consensus starts by count-

ing the number of times each request appears Vrst in a tour across all solutions from the

pool (lines 1 to 6). Then the algorithm evaluates each solution by summing the evaluations

of the Vrst request of each of its tours (line 11). Finally, the solution Π∗ with the high-

est evaluation is returned, and the Vrst unserved request of each tour in Π∗ is the next

assignment of the corresponding technician.

Algorithm 3 The consensus algorithm
Input: P a pool of alternative solutions
Output: Π∗ a distinguished solution
1: e← [0]i∈R . Initialize the evaluation of all requests
2: for all Π ∈ P do . For each solution in the pool
3: for all π ∈ Π do . For each tour in the solution
4: e[π0]← e[π0] + 1 . Increment the evaluation of the Vrst unserved request π0
5: end for
6: end for
7: s∗ ← 0
8: for all Π ∈ P do
9: s← 0 . Initialize the evaluation of this scenario
10: for all π ∈ Π do
11: s← s+ e[π0] . Update the evaluation of this scenario
12: end for
13: if s > s∗ then
14: Π∗ ← Π
15: end if
16: end for
17: return Π∗

Waiting strategy It is important to note that the immediate commitment of idle techni-

cians to requests may lead to diXculties when new requests appear. Figure 5 illustrates this

with a single technician. Suppose that at time t a technician is assigned to a request i, if the

technician is committed immediately to i, it will travel to i then wait at its destination until

the start of the time window (black brackets). On the other hand, if a waiting strategy is

used, the technician will remain idle until the latest moment such that it will not wait at i.
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4 PRELIMINARY RESULTS

Assume now that at time t+ 1 a new request j appears, in the Vrst case j cannot be served

as the technician is already waiting at i (the hashed section is already executed), while in

the second case it can be inserted right before i.

i

i

i

ij

Immediate
commitment

Waiting
strategy

t t+1

travel wait serve

idle travel serve

executed

Figure 5: Advantage of a waiting strategy.

The proposed waiting strategy is implemented as follows: Vrst, the procedure evaluates the

latest departure time so that the technician will not have to wait at its next request. If this

departure time is within a given range, then it is assumed there is not enough time to change

the technician’s route and the technician is committed to the next request. Otherwise, the

technician remains in an idle state for a given time, after what a new decision is taken,

leaving time for further changes in assignments.

4 Preliminary results

We tested the pALNS and MPA approaches on a set of 56 randomly generated instances

based on the Solomon [29] testbed. The instances contain 100 requests located randomly

(R), in clusters (C), or combining both (RC); while the planning horizon is either short (type

1) or long (type 2). These instances are organized combining location and horizon (i.e., C1,

C2, R1, R2, RC1, and RC2). We considered 5 skills, 5 tools, and 5 types of spare parts. For

each request, we selected 1 skill, and between 0 and 2 tools and spare part types. Each of

the 25 technicians has between 2 and 4 skills, and an initial set of 0 to 5 tools, and 2 to 5

spare parts. In addition, we generated release dates for either 10, 30, 50, 70, or 90 requests,

leading to a complete testbed of 280 dynamic instances.

We compare the two proposed approaches with a regret-3 heuristic. This simple ap-

proach starts with the same initial solution as pALNS. Each time a new request appears, it

attempts to insert it in the current solution using a regret heuristic, rejecting it if it cannot

be inserted. The parameter setting for the pALNS reoptimization approach is identical to

the one presented in Pillac et al. [21], we allowed for 25,000 iterations for the calculation of

the initial solution, and 5,000 for subsequent reoptimizations. The maximum pool size for

MPA was set to 50 plans, while the ALNS algorithms used the same parameters as in Pillac

et al. [21], with a maximum of 5,000 iterations per optimization.

The same simulation procedure was used to test the three approaches. First, the simu-

lator allows them time to either design an initial solution (pALNS and regret-3) or initialize

the pool of plans (MPA). Then the procedure simulates the routing of the technicians using

an average traveling speed and taking into account waiting times. Whenever a technician

becomes idle, the simulator uses the current solution (pALNS and regret-3) or distinguished

plan (MPA) to select the next assignment for this technician. The simulator handles the new

requests and depending on the approach response it marks them as accepted or rejected.
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4 PRELIMINARY RESULTS 4.1 Minimizing the total working time

Finally, it Vnds an a-posteriori solution to the problem deVned by all the accepted requests

using pALNS with 50,000 iterations.

4.1 Minimizing the total working time

The static TRSP problem [22] considers the minimization of the total working time. In

a dynamic setting, this objective leads to the premature ending of tours: technicians are

sent home as soon as possible to reduce the duration of their tour, ignoring the fact that

additional requests may appear in the future. To prevent this behavior we deVne a cutoU
policy that ensures for an instance I that technicians will no be sent back to their home until

time tc(I). Considering that each instance have a diUerent horizon [0, T (I)], we deVne

the relative cutoU α(G) for instance group G. The value of α(G) is deVned such that all

requests of instance I ∈ G will be known before α(G)T (I) with a certain probability. In

our experiments, α(G) corresponds to the 90-percentile of the distribution of
{
rdImax

T (I)

}
I∈G

where rdImax is the last release date for instance I
1.

A direct consequence of this policy is that the minimal tour duration for instance I is

either 0 (if the technician is not used), or α(G)T (I). Therefore the total duration at the end

of the day is signiVcantly longer than the one found when solving the static problem.

pALNS MPA regret-3

δ Gap (%) R Gap (%) R Gap (%) R

10 65.7 0.0 152.8 1.5 59.9 0.4
30 79.5 0.1 160.1 3.2 84.6 0.6
50 93.0 0.1 150.6 4.6 100.4 1.0
70 100.3 0.2 153.9 6.3 113.8 1.4
90 102.8 0.4 154.0 6.0 122.3 1.8

Avg. 88.3 0.2 154.3 4.4 96.2 1.0

Table 1: Average gap to a-posteriori solution and number of rejected requests for the
D-TRSP instances minimizing the total duration.

Table 1 reports the results for the 56 instances and 5 degrees of dynamism when min-

imizing the total duration. The Vrst column contains the degree of dynamism (δ) deVned

as the number of dynamic requests. The second and third columns report the average gap

to an a-posteriori solution2 and the average number of rejected requests (R) for the pALNS.

The fourth and Vfth columns contain these statistics for the MPA, and the seventh and

eighth columns for the regret-3 heuristic. Note that running times for pALNS are of 12s on

average for the calculation of the initial solution and 2.8s for subsequent reoptimizations,

while decision times are negligible for both MPA and regret-3.

Firstly, it can be observed that gaps are large regardless of the approach. This is due to

the fact that the a-posteriori solution does not consider the cutoU strategy enforced in the

dynamic context. Therefore the gap should not be interpreted as an absolute performance

metric, but instead as a metric that allows comparisons between approaches. Secondly, the

1With this deVnition: αC1 = 0.380, αC2 = 0.509, αR1 = 0.357, αR2 = 0.419, αRC1 = 0.321,
αRC2 = 0.400

2The gap for instance I is deVned as the ratio z(I)−z(I)
z(I)

where z(I) is the value of the solution found by the

algorithm for the dynamic instance, and z(I) is a lower bound obtained by solving the static a-posteriori instance
with 50,000 iterations of the pALNS algorithm.
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4 PRELIMINARY RESULTS 4.2 Minimizing the total distance

results show that, as expected, both the gap and number of rejected requests increase with

the degree of dynamism. Finally, they indicate that the pALNS approach leads to better

solutions both in terms of quality of the routing (measured by the gap) and ability to cope

with new requests (measured by R). In contrast, MPA performs poorly and is dominated

by the simpler regret-3 reoptimization approach. This can be explained by the fact that

the decision process in MPA does not take into account the cost (total duration) of plans to

select the distinguished plan, while the other two approaches explicitly focus on the cost.

In addition, our experiments show that MPA tends to use more technicians, starting more

tours than pALNS and regret-3. Considering that technicians then have to wait until the

cutoU time, this leads to a greater total duration. On the other hand, the higher number of

rejected requests can be explained by the fact that MPA is more conservative than the other

approaches, as it requires that a fraction of the plans can accommodate the new requests,

while the other approaches only require a feasible insertion in the current solution.

4.2 Minimizing the total distance

The cutoU policy forces technicians to wait at their current location before returning home.

Thus, the minimization of the working time may not be as relevant in a dynamic context

as it is for the static case. To assess the validity of this objective, we performed the same

experiments with the minimization of the traveled distance.

pALNS MPA regret-3

δ Gap (%) R Gap (%) R Gap (%) R

10 2.4 0.1 9.1 1.9 10.5 0.3
30 5.4 0.1 11.0 4.6 30.5 0.4
50 10.8 0.3 14.4 5.6 44.1 1.0
70 11.8 0.2 21.3 8.7 57.5 1.2
90 17.9 0.4 23.9 8.1 64.1 1.4

Avg. 9.7 0.2 16.1 5.9 41.3 0.8

Table 2: Average gap to a-posteriori solution and number of rejected requests for the
D-TRSP instances minimizing the total distance.

Table 2 compares the diUerent approaches when the objective only considers the min-

imization of the traveled distance. As before, the gap and number of rejected requests

generally increases with the degree of dynamism. These results show that pALNS consis-

tently outperforms the two other approaches, both in terms of gap and number of rejected

requests. However, in this case MPA is the second best-performing approach in terms of

gap, but it remains third with respect to the number of rejected requests. As before, our

experiments show that MPA uses more technicians on average. However, what was a dis-

advantage when minimizing the total duration helps MPA in reducing the total distance.

Nonetheless, the remark regarding the number of rejected requests remains valid: the ap-

proach seems to be overly conservative.

Finally, Table 3 presents the eUect of the change in the objective function in both total

working time (∆WT ) and traveled distance (∆Dist) for the three approaches. As expected,

minimizing the distance instead of the working time leads to a reduction of the total trav-

eled distance by 45%, 55%, and 32% for pALNS, MPA, and regret-3, respectively. More
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5 CONCLUSIONS

pALNS MPA regret-3

δ ∆WT∆WT∆WT ∆Dist∆Dist∆Dist ∆WT∆WT∆WT ∆Dist∆Dist∆Dist ∆WT∆WT∆WT ∆Dist∆Dist∆Dist

10 -8.0 -40.9 -13.3 -58.1 -1.4 -33.6
30 -9.8 -45.5 -15.8 -57.2 -7.7 -31.7
50 -16.4 -46.5 -11.4 -55.1 -11.0 -31.4
70 -18.5 -47.6 -12.8 -54.1 -10.8 -30.2
90 -20.2 -45.4 -10.1 -52.9 -11.9 -32.0

Avg. -14.6 -45.2 -12.6 -55.4 -8.5 -31.8

Table 3: DiUerence in total working time and distance when minimizing the total distance
instead of the total working time (in %).

surprisingly, it also leads to a reduction of the total working time by 15%, 13%, and 8%. This

can be explained by the cutoU policy that is contradictory with the minimization of the

working, which mainly focuses on minimizing waiting times. In contrast, focusing on the

minimization of the traveled distance always leads to a reduction of the travel time, which

in turn reduces the duration of tours.

5 Conclusions

In this paper we introduced a new dynamic optimization problem, namely the Dynamic

Technician Routing and Scheduling Problem (D-TRSP). This problem arises in numerous

practical contexts such as public utilities, telecoms, and maintenance operations.

We propose two solution methods to tackle the D-TRSP. The Vrst is a periodic reopti-

mization approach based on a parallel Adaptive Large Neighborhood Search (pALNS) that

produces a new routing plan each time a new request appears. The second is a continuous

reoptimization approach based on the Multiple Plan Approach (MPA) that continuously

optimizes a pool of routing plans that are then use to take routing decisions.

Our preliminary computational results indicate that the pALNS based reoptimization

approach dominates MPA and a simpler regret-3 heuristic, by yielding high quality results

in limited time. In addition, its relative simplicity makes it a good candidate for practical

applications. MPA results were disappointing, but this can be attributed to the decision pro-

cess which does not takes into account the plan costs, and an overly conservative request

acceptance criterion.

In addition, we have demonstrated that the minimization of the total working time,

although perfectly sound in a static context, does not Vt well in a dynamic environment. In

particular, we have shown that minimizing the total distance ultimately leads to solutions

that are better both in terms of total distance and duration.

Further work will focus on improving MPA to take better decisions and reject less re-

quests. In addition, we are testing the proposed approach on real world data from an in-

dustrial partner. Finally, the uncertainty should be modeled to better anticipate the arrival

of new requests and improve the quality of the decisions.
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