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Asymptotic enumeration of Eulerian circuits for graphs with strong mixing properties

We prove an asymptotic formula for the number of Eulerian circuits for graphs with strong mixing properties and with vertices having even degrees. The exact value is determined up to the multiplicative error O(n -1/2+ε ), where n is the number of vertices.

Introduction

Let G be a simple connected graph all of whose vertices have even degrees. An Eulerian circuit in G is a closed walk (see, for example, [START_REF] Biggs | Graph Theory[END_REF]) which uses every edge of G exactly once. Two Eulerian circuits are called equivalent if one is a cyclic permutation of the other. It is clear that the size of such an equivalence class equals the number of edges of graph G. Let EC(G) denote the number of equivalence classes of Eulerian circuits in G.

The problem of counting the number of Eulerian circuits in an undirected simple graph (graph without loops and multiple edges) is complete for the class #P , i.e. the existence of a polynomial algorithm for this problem implies the existence of a polynomial algorithm for any problem in the class #P and, in particular, the equivalence of the classes P and NP . (see [START_REF] Brightwell | Note on Counting Eulerian Circuits[END_REF]). In other words, the problem of counting the number of Eulerian circuits is difficult in terms of the complexity theory. Moreover, it should be noted that in contrast to many other hard problems of counting on graphs (see, for example, [START_REF] Arora | Polynomial Time Approximation Schemes for Dense Instances of NP-Hard Problems[END_REF], [START_REF] Mihail | On the number of Eulerian orientations of a graph[END_REF]), even approximate and probabilistic polynomial algorithms for counting the number of Eulerian circuits have not been obtained for the general case and are known only for some special classes of graphs with low density, see [START_REF] Chebulu | Exact counting of Euler tours for generalized series-parallel graphs[END_REF] and [START_REF] Tetali | Random sampling of Euler tours[END_REF].

As concerns the class of complete graphs K n , the exact expression of the number of Eulerian circuits for odd n is unknown (it is clear that EC(K n ) = 0 for even n) and only the asymptotic formula was obtained (see [START_REF] Mckay | Asymptotic enumeration of eulerian circuits in the complete graph[END_REF]): as n → ∞ with n odd

EC(K n ) = 2 (n-1) 2 2 π -n-1 2 n n-2 2 n -1 2 -1 ! n 1 + O(n -1/2+ε ) = = 2 n+1 2 π 1 2 e -n 2 2 + 11 12 n (n-2)(n+1) 2 1 + O(n -1/2+ε ) (1.1)
for any fixed ε > 0.

In [START_REF] Isaev | Asymptotic behaviour of the number of Eulerian circuits[END_REF] the analytic approach of [START_REF] Mckay | Asymptotic enumeration of eulerian circuits in the complete graph[END_REF] was generalized. This approach is based on expression of the result in terms of a multidimensional integral and its estimation as dimension tends to infinity. In particular, the asymptotic behaviour of the number of Eulerian circuits was determined for graphs with large algebraic connectivity. This class of graphs we mean as the class of graphs having strong mixing properties.

There are several classic graph parameters which express mixing properties of graphs: the algebraic connectivity, the Cheeger constant (isoperimetric number), the spectral gap between the 1 and the second largest eigenvalue of the transition probability of the random walk on a graph. It should be noted that, using any of these parametres, one can get equivalent definitions of the class of graphs having strong mixing properties (for more detailed information, see [START_REF] Isaev | On the class of graphs with strong mixing properties[END_REF]).

In addition, it is shown in [START_REF] Isaev | On the class of graphs with strong mixing properties[END_REF] that a random graph in the Gilbert graph model G(n, p) (each possible edge occurs in a graph with n vertices independently with probability p) for n → ∞ and fixed p > 0 has strong mixing properties with probability close to 1 (with the exception of some exponentially small of n value).

In the present work we continue studies of [START_REF] Isaev | Asymptotic behaviour of the number of Eulerian circuits[END_REF], [START_REF] Isaev | On the class of graphs with strong mixing properties[END_REF], [START_REF] Mckay | Asymptotic enumeration of eulerian circuits in the complete graph[END_REF]. We prove an asymptotic formula for the number of Eulerian circuits of graphs having strong mixing properties. This result is presented in detail in Section 2 of the present work.

Actually, the estimation of the number of Eulerian circuits was reduced in [START_REF] Isaev | Asymptotic behaviour of the number of Eulerian circuits[END_REF] to estimating of an n-dimensional integral which is close to Gaussiantype. We partly repeat this reduction in Sections 3, 8 of the present paper. In addition, we develop an approach for estimating of integrals of such a type in Sections 4, 6, 7. We prove the main result in Section 5.

An orientation of edges of a graph such that at each vertex the number of incoming and outgoing edges are the same is called it Eulerian orientation. In [START_REF] Isaev | Asymptotic behaviour of the number of Eulerian orientations of graphs[END_REF] the asymptotic behaviour of the number of Eulerian orientations was determined for graphs having strong mixing properties. Apparently, proceeding from the results of [START_REF] Isaev | Asymptotic behaviour of the number of Eulerian orientations of graphs[END_REF] and the estimates of the present work, it is possible to prove the asymptotic formula for the number of Eulerian orientations given in [START_REF] Isaev | On the class of graphs with strong mixing properties[END_REF]. In a subsequent paper we plan to develop this approach.

Main result

Let G be an undirected simple graph with vertex set V G = {v 1 , v 2 , . . . , v n } and edge set EG. We define n × n matrix Q by

Q jk =    -1, {v j , v k } ∈ EG, d j , j = k, 0, otherwise, (2.1) 
where n = |V G| and d j denotes the degree of

v j ∈ V G. The matrix Q = Q(G)
is called the Laplacian matrix of the graph G. The eigenvalues λ 1 ≤ λ 2 ≤ . . . ≤ λ n of the matrix Q are always non-negative real numbers and the number of zero eigenvalues of Q coincides with the number of connected components of G, in particular, λ 1 = 0. The eigenvalue λ 2 = λ 2 (G) is called the algebraic connectivity of the graph G. In addition, the following inequalities hold:

2 min j d j -n + 2 ≤ λ 2 ≤ n n -1 min j d j . (2.2) 
For more information on the spectral properties of graphs see, for example, [START_REF] Fiedler | Algebraic connectivity of graphs[END_REF] and [START_REF] Mohar | The Laplacian spectrum of graphs, Graph Theory, Combinatorics, and Applications[END_REF]. An acyclic connected subgraph of the graph Gd which includes all of its vertices is called a spanning tree of G. According to Kirchhoff's Matrix-Tree-Theorem, see [START_REF] Kirchhoff | Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird[END_REF], we have that

t(G) = 1 n λ 2 λ 3 • • • λ n = det M 11 , (2.3) 
where t(G) denotes the number of spanning trees of the graph G and M 11 results from deleting the first row and the first column of Q.

We call the graph G as γ-mixing graph, γ > 0, if the algebraic connectivity λ 2 = λ 2 (G) ≥ γ|V G|.

(2.4)

The main result of the present work is the following theorem.

Theorem 2.1. Let G be an undirected simple graph with n vertices v 1 , v 2 , . . . , v n having even degrees. Let G be a γ-mixing graph for some γ > 0. Then

EC(G) = (1 + δ(G)) e Kec 2 |EG|-n-1 2 π -n-1 2 t(G) n j=1 d j 2 -1 ! , K ec = - 1 4 {v j ,v k }∈EG 1 d j + 1 - 1 d k + 1 2 , (2.5)
where EG denotes the edge set of G, d j is the degree of vertex v j , t(G) is the number of spanning trees of G and for any ε > 0

|δ(G)| ≤ Cn -1/2+ε , (2.6) 
where constant C > 0 depends only on γ and ε.

Proof of Theorem 2.1 is given in Section 5. This proof is based on results presented in Sections 3, 4.

Remark 2.1. For the case of the complete graph we have that:

λ 2 (K n ) = n, EK n = n(n -1) 2 , t(K n ) = n n-2 , K ec = 0. (2.7)
We obtain that the result of Theorem 2.1 for the case of the complete graph is equivalent to (1.1).

Reduction to the integral

A directed tree with root v is a connected directed graph T such that v ∈ V T has out-degree zero, and each other vertex has out-degree one. Thus, T is a tree which has each edge oriented towards v.

Let G be a connected undirected simple graph with n vertices v 1 , v 2 , . . . , v n having even degrees. Note that for every spanning tree T of the graph G and any vertex v r ∈ V G there is only one orientation of the edges of T such that we obtain a directed tree with root v r . We denote by T r the set of directed trees with root v r obtained in such a way.

We recall that (see Section 4 and formulas (4.6), (4.7) of [START_REF] Isaev | Asymptotic behaviour of the number of Eulerian circuits[END_REF]):

EC(G) = n j=1 d j 2 -1 ! 2 |EG|-n+1 π -n S, (3.1) 
where for any r ∈ N, r ≤ n,

S = Un(π/2) {v j ,v k }∈EG cos ∆ jk T ∈Tr (v j ,v k )∈ET (1 + i tan ∆ jk ) d ξ, (3.2) 
where ∆ jk = ξ j -ξ k and

U n (ρ) = {(ξ 1 , ξ 2 , . . . , ξ n ) ∈ R n : |ξ j | ≤ ρ for all j = 1 . . . n}. (3.3) 
We approach the integral by first estimating it in the region which is the asymptotically significant one. In what follows, we fix some small constant ε > 0. Define

V 0 = { ξ ∈ U n (π/2) : |ξ j -ξ k | π ≤ n -1/2+ε for any 1 ≤ j, k ≤ n} |ξ j -ξ k | π = min l∈Z |ξ j -ξ k + πl|. (3.4) 
and let S 0 denote the contribution to S of ξ ∈ V 0 :

S 0 = 1 n n r=1 Un(π/2) {v j ,v k }∈EG cos ∆ jk T ∈Tr (v j ,v k )∈ET (1 + i tan ∆ jk ) d ξ. (3.5)
In this section we use standart notation f = O(g) as n → ∞ which indicates that there exist c, n 0 > 0 such that for n ≥ n 0 the inequality |f | ≤ c|g| holds.. Under assumptions of Theorem 2.1, we have that as n → ∞

S = 1 + O exp(-cn 2ε ) S 0 (3.6)
for some c > 0 depending only on γ. For the proof of (3.6), see Theorem 6.3 of [START_REF] Isaev | Asymptotic behaviour of the number of Eulerian circuits[END_REF].

Let

W = Q-1 = (Q + J) -1 , (3.7) 
where Q is the Laplacian matrix and J denotes the matrix with every entry 1. Let α = (α 1 , . . . , α n ) ∈ R n be defined by

α j = W jj . (3.8) Let R( ξ) = tr(Λ( ξ)W Λ( ξ)W ), (3.9) 
where tr(•) is the trace fucntion, Λ( ξ) denotes the diagonal matrix whose diagonal elements are equal to corresponding components of the vector Q ξ.

The sum over T r in the integrand of (3.2) can be expressed as a determinant, according to the following theorem of [START_REF] Tutte | The dissection of equilateral triangles into equilateral triangles[END_REF], which is a generalization of aforementioned Kirchhoff's Matrix-Tree-Theorem:

Theorem 3.1. Let w jk (1 ≤ j, k ≤ n, j = k) be arbitrary. Define the n × n matrix A by A jk = -w jk , if j = k, r =j w jr , if k = j , (3.10) 
the sum being over 1 ≤ r ≤ n with r = j. For any r with 1 ≤ r ≤ n, let M r denote the principal minor of A formed by removing row r and column r.

Then det M r = T (v j ,v k )∈ET w jk , (3.11) 
where the sum is over all directed trees T with V T = {v 1 , v 2 , . . . , v n } and root v r .

Using formulas (3.2) and (3.6), Theorem 3.1 and the Taylor series expansion of cos ∆ jk and tan ∆ jk in the region V 0 , one can obtain the following proposition: Proposition 3.1. Let the assumptions of Theorem 2.1 hold. Then as n → ∞

S 0 = 1 + O n -1/2+6ǫ 2 -1/2 π 1/2 n -1 det Q Int, (3.12) Int = Un(n -1/2+ε ) exp i ξ T Q α - 1 2 ξ T Q ξ - 1 12 {v j ,v k }∈EG ∆ 4 jk + 1 2 R( ξ) d ξ, (3.13 
) where Q, α and R( ξ) are the same as in (3.7), (3.8) and (3.9), respectively.

We prove in detail Proposition 3.1 in Section 8. Actually, this proof was implicitly given in [START_REF] Isaev | Asymptotic behaviour of the number of Eulerian circuits[END_REF] (see Lemma 5.3 of [START_REF] Isaev | Asymptotic behaviour of the number of Eulerian circuits[END_REF]).

Thus, we get that to prove Theorem 2.1 it remains only to estimate the integral Int of (3.12).

Asymptotic estimates of integrals

We fix constants a, b, ε > 0. In this section we use notation f = O(g) meaning that |f | ≤ c|g| for some c > 0 depending only on a, b and ε.

Let p ≥ 1 be a real number and x ∈ R n . Let

x p = n j=1 |x j | p 1/p . ( 4.1) 
For p = ∞ we have the maximum norm

x ∞ = max j |x j |. (4.2) 
The matrix norm corresponding to the p-norm for vectors is

A p = sup x =0 A x p x p . (4.3) 
One can show that for symmetric matrix A and p ≥ 1

A p ≥ A 2 . (4.4)
For invertible matrices define the condition number

µ p (A) = A p • A -1 p ≥ AA -1 p = 1. (4.5) 
Let I be identity n × n matrix and A = I + X be such a matrix that:

A is positive definite symmetric matrix,

|X jk | ≤ a/n, X jj = 0, A -1 2 ≤ b. (4.6) 
Note that

A -1 -1 2 ≤ A 2 ≤ A ∞ = A 1 = max j n k=1 |A jk | = O(1). (4.7)
We recall that (see Lemma 3.2 of [START_REF] Isaev | Asymptotic behaviour of the number of Eulerian orientations of graphs[END_REF] ), under assumptions (4.6),

µ ∞ (A) = µ 1 (A) = O(µ 2 (A)). (4.8)
Using (4.4), (4.6), (4.7) and (4.8), we obtain the following lemma:

Lemma 4.1. Let A satisfy (4.6). Then A -1 ∞ = A -1 1 = O(1), (4.9 
)

|X ′ jk | = O(n -1 ), (4.10) 
where

X ′ = A -1 -I = A -1 (I -A) = -A -1 X. (4.11)
We use the following notation:

< g > F,Ω = Ω g( θ)e F ( θ) d θ, (4.12) 
where g, F are some functions on R n . For r > 0 let

< g > F,r =< g > F,Un(rn ε ) , (4.13) 
where

U n (ρ) = {(θ 1 , θ 2 , . . . , θ n ) ∈ R n : |θ j | ≤ ρ for all j = 1 . . . n}. (4.14)
We use functions of the following type:

F ( θ) = -θ T A θ + H( θ), (4.15) 
where A satisfy (4.6). Let consider the following assumptions on function H, which we will need further:

H( θ) ≤ c 1 θ T A θ n , (4.16 
)

∂H( θ) ∂ θ ∞ ≤ c 2 θ 3 ∞ + θ ∞ n (4.17)
For the case when H ≡ 0 we use notations: (4.6) and assumptions (4.16), ( 4.17) hold for some c 1 , c 2 > 0. Then

< g > Ω =< g > F,Ω , < g > r =< g > F,r , < g >=< g > +∞ . (4.18) Lemma 4.2. Let Ω ⊂ R n be such that U n (r 1 n ε ) ⊂ Ω ⊂ U n (r 2 n ε ) for some r 2 > r 1 > 0. Let A satisfy
< 1 > Ω = (1 + O exp(-c 3 n 2ε ) ) < 1 >, (4.19) < 1 > F,Ω = O (< 1 >) , (4.20) < θ 2 k > F,Ω = 1 2 < 1 > F,Ω +O(n -1+4ε ) < 1 >, (4.21) < θ 4 k > F,Ω = 3 4 < 1 > F,Ω +O(n -1+7ε ) < 1 > (4.22)
and, for k = l:

< θ k θ l > F,Ω = O(n -1+5ε ) < 1 >, (4.23) < θ k θ 3 l > F,Ω = O(n -1+7ε ) < 1 >, (4.24) < θ 2 k θ 2 l > F,Ω = 1 4 < 1 > F,Ω +O(n -1+7ε ) < 1 >, (4.25) 
where F is defined by ( 4.15) and

c 3 = c 3 (r 1 , r 2 , c 1 , c 2 , a, b, ε) > 0.
In addition, for any vector

p = (p 1 , p 2 , . . . p n ) ∈ R n , p ∞ = O(n -1/2 ), < θ k e i θ T p-ip k θ k > F,Ω = = i 2 j =k,j≤n p j (A -1 ) jk <e i θ T p-ip k θ k > (F -1 2 p 2 k θ 2 k ),Ω + + O(n -1+5ε ) < 1 >, (4.26) 
where (A -1 ) jk denotes (j, k)-th element of the matrix A -1 .

Proof of Lemma 4.2 is given in Section 6.

Proof of Theorem 2.1

The Laplacian matrix Q of the graph G ( defined in (2.1)) has the eigenvector [1, 1, . . . , 1] T , corresponding to the eigenvalue λ 1 = 0. Let Q = Q + J, where J denotes the matrix with every entry 1. Note that Q and Q have the same set of eigenvectors and eigenvalues, except for the eigenvalue corresponding to the eigenvector [1, 1, . . . , 1] T , which equals 0 for Q and n for Q. Using (2.3), we find that

t(G) = 1 n λ 2 λ 3 • • • λ n = det Q n 2 .
(5.1)

Using (4.4), we get that

λ n = ||Q|| 2 ≤ || Q|| 2 ≤ || Q|| 1 = max j n k=1 | Qjk | = n. (5.2)
Then, we find that

|| Q-1 || 2 = 1 λ 2 ≤ 1 γn . (5.3) Using (2.
2), we get that

n -1 ≥ d j ≥ λ 2 n -1 n ≥ γ(n -1), (5.4) 
where d j is the degree of v j . Consider the integral of Proposition 3.1:

Int = Un(n -1/2+ε ) exp i ξ T β - 1 2 ξ T Q ξ - 1 12 {v j ,v k }∈EG ∆ 4 jk + R( ξ) 2 d ξ, R( ξ) = tr(Λ( ξ) Q-1 Λ( ξ) Q-1 ), β = Q α, (5.5) 
where Λ( ξ) denotes the diagonal matrix whose diagonal elements are equal to corresponding components of the vector Q ξ and α is the vector composed of the diagonal elements of Q-1 .

Let define ξ( θ) = (ξ 1 ( θ), ξ 2 ( θ), . . . ξ n ( θ)) by

θ k = (d k + 1)/2 ξ k . (5.6) 
Then we can rewrite (5.5) in notations of Section 4:

Int =< e i p T θ > F,Ω n j=1 1 (d j + 1)/2 , (5.7) 
where p = (p 1 , p 2 , . . . p n ),

p k = β k (d j + 1)/2 , ( 5.8) 
F ( θ) = -θ T A θ + H( θ),
(5.9)

θ T A θ = 1 2 ξ( θ) T Q ξ( θ), A jk = 1 (d j + 1)(d k + 1)
Qjk , (5.10)

H(θ) = - 1 12 {v j ,v k }∈EG ∆ 4 jk + R( ξ( θ)) 2 , (5.11 
)

Ω = { θ ∈ R n : ξ( θ) ∈ U n (n -1/2+ε )}.
(5.12)

We aim to reduce, using Lemma 4.2, expression Int of (5.7) to

< 1 >= R n e -θ T A θ d θ = π n/2 √ det A = (2π) n/2 det Q n j=1 (d j + 1)/2. (5.13)
Our argument is as follows: first we have to verify that all assumptions of Lemma 4.2 hold, then we will gradually get rid of the oscillating term e i p T θ , quadratic term R( ξ( θ))

2
and the residual term -

1 12 {v j ,v k }∈EG ∆ 4 jk .
Further, we always use notation f = O(g) meaning that |f | ≤ c|g| for some constant c > 0 depending only on γ and ε.

Assumptions of Lemma 4.2

Combining (5.3), (5.4), (5.6), (5.10) and (5.12), we get that A satisfy (4.6) and U n (r

1 n ε ) ⊂ Ω ⊂ U n (r 2 n ε ) (5.14)
for some a, b, r 1 , r 2 > 0 depending only on γ. Let e (k) = (e

(k) 1 , . . . , e (k) 
n ) ∈ R n be defined by e (k) j = δ jk , where δ jk is the Kronecker delta. Due to the linearity of Λ( ξ) and tr(•), we find that

R( ξ( θ)) = ξ( θ) T R ξ( θ) = θ T S θ, (5.15) 
where

R jk = tr(Λ( e (j) ) Q-1 Λ( e (k) ) Q-1 ), S jk = R jk (d j + 1)/2 (d k + 1)/2 . (5.16)
We use the following inequalities for n × n matrices X, Y :

|tr(XY )| ≤ X HS Y HS , XY HS ≤ X HS Y T 2 ,
(5.17) where • HS denotes the Hilbert-Schmidt norm,

X HS = n j=1 n k=1 |X jk | 2 .
(5.18)

Combining (5.2), (5.3), (5.15)-( 5.17), we find that

ξ T 1 R ξ 2 ≤ Λ( ξ 1 ) Q-1 HS Λ( ξ 2 ) Q-1 HS ≤ ≤ Λ( ξ 1 ) HS Λ( ξ 2 ) HS Q-1 2 2 = Q ξ 1 2 Q ξ 2 2 Q-1 2 2 ≤ ≤ Q 2 2 Q-1 2 2 ξ 1 2 ξ 2 2 = O(1) ξ 1 2 ξ 2 2 .
(5.19) Using (5.2), (5.10), (5.11) and (5.19), we obtain that

H( θ) ≤ R( ξ( θ)) = ξ( θ) T R ξ( θ) = O(1) ξ( θ) 2 2 = = O(1) ξ( θ) T Q ξ( θ) n = O(n -1 ) θ T A θ.
(5.20)

Let ( Q-1 Λ( ξ) Q-1 ) kk denote the (k, k)-th element of the matrix Q-1 Λ( ξ) Q-1 . For any 1 ≤ k ≤ n, we have that ∂R( ξ) ∂ξ k = 2tr ∂Λ( ξ) ∂ξ k Q-1 Λ( ξ) Q-1 = 2tr Λ( e (k) ) Q-1 Λ( ξ) Q-1 = = 2d k ( Q-1 Λ( ξ) Q-1 ) kk + 2tr Λ Q-1 Λ( ξ) Q-1 , (5.21) 
where Λ is the diagonal matrix with the diagonal elements Λjj = Λ( e (k) ) jj in the case of j = k and Λkk = 0. In particular, we have that

Λ 2 ≤ 1. (5.22) Since Λ( ξ) is diagonal matrix, we get that |d k ( Q-1 Λ( ξ) Q-1 ) kk | = |d k Λ( ξ) kk | ( Q-1 ) k 2 2 ≤ d k Λ( ξ) 2 ( Q-1 ) k 2 2 , (5.23)
where ( Q-1 ) k is the k-th column of the matrix Q-1 . Note that

( Q-1 ) k 2 ≤ Q-1 2 Q( Q-1 ) k 2 = Q-1 2 .
(5.24)

We also note that

Λ( ξ) 2 = Q ξ ∞ ≤ 2n ξ ∞ .
(5.25)

Combining (5.3), (5.4), (5.22)-(5.25), we get that

|tr Λ Q-1 Λ( ξ) Q-1 | ≤ n Λ Q-1 Λ( ξ) Q-1 2 ≤ ≤ n Λ 2 Λ( ξ) 2 Q-1 2 2 = O(1) ξ ∞ , d k ( Q-1 Λ( ξ) Q-1 ) kk = O(1) ξ ∞ .
(5.26) Using (5.4), (5.6), (5.15), (5.21) and (5.26) for all 1 ≤ k ≤ n, we obtain that

2 R ξ ∞ = ∂R( ξ) ∂ ξ ∞ = O(1) ξ ∞ , 2 S θ ∞ = ∂R( ξ( θ)) ∂ θ ∞ = O(n -1 ) θ ∞ .
(5.27)

For any 1 ≤ k ≤ n, we have that

∂ ∂ξ k {v j ,v l }∈EG ∆ 4 jl ≤ 4 n j=1 |∆ jk | 3 = O(n) ξ 3 ∞
(5.28)

Combining (5.6) and (5.28), we find that

∂ ∂ θ {v j ,v l }∈EG ∆ 4 jl ∞ = O(n -1 ) θ 3 ∞ .
(5.29) Using (4.10), the fact that

( Q-1 ) jk = (A -1 ) jk (d j + 1)/2 (d k + 1)/2 , (5.30) 
and (5.4), we get that

p ∞ = sup 1≤k≤n β k (d j + 1)/2 = O(n -1/2 ) Qα ∞ = O(n -1/2 ), (5.31) 
where vector p is the same as in (5.8).

Putting together (5.10), (5.14), (5.20), (5.27), (5.29) and (5.31), we get that all assumptions of Lemma 4.2 with data (5.8)-(5.12) hold for some constants a, b, r 1 , r 2 , c 1 , c 2 > 0 depending only on γ.

Oscillating term

Let define p (k) = (p

(k) 1 , p (k) 2 , . . . , p (k) n ) ∈ R n as follows: p (k) j = 0,
for j ≤ k, p j , otherwise.

(5.32)

Let

F (k) ( θ) = F ( θ) - 1 2 k j=1 p 2 j θ 2 j .
(5.33)

Note that

F (0) ( θ) = F ( θ). (5.34) 
Using (5.31) and the fact that

∂ ∂θ k n j=1 p 2 j θ 2 j = 2p 2 k θ k = O(n -1 ) θ ∞ , (5.35) 
we find that all assumptions of Lemma 4.2 hold for the case when we take function F (k) ( θ) instead of the function F ( θ), vector p (k) instead of vector p and for some constants a, b, r 1 , r 2 , c 1 , c 2 > 0 depending only on γ.

Note that θ ∈ Ω =⇒ θ ∞ = O(n ε ).
(5.36)

Taking into account (5.31) and using the Taylor series expansion, we get that

e ip k θ k = e -1 2 p 2 k θ 2 k + ip k θ k + O(n -3/2+3ε ), θ ∈ Ω.
(5.37) Using (5.31) and (4.20), (4.26) for F (k-1) and p (k-1) , we find that

ip k < θ k e i θ T p (k) > F (k-1) ,Ω = = - p k 2 n j=k+1 p j (A -1 ) jk < e i θ T p (k) > F (k) ,Ω +O(n -3/2+5ε ) < 1 >, (5.38) 
Combining (4.20), (5.37) and (5.38), we obtain that

< e i θ T p (k-1) > F (k-1) ,Ω = = 1 - p k 2 n j=k+1 p j (A -1 ) jk <e i θ T p (k) > F (k) ,Ω + + O(n -3/2+5ε ) < 1 > .
(5.39) Using (4.10), (5.8), (5.10) and (5.31), we note also that

p j p k (A -1 ) jk = β j β k ( Q-1 ) jk = O(n -2 ), j = k, p k j =k,j≤n p j (A -1 ) jk = O(n -1
).

(5.40)

Using (5.34), (5.40) and (5.39) for k = 1, 2 . . . n, we get that

< e i θ T p > F,Ω = C 1 < 1 > F (n) ,Ω +O(n -1/2+5ε ) < 1 >, (5.41) 
where

C 1 = exp - n-1 k=1 n j=k+1 β k ( Q-1 ) jk β j = = n-1 k=1 1 - p k 2 n j=k+1
( Â-1 ) jk p j + O(n -1 ) = O(1).

(5.42)

Taking into account (5.31) and using the Taylor series expansion, we get that e -

1 2 p 2 k θ 2 k = 1 - 1 2 p 2 k θ 2 k + O(n -2+4ε ), θ ∈ Ω.
(5.43)

Combining (5.43) and (4.20), (4.21) for F (k) , we get that

< 1 > F (k) ,Ω = 1 - 1 4 p 2 k < 1 > F (k-1)
,Ω +O(n -2+4ε ) < 1 > .

(5.44) Using (5.31), (5.34) and (5.44) for k = 1, 2 . . . , n, we find that

< 1 > F (n) ,Ω = C 2 < 1 > F,Ω +O(n -1+4ε ) < 1 >, (5.45) 
where

C 2 = exp - n k=1 β 2 k 2(d k + 1) = n k=1 1 - 1 4 p 2 k + O(n -1 ) = O(1).
(5.46)

Quadratic term

Let define θ k = (θ k 1 , θ k 1 , . . . , θ k n ) ∈ R n as follows:

θ k j = 0, for j ≤ k, θ j , otherwise.

(5.47)

Let F k ( θ) = -θ T A θ + H k ( θ), H k ( θ) = - 1 12 {v j ,v k }∈EG ∆ 4 jk + 1 2 R( ξ( θ k )).
(5.48)

In absolutely similar way as given in Subsection 5.1, we find that all assumptions of Lemma 4.2 hold for the case when we take F k ( θ) instead of F ( θ) for some constants a, b, r 1 , r 2 , c 1 , c 2 > 0 depending only on γ.

Note that

F 0 ( θ) = F ( θ), (5.49) R( ξ( θ k )) = ξ( θ k ) T R ξ( θ k ) = θ kT S θ k , (5.50) 
where matrices R, S are the same that in (5.15), (5.16). Combining (5.48), the Mean Value Theorem and (5.27), we get that

|F k-1 ( θ) -F k ( θ)| = 1 2 |R( ξ( θ k-1 )) -R( ξ( θ k ))| = = 1 2 ∂R( ξ( θ * )) ∂θ k θ k = O(n -1 ) θ 2 ∞ , (5.51) 
where θ * lies on the segment between θ k-1 and θ k . Using (5.36), (5.51) and the Taylor series expansion, we get that

e F k-1 ( θ)-F k ( θ) = 1 + F k-1 ( θ) -F k ( θ) + O(n -2+4ε ) = = 1 + 1 2 S kk θ 2 k + n j=k+1 S jk θ j θ k + O(n -2+4ε ), θ ∈ Ω.
(5.52) Using (5.4), (5.16), (5.19), we find that

S kk = e (k)T R e (k) (d k + 1)/2 = O(n -1 ) e (k) 2 2 = O(n -1
).

(5.53) Since (5.27) imply that S ∞ = O(n -1 ), using (4.23), we get that

n j=k+1 S jk < θ j θ k > F k-1 ,Ω ≤ | sup k<j≤n < θ j θ k > F k-1 ,Ω | n j=k+1 |S jk | = = O(n -1+5ε ) S ∞ = O(n -2+5ε ).
(5.54)

Combining (4.20), (4.21), (5.52) and (5.54), we obtain that

< 1 > F k-1 ,Ω = 1 + 1 4 S kk < 1 > F k ,Ω +O(n -2+5ε ) < 1 > .
(5.55) Using (5.49), (5.53) and (5.55) for k = 1, 2 . . . , n, we find that

< 1 > F,Ω = C 3 < 1 > F n ,Ω +O(n -1+5ε ) < 1 >, (5.56) 
where

C 3 = exp n k=1 R kk 2(d k + 1) = n k=1 1 + 1 4 S kk + O(n -1 ) = O(1).
(5.57)

Residual term

For a subset Θ of EG we define

F Θ ( θ) = -θ T A θ + H Θ ( θ), H Θ ( θ) = - 1 12 {v j ,v k }∈Θ ∆ 4 jk .
(5.58)

In absolutely similar way as given in Subsection 5.1, we find that all assumptions of Lemma 4.2 hold for the case when we take F Θ ( θ) instead of F ( θ) for some constants a, b, r 1 , r 2 , c 1 , c 2 > 0 depending only on γ.

Note that

F EG ( θ) = F n ( θ), (5.59) 
∆ 4 jk = 4θ 4 j (d j + 1) 2 -4 4θ 3 j θ k (d j + 1) 3/2 (d k + 1) 1/2 + 6 4θ 2 j θ 2 k (d j + 1)(d k + 1) - -4 4θ 3 k θ j (d k + 1) 3/2 (d j + 1) 1/2 + 4θ 4 k (d k + 1) 2 ,
(5.60) Combining (4.22), (4.24), (4.25), (5.4) and (5.60), we get that

< ∆ 4 jk > F Θ ,Ω = 3 4 4 (d j + 1) 2 + 6 4 4 (d j + 1)(d k + 1) + + 3 4 4 (d k + 1) 2 < 1 > F Θ ,Ω +O(n -3+7ε ) < 1 > .
(5.61) Using (4.20) and (5.61), we get that

< e -1 12 ∆ 4 jk > F Θ ,Ω = P jk < 1 > F Θ ,Ω +O(n -3+7ε ) < 1 >, (5.62) 
where

P jk = 1 - 1 4(d j + 1) 2 - 1 2(d j + 1)(d k + 1) - 1 4(d k + 1) 2 .
(5.63)

Note that 1 -1 n 2 ≤ P jk ≤ 1.

(5.64) Using (4.20), (5.62), we can gradually remove all the edges from the residual term H EG and obtain that

< 1 > F EG ,Ω = {v j ,v k }∈EG P jk < 1 > Ω +O(n -1+7ε ) < 1 > . (5.65) 
Combining (4.19) and (5.65), we get that

< 1 > F EG ,Ω = C 4 < 1 > +O(n -1+7ε ) < 1 >, (5.66) 
where

C 4 = exp   - 1 4 {v j ,v k }∈EG 1 d j + 1 + 1 d k + 1 2   .
(5.67) Combining (5.41), (5.45), (5.56), (5.59) and (5.66), we find that

< e i p T θ > F,Ω = C 1 C 2 C 3 C 4 < 1 > +O(n -1/2+7ε ) < 1 > . (5.68)
Taking into account (4.10), (5.10), (5.42), (5.46), we get that:

C 1 C 2 = exp - 1 2 β T Q-1 β , β T Q-1 β = α T Q T Q-1 (Q + J) α -α T Q Q-1 J α = = {v j ,v k }∈EG 1 d j + 1 - 1 d k + 1 2 + O(n -1 ).
(5.69) Using again (4.10), (5.10), we find that

R kk = tr(Λ( e (k) ) Q-1 Λ( e (k) ) Q-1 ) = = n j,m=1 Λ jj ( e (k) )( Q-1 ) jm Λ mm ( e (k) )( Q-1 ) mj = 1 + O(n -1 ),
(5.70)

C 3 = exp n k=1 R kk 2(d k + 1) = exp n k=1 1 2(d k + 1) + O(n -1 ) = = exp   1 2 {v j ,v k }∈EG 1 (d j + 1) 2 + 1 (d k + 1) 2   + O(n -1 ).
(5.71) Putting together (3.1), (3.6), (3.12), (5.1), (5.7), (5.13) and (5.66)-( 5.71), we obtain (2.5) and (2.6) for n ≥ n 0 (γ, ε) > 0 (with the exponent 7ε instead of ε). Estimate (2.6) for n ≤ n 0 can be fulfilled by choice of sufficiently large constant C. According to (4.6), A = I +X, X jj = 0, and so for some g 1 ( θ) = g 1 (θ 2 , . . . , θ n )

θ T A θ = φ 2 1 ( θ) + g 1 ( θ). (6.2)
Using (4.6), (6.2) and estimating insignificant parts of Gaussian integral of the following type:

(max{|x|, k 1 }) s e -(x-k 2 ) 2 dx, (6.3) 
we find that for r > 0, s ≥ 0

< θ s ∞ > = R n θ s ∞ e -θ T A θ d θ = = +∞ -∞ • • • +∞ -∞ e -g 1 (θ 2 ,...,θn)   +∞ -∞ θ s ∞ e -φ 1 ( θ) 2 dθ 1   dθ 2 . . . dθ n = 1 + O exp(-c 4 n 2ε ) |φ 1 ( θ)|≤rn ε θ s ∞ e -θ T A θ d θ, (6.4) 
where c 4 = c 4 (r, ε, s) > 0. Combining similar to (6.4) expressions for φ 1 , φ 2 , . . . φ n , we get that

|| φ( θ)||∞≤rn ε θ s ∞ e -θ T A θ d θ = 1 + O exp(-c 5 n 2ε ) < θ s ∞ >, (6.5) 
where c 5 = c 5 (r, ε, s) > 0. Combining (4.9), (6.1) and (6.5) with s = 0, we obtain (4.19). Using (4.16), we find that

| < 1 > F,Ω | ≤ Ω |e F ( θ) |d θ ≤ R n e -θ T A θ+ c 1 n θ T A θ d θ = O(< 1 >). (6.6)
In order to prove (4.21) -(4.25) we use the following two lemmas. The proofs of them are given in Section 7. (4.6) and assumptions (4.16) and ( 4.17) hold for some constants c 1 , c 2 > 0. Let P = P (x) = O(|x| s ) for some fixed s ≥ 0. Then for any T ( θ) such that |T ( θ)| ≤ P ( θ ∞ ) :

Lemma 6.1. Let Ω ⊂ R n be such that U n (r 1 n ε ) ⊂ Ω ⊂ U n (r 2 n ε ) for some r 2 > r 1 > 0. Let A satisfy
< T ( θ) > R n \Ω = O exp(-c 6 n 2ε ) < 1 >, (6.7)
and for any

T ( θ) = T (θ 1 , . . . , θ k-1 , θ k+1 , . . . , θ n ) such that T ( θ) ≤ P ( θ ∞ ): < φ 2 k ( θ) T ( θ) > F,Ω = 1 2 < T ( θ) > F,Ω +O(n -1+4ε ) < | T ( θ)| > F,Ω + +O exp(-c 6 n 2ε ) < 1 >, (6.8) 20 < φ 4 k ( θ) T ( θ) > F,Ω = 3 4 < T ( θ) > F,Ω +O(n -1+4ε ) < | T ( θ)| > F,Ω + +O exp(-c 6 n 2ε ) < 1 >, (6.9) < φ k ( θ) T ( θ) > F,Ω = O(n -1+4ε ) < | T ( θ)| > F,Ω + +O exp(-c 6 n 2ε ) < 1 >, (6.10) < φ 3 k ( θ) T ( θ) > F,Ω = O(n -1+6ε ) < | T ( θ)| > F,Ω + +O exp(-c 6 n 2ε ) < 1 >, (6.11)
where function F is defined by (4.15), vector φ( θ) is defined by (6.1) and constant c 6 = c 6 (r 1 , r 2 , c 1 , c 2 , a, b, ε, P ) > 0.

Lemma 6.2. Let assumptions of Lemma 6.1 hold and s 1 , s 2 , . . . , s n ∈ N∪{0},

M( x) = x s 1 1 • • • x sn n , s = s 1 + . . . + s n > 0.
(6.12)

Let s k = 0 and |{j : s j = 0}| ≤ 3. (6.13)

Then < φ k ( θ)M( φ( θ)) > F,Ω = O(sn -1+(s+4)ε ) < 1 > . (6.14) 
Using (4.10), we find that

θ k = φ k + q T k φ, q ∞ = O(n -1
). (6.15)

Combining (6.6), (6.15), Lemma 6.1 and Lemma 6.2, we obtain that:

<δ k ( θ) 2 > F,Ω =< ( q T k φ) 2 > F,Ω = = O(n -2 ) j < φ j ( θ) 2 > F,Ω + j 1 =j 2 | < φ j 1 ( θ)φ j 2 ( θ) > F,Ω | = = O(n -1 ) + O(n -1+5ε ) < 1 >= O(n -1+5ε ) < 1 >, (6.16) 
< δ k ( θ) 4 > F,Ω =< ( q T k φ) 4 > F,Ω = O(n -4 ) j < φ j ( θ) 4 > F,Ω + + O(n -4 ) j 1 =j 2 < φ j 1 ( θ) 2 φ j 2 ( θ) 2 > F,Ω + + O(n -4 ) j 1 =j 2 | < φ j 1 ( θ)φ j 2 ( θ) 3 > F,Ω |+ +O(n -4 ) j 1 =j 2 =j 3 | < φ j 1 ( θ)φ j 2 ( θ)φ j 3 ( θ) 2 > F,Ω |+ +O(n -4 ) j 1 =j 2 =j 3 =j 4 | < φ j 1 ( θ)φ j 2 ( θ)φ j 3 ( θ)φ j 4 ( θ) > F,Ω | = = O(n -3 )+O(n -2+4ε ) + O(n -3+7ε ) + O(n -2+7ε )+ + O(n -1+7ε ) < 1 >= O(n -1+7ε ) < 1 >, (6.17) 
where

δ k ( θ) = θ k -φ k ( θ). (6.18) 
According to (4.6), we have that

δ k ( θ) = δ k (θ 1 , . . . , θ k-1 , θ k+1 , . . . , θ n ) (6.19) 
Using (6.6), (6.15), (6.16), (6.17), (6.19) and Lemma 6.1, we obtain that:

< φ k ( θ)δ k ( θ) > F,Ω = = O(n -1+4ε ) < |δ k ( θ)| > F,Ω +O exp(-c 6 n 2ε ) < 1 >= = O(n -1+5ǫ ) < 1 >, (6.20) 
< θ 2 k > F,Ω =< (φ k ( θ)+δ k ( θ)) 2 > F,Ω = =< φ k ( θ) 2 > F,Ω +O(n -1+5ǫ ) < 1 >= = 1 2 < 1 > F,Ω +O(n -1+5ǫ ) < 1 > . (6.21) < φ k ( θ)δ k ( θ) 3 > F,Ω = = O(n -1+4ε ) < |δ k ( θ)| 3 > F,Ω +O exp(-c 6 n 2ε ) < 1 >= = O(n -1+7ǫ ) < 1 >, (6.22) 
< φ k ( θ) 2 δ k ( θ) 2 > F,Ω = 1 2 + O(n -1+4ε ) < δ k ( θ) 2 > F,Ω + +O exp(-c 6 n 2ε ) < 1 >= = O(n -1+5ǫ ) < 1 >, (6.23) 
< φ k ( θ) 3 δ k ( θ) > F,Ω = = O(n -1+6ε ) < |δ k ( θ)| > F,Ω +O exp(-c 6 n 2ε ) < 1 >= = O(n -1+7ǫ ) < 1 >, (6.24) 
< θ 4 k > F,Ω =< (φ k ( θ)+δ k ( θ)) 4 > F,Ω = =< φ k ( θ) 4 > F,Ω +O(n -1+7ǫ ) < 1 >= = 3 4 < 1 > F,Ω +O(n -1+7ǫ ) < 1 > . (6.25) 
In a similar way as in (6.16), (6.17), using (6.20) -( 6.24), we find that

< δ k ( θ)θ l > F,Ω = O(n -1 ) j < φ j ( θ)θ l > F,Ω = = O(n -1+2ε ) + O(n -1+5ε ) < 1 >= O(n -1+5ε ) < 1 >, (6.26) 
< δ k ( θ) 2 θ 2 l > F,Ω = O(n -2 ) j < φ j ( θ) 2 θ 2 l > F,Ω + + O(n -2 ) j 1 =j 2 | < φ j 1 ( θ)φ j 2 ( θ)θ 2 l > F,Ω | = = O(n -1+2ε ) + O(n -1+7ε ) < 1 >= O(n -1+7ε ) < 1 >, (6.27) 
< δ k ( θ)θ 3 l > F,Ω = = O(n -1 ) j =l < φ j ( θ)θ 3 l > F,Ω +O(n -1 ) < φ l ( θ)θ 3 l > F,Ω = = O(n -1+7ε ) + O(n -1+4ε ) < 1 >= O(n -1+7ε ) < 1 > . (6.28) 
Using (6.6), (6.19), (6.26)-(6.28) and Lemma 6.1, we obtain that:

< φ k ( θ)δ k ( θ)θ 2 l > F,Ω = O(n -1+4ε ) < |δ k ( θ)θ 2 l | > F,Ω + +O exp(-c 6 n 2ε ) < 1 >= = O(n -1+7ǫ ) < 1 >, (6.29) 
< θ k θ l > F,Ω =< (φ k ( θ) + δ k ( θ))θ l > F,Ω = O(n -1+5ǫ ) < 1 >, (6.30) 
< θ k θ 3 l > F,Ω =< (φ k ( θ) + δ k ( θ))θ 3 l > F,Ω = O(n -1+7ǫ ) < 1 >, (6.31) 
< θ 2 k θ 2 l > F,Ω =< (φ k ( θ) + δ k ( θ)) 2 θ 2 l > F,Ω =< φ k ( θ) 2 θ 2 l > F,Ω +O(n -1+7ǫ ) < 1 >= = 1 2 < φ l ( θ) + δ l ( θ)) 2 > F,Ω +O(n -1+7ǫ ) < 1 >= = 1 4 < 1 > F,Ω +O(n -1+7ǫ ) < 1 > . (6.32) Since p ∞ = O(n -1/2
), using the fact that

e 1 2 p 2 k θ 2 k = 1 + O(n -1+2ε ), θ ∈ Ω, (6.33) 
and (6.6), we get that

< θ k e i θ T p-ip k θ k > F,Ω =< θ k e i θ T p-ip k θ k > F ′ ,Ω +O(n -1+3ε ) < 1 >, (6.34) 
where

F ′ = F -1 2 p 2 k θ 2 k .
It is clear that F ′ satisfy all assumptions of Lemma 6.1. For any

p ′ = (p ′ 1 , p ′ 2 , . . . , p ′ n ) ∈ R n such that p ′ ∞ = O(n -1/2
), we have that

e ip ′ l θ l = 1 + ip ′ l θ l + O(n -1+2ε ), e -ip ′ l θ l = 1 + O(n -1/2+ε ), θ ∈ Ω. (6.35)
Using (6.6), (6.8) and (6.10) with F ′ instead of F , (6.35), we get that

< φ l ( θ)e i θ T p ′ -ip ′ l θ l > F ′ ,Ω = O(n -1+4ε ) < 1 >, < φ l ( θ)δ l ( θ)e i θ T p ′ -ip ′ l θ l > F ′ ,Ω = O(n -1+5ε ) < 1 >, < φ l ( θ)θ l e i θ T p ′ -ip ′ l θ l > F ′ ,Ω =< φ 2 l ( θ)e i θ T p ′ -ip ′ l θ l > F ′ ,Ω + < φ l ( θ)δ l ( θ)e i θ T p ′ -ip ′ l θ l > F ′ ,Ω = = 1 2 < e i θ T p ′ -ip ′ l θ l > F ′ ,Ω +O(n -1+5ε ) < 1 >= = 1 2 < e i θ T p ′ > F ′ ,Ω +O(n -1/2+5ε ) < 1 > . (6.36) 
Combining (6.35) and (6.36), we find that

< φ l ( θ)e i θ T p ′ > F ′ ,Ω =< φ l ( θ)e i θ T p ′ -ip ′ l θ l > F ′ ,Ω + + ip ′ l < φ l ( θ)θ l e i θ T p ′ -ip ′ l θ l > F ′ ,Ω +O(n -1+3ε ) < 1 >= = i 2 p ′ l < e i θ T p ′ > F ′ ,Ω +O(n -1+5ε ) < 1 > .
(6.37) Using (6.2), we get that

Un(r 2 n ε ) φ p 1 ( θ) T (θ 2 , . . . , θ n )e -θ T A θ+H( θ) d θ + O exp(-c 6 n 2ε ) < 1 >= = r 2 n ε -r 2 n ε • • • r 2 n ε -r 2 n ε T e -g 1 (θ 2 ,...,θn)+H( θ (1) )   r 2 n ε -r 2 n ε φ p 1 e -φ 2 1 ( θ)+H( θ)-H( θ (1) ) dθ 1   dθ 2 . . . dθ n , p = 0, 1 , 2, 3, 4. (7.5) 
Combining (4.9) and (7.4), we find that for θ (1) ∈ U n (r 2 n ε )

r 2 n ε -r 2 n ε φ p 1 e -φ 2 1 ( θ)+H( θ)-H( θ (1) ) dθ 1 = = +∞ -∞ φ p 1 e -φ 2 1 ( θ) dθ 1 + O exp(-c 7 n 2ε ) +∞ -∞ e -φ 2 1 ( θ) dθ 1 + + |φ 1 ( θ)|≤r 3 n ε φ p 1 e -φ 2 1 ( θ) e H( θ)-H( θ (1) ) -1 dθ 1 , p = 0, 1, 2, 3, 4, (7.6) 
where c 7 = c 7 (r 2 , c 1 , c 2 , a, b, ε) > 0, r 3 = r 3 (r 2 , c 1 , c 2 , a, b, ε) > 0. For p = 2, 4, we have that:

+∞ -∞ φ 2 1 e -φ 2 1 ( θ) dθ 1 = 1 2 +∞ -∞ e -φ 2 1 ( θ) dθ 1 , +∞ -∞ φ 4 1 e -φ 2 1 ( θ) dθ 1 = 3 4 +∞ -∞ e -φ 2 1 ( θ) dθ 1 , (7.7 
)

|φ 1 ( θ)|<r 3 n ε φ p 1 e -φ 2 1 ( θ) e H( θ)-H( θ (1) ) -1 dθ 1 = = O(n -1+4ǫ ) +∞ -∞ φ p 1 e -φ 2 1 ( θ) dθ 1 = = O(n -1+4ǫ ) +∞ -∞ e -φ 2 1 ( θ) dθ 1 ,
for θ (1) ∈ U n (r 2 n ε ), p = 0, 2, 4.

(7.8) Combining (7.2)-(7.8), we obtain (6.8) and (6.9). For p = 1, 3, we have that:

+∞ -∞
φ p 1 e -φ 2 1 ( θ) dθ 1 = 0 (7.9)

|φ 1 ( θ)|≤r 3 n ε φ p 1 e -φ 2 1 ( θ) e H( θ)-H( θ (1) ) -1 dθ 1 = = 0≤φ 1 ( θ)≤r 3 n ε |φ 1 | p e -φ 2 1 ( θ) e H( θ)-H( θ (1) ) -1 dθ 1 - - r 3 n ε ≤φ 1 ( θ)≤0 |φ 1 | p e -φ 2 1 ( θ) e H( θ)-H( θ (1) ) -1 dθ 1 = = O(n -1+4ǫ ) φ 1 ≥0 |φ 1 | p e -φ 2 1 ( θ) dθ 1 = = O(n -1+4ǫ ) +∞ -∞ e -φ 2 1 ( θ) dθ 1 ,
for θ (1) ∈ U n (r 2 n ε ), p = 1, 3.

(7.10) Combining (7.2)-(7.6), (7.8), (7.9), (7.10), we obtain (6.8) and (6.9).

Proof of Lemma 6.2. Let T ( θ) satisfy .11) Combining (6.10) and (7.11), we get that

|T ( θ)| = O( θ s ∞ ), ∂T ( θ) ∂θ k = O(sn -1-ε ) sup θ∈Ω |T ( θ)|, θ ∈ Ω. ( 7 
< φ k ( θ)T ( θ) > F,Ω = =< φ k ( θ)T ( θ (k) ) > F,Ω + < φ k ( θ)(T ( θ) -T ( θ (k) ) > F,Ω = =< φ k ( θ)T ( θ (k) ) > F,Ω +O(sn -1-ǫ ) < sup θ∈Ω |φ k θ k T ( θ)| > F,Ω = = O(sn -1+4ǫ ) < sup θ∈Ω |T ( θ)| > F,Ω +O exp(-c 6 n 2ε ) < 1 > . (7.12) 
Using (4.6), we find that for θ ∈ Ω

∂M( φ( θ)) ∂θ k = O(sn (s-1)ε ) j:s j =0 ∂ φ j ( θ) ∂θ k = O(sn -1-ε ) sup θ∈Ω |M( φ( θ))|. (7.13) 
Combining (6.6) and(7.12), we obtain (6.14)

8 Proof of Proposition 3.1

In this section we use notation f = O(g) meaning that |f | ≤ c|g| for some constant c > 0 depending only on γ and ε.

The following lemma will be applied to estimate the determinant of a matrix close to the identity matrix I. Lemma 8.1. Let denote any matrix norm. Let X be such an n×n matrix that X < 1. Then for fixed m ≥ 2

det(I + X) = exp m-1 r=1 (-1) r+1 r tr(X r ) + E m (X) , (8.1) 
where tr(•) is the trace function and

|E m (X)| ≤ n m X m 1 -X . (8.2)
The proof of Lemma 8.1 is based on estimation the trace of the matrix ln(I + X), using the representation as a convergent series. Lemma 8.1 was also formulated and proved in [START_REF] Mckay | Asymptotic enumeration of eulerian circuits in the complete graph[END_REF].

We have that

S 0 = 1 n n r=1 V 0 {v j ,v k }∈EG cos ∆ jk T ∈Tr (v j ,v k )∈ET (1 + i tan ∆ jk ) d ξ, (8.3) 
where ∆ jk = ξ j -ξ k and

V 0 = { ξ ∈ U n (π/2) : |ξ j -ξ k | π ≤ n -1/2+ε for any1 ≤ j, k ≤ n}, |ξ j -ξ k | π = min l∈Z |ξ j -ξ k + πl|. (8.4)
Since the integrand is invariant under uniform translation of all the ξ j 's mod π, we can fix n k=1 ξ k = 0 and multiply it by the ratio of its range π to the length n -1/2 of the vector 1 n [1, 1, . . . , 1] T . Thus, for any 1 ≤ r ≤ n, we get that

S 0 = πn 1/2 L∩V 0 ∩Un(n -1/2+ε ) T ( ξ) dL, T ( ξ) = 1 n n r=1 (v j ,v k )∈EG cos ∆ jk T ∈Tr (v j ,v k )∈ET (1 + i tan ∆ jk ), (8.5) 
where L denotes the orthogonal complement to the vector [1, 1, . . . , 1] T . Let define n × n matrix B by

B jk =      -tan ∆ jk , for {v j , v k } ∈ EG, l:(v j ,v l )∈EG tan ∆ jl , for k = j, 0 otherwise . (8.6) 
Using Theorem 3.1 with the matrix Q + iB, we get that

n r=1 T ∈Tr (v j ,v k )∈ET (1 + i tan ∆ jk ) = n r=1 M r , (8.7) 
where M r denotes the principal minor of A formed by removing row r and column r. Since the vector [1, 1, . . . , 1] T is the common eigenvector of the matrices Q and B, corresponding to the eigenvalue 0, we find that

n r=1 M r = det( Q + iB) n , (8.8) 
where Q = Q + J and J denotes the matrix with every entry 1. Note that

|∆ jk | ≤ n -1/2+ε , ξ ∈ V 0 ∩ U n (n -1/2+ε ), (8.9 
)

||B|| 1 = max j n k=1 |B jk | = O(n 1/2+ε ), ξ ∈ U n (n -1/2+ε ). ( 8.10) 
Let Φ = B Q-1 . Using (4.9), (5.4), (5.30) and (8.10), we get that

||Φ|| 1 ≤ ||B|| 1 || Q-1 || 1 = O(n -1/2+ε ), ξ ∈ U n (n -1/2+ε ). (8.11) 
Using Lemma 8.1 with the matrix iΦ, we find that

det(I + iΦ) = exp itrΦ + trΦ 2 2 + O(n -1/2+3ε ) , ξ ∈ U n (n -1/2+ε ). (8.12) Let B = B skew + B diag , (8.13) 
where B skew is the skew-symmetric matrix and B diag is the diagonal matrix. Since Q is the symmetric matrix tr(B skew Q-1 ) = 0. (8.14)

Using (8.9), we find that

||B diag -Λ|| 2 = O(n -1/2+3ε ), ξ ∈ U n (n -1/2+ε ), (8.15) 
where Λ denotes the diagonal matrix whose diagonal elements are equal to the components of the vector Q θ. Combining (5.3) and (8.15), we get that 

tr (B diag -Λ) Q-1 ≤ n||B diag -Λ|| 2 || Q-1 || 2 = O(n -1/2+3ε ), ξ ∈ U n (n -1/2+ε
(B diag -Λ) Q-1 B diag Q-1 ≤ ≤ n Q-1 2 2 ||(B diag -Λ)|| 2 ||B diag || 2 = O(n -1+4ε ), ξ ∈ V 0 , (8.24) 
and 

tr (B diag -Λ) Q-1 (B diag -Λ) Q-1 ≤ ≤ n Q-1 2 2 ||(B diag -Λ)|| 2 2 = O(n -2+6ε ), ξ ∈ V 0 . ( 8 
cos ∆ jk = = exp   - 1 2 (v j ,v k )∈EG ∆ 2 jk - 1 12 
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  Proof of Lemma 4.2 In this section we use notation f = O(g) meaning that |f | ≤ c|g| for some c > 0 depending only on r 1 , r 2 , c 1 , c 2 , a, b and ε. Let φ( θ) = (φ 1 ( θ), φ 2 ( θ), . . . , φ n ( θ)) = A θ. (6.1)

(v j ,v k )∈EG ∆ 4 F

 4 jk + O(n -1+6ε ) (v j ,v k )∈EG ∆ 2 jk = ξ T Q ξ. (8.30) Putting together (8.5) for r = 1, 2 . . . , n, (8.7), (8.8), (8.28), (8.29), (8.30), we obtain thatS 0 = πn -3/2 det Q Int ′ + O n -1/2+6ǫ Int ′′ ,(8.31)whereInt ′ = L∩V 0 ∩Un(n -1/2+ε ) exp(i ξ T Q α + F ( ξ))dL, Int ′′ = L∩V 0 ∩Un(n -1/2+ε )e F ( ξ) dL,

( 8 .c 7 >

 87 32)where R( ξ) = tr(Λ( ξ) Q-1 Λ( ξ) Q-1 ).Let Pr( ξ) be the orthogonal projection ξ onto the space L, where L denotes the orthogonal complement to the vector [1, 1, . . . , 1] T . Note thatPr( ξ) = ξ -ξ[1, 1, . . . , 1] T , 2+ε ) ⊂ ξ : Pr( ξ) ∈ V 0 ∩ U n (n -1/2+ε ) (8.35)We also note thatQ ξ = QPr( ξ). (8.36)Therefore the integrand of (8.32) does not change under the substitution of vector ξ by vector Pr( ξ) andInt ′ = Pr( ξ)∈L∩V 0 ∩Un(n -1/2+ε ) e i ξ T Q α+F ( ξ) d ξ )∈V 0 ∩Un(n -1/2+ε ) e i ξ T Q α+F ( ξ) d ξ,(8.37)Int ′′ = Pr( ξ)∈L∩V 0 ∩Un(n -1/2+ε ) e F ( ξ) d ξ ( ξ)∈V 0 ∩Un(n -1/2+ε ) e F ( ξ) d ξ,(8.38)Using notations (5.6) -(5.11), and formulas (4.20), (8.35), (5.68), we get that Int ′ = 1 + O exp(-c 7 n 2ε ) 0 depends only on γ and ε. Combining (8.31) and (8.39), we obtain (3.12).

  ). = tr(B skew Q-1 ) 2 + tr(B diag Q-1 ) 2 + 2 tr B skew Q-1 B diag Q-1 . (8.19)Since B skew is the skew-symmetric matrix and Q-1B diag Q-1 is the symmetric matrix, we find that ||XY || HS ≤ ||X|| HS ||Y T || 2 . || HS ≤ || Q-1 || 2 ||B skew || HS = O(n -1/2+ε ), ξ ∈ V 0 .

	Using (8.14) and (8.16), we obtain that
		trΦ = tr(B diag	Q-1 ) = tr(Λ Q-1 ) + O(n -1/2+3ε ) = = ξ T Q α + O(n -1/2+3ε ), ξ ∈ V 0 ,	(8.17)
	where α is the vector composed of the diagonal elements of the matrix Q-1 .
	Using the property of the trace function
			tr(XY ) = tr(Y X),	(8.18)
	we have that		
	trΦ 2 tr B skew	Q-1 B diag	Q-1 = 0.	(8.20)
	According to (5.17), we have that
			trX 2 ≤ ||X|| 2 HS ,	(8.21)
	Therefore we get that		
		tr(B skew	Q-1 ) 2 ≤ ||B skew	Q-1 || 2 HS .	(8.22)
	Combining (5.3) and (8.9), we obtain that
	||B skew	Q-1 (8.23)
	Using (5.3), (8.9) and (8.15), we get that
	tr			
					(8.16)

  .25) Combining(8.18),(8.24) and(8.25), we obtain thattr(B diag Q-1 ) 2 = tr(Λ Q-1 ) 2 + O(n -1+4ε ), ξ ∈ V 0 . (8.26) Combining (8.19), (8.20), (8.22), (8.23) and (8.26), we obtain that trΦ 2 = tr(Λ Q-1 ) 2 + O(n -1+4ε ), ξ ∈ V 0 . (8.27) Using (8.17) and (8.27) in (8.12), we get thatdet(I + iΦ) = exp i θ T Q α + tr(Λ Q-1 ) 2 2 + O(n -1/2+4ε ) , ξ ∈ V 0 . (8.28)By Taylor's theorem we have that for ξ ∈ V 0 (v j ,v k )∈EG
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Using (4.9), (6.1) and (6.37), we get that

Combining (6.34) and (6.38) for p ′ = p -p k e (k) , we obtain (4.26).

7 Proofs of Lemma 6.1 and Lemma 6.2

In this section we continue use notation

Proof of Lemma 6.1. Using (4.9), (6.1) and (6.5), we find that

For simplicity, let k = 1. Using (7.2), we get that

Combining (4.17) and the Mean Value Theorem, we find that for θ ∈ U n (r 2 n ε ) H( θ) -H( θ (1) ) = O(n -1+4ε ). (7.4)